
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, All Rights Reserved

Chapter 9

Object-Oriented

Analysis and Modeling

Using the UML

9-2

Objectives

• Define object modeling and explain its benefits.

• Recognize and understand the basic concepts
and constructs of object modeling.

• Define the UML and its various types of
diagrams.

• Evolve a business requirements use-case
model into a system analysis use-case model.

• Construct an activity diagram.

• Discover objects and classes, and their
relationships.

• Construct a class diagram.

9-3

Introduction to Object Modeling

Object-oriented analysis (OOA) – an

approach used to

1. study existing objects to see if they can be reused

or adapted for new uses

2. define new or modified objects that will be

combined with existing objects into a useful

business computing application

Object modeling – a technique for identifying

objects within the systems environment and

the relationships between those objects.

9-4

Introduction to the UML

Unified Modeling Language (UML) – a

set of modeling conventions that is used

to specify or describe a software system

in terms of objects.
• The UML does not prescribe a method for

developing systems—only a notation that is now

widely accepted as a standard for object

modeling.

9-5

Objects & Attributes

Object – something that is or is capable of

being seen, touched, or otherwise sensed,

and about which users store data and

associate behavior.

– Person, place, thing, or event

– Employee, customer, instructor, student

– Warehouse, office, building, room

– Product, vehicle, computer, videotape

Attribute – the data that represent

characteristics of interest about an object.

9-6

Objects & Object Instances

Object instance – each specific person, place,
thing, or event, as well as the values for the
attributes of that object.

9-7

Behavior & Encapsulation

Behavior – the set of things that the

object can do that correspond to

functions that act on the object’s data (or

attributes).

– In object-oriented circles, an object’s

behavior is commonly referred to as a

method, operation, or service.

Encapsulation – the packaging of

several items together into one unit.

9-8

Object Classes

Object Class – a set of objects that

share common attributes and

behavior. Sometimes referred to as a

class.

9-9

Representing Object Classes

in the UML

9-10

Inheritance

Inheritance – the concept wherein methods

and/or attributes defined in an object class can

be inherited or reused by another object class.

9-11

Inheritance (cont.)

9-12

Generalization/Specialization,

Supertype, and Subtype
Generalization/specialization – technique wherein
attributes and behaviors common to several types of
object classes are grouped (or abstracted) into their own
class, called a supertype.

Supertype – an entity that contains attributes and
behaviors that are common to one or more class
subtypes. Also referred to as abstract or parent class.

Subtype – an object class that inherits attributes and
behaviors from a supertype class and may contain other
attributes and behaviors unique to it. Also referred to as a
child class and, if it exists at the lowest level of the
inheritance hierarchy, as concrete class.

9-13

UML Representation of

Generalization/Specialization

9-14

Object/Class Relationships

Object/class relationship – a natural

business association that exists between

one or more objects and classes.

9-15

UML Multiplicity Notations

Multiplicity – the

minimum and

maximum

number of

occurrences of

one object/class

for a single

occurrence of the

related

object/class.

9-16

Aggregation

Aggregation – a
relationship in which one
larger “whole” class contains
one or more smaller “parts”
classes. Conversely, a
smaller “part” class is part of
a “whole” larger class

– In UML 2.0 the notation for
aggregation has been
dropped

9-17

Composition

Composition –
an aggregation
relationship in
which the
“whole” is
responsible for
the creation and
destruction of its
“parts.” If the
“whole” were to
die, the “part”
would die with it.

9-18

Messages

Message – communication that occurs when
one object invokes another object’s method
(behavior) to request information or some action

9-19

Polymorphism

Polymorphism – the
concept that different
objects can respond to
the same message in
different ways.

Override – a
technique whereby a
subclass (subtype)
uses an attribute or
behavior of its own
instead of an attribute
or behavior inherited
from the class
(supertype).

9-20

UML 2.0 Diagrams
Diagram Description

Use Case Depicts interactions between the system and external systems
and users. In other words it graphically describes who will use
the system and in what ways the user expects to interact with the
system. The use-case narrative is used in addition to textually
describe the sequence of steps of each interaction.

Activity Depicts sequential flow of activities of a use case or business
process. It can also be used to model logic with the system.

Class Depicts the system's object structure. It shows object classes
that the system is composed of as well as the relationships
between those object classes.

Object Similar to a class diagram, but instead of depicting object
classes, it models actual object instances with current attribute
values. The object diagram provides the developer with a
"snapshot" of the system's object at one point in time.

State Machine Models how events can change the state of an object over its
lifetime, showing both the various states that an object can
assume and the transitions between those states.

Composite Structure Decomposes internal structure of class, component, or use case.

