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INDEX CONSTRUCTION 
 
 
A. Kemampuan Akhir Yang Diharapkan 

 
After reading this session, you will be able to answer the following questions: 

1. Two index construction algorithms: BSBI (simple) and SPIMI (more realistic). 
2. Distribution index construction: MapReduce? 
3. Dynamic index construction: How to keep the index up-to-date as the collection 

changes? 
 
 
B. Uraian dan Contoh  
 
1.1. Hardware basics 

When building an information retrieval (IR) system, many decisions are based 
on the characteristics of the computer hardware on which the system runs. We 
therefore begin this chapter with a brief review of computer hardware. 
Performance characteristics typical of systems in 2007 are shown in Table 1.1. 

 
 
 
 

 
 

A list of hardware basics that we need in this book to motivate IR system design 
follows. 

• Access to data in memory is much faster than access to data on disk. It 
takes a few clock cycles (perhaps 5 × 10−9 seconds) to access a byte in 
memory, but much longer to transfer it from disk (about 2 × 10−8 seconds). 
Consequently, we want to keep as much data as possible in memory, 
especially those data that we need to access frequently. We call the 
technique of keeping frequently used disk data in main memory caching. 

• When doing a disk read or write, it takes a while for the disk head to move 
to the part of the disk where the data are located. This time is called the 
seek time and it averages 5 ms for typical disks. No data are being 
transferred during the seek. To maximize data transfer rates, chunks of 
data that will be read together should therefore be stored contiguously on 
disk. For example, using the numbers in Table 1.1 it may take as little as 
0.2 seconds to transfer 10 megabytes (MB) from disk to memory if it is 
stored as one chunk, but up to 0.2 + 100 × (5 × 10−3) = 0.7 seconds if it is 
stored in 100 noncontiguous chunks because we need to move the disk 
head up to 100 times. 

 

► Table 1.1  Typical system parameters in 2007. The seek time is the time needed to 
position the disk head in a new position. The transfer time per byte is the rate of 
transfer from disk to memory when the head is in the right position. 
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• Operating systems generally read and write entire blocks. Thus, reading a 
single byte from disk can take as much time as reading the entire block. 
Block sizes of 8, 16, 32, and 64 kilobytes (KB) are common. We call the 
part of main memory where a block being read or written is stored a buffer. 

• Data transfers from disk to memory are handled by the system bus, not by 
the processor. This means that the processor is available to process data 
during disk I/O. We can exploit this fact to speed up data transfers by 
storing compressed data on disk. Assuming an efficient decompression 
algorithm, the total time of reading and then decompressing compressed 
data is usually less than reading uncompressed data. 

• Servers used in IR systems typically have several gigabytes (GB) of main 
memory, sometimes tens of GB. Available disk space is several orders of 
magnitude larger. 

 
 

1.2. Blocked sort-based indexing 

We first make a pass through the collection assembling all term–docID pairs. 
We then sort the pairs with the term as the dominant key and docID as the 
secondary key. Finally, we organize the docIDs for each term into a postings list 
and compute statistics like term and document frequency. For small collections, 
all this can be done in memory. In this chapter, we describe methods for large 
collections that require the use of secondary storage. 
 
To make index construction more efficient, we represent terms as termIDs, 
where each termID is a unique serial number. We can build the mapping from 
terms to termIDs on the fly while we are processing the collection; or, in a two-
pass approach, we compile the vocabulary in the first pass and construct the 
inverted index in the second pass. The index construction algorithms described 
in this chapter all do a single pass through the data.  
 
We work with the Reuters-RCV1 collection as our model collection in this 
chapter, a collection with roughly 1 GB of text. It consists of about 800,000 
documents that were sent over the Reuters newswire during a 1-year period 
between August 20, 1996, and August 19, 1997. A typical document is shown in 
Figure 1.1, but note that we ignore multimedia information like images in this 
book and are only concerned with text. Reuters-RCV1 covers a wide range of 
international topics, including politics, business, sports, and (as in this example) 
science. Some key statistics of the collection are shown in Table 1.2. 
 
