
Introduction to Information Retrieval

TOPIK DALAM INFORMATION RETRIEVAL
PROGRAM STUDI MAGISTER ILMU KOMPUTER

FAKULTAS ILMU KOMPUTER
Pertemuan – 4 #7329-Dr. Gerry Firmansyah

Introduction to Information Retrieval

Introduction to

Information Retrieval

Index Construction

Sumber : Information Retrieval, Pandu Nayak and Prabhakar Raghavan

Introduction to Information Retrieval

Plan
§ Last lecture:

§ Dictionary data structures
§ Tolerant retrieval

§ Wildcards
§ Spell correction
§ Soundex

§ This time:
§ Index construction

a-hu
hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

Introduction to Information Retrieval

Index construction
§ How do we construct an index?
§ What strategies can we use with limited main

memory?

Ch. 4

Introduction to Information Retrieval

Hardware basics
§ Many design decisions in information retrieval are

based on the characteristics of hardware
§ We begin by reviewing hardware basics

Sec. 4.1

Introduction to Information Retrieval

Hardware basics
§ Access to data in memory is much faster than access

to data on disk.
§ Disk seeks: No data is transferred from disk while the

disk head is being positioned.
§ Therefore: Transferring one large chunk of data from

disk to memory is faster than transferring many small
chunks.

§ Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks).

§ Block sizes: 8KB to 256 KB.

Sec. 4.1

Introduction to Information Retrieval

Hardware basics
§ Servers used in IR systems now typically have several

GB of main memory, sometimes tens of GB.
§ Available disk space is several (2–3) orders of

magnitude larger.
§ Fault tolerance is very expensive: It’s much cheaper

to use many regular machines rather than one fault
tolerant machine.

Sec. 4.1

Introduction to Information Retrieval

Hardware assumptions for this lecture
§ symbol statistic value
§ s average seek time 5 ms = 5 x 10−3 s
§ b transfer time per byte 0.02 μs = 2 x 10−8 s
§ processor’s clock rate 109 s−1

§ p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

§ size of main memory several GB
§ size of disk space 1 TB or more

Sec. 4.1

Introduction to Information Retrieval

RCV1: Our collection for this lecture
§ Shakespeare’s collected works definitely aren’t large

enough for demonstrating many of the points in this
course.

§ The collection we’ll use isn’t really large enough
either, but it’s publicly available and is at least a more
plausible example.

§ As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

§ This is one year of Reuters newswire (part of 1995
and 1996)

Sec. 4.2

Introduction to Information Retrieval

A Reuters RCV1 document

Sec. 4.2

Introduction to Information Retrieval

Reuters RCV1 statistics
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) 400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2

Introduction to Information Retrieval

§ Documents are parsed to extract words and these
are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index construction Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

Introduction to Information Retrieval

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

§ After all documents have been
parsed, the inverted file is
sorted by terms.

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

Introduction to Information Retrieval

Scaling index construction
§ In-memory index construction does not scale

§ Can’t stuff entire collection into memory, sort, then write
back

§ How can we construct an index for very large
collections?

§ Taking into account the hardware constraints we just
learned about . . .

§ Memory, disk, speed, etc.

Sec. 4.2

Introduction to Information Retrieval

Sort-based index construction
§ As we build the index, we parse docs one at a time.

§ While building the index, we cannot easily exploit
compression tricks (you can, but much more complex)

§ The final postings for any term are incomplete until the end.
§ At 12 bytes per non-positional postings entry (term, doc,

freq), demands a lot of space for large collections.
§ T = 100,000,000 in the case of RCV1

§ So … we can do this in memory in 2009, but typical
collections are much larger. E.g., the New York Times
provides an index of >150 years of newswire

§ Thus: We need to store intermediate results on disk.

Sec. 4.2

Introduction to Information Retrieval

Sort using disk as “memory”?
§ Can we use the same index construction algorithm

for larger collections, but by using disk instead of
memory?

§ No: Sorting T = 100,000,000 records on disk is too
slow – too many disk seeks.

§ We need an external sorting algorithm.

Sec. 4.2

Introduction to Information Retrieval

Bottleneck
§ Parse and build postings entries one doc at a time
§ Now sort postings entries by term (then by doc

within each term)
§ Doing this with random disk seeks would be too slow

– must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2

Introduction to Information Retrieval

BSBI: Blocked sort-based Indexing
(Sorting with fewer disk seeks)
§ 12-byte (4+4+4) records (term, doc, freq).
§ These are generated as we parse docs.
§ Must now sort 100M such 12-byte records by term.
§ Define a Block ~ 10M such records

§ Can easily fit a couple into memory.
§ Will have 10 such blocks to start with.

§ Basic idea of algorithm:
§ Accumulate postings for each block, sort, write to disk.
§ Then merge the blocks into one long sorted order.

