Universitas

Esa Unggul . Smart, Creative and Entrepreneurial

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 9
PROGRAM STUDI MAGISTER ILMU KOMPUTER

: l.ac.i
MR ceatlcetLale FAKULTAS ILMU KOMPUTER

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

TOPIK DALAM PEMROGRAMAN
Struktur Data Dasar

Pertemuan 9

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

TUJUAN PERKULIAHAN

* Mahasiswa memahami beberapa tipe persoalan yang
penting.
* Framework Analisis
— Pengukuran Input
— Unit untuk mengukur running time
— Orde pertumbuhan
— Efisiensi kasus terburuk, kasus terbaik, dan kasus rata-rata
* Notasi Asimptotik
— Notasi O
— Notasi Q
— Notasi ©

 Kelas efisiensi dasar

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Algorithm Efficiency, Big O Notation, ADT’s,
and Role of data Structures

* Algorithm Efficiency

* Big O Notation

* Role of Data Structures

e Abstract Data Types (ADTs)
* Data Structures

* The Java Collections API

I —————————————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Algorithm Efficiency

e Let’s look at the following algorithm for
initializing the values in an array:

final int N = 500;
int [] counts = new 1nt[N];
for (int 1=0; 1i<counts.length; 1++)
counts[1i] = 0;
* The length of time the algorithm takes to
execute depends on the value of N

I S————————.

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Algorithm Efficiency

* |n that algorithm, we have one loop that
processes all of the elements in the array
* |ntuitively:
— If N was half of its value, we would expect the
algorithm to take half the time
— If N was twice its value, we would expect the
algorithm to take twice the time

* That is true and we say that the algorithm
efficiency relative to N is linear

! E—

I S——————————————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Algorithm Efficiency

* Let’s look at another algorithm for initializing the
values in a different array:

final 1nt N = 500;
int [] [] counts = new 1nt[N] [N];
for (int 1=0; 1<N; 1++)
for (1nt 3=0; J<N; J++)
counts[1][jJ] = 0O;
* The length of time the algorithm takes to execute
still depends on the value of N

I ——————————.

Smart, Creative and Entrepreneurial

Algorithm Efficiency

* However, in the second algorithm, we have
two nested loops to process the elements in
the two dimensional array

* |ntuitively:

— If N is half its value, we would expect the
algorithm to take one quarter the time

— If N is twice its value, we would expect the
algorithm to take quadruple the time
* That is true and we say that the algorithm
efficiency relative to N is quadratic

_—

I ———————————

Smart, Creative and Entrepreneurial

Big-O Notation

 We use a shorthand mathematical notation to
describe the efficiency of an algorithm relative to
any parameter n as its “Order” or Big-O
— We can say that the first algorithm is O(n)
— We can say that the second algorithm is O(n?)

* Let T(n) be a function that formulates the time an
algorithm needs to be completed, where n is the
parameter that specifies the size of the problem,
we say that the algorithm is O(T(n)) [or the

ﬁrithm has the time-comﬁlexitx of O‘T‘nm. —

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Big-O Notation

* Big-O notation measures how fast the the
running time of the algorithm grows with
increase in the size of the problem , not how
long will it take for our algorithm to run as a
function of the size of the problem. Therefore,

— We only include the fastest growing term and ignore

any multiplying by or adding of constants. Since they
are not dependent on the size of the problem.

— If our time growth function has multiple terms
dependent on the problem size n, we only take the
dominating term as the Big-O measure.

— Example

B | ! E—

I ————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

e Eight functions O(n) that occur frequently in
the analysis of algorithms (in order of
increasing rate of growth relative to n):

— Constant = 1

— Logarithmic = log n
— Linear=n

— Log Linear =n log n
— Quadratic = n?

— Cubic = n?