Reuters-RCV1 has 100million tokens. Collecting all termID–docID pairs of the 
collection using 4 bytes each for termID and docID therefore requires 0.8 GB of 
storage. Typical collections today are often one or two orders of magnitude 
larger than Reuters-RCV1. You can easily see how such collections overwhelm 
even large computers if we try to sort their termID–docID pairs in memory. If the 
size of the intermediate files during index construction is within a small factor of 
available memory; however, the postings file of many large collections cannot fit 
into memory even after compression. 
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With main memory insufficient, we need to use an external sorting algorithm, 
that is, one that uses disk. For acceptable speed, the central requirement of 
such an algorithm is that it minimize the number of random disk seeks during 
sorting – sequential disk reads are far faster than seeks as we explained in 
Section 1.1. One solution is the blocked sort-based indexing algorithm or BSBI 
in Figure 1.2. BSBI (i) segments the collection into parts of equal size, (ii) sorts 
the termID–docID pairs of each part in memory, (iii) stores intermediate sorted 
results on disk, and (iv) merges all intermediate results into the final index. 
 
The algorithm parses documents into termID–docID pairs and accumulates the 
pairs in memory until a block of a fixed size is full (PARSENEXTBLOCK in Figure 
1.2). We choose the block size to fit comfortably into memory to permit a fast in-
memory sort. The block is then inverted and written to disk. Inversion involves 
two steps. First, we sort the termID–docID pairs. Next, we collect all termID–
docID pairs with the same termID into a postings list, where a posting is simply 
a docID. The result, an inverted index for the block we have just read, is then 
written to disk. Applying this to Reuters-RCV1 and assuming we can fit 10 
million termID–docID pairs into memory, we end up with ten blocks, each an 
inverted index of one part of the collection. 
 
 
 
 

► Table 1.2  Collection statistics for Reuters-RCV1. Values are rounded for the 
computations in this book. The unrounded values are: 806,791 documents, 222 tokens 
per document, 391,523 (distinct) terms, 6.04 bytes per token with spaces and 
punctuation, 4.5 bytes per token without spaces and punctuation, 7.5 bytes per term, 
and 96,969,056 tokens. 

► Figure 1.1  Document from the Reuters newswire. 
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In the final step, the algorithm simultaneously merges the ten blocks into one 
large merged index. An example with two blocks is shown in Figure 1.3, where 
we use di to denote the ith document of the collection. To do the merging, we 
open all block files simultaneously, and maintain small read buffers for the ten 
blocks we are reading and a write buffer for the final merged index we are 
writing. In each iteration, we select the lowest termID that has not been 
processed yet using a priority queue or a similar data structure. All postings lists 
for this termID are read and merged, and the merged list is written back to disk. 
Each read buffer is refilled from its file when necessary. 
 

 
 
 
 

 

How expensive is BSBI? Its time complexity is (T log T) because the step with 
the highest time complexity is sorting and T is an upper bound for the number of 
items we must sort (i.e., the number of termID–docID pairs). But the actual 
indexing time is usually dominated by the time it takes to parse the documents 
(PARSENEXTBLOCK) and to do the final merge (MERGEBLOCKS). 
 
Notice that Reuters-RCV1 is not particularly large in an age when one or more 
GB of memory are standard on personal computers. With appropriate 
compression, we could have created an inverted index for RCV1 in memory on 
a not overly beefy server. The techniques we have described are needed, 
however, for collections that are several orders of magnitude larger. 
 
 

► Figure 1.2  Blocked sort-based indexing. The algorithm stores inverted blocks in files 
f1, . . . , fn and the merged index in fmerged. 

► Figure 1.3  Merging in blocked sort-based indexing. Two blocks (“postings lists to be 
merged”) are loaded from disk into memory, merged in memory (“merged postings 
lists”) and written back to disk. We show terms instead of termIDs for better readability. 
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Exercise 1.1 

If we need T log2 T comparisons (where T is the number of termID–docID pairs) 
and two disk seeks for each comparison, how much time would index 
construction for Reuters-RCV1 take if we used disk instead of memory for 
storage and an unoptimized sorting algorithm (i.e., not an external sorting 
algorithm)? Use the system parameters in Table 1.1. 
 
