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Plan
§ Last lecture:

§ Dictionary data structures
§ Tolerant retrieval

§ Wildcards
§ Spell correction
§ Soundex

§ This time:
§ Index construction
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Index construction
§ How do we construct an index?
§ What strategies can we use with limited main 

memory?

Ch. 4
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Hardware basics
§ Many design decisions in information retrieval are 

based on the characteristics of hardware
§ We begin by reviewing hardware basics

Sec. 4.1
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Hardware basics
§ Access to data in memory is much faster than access 

to data on disk.
§ Disk seeks: No data is transferred from disk while the 

disk head is being positioned.
§ Therefore: Transferring one large chunk of data from 

disk to memory is faster than transferring many small 
chunks.

§ Disk I/O is block-based: Reading and writing of entire 
blocks (as opposed to smaller chunks).

§ Block sizes: 8KB to 256 KB.

Sec. 4.1
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Hardware basics
§ Servers used in IR systems now typically have several 

GB of main memory, sometimes tens of GB. 
§ Available disk space is several (2–3) orders of 

magnitude larger.
§ Fault tolerance is very expensive: It’s much cheaper 

to use many regular machines rather than one fault 
tolerant machine.

Sec. 4.1
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Hardware assumptions for this lecture
§ symbol statistic value
§ s average seek time 5 ms = 5 x 10−3 s
§ b transfer time per byte 0.02 μs = 2 x 10−8 s
§ processor’s clock rate 109 s−1

§ p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

§ size of main memory several GB
§ size of disk space 1 TB or more

Sec. 4.1
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RCV1: Our collection for this lecture
§ Shakespeare’s collected works definitely aren’t large 

enough for demonstrating many of the points in this 
course.

§ The collection we’ll use isn’t really large enough 
either, but it’s publicly available and is at least a more 
plausible example.

§ As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection.

§ This is one year of Reuters newswire (part of 1995 
and 1996)

Sec. 4.2
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A Reuters RCV1 document

Sec. 4.2
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Reuters RCV1 statistics
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) 400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2
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§ Documents are parsed to extract words and these 
are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index construction Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

§ After all documents have been 
parsed, the inverted file is 
sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2



Introduction to Information Retrieval

Scaling index construction
§ In-memory index construction does not scale

§ Can’t stuff entire collection into memory, sort, then write 
back

§ How can we construct an index for very large 
collections?

§ Taking into account the hardware constraints we just 
learned about . . .

§ Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
§ As we build the index, we parse docs one at a time.

§ While building the index, we cannot easily exploit 
compression tricks  (you can, but much more complex)

§ The final postings for any term are incomplete until the end.
§ At 12 bytes per non-positional postings entry (term, doc, 

freq), demands a lot of space for large collections.
§ T = 100,000,000 in the case of RCV1

§ So … we can do this in memory in 2009, but typical 
collections are much larger.  E.g., the New York Times 
provides an index of >150 years of newswire

§ Thus: We need to store intermediate results on disk.

Sec. 4.2
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Sort using disk as “memory”?
§ Can we use the same index construction algorithm 

for larger collections, but by using disk instead of 
memory?

§ No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

§ We need an external sorting algorithm.

Sec. 4.2
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Bottleneck
§ Parse and build postings entries one doc at a time
§ Now sort postings entries by term (then by doc 

within each term)
§ Doing this with random disk seeks would be too slow 

– must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)
§ 12-byte (4+4+4) records (term, doc, freq).
§ These are generated as we parse docs.
§ Must now sort 100M such 12-byte records by term.
§ Define a Block ~ 10M such records

§ Can easily fit a couple into memory.
§ Will have 10 such blocks to start with.

§ Basic idea of algorithm:
§ Accumulate postings for each block, sort, write to disk.
§ Then merge the blocks into one long sorted order.

Sec. 4.2
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Sorting 10 blocks of 10M records
§ First, read each block and sort within: 

§ Quicksort takes 2N ln N expected steps
§ In our case 2 x (10M ln 10M) steps

§ Exercise: estimate total time to read each block from 
disk and and quicksort it.