— Exponential = 2"

N i —~ '

_

(OE"S"a“ 0nggul Smart, Creative and Entrepreneurial

Growth Rates Compared

n=1|n=2 n=4 n=8 n=16 n=32
1 1 1 1 1 1 1
logn |0 1 2 3 4 3
n 1 2 |4 8 16 32
nlogn|0 |2 8 24 64 160
n? 1 4 16 |64 256 1024
n3 1 8 64 512 4096 32768
2" 2 |4 16 | 256 65536 4294967296
n! 1 2 24 140320 2.09¢+13 |2.63e+35

I —————————_

(O”Ehécawl.jnggm Smart, Creative and Entrepreneurial

Big-O for a Problem

* O(T(n)) for a problem means there is some
O(T(n)) algorithm that solves the problem

 Don’t assume that the specific algorithm that you
are currently using is the best solution for the
problem

 There may be other correct algorithms that grow
at a smaller rate with increasing n

 Many times, the goal is to find an algorithm with
the smallest possible growth rate -

Y

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Data Structures

* That brings up the topic of the Data structure
on which the algorithm operates.

e Data Structure is a particular way of
organizing the data in computer memory so
that it can be used efficiently.

(OEHSE Unggul Smart, Creative and Entrepreneurial

Role of Data Structures

* |f we are using an algorithm manually on
some amount of data, we intuitively try to
organize the data in a way that minimizes the
number of steps that we need to take. As an
example, publishers offer dictionaries with
the words listed in alphabetical order to
minimize the length of time it takes us to look

up a word.

E— . BR—

I —————————————_

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Role of Data Structures

* We can do the same thing for algorithms in our
computer programs
 Example: Finding a numeric value in a list

— If we assume that the list is unordered, we must
search from the beginning to the end

— On average, we will search half the list
— Worst case, we will search the entire list
— Algorithm is O(n), where n is size of array or list.

B | ! E—

I ———————————

(OE"S‘; Unggul Smart, Creative and Entrepreneurial

Role of Data Structures

e Find a match with value in an unordered list
int [] list = {7, 2, 9, 5, o, 4};

for (1nt 1=0; 1<list.length, 1++)
1f (value == list[1])
return true; // found it
return false; //did not find it.

‘.ﬁ__ I —

I ———————————

Smart, Creative and Entrepreneurial

Role of Data Structures

* If we assume that the list is ordered, we can still
search the entire list from the beginning to the
end to determine if we have a match

 But, we do not need to search that way

 Because the values are in numerical order, we
can use a binary search algorithm

* Like the old parlor game “Twenty Questions”
* Algorithm is O(log,n), where n is size of array

I ——————

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Role of Data Structures

* Find a match with value in an ordered list
int [] list = {2, 4, 5, 6, 7, 9};

int min = 0, max = list.length-1;
while (min <= max) {
1if (value == list[(min+max)/2])
return true; // found it
else
if (value < list[(min+max)/21])
max = (min+max)/2 - 1;
else
min = (min+max)/2 + 1;

J

‘.ﬁ__ —

|

(@”ﬁég'bnggul Smart, Creative and Entrepreneurial

Role of Data Structures

e The difference in the structure of the data
between an unordered list and an ordered list
can be used to reduce algorithm Big-O

* This is the role of data structures and why we
study them

* We need to be as clever in organizing our data
efficiently as we are in designing an algorithm
for processing it efficiently. In fact we can not
separate one task from another.

| ! B—

I —————————————_Y

(@Eécamﬁnggul Smart, Creative and Entrepreneurial

Abstract Data Types (ADT's)

* A data type is a set of values and operations that
can be performed on those values.

* The Java primitive data types (e.g. int) have values
and operations defined in Java itself.

* An Abstract Data Type (ADT) is a (usually more
sophisticated) data type that has values and
operations that are not defined in the language
itself. Instead, in Java, an ADT is implemented
using a class or an interface.

B | s

I ——————————.

Smart, Creative and Entrepreneurial

Abstract Data Types (ADT's)

 The code for Arrays.sort is designed to sort an
array of Comparable objects:

public static void sort (Comparable [] data)

* The Comparable interface defines an ADT

* There are no objects of Comparable “class”

 There are objects of classes that implement the
Comparable interface.

e Arrays.sort only uses methods defined in the
Comparable interface, i.e. compareTo().