Exercise 1.2           [⋆] 

How would you create the dictionary in blocked sort-based indexing on the fly to 
avoid an extra pass through the data? 

 

 

1.3. Single-pass in-memory indexing 

Blocked sort-based indexing has excellent scaling properties, but it needs a 
data structure for mapping terms to termIDs. For very large collections, this data 
structure does not fit into memory. A more scalable alternative is single-pass in-
memory indexing or SPIMI. SPIMI uses terms instead of termIDs, writes each 
block’s dictionary to disk, and then starts a new dictionary for the next block. 
SPIMI can index collections of any size as long as there is enough disk space 
available. 
 
The SPIMI algorithm is shown in Figure 1.4. The part of the algorithm that 
parses documents and turns them into a stream of term–docID pairs, which we 
call tokens here, has been omitted. SPIMI-INVERT is called repeatedly on the 
token stream until the entire collection has been processed. 
 

 
 

  

Tokens are processed one by one (line 4) during each successive call of SPIMI-
INVERT. When a term occurs for the first time, it is added to the dictionary (best 
implemented as a hash), and a new postings list is created (line 6). The call in 
line 7 returns this postings list for subsequent occurrences of the term. 
 
A difference between BSBI and SPIMI is that SPIMI adds a posting directly to its 
postings list (line 10). Instead of first collecting all termID–docID pairs and then 
sorting them(as we did in BSBI), each postings list is dynamic (i.e., its size is 

► Figure 1.4  Inversion of a block in single-pass in-memory indexing 
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adjusted as it grows) and it is immediately available to collect postings. This has 
two advantages: It is faster because there is no sorting required, and it saves 
memory because we keep track of the term a postings list belongs to, so the 
termIDs of postings need not be stored. As a result, the blocks that individual 

calls of SPIMI-INVERT can process are much larger and the index construction 

process as a whole is more efficient. 
 

Because we do not know how large the postings list of a term will be when we 
first encounter it, we allocate space for a short postings list initially and double 
the space each time it is full (lines 8–9). This means that some memory is 
wasted, which counteracts the memory savings from the omission of termIDs in 
intermediate data structures. However, the overall memory requirements for the 
dynamically constructed index of a block in SPIMI are still lower than in BSBI. 
 
When memory has been exhausted, we write the index of the block (which 
consists of the dictionary and the postings lists) to disk (line 12). We have to sort 
the terms (line 11) before doing this because we want to write postings lists in 
lexicographic order to facilitate the final merging step. If each block’s postings 
lists were written in unsorted order, merging blocks could not be accomplished 
by a simple linear scan through each block. 
 
Each call of SPIMI-INVERT writes a block to disk, just as in BSBI. The last step 
of SPIMI (corresponding to line 7 in Figure 1.2; not shown in Figure 1.4) is then 
to merge the blocks into the final inverted index. 
 
In addition to constructing a new dictionary structure for each block and 
eliminating the expensive sorting step, SPIMI has a third important component: 
compression. Both the postings and the dictionary terms can be stored 
compactly on disk if we employ compression. Compression increases the 
efficiency of the algorithm further because we can process even larger blocks, 
and because the individual blocks require less space on disk.  
 

The time complexity of SPIMI is (T) because no sorting of tokens is required 
and all operations are at most linear in the size of the collection. 

 
 

1.4. Distributed indexing 

Collections are often so large that we cannot perform index construction 
efficiently on a single machine. This is particularly true of the World Wide Web 
for which we need large computer clusters to construct any reasonably sized 
web index. Web search engines, therefore, use distributed indexing algorithms 
for index construction. The result of the construction process is a distributed 
index that is partitioned across several machines – either according to term or 
according to document. In this section, we describe distributed indexing for a 
term-partitioned index. Most large search engines prefer a document- 
partitioned index (which can be easily generated from a term-partitioned index).  
 