§ 10 times this estimate – gives us 10 sorted runs of 
10M records each.

§ Done straightforwardly, need 2 copies of data on disk
§ But can optimize this

Sec. 4.2
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How to merge the sorted runs?
§ Can do binary merges, with a merge tree of log210 = 4 layers.
§ During each layer, read into memory runs in blocks of 10M, 

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2
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How to merge the sorted runs?
§ But it is more efficient to do a multi-way merge, where you 

are reading from all blocks simultaneously
§ Providing you read decent-sized chunks of each block into 

memory and then write out a decent-sized output chunk, 
then you’re not killed by disk seeks

Sec. 4.2
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Remaining problem with sort-based 
algorithm
§ Our assumption was: we can keep the dictionary in 

memory.
§ We need the dictionary (which grows dynamically) in 

order to implement a term to termID mapping.
§ Actually, we could work with term,docID postings 

instead of termID,docID postings . . .
§ . . . but then intermediate files become very large. 

(We would end up with a scalable, but very slow 
index construction method.)

Sec. 4.3
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SPIMI: 
Single-pass in-memory indexing

§ Key idea 1: Generate separate dictionaries for each 
block – no need to maintain term-termID mapping 
across blocks.

§ Key idea 2: Don’t sort. Accumulate postings in 
postings lists as they occur.

§ With these two ideas we can generate a complete 
inverted index for each block.

§ These separate indexes can then be merged into one 
big index.

Sec. 4.3
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3
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SPIMI: Compression
§ Compression makes SPIMI even more efficient.

§ Compression of terms
§ Compression of postings

§ See next lecture

Sec. 4.3
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Distributed indexing
§ For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

§ Individual machines are fault-prone
§ Can unpredictably slow down or fail

§ How do we exploit such a pool of machines?

Sec. 4.4
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Web search engine data centers
§ Web search data centers (Google, Bing, Baidu) 

mainly contain commodity machines.
§ Data centers are distributed around the world.
§ Estimate: Google ~1 million servers, 3 million 

processors/cores (Gartner 2007)

Sec. 4.4
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Massive data centers
§ If in a non-fault-tolerant system with 1000 nodes, 

each node has 99.9% uptime, what is the uptime of 
the system?

§ Answer: 63%
§ Exercise: Calculate the number of servers failing per 

minute for an installation of 1 million servers.

Sec. 4.4
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Distributed indexing
§ Maintain a master machine directing the indexing job 

– considered “safe”.
§ Break up indexing into sets of (parallel) tasks.
§ Master machine assigns each task to an idle machine 

from a pool.

Sec. 4.4
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Parallel tasks
§ We will use two sets of parallel tasks

§ Parsers
§ Inverters

§ Break the input document collection into splits
§ Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI)

Sec. 4.4
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Parsers
§ Master assigns a split to an idle parser machine
§ Parser reads a document at a time and emits (term, 

doc) pairs
§ Parser writes pairs into j partitions
§ Each partition is for a range of terms’ first letters

§ (e.g., a-f, g-p, q-z) – here j = 3.

§ Now to complete the index inversion

Sec. 4.4
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Inverters
§ An inverter collects all (term,doc) pairs (= postings) 

for one term-partition.
§ Sorts and writes to postings lists

Sec. 4.4
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Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4
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MapReduce
§ The index construction algorithm we just described is 

an instance of MapReduce.
§ MapReduce (Dean and Ghemawat 2004) is a robust 

and conceptually simple framework for distributed 
computing …

§ … without having to write code for the distribution 
part.

§ They describe the Google indexing system (ca. 2002) 
as consisting of a number of phases, each 
implemented in MapReduce.

Sec. 4.4
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MapReduce
§ Index construction was just one phase.
§ Another phase: transforming a term-partitioned 

index into a document-partitioned index.
§ Term-partitioned: one machine handles a subrange of 

terms
§ Document-partitioned: one machine handles a subrange of 

documents

§ As we’ll discuss in the web part of the course, most 
search engines use a document-partitioned index … 
better load balancing, etc.