9-21

UML 2.0 Diagrams (cont.)
Diagram Description

Sequence Graphically depicts how objects interact with each other via
messages in the execution of a use case or operation. It
illustrates how messages are sent and received between objects
and in what sequence.

Communication (Collaboration diagram in UML 1.X) Depicts interaction of objects
via messages. While a sequence diagram focuses on the timing
or sequence of messages, a communication diagram focuses on
the structural organization of objects in a network format.

Interaction Overview Combines features of sequence and activity diagrams to show
how objects interact within each activity of a use case.

Timing Another interaction diagram that focuses on timing constraints in
the changing state of a single object or group of objects.
Especially useful when designing embedded software for devices.

Component Depicts the organization of programming code divided into
components and how the components interact.

Deployment Depicts the configuration of software components within the
physical architecture of the system's hardware "nodes."

Package Depicts how classes or other UML constructs are organized into
packages (corresponding to Java packages or C++ and .NET
namespaces) and the dependencies of those packages.

9-22

The Process of Object Modeling

1. Modeling the functions of the system.

2. Finding and identifying the business

objects.

3. Organizing the objects and identifying

their relationships.

9-23

Construction the Analysis

Use-Case Model

System analysis use case – a use case that
documents the interaction between the system
user and the system. It is highly detailed in
describing what is required but is free of most
implementation details and constraints.

1. Identify, define, and document new actors.

2. Identify, define, and document new use cases.

3. Identify any reuse possibilities.

4. Refine the use-case model diagram (if necessary).

5. Document system analysis use-case narratives.

9-24

Revised System

Use-Case Model Diagram

9-25

Use-Case Narrative

9-26

Use-Case Narrative (cont.)

9-27

Abstract Use-Case Narrative

9-28

Modeling Use-Case Activities

Activity diagram – a

diagram that can be

used to graphically

depict the flow of a

business process, the

steps of a use case,

or the logic of an

object behavior

(method).

9-29

Activity Diagram Notations

1. Initial node - solid circle
representing the start
of the process.

2. Actions – rounded
rectangles representing
individual steps. The
sequence of actions
make up the total activity
shown by the diagram.

3. Flow - arrows on the
diagram indicating the
progression through the
actions. Most flows do not
need words to identify them unless coming out of decisions.

4. Decision - diamond shapes with one flow coming in and two or
more flows going out. The flows coming out are marked to indicate
the conditions.

5. Merge - diamond shapes with multiple flows coming in and one flow
going out. This combines flows previously separated by decisions.
Processing continues with any one flow coming into the merge.

9-30

Activity Diagram Notations

(cont.)
6. Fork – a black bar

with one flow
coming in and two
or more flows going
out. Actions on
parallel flows
beneath the fork
can occur in any
order or
concurrently.

7. Join – a black bar with two or more flows coming
in and one flow going out, noting the end of
concurrent processing. All actions coming into
the join must be completed before processing
continues.

8. Activity final – the solid circle inside the hollow
circle representing the end of the process.

9-31

Activity Diagram with Partitions

9. Subactivity indicator – the
rake symbol in an action
indicates that this action is
broken out in another separate
activity diagram. This helps
you keep the activity diagram
from becoming overly
complex.

10.Connector – A letter inside a
circle gives you another tool
for managing complexity. A
flow coming into a connector
jumps to the flow coming out
of a connector with a matching
letter.

9-32

Guidelines for Constructing

Activity Diagrams
• Start with one initial node as a starting point.

• Add partitions if it is relevant to your analysis.

• Add an action for each major step of the use case (or
each major step an actor initiates.

• Add flows from each action to another action, a
decision point, or an end point. For maximum precision
of meaning, each action should have only one flow
coming in and one flow going out with all forks, joins,
decisions, and merges shown explicitly.

• Add decisions where flows diverge with alternating
routes. Be sure to bring them back together with a
merge.

• Add forks and joins where activities are performed in
parallel.

• End with a single notation for activity final.

9-33

Drawing System Sequence

Diagrams

System sequence diagram - a diagram

that depicts the interaction between an

actor and the system for a use case

scenario.

– helps identify high-level messages that enter

and exit the system

9-34

System Sequence Diagram

Notations
1. Actor - the initiating actor of

the use case is shown with the
use case actor symbol.

2. System – the box indicates
the system as a "black box" or
as a whole. The colon (:) is
standard sequence diagram
notation to indicate a running
"instance" of the system.

3. Lifelines – the dashed vertical
lines extending downward
from the actor and system
symbols, which indicate the
life of the sequence.

4. Activation bars – the bars set
over the lifelines indicate
period of time when participant
is active in the interaction.