The distributed index construction method we describe in this section is an 
application of MapReduce, a general architecture for distributed computing. 
MapReduce is designed for large computer clusters. The point of a cluster is to 
solve large computing problems on cheap commodity machines or nodes that 

MAPREDUCE 
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are built from standard parts (processor, memory, disk) as opposed to on a 
supercomputer with specialized hardware. Although hundreds or thousands of 
machines are available in such clusters, individual machines can fail at any 
time. One requirement for robust distributed indexing is, therefore, that we 
divide the work up into chunks that we can easily assign and – in case of failure 
– reassign. A master node directs the process of assigning and reassigning 
tasks to individual worker nodes. 
 
The map and reduce phases of MapReduce split up the computing job into 
chunks that standard machines can process in a short time. The various steps 
of MapReduce are shown in Figure 1.5 and an example on a collection 
consisting of two documents is shown in Figure 1.6. First, the input data, in our 
case a collection of web pages, are split into n splits where the size of the split is 
chosen to ensure that the work can be distributed evenly (chunks should not be 
too large) and efficiently (the total number of chunks we need to manage should 
not be too large); 16 or 64MB are good sizes in distributed indexing. Splits are 
not preassigned to machines, but are instead assigned by the master node on 
an ongoing basis: As a machine finishes processing one split, it is assigned the 
next one. If a machine dies or becomes a laggard due to hardware problems, 
the split it is working on is simply reassigned to another machine. 
 

 
 
 

 
In general, MapReduce breaks a large computing problem into smaller parts by 
recasting it in terms of manipulation of key-value pairs. For indexing, a key-
value pair has the form (termID,docID). In distributed indexing, the mapping 
from terms to termIDs is also distributed and therefore more complex than in 
single-machine indexing. A simple solution is to maintain a (perhaps 
precomputed) mapping for frequent terms that is copied to all nodes and to use 
terms directly (instead of termIDs) for infrequent terms. We do not address this 
problem here and assume that all nodes share a consistent term →termID 
mapping. 

 

 

► Figure 1.5  An example of distributed indexing with MapReduce. Adapted from Dean 
and Ghemawat (2004). 
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The map phase of MapReduce consists of mapping splits of the input data to 
key-value pairs. This is the same parsing task we also encountered in BSBI and 
SPIMI, and we therefore call the machines that execute the map phase parsers. 
Each parser writes its output to local intermediate files, the segment files (shown 
as a-f g-p q-z in Figure 1.5). 
 
For the reduce phase, we want all values for a given key to be stored close 
together, so that they can be read and processed quickly. This is achieved by 
partitioning the keys into j term partitions and having the parsers write key value 
pairs for each term partition into a separate segment file. In Figure 1.5, the term 
partitions are according to first letter: a–f, g–p, q–z, and j = 3. (We chose these 
key ranges for ease of exposition. In general, key ranges need not correspond 
to contiguous terms or termIDs.) The term partitions are defined by the person 
who operates the indexing system. The parsers then write corresponding 
segment files, one for each term partition. Each term partition thus corresponds 
to r segments files, where r is the number of parsers. For instance, Figure 1.5 
shows three a–f segment files of the a–f partition, corresponding to the three 
parsers shown in the figure. 
 
Collecting all values (here: docIDs) for a given key (here: termID) into one list is 
the task of the inverters in the reduce phase. The master assigns each term 
partition to a different inverter – and, as in the case of parsers, reassigns term 
partitions in case of failing or slow inverters. Each term partition (corresponding 
to r segment files, one on each parser) is processed by one inverter. We 
assume here that segment files are of a size that a single machine can handle. 
Finally, the list of values is sorted for each key and written to the final sorted 
postings list (“postings” in the figure). (Note that postings in Figure 1.6 include 
term frequencies, whereas each posting in the other sections of this chapter is 
simply a docID without term frequency information.) The data flow is shown for 
a–f in Figure 1.5. This completes the construction of the inverted index. 