Sec. 4.4
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Schema for index construction in 
MapReduce
§ Schema of map and reduce functions
§ map: input → list(k, v)     reduce: (k,list(v)) → output
§ Instantiation of the schema for index construction
§ map: collection → list(termID, docID)
§ reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 

(postings list1, postings list2, …)

Sec. 4.4
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Example for index construction
§ Map:

§ d1 : C came, C c’ed. 
§ d2 : C died. →
§ <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>, 

<died,d2>
§ Reduce:
§ (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)  

→  (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, 
<c’ed,(d1:1)>)

39
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Dynamic indexing
§ Up to now, we have assumed that collections are 

static.
§ They rarely are: 

§ Documents come in over time and need to be inserted.
§ Documents are deleted and modified.

§ This means that the dictionary and postings lists have 
to be modified:
§ Postings updates for terms already in dictionary
§ New terms added to dictionary

Sec. 4.5



Introduction to Information Retrieval

Simplest approach
§ Maintain “big” main index
§ New docs go into “small” auxiliary index
§ Search across both, merge results
§ Deletions

§ Invalidation bit-vector for deleted docs
§ Filter docs output on a search result by this invalidation 

bit-vector

§ Periodically, re-index into one main index

Sec. 4.5



Introduction to Information Retrieval

Issues with main and auxiliary indexes
§ Problem of frequent merges – you touch stuff a lot
§ Poor performance during merge
§ Actually:

§ Merging of the auxiliary index into the main index is efficient if we 
keep a separate file for each postings list.

§ Merge is the same as a simple append.
§ But then we would need a lot of files – inefficient for OS.

§ Assumption for the rest of the lecture: The index is one big 
file.

§ In reality: Use a scheme somewhere in between (e.g., split 
very large postings lists, collect postings lists of length 1 in one 
file etc.)

Sec. 4.5
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Logarithmic merge
§ Maintain a series of indexes, each twice as large as 

the previous one
§ At any time, some of these powers of 2 are instantiated

§ Keep smallest (Z0) in memory
§ Larger ones (I0, I1, …) on disk
§ If Z0 gets too big (> n), write to disk as I0
§ or merge with I0 (if I0 already exists) as Z1
§ Either write merge Z1 to disk as I1 (if no I1)
§ Or merge with I1 to form Z2

Sec. 4.5
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Logarithmic merge
§ Auxiliary and main index: index construction time is 

O(T2) as each posting is touched in each merge.
§ Logarithmic merge: Each posting is merged O(log T) 

times, so complexity is O(T log T)
§ So logarithmic merge is much more efficient for 

index construction
§ But query processing now requires the merging of 

O(log T) indexes
§ Whereas it is O(1) if you just have a main and auxiliary 

index

Sec. 4.5
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Further issues with multiple indexes
§ Collection-wide statistics are hard to maintain
§ E.g., when we spoke of spell-correction: which of 

several corrected alternatives do we present to the 
user?
§ We said, pick the one with the most hits

§ How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
§ One possibility: ignore everything but the main index for 

such ordering

§ Will see more such statistics used in results ranking

Sec. 4.5
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Dynamic indexing at search engines
§ All the large search engines now do dynamic 

indexing
§ Their indices have frequent incremental changes

§ News items, blogs, new topical web pages
§ Sarah Palin, …

§ But (sometimes/typically) they also periodically 
reconstruct the index from scratch
§ Query processing is then switched to the new index, and 

the old index is deleted

Sec. 4.5
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Other sorts of indexes
§ Positional indexes

§ Same sort of sorting problem … just larger

§ Building character n-gram indexes:
§ As text is parsed, enumerate n-grams.
§ For each n-gram, need pointers to all dictionary terms 

containing it – the “postings”.
§ Note that the same “postings entry” will arise repeatedly 

in parsing the docs – need efficient hashing to keep track 
of this.
§ E.g., that the trigram uou occurs in the term deciduous will be 

discovered on each text occurrence of deciduous
§ Only need to process each term once

Why?

Sec. 4.5



Introduction to Information Retrieval

Resources for today’s lecture
§ Chapter 4 of IIR
§ MG Chapter 5
§ Original publication on MapReduce: Dean and 

Ghemawat (2004)
§ Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4