I —————————

(@”ﬁég'bnggul Smart, Creative and Entrepreneurial

ADT’s and Data Structures

e Data structures are used to implement an
Abstract Data Type. A data structure is used to:

— to organize the data that the ADT is encapsulating.

* The type of data structure should be hidden by
the API (the methods) of the ADT.

Interface (ADT)

a I a I
Class that Class that Dat
uses implements St ata
an ADT an ADT ructure
_ A _ /

_

(@Eécamﬁnggul Smart, Creative and Entrepreneurial

Collections

* A collection is a typical example of Abstract Data Type.

* A collection is a data type that contains and allows
access to a group of objects.

* The Collection ADT is the most general form of ADTs
designed for containing/accessing a group of objects.

* We have more specific forms of Collection ADTs which
describe the access “strategy” that models that
collection:

— A Set is a group of things without any duplicates

— A Stack is the abstract idea of a pile of things, LIFO

— A Queue is the abstract idea of a waiting line, FIFO
- — A Listis an indexed group of things

Smart, Creative and Entrepreneurial

The Java Collections API

* The classes and interfaces in the Java
Collections Library are named to indicate the
underlying data structure and the abstract Data
type.

 For example, the ArrayList we studied in
CS110 uses an underlying array as the data

structure for storing its objects and implements
its access model as a list

 However, from the user’s code point of view,
the data structure is hidden by the API.

B | —

I S————————————,

waww falkhausen de Version 0.9 Copyright 200204 by Markus Falkhausen. All fghts reserved

[java. util.*
CO I I ect i O n ::::::: iasdEdn}prteym(zve (Object o)

Methods declared in Interfaces are hidden in subtypes

boolean

add / removeAl (Collection c)

boolean equals (Object o)
See also: Legacy Collection Diagram it hashCode ()
void clear ()
boolean contains (Object o)
boolean contains Al (Collection ¢)
fterator iterator ()
boolean retainAl (Collection ¢)
int size ()
Object[] toAmay ()
Object[] toAmay (Object af]) Object get / set (int index)
e —— e Object set (int index, Object element)
L T — void add (int index, Object element)
. boolean addAll (int index, Collection c)
\ Object remove (int index)
) int indexOf (Object o)
Set r = int lastindexOf (Object o)
= IR AbstractCollection Listherator listiterator ()
. # Abstract Collection () Listiterator listiterator (int index)
List

String toString ()

SortedSet |

Comparator comparator ()
Object first ()
SortedSet headSet (Object toBement)

sublist (int fromIndex, int tolndex)

Object last ()
SortedSet subSet (Object fromB nt, Object toB: nt)
SortedSet tailSet (Object fromBement)

AbstractSet ()

TreeSet ()

Tree Set (Comparator c)
Tree Set (Collection ¢)
TreeSet (SortedSet s)

Object clone ()

HashSet ()
Hash Set (Collection c)
Hash Set (int initial Capacity)

Object clone ()

Hash Set (int initial Capacity, float loadFactor)

AbstractList ()

—_— # void removeRange (int fromindex, int tolndex)

; | r! Rand ccess

| IR AbstractS equentialList
Abstract Sequentiallist ()

Amraylist ()
Asray List (int initial Capacity)
Asray List (Collection ¢)

void removeRange (int fromindex, int tolndex)

LinkedList ()
LinkedList (Collection c)

Object clone ()

void ensureCapacity (int minCapacity)
void timToSize ()

LinkedHash Set ()

LinkedHash Set (int initial Capacity)
LinkedHash Set (Collection ¢)

LinkedHash Set (int initial Capacity, float loadFactor)

Object
Object

void
void
Object
Object

Object

getFirst O
getlast ()

addFirst (Object o)
addLast (Object o)
removeFirst ()
removelast ()

clone ()

Sumber : https://www.cs.umb.edu