9-35

System Sequence Diagram

Notations (cont.)
5. Input messages - horizontal

arrows from actor to system
indicate the message inputs.
UML convention for
messages is to begin the first
word with a lowercase letter
and add additional words with
initial uppercase letter and no
space. In parentheses include
parameters, following same
naming convention and
separated with commas.

6. Output messages –
horizontal arrows from system
to actor shown as dashed
lines. Since they are web
forms, reports, e-mails, etc.
these messages do not need
to use the standard notation.

9-36

System Sequence Diagram

Notations (cont.)

7. Receiver Actor
– other actors or
external systems
that receive
messages from
the system can
be included.

8. Frame – a box
can enclose
one or more
messages to
divide off a fragment
of the sequence. These can show loops, alternate
fragments, or optional (opt) steps. For an optional
fragment the condition shown in square brackets
indicates the conditions under which the steps will be
performed.

9-37

Guidelines for Constructing System

Sequence Diagrams

• Identify which scenario of use case you will depict. Purpose
is to discover messages, not to model logic. So more
important to clearly communicate a single scenario.

• Draw a rectangle representing the system as a whole and
extend a lifeline under it.

• Identify each actor who directly provides an input to the
system or directly receives an output from the system.
Extend lifelines under the actor(s).

• Examine use case narrative to identify system inputs and
outputs. Ignore messages inside system. Draw each
external message as a horizontal arrow from the actor's
lifeline to the system or from the system to the actor. Label
inputs according to UML convention.

• Add frames to indicate optional messages with conditions.
Frames can also indicate loops and alternate fragments.

• Confirm that the messages are shown in the proper
sequence from top to bottom.

9-38

Finding and Identifying

the Business Objects

1. Find the Potential Objects

– Review each use case to find nouns that

correspond to business entities or events.

2. Select the Proposed Objects

– Not all nouns represent business objects.

• Is it a synonym of another object?

• Is it outside the scope of the system?

• Is it a role without unique behavior, or an external

role?

• Is it unclear or in need of focus?

• Is it an action or an attribute that describes another

object?

9-39

Partial Use-Case Narrative with

Nouns Highlighted
DESCRIPTION: This use case describes the event of a member submitting a new order for SoundStage

products via the world wide web. The member selects the items they wish to purchase.

Once they have completed their shopping, the member’s demographic information as

well as their account standing will be validated. Once the products are verified as being

in stock, a packing order is sent to the distribution center for them to prepare the

shipment. For any product not in stock, a back order is created. On completion, the
member will be sent an order confirmation.

PRE-CONDITION: The individual submitting the order must be an active club member.

The member must login in to the system (provide identification) to enter an order.

TRIGGER: This use case is initiated when the member selects the option to enter a new order.

TYPICAL COURSE Actor Action System Response
OF EVENTS: Step 1: The member requests the

option to enter a new order.

Step 2: The system responds by displaying the

catalogue of the SoundStage products.

 Step 3: The Member browses the
available items and selects the ones

they wish to purchase along with the

quantity.

Step 4: Once the member has completed their
selections the system retrieves from file and

presents the member’s demographic information

(shipping and billing addresses).

 Step 5: The member verifies

demographic information (shipping

and billing addresses). If no changes

are necessary they respond

accordingly (to continue).

Step 6: For each product ordered, the system

verifies the product availability and determines

an expected ship date, determines the price to be

charged to the member, and determines the cost

of the total order. If an item is not immediately

available it indicates that the product is

backordered or that it has not been released for

shipping (for pre-orders). If an item is no longer

available that is indicated also. The system then

displays a summary of the order to the member
for verification.

 Step 7: The member verifies the
order. If no changes are necessary

they respond accordingly (to

continue).

Step 8: The system checks the status of the
member’s account. If satisfactory, the system

prompts the member to select the desired

payment option (to be billed later or pay

immediately with a credit card).

9-40

Potential Object List

9-41

Cleaning Up List of

Candidate Objects

9-42

Proposed Object List

9-43

Organizing the Objects and

Identifying their Relationships

1. Identifying Associations and Multiplicity

2. Identifying Generalization/Specialization
Relationships

3. Identifying Aggregation Relationships

4. Prepare the Class Diagram

Class diagram – a graphical depiction of a
system’s static object structure, showing
object classes that the system is
composed of as well as the relationships
between those object classes.

9-44

Object Association Matrix

9-45

Generalization/Specialization

Hierarchies

9-46

Persistent and Transient

Object Classes
Persistent class – a class that describes
an object that outlives the execution of
the program that created it.

– Stored permanently as in a database

Transient object class – a class that
describes an object that is created
temporarily by the program and lives only
during that program’s execution.

9-47

Class Diagram

Refer to Figure 9-24 in

text for a more

readable copy