 

 
 

 

 

 

 

 
 
 

Parsers and inverters are not separate sets of machines. The master identifies 
idle machines and assigns tasks to them. The same machine can be a parser in 
the map phase and an inverter in the reduce phase. And there are often other 

► Figure 1.6  Map and reduce functions in MapReduce. In general, the map function 
produces a list of key-value pairs. All values for a key are collected into one list in the 
reduce phase. This list is then processed further. The instantiations of the two 
functions and an example are shown for index construction. Because the map phase 
processes documents in a distributed fashion, termID–docID pairs need not be 
ordered correctly initially as in this example. The example shows terms instead of 
termIDs for better readability. We abbreviate Caesar as C and conquered as c’ed. 

MAP PHASE 
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SEGMENT FILE 

REDUCE PHASE 

INVERTER 



 

Universitas Esa Unggul 

http://esaunggul.ac.id              9 / 15 

jobs that run in parallel with index construction, so in between being a parser 
and an inverter a machine might do some crawling or another unrelated task. 
 
To minimize write times before inverters reduce the data, each parser writes its 
segment files to its local disk. In the reduce phase, the master communicates to 
an inverter the locations of the relevant segment files (e.g., of the r segment files 
of the a–f partition). Each segment file only requires one sequential read 
because all data relevant to a particular inverter were written to a single 
segment file by the parser. This setup minimizes the amount of network traffic 
needed during indexing. 
 
Figure 1.6 shows the general schema of the MapReduce functions. Input and 
output are often lists of key-value pairs themselves, so that several MapReduce 
jobs can run in sequence. In fact, this was the design of the Google indexing 
system in 2004. What we describe in this section corresponds to only one of five 
to ten MapReduce operations in that indexing system. Another MapReduce 
operation transforms the term-partitioned index we just created into a document-
partitioned one. 
 
MapReduce offers a robust and conceptually simple framework for 
implementing index construction in a distributed environment. By providing a 
semiautomatic method for splitting index construction into smaller tasks, it can 
scale to almost arbitrarily large collections, given computer clusters of sufficient 
size. 
 
Exercise 1.3 
For n = 15 splits, r = 10 segments, and j = 3 term partitions, how long would 
distributed index creation take for Reuters-RCV1 in a MapReduce architecture? 
Base your assumptions about cluster machines on Table 1.1. 

 
 
1.5. Dynamic indexing 

Thus far, we have assumed that the document collection is static. This is fine for 
collections that change infrequently or never (e.g., the Bible or Shakespeare). 
But most collections are modified frequently with documents being added, 
deleted, and updated. This means that new terms need to be added to the 
dictionary, and postings lists need to be updated for existing terms. 
 
The simplest way to achieve this is to periodically reconstruct the index from 
scratch. This is a good solution if the number of changes over time is small and 
a delay in making new documents searchable is acceptable – and if enough 
resources are available to construct a new index while the old one is still 
available for querying. 
 
If there is a requirement that new documents be included quickly, one solution is 
to maintain two indexes: a large main index and a small auxiliary index that 
stores new documents. The auxiliary index is kept in memory. Searches are run 
across both indexes and results merged. Deletions are stored in an invalidation 
bit vector. We can then filter out deleted documents before returning the search 
result. Documents are updated by deleting and reinserting them. 

 

AUXILIARY INDEX 
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Each time the auxiliary index becomes too large, we merge it into the main 
index. The cost of this merging operation depends on how we store the index in 
the file system. If we store each postings list as a separate file, then the merge 
simply consists of extending each postings list of the main index by the 
corresponding postings list of the auxiliary index. In this scheme, the reason for 
keeping the auxiliary index is to reduce the number of disk seeks required over 
time. Updating each document separately requires up to Mave disk seeks, where 
Mave is the average size of the vocabulary of documents in the collection. With 
an auxiliary index, we only put additional load on the disk when we merge 
auxiliary and main indexes. 
 
Unfortunately, the one-file-per-postings-list scheme is infeasible because most 
file systems cannot efficiently handle very large numbers of files. The simplest 
alternative is to store the index as one large file, that is, as a concatenation of all 
postings lists. In reality, we often choose a compromise between the two 
extremes. To simplify the discussion, we choose the simple option of storing the 
index as one large file here. 