Sec. 4.2

Introduction to Information Retrieval Sec. 4.2

Introduction to Information Retrieval

Sorting 10 blocks of 10M records
§ First, read each block and sort within:

§ Quicksort takes 2N ln N expected steps
§ In our case 2 x (10M ln 10M) steps

§ Exercise: estimate total time to read each block from
disk and and quicksort it.

§ 10 times this estimate – gives us 10 sorted runs of
10M records each.

§ Done straightforwardly, need 2 copies of data on disk
§ But can optimize this

Sec. 4.2

Introduction to Information Retrieval Sec. 4.2

Introduction to Information Retrieval

How to merge the sorted runs?
§ Can do binary merges, with a merge tree of log210 = 4 layers.
§ During each layer, read into memory runs in blocks of 10M,

merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2

Introduction to Information Retrieval

How to merge the sorted runs?
§ But it is more efficient to do a multi-way merge, where you

are reading from all blocks simultaneously
§ Providing you read decent-sized chunks of each block into

memory and then write out a decent-sized output chunk,
then you’re not killed by disk seeks

Sec. 4.2

Introduction to Information Retrieval

Remaining problem with sort-based
algorithm
§ Our assumption was: we can keep the dictionary in

memory.
§ We need the dictionary (which grows dynamically) in

order to implement a term to termID mapping.
§ Actually, we could work with term,docID postings

instead of termID,docID postings . . .
§ . . . but then intermediate files become very large.

(We would end up with a scalable, but very slow
index construction method.)

Sec. 4.3

Introduction to Information Retrieval

SPIMI:
Single-pass in-memory indexing

§ Key idea 1: Generate separate dictionaries for each
block – no need to maintain term-termID mapping
across blocks.

§ Key idea 2: Don’t sort. Accumulate postings in
postings lists as they occur.

§ With these two ideas we can generate a complete
inverted index for each block.

§ These separate indexes can then be merged into one
big index.

Sec. 4.3

Introduction to Information Retrieval

SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3

Introduction to Information Retrieval

SPIMI: Compression
§ Compression makes SPIMI even more efficient.

§ Compression of terms
§ Compression of postings

§ See next lecture

Sec. 4.3

Introduction to Information Retrieval

Distributed indexing
§ For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

§ Individual machines are fault-prone
§ Can unpredictably slow down or fail

§ How do we exploit such a pool of machines?

Sec. 4.4

Introduction to Information Retrieval

Web search engine data centers
§ Web search data centers (Google, Bing, Baidu)

mainly contain commodity machines.
§ Data centers are distributed around the world.
§ Estimate: Google ~1 million servers, 3 million

processors/cores (Gartner 2007)

Sec. 4.4

Introduction to Information Retrieval

Massive data centers
§ If in a non-fault-tolerant system with 1000 nodes,

each node has 99.9% uptime, what is the uptime of
the system?

§ Answer: 63%
§ Exercise: Calculate the number of servers failing per

minute for an installation of 1 million servers.

Sec. 4.4

Introduction to Information Retrieval

Distributed indexing
§ Maintain a master machine directing the indexing job

– considered “safe”.
§ Break up indexing into sets of (parallel) tasks.
§ Master machine assigns each task to an idle machine

from a pool.

Sec. 4.4

Introduction to Information Retrieval

Parallel tasks
§ We will use two sets of parallel tasks

§ Parsers
§ Inverters

§ Break the input document collection into splits
§ Each split is a subset of documents (corresponding to

blocks in BSBI/SPIMI)

Sec. 4.4

Introduction to Information Retrieval

Parsers
§ Master assigns a split to an idle parser machine
§ Parser reads a document at a time and emits (term,

doc) pairs
§ Parser writes pairs into j partitions
§ Each partition is for a range of terms’ first letters

§ (e.g., a-f, g-p, q-z) – here j = 3.

§ Now to complete the index inversion

Sec. 4.4

Introduction to Information Retrieval

Inverters
§ An inverter collects all (term,doc) pairs (= postings)

for one term-partition.
§ Sorts and writes to postings lists

Sec. 4.4

Introduction to Information Retrieval

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4

Introduction to Information Retrieval

MapReduce
§ The index construction algorithm we just described is

an instance of MapReduce.
§ MapReduce (Dean and Ghemawat 2004) is a robust

and conceptually simple framework for distributed
computing …

§ … without having to write code for the distribution
part.

§ They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
implemented in MapReduce.

Sec. 4.4

Introduction to Information Retrieval

MapReduce
§ Index construction was just one phase.
§ Another phase: transforming a term-partitioned

index into a document-partitioned index.
§ Term-partitioned: one machine handles a subrange of

terms
§ Document-partitioned: one machine handles a subrange of

documents

§ As we’ll discuss in the web part of the course, most
search engines use a document-partitioned index …
better load balancing, etc.