 
 
 
 
 

In this scheme, we process each posting ⌊T/n⌋ times because we touch it during 
each of ⌊T/n⌋ merges where n is the size of the auxiliary index and T the total 

number of postings. Thus, the overall time complexity is (T2/n). (We neglect 
the representation of terms here and consider only the docIDs. For the purpose 
of time complexity, a postings list is simply a list of docIDs.)  
 

We can do better than (T2/n) by introducing log2(T/n) indexes I0, I1, I2, . . . of 
size 20 × n, 21 × n, 22 × n . . . . Postings percolate up this sequence of indexes 
and are processed only once on each level. This scheme is called logarithmic 
merging (Figure 1.7). As before, up to n postings are accumulated in an in-
memory auxiliary index, which we call Z0. When the limit n is reached, the 20 × n 
postings in Z0 are transferred to a new index I0 that is created on disk. The next 

► Figure 1.7  Logarithmic merging. Each token (termID,docID) is initially added to in-

memory index Z0 by LMERGEADDTOKEN. LOGARITHMICMERGE initializes Z0 and 

indexes. 

LOGARITHMIC 

MERGING 



 

Universitas Esa Unggul 

http://esaunggul.ac.id              11 / 15 

time Z0 is full, it is merged with I0 to create an index Z1 of size 21× n. Then Z1 is 
either stored as I1 (if there isn’t already an I1) or merged with I1 into Z2 (if I1 
exists); and so on. We service search requests by querying in-memory Z0 and 
all currently valid indexes Ii on disk and merging the results. Readers familiar 
with the binomial heap data structure will recognize its similarity with the 
structure of the inverted indexes in logarithmic 
merging. 
 

Overall index construction time is (T log(T/n)) because each posting is 
processed only once on each of the log(T/n) levels. We trade this efficiency gain 
for a slowdown of query processing; we now need to merge results from 
log(T/n) indexes as opposed to just two (the main and auxiliary indexes). As in 
the auxiliary index scheme, we still need to merge very large indexes 
occasionally (which slows down the search system during the merge), but this 
happens less frequently and the indexes involved in a merge on average are 
smaller. 
 
Having multiple indexes complicates the maintenance of collection-wide 
statistics. For example, it affects the spelling correction algorithm that selects 
the corrected alternative with the most hits. With multiple indexes and an 
invalidation bit vector, the correct number of hits for a term is no longer a simple 
lookup. In fact, all aspects of an IR system – index maintenance, query 
processing, distribution, and so on – are more complex in logarithmic merging. 
 
Because of this complexity of dynamic indexing, some large search engines 
adopt a reconstruction-from-scratch strategy. They do not construct indexes 
dynamically. Instead, a new index is built from scratch periodically. Query 
processing is then switched from the new index and the old index is deleted. 
 
Exercise 1.4 

For n = 2 and 1 ≤ T ≤ 30, perform a step-by-step simulation of the algorithm in 
Figure 1.7. Create a table that shows, for each point in time at which T = 2 ∗ k 
tokens have been processed (1 ≤ k ≤ 15), which of the three indexes I0, . . . , I3 
are in use. The first three lines of the table are given below. 

 
 
 
1.6. Other types of indexes 

This chapter only describes construction of nonpositional indexes. Except for 
the much larger data volume we need to accommodate, the main difference for 
positional indexes is that (termID, docID, (position1, position2, . . . )) triples, 
instead of (termID, docID) pairs have to be processed and that tokens and 
postings contain positional information in addition to docIDs. With this change, 
the algorithms discussed here can all be applied to positional indexes. 
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In the indexes we have considered so far, postings lists are ordered with respect 
to docID. This is advantageous for compression – instead of docIDs we can 
compress smaller gaps between IDs, thus reducing space requirements for the 
index. However, this structure for the index is not optimal when we build ranked 
– as opposed to Boolean – retrieval systems. In ranked retrieval, postings are 
often ordered according to weight or impact, with the highest-weighted postings 
occurring first. With this organization, scanning of long postings lists during 
query processing can usually be terminated early when weights have become 
so small that any further documents can be predicted to be of low similarity to 
the query. In a docID-sorted index, new documents are always inserted at the 
end of postings lists. In an impact-sorted index, the insertion can occur 
anywhere, thus complicating the update of the inverted index. 
 