Sec. 4.4

Introduction to Information Retrieval

Schema for index construction in
MapReduce
§ Schema of map and reduce functions
§ map: input → list(k, v) reduce: (k,list(v)) → output
§ Instantiation of the schema for index construction
§ map: collection → list(termID, docID)
§ reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) →

(postings list1, postings list2, …)

Sec. 4.4

Introduction to Information Retrieval

Example for index construction
§ Map:

§ d1 : C came, C c’ed.
§ d2 : C died. →
§ <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>,

<died,d2>
§ Reduce:
§ (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)

→ (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>,
<c’ed,(d1:1)>)

39

Introduction to Information Retrieval

Dynamic indexing
§ Up to now, we have assumed that collections are

static.
§ They rarely are:

§ Documents come in over time and need to be inserted.
§ Documents are deleted and modified.

§ This means that the dictionary and postings lists have
to be modified:
§ Postings updates for terms already in dictionary
§ New terms added to dictionary

Sec. 4.5

Introduction to Information Retrieval

Simplest approach
§ Maintain “big” main index
§ New docs go into “small” auxiliary index
§ Search across both, merge results
§ Deletions

§ Invalidation bit-vector for deleted docs
§ Filter docs output on a search result by this invalidation

bit-vector

§ Periodically, re-index into one main index

Sec. 4.5

Introduction to Information Retrieval

Issues with main and auxiliary indexes
§ Problem of frequent merges – you touch stuff a lot
§ Poor performance during merge
§ Actually:

§ Merging of the auxiliary index into the main index is efficient if we
keep a separate file for each postings list.

§ Merge is the same as a simple append.
§ But then we would need a lot of files – inefficient for OS.

§ Assumption for the rest of the lecture: The index is one big
file.

§ In reality: Use a scheme somewhere in between (e.g., split
very large postings lists, collect postings lists of length 1 in one
file etc.)

Sec. 4.5

Introduction to Information Retrieval

Logarithmic merge
§ Maintain a series of indexes, each twice as large as

the previous one
§ At any time, some of these powers of 2 are instantiated

§ Keep smallest (Z0) in memory
§ Larger ones (I0, I1, …) on disk
§ If Z0 gets too big (> n), write to disk as I0
§ or merge with I0 (if I0 already exists) as Z1
§ Either write merge Z1 to disk as I1 (if no I1)
§ Or merge with I1 to form Z2

Sec. 4.5

Introduction to Information Retrieval Sec. 4.5

Introduction to Information Retrieval

Logarithmic merge
§ Auxiliary and main index: index construction time is

O(T2) as each posting is touched in each merge.
§ Logarithmic merge: Each posting is merged O(log T)

times, so complexity is O(T log T)
§ So logarithmic merge is much more efficient for

index construction
§ But query processing now requires the merging of

O(log T) indexes
§ Whereas it is O(1) if you just have a main and auxiliary

index

Sec. 4.5

Introduction to Information Retrieval

Further issues with multiple indexes
§ Collection-wide statistics are hard to maintain
§ E.g., when we spoke of spell-correction: which of

several corrected alternatives do we present to the
user?
§ We said, pick the one with the most hits

§ How do we maintain the top ones with multiple
indexes and invalidation bit vectors?
§ One possibility: ignore everything but the main index for

such ordering

§ Will see more such statistics used in results ranking

Sec. 4.5

Introduction to Information Retrieval

Dynamic indexing at search engines
§ All the large search engines now do dynamic

indexing
§ Their indices have frequent incremental changes

§ News items, blogs, new topical web pages
§ Sarah Palin, …

§ But (sometimes/typically) they also periodically
reconstruct the index from scratch
§ Query processing is then switched to the new index, and

the old index is deleted

Sec. 4.5

Introduction to Information Retrieval Sec. 4.5

Introduction to Information Retrieval

Other sorts of indexes
§ Positional indexes

§ Same sort of sorting problem … just larger

§ Building character n-gram indexes:
§ As text is parsed, enumerate n-grams.
§ For each n-gram, need pointers to all dictionary terms

containing it – the “postings”.
§ Note that the same “postings entry” will arise repeatedly

in parsing the docs – need efficient hashing to keep track
of this.
§ E.g., that the trigram uou occurs in the term deciduous will be

discovered on each text occurrence of deciduous
§ Only need to process each term once

Why?

Sec. 4.5

Introduction to Information Retrieval

Resources for today’s lecture
§ Chapter 4 of IIR
§ MG Chapter 5
§ Original publication on MapReduce: Dean and

Ghemawat (2004)
§ Original publication on SPIMI: Heinz and Zobel (2003)

Ch. 4