Security is an important consideration for retrieval systems in corporations. A 
low-level employee should not be able to find the salary roster of the 
corporation, but authorized managers need to be able to search for it. Users’ 
results lists must not contain documents they are barred from opening; the 
very existence of a document can be sensitive information. 
 
User authorization is often mediated through access control lists or ACLs. ACLs 
can be dealt with in an information retrieval system by representing each 
document as the set of users that can access them (Figure 1.8) and then 
inverting the resulting user-document matrix. The inverted ACL index has, for 
each user, a “postings list” of documents they can access – the user’s access 
list. Search results are then intersected with this list. However, such an index is 
difficult to maintain when access permissions change – we discussed these 
difficulties in the context of incremental indexing for regular postings lists. It also 
requires the processing of very long postings lists for users with access to large 
document subsets. User membership is therefore often verified by retrieving 
access information directly from the file system at query time – even though this 
slows down retrieval. 

 
 
 
 
 
 
 

 

RANKED 

► Figure 1.8  A user-document matrix for access control lists. Element (i, j) is 1 if user i 
has access to document j and 0 otherwise. During query processing, a user’s access 
postings list is intersected with the results list returned by the text part of the index. 

► Table 1.3  The five steps in constructing an index for Reuters-RCV1 in blocked sort-
based indexing. Line numbers refer to Figure 1.2. 
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Exercise 1.5 
Can spelling correction compromise document-level security? Consider the 
case where a spelling correction is based on documents to which the user does 
not have access. 
 
Exercise 1.6 
Total index construction time in blocked sort-based indexing is broken down in 
Table 1.3. Fill out the time column of the table for Reuters-RCV1 assuming a 
system with the parameters given in Table 1.1. 
 
Exercise 1.7 
Repeat Exercise 1.6 for the larger collection in Table 1.4. Choose a block size 
that is realistic for current technology (remember that a block should easily fit 
into main memory). How many blocks do you need? 
 
Exercise 1.8 
Assume that machines in MapReduce have 100 GB of disk space each. 
Assume further that the postings list of the term the has a size of 200 GB. Then 
the MapReduce algorithm as described cannot be run to construct the index. 
How would you modify MapReduce so that it can handle this case? 
 
Exercise 1.9 
For optimal load balancing, the inverters in MapReduce must get segmented 
postings files of similar sizes. For a new collection, the distribution of key-value 
pairs may not be known in advance. How would you solve this problem? 
 
Exercise 1.10 
Apply MapReduce to the problem of counting how often each term occurs in a 
set of files. Specify map and reduce operations for this task. Write down an 
example along the lines of Figure 1.6. 

 

 
 
 
 
 
 
 
 
 
 
 
 

► Table 1.4  Collection statistics for a large collection. 
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C. Latihan dan Jawaban 
 

1. Penerapan MapReduce word count process. 

Input : 
- Deer Bear River 
- Car Car River 
- Deer Car Bear 

Output : ... 
 
 
  Input    Splitting  Mapping  Shuffling  Reducing  Final Result 
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Deer Bear River 
Car Car River 
Deer Car Bear 

Deer Bear River 

Car Car River 

Deer Car Bear 

Deer, 1 
Bear, 1  
River, 1 

Car, 1 
Car, 1  
River, 1 

Deer, 1 
Car, 1  
Bear, 1 

Bear, 1  
Bear, 1  

Car, 1 
Car, 1  
Car, 1  

Deer, 1  
Deer, 1  

River, 1 
River, 1 
 

Car, 3 

Deer, 2 

Bear, 2 

River, 2 

Bear, 2  
Car, 3 
Deer, 2 
River, 2 


