
11

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 13

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

22

TOPIK	DALAM	PEMROGRAMAN	
Greedy Algorithms & Dynamic

Programming
Pertemuan	13	

3

TUJUAN	PERKULIAHAN	
•  Mahasiswa	memahami	beberapa	Ape	persoalan	
yang	penAng.	
•  Greedy	Algorithms	
•  Dynamic	Programming	

44

Greedy	Algorithms	

5

OpAmizaAon	problems	

•  An	opAmizaAon	problem	is	one	in	which	you	
want	to	find,	not	just	a	soluAon,	but	the	best	
soluAon	

•  A	“greedy	algorithm”	someAmes	works	well	
for	opAmizaAon	problems	

•  A	greedy	algorithm	works	in	phases.	At	each	
phase:	
–  You	take	the	best	you	can	get	right	now,	without	
regard	for	future	consequences	

–  You	hope	that	by	choosing	a	local	opAmum	at	
each	step,	you	will	end	up	at	a	global	opAmum	

5

6

Example:	CounAng	money	

•  Suppose	you	want	to	count	out	a	certain	
amount	of	money,	using	the	fewest	possible	
bills	and	coins	

•  A	greedy	algorithm	would	do	this	would	be:	
At	each	step,	take	the	largest	possible	bill	or	
coin	that	does	not	overshoot	
–  Example:	To	make	$6.39,	you	can	choose:	

•  a	$5	bill	
•  a	$1	bill,	to	make	$6	
•  a	25¢	coin,	to	make	$6.25	
•  A	10¢	coin,	to	make	$6.35	
•  four	1¢	coins,	to	make	$6.39	

•  For	US	money,	the	greedy	algorithm	always	
gives	the	opAmum	soluAon	

6

7

A	failure	of	the	greedy	algorithm	

•  In	some	(ficAonal)	monetary	system,	“krons”	
come	in	1	kron,	7	kron,	and	10	kron	coins	

•  Using	a	greedy	algorithm	to	count	out	15	krons,	
you	would	get	
– A	10	kron	piece	
–  Five	1	kron	pieces,	for	a	total	of	15	krons	
–  This	requires	six	coins	

•  A	be`er	soluAon	would	be	to	use	two	7	kron	
pieces	and	one	1	kron	piece	
–  This	only	requires	three	coins	

•  The	greedy	algorithm	results	in	a	soluAon,	but	
not	in	an	opAmal	soluAon	

7

8

A	scheduling	problem	
•  You	have	to	run	nine	jobs,	with	running	Ames	of	3,	5,	6,	10,	11,	

14,	15,	18,	and	20	minutes	
•  You	have	three	processors	on	which	you	can	run	these	jobs	
•  You	decide	to	do	the	longest-running	jobs	first,	on	whatever	

processor	is	available	

•  Time	to	compleAon:	18 + 11 + 6 = 35	minutes	
•  This	soluAon	isn’t	bad,	but	we	might	be	able	to	do	be`er	

8

20

18

15 14

11

10

6

5

3 P1

P2

P3

9

Another	approach	
•  What	would	be	the	result	if	you	ran	the	shortest	job	first?	
•  Again,	the	running	Ames	are	3,	5,	6,	10,	11,	14,	15,	18,	and	20	

minutes	

•  That	wasn’t	such	a	good	idea;	Ame	to	compleAon	is	now	
6 + 14 + 20 = 40	minutes	

•  Note,	however,	that	the	greedy	algorithm	itself	is	fast	
–  All	we	had	to	do	at	each	stage	was	pick	the	minimum	or	maximum	

9

20

18

15

14

11

10

6

5

3 P1

P2

P3

10

An	opAmum	soluAon	
•  Be`er	soluAons	do	exist:	

•  This	soluAon	is	clearly	opAmal	(why?)	
•  Clearly,	there	are	other	opAmal	soluAons	(why?)	
•  How	do	we	find	such	a	soluAon?	

–  One	way:	Try	all	possible	assignments	of	jobs	to	processors	
–  Unfortunately,	this	approach	can	take	exponenAal	Ame	

10

20

18

15

14

11

10 6

5

3

P1

P2

P3

11

Huffman	encoding	
•  The	Huffman	encoding	algorithm	is	a	greedy	algorithm	
•  You	always	pick	the	two	smallest	numbers	to	combine	

•  Average	bits/char:	
0.22*2 + 0.12*3 +
0.24*2 + 0.06*4 +
0.27*2 + 0.09*4
= 2.42

•  The	Huffman	
algorithm	finds	an	
opAmal	soluAon	

11

22 12 24 6 27 9
 A B C D E F

15

27

46

54

100

A=00
B=100
C=01
D=1010
E=11
F=1011

12

Minimum	spanning	tree	
•  A	minimum	spanning	tree	is	a	least-cost	subset	of	the	edges	of	a	

graph	that	connects	all	the	nodes	
–  Start by picking any node and adding it to the tree
–  Repeatedly: Pick any least-cost edge from a node in the tree to a

node not in the tree, and add the edge and new node to the tree
–  Stop when all nodes have been added to the tree

•  The	result	is	a	least-cost	
(3+3+2+2+2=12)	spanning	tree	

•  If	you	think	some	other	edge	should	be	
in	the	spanning	tree:	
–  Try adding that edge
–  Note that the edge is part of a cycle
–  To break the cycle, you must remove

the edge with the greatest cost
•  This will be the edge you just added 12

1

2
3

4

5

6

3 3

3

3

2

2

2

4

4

4

13

Traveling	salesman	
•  A	salesman	must	visit	every	city	(starAng	from	city	A),	and	wants	

to	cover	the	least	possible	distance	
–  He	can	revisit	a	city	(and	reuse	a	road)	if	necessary	

•  He	does	this	by	using	a	greedy	algorithm:	He	goes	to	the	next	
nearest	city	from	wherever	he	is	

•  From	A	he	goes	to	B	
•  From	B	he	goes	to	D	
•  This	is	not	going	to	result	in	a	

shortest	path!	
•  The	best	result	he	can	get	now	

will	be	ABDBCE,	at	a	cost	of	16
•  An	actual	least-cost	path	from	A	

is	ADBCE,	at	a	cost	of	14
13E

A B C

D

2

3 3

4

4 4

14

Analysis	

•  A	greedy	algorithm	typically	makes	(approximately)	n	choices	
for	a	problem	of	size	n	
–  (The	first	or	last	choice	may	be	forced)	

•  Hence	the	expected	running	Ame	is:	
O(n * O(choice(n))),	where	choice(n)	is	making	a	choice	
among	n	objects	
–  CounAng:	Must	find	largest	useable	coin	from	among	k sizes	of	coin	(k	

is	a	constant),	an	O(k)=O(1)	operaAon;	
•  Therefore,	coin	counAng	is	(n)	

–  Huffman:	Must	sort	n	values	before	making	n	choices	
•  Therefore,	Huffman	is	O(n log n) + O(n) = O(n log n)

–  Minimum	spanning	tree:	At	each	new	node,	must	include	new	edges	
and	keep	them	sorted,	which	is	O(n log n)	overall	
•  Therefore,	MST	is	O(n log n) + O(n) = O(n log n)

14

15

Other	greedy	algorithms	
•  Dijkstra’s	algorithm	for	finding	the	shortest	path	
in	a	graph	
– Always	takes	the	shortest	edge	connecAng	a	known	
node	to	an	unknown	node	

•  Kruskal’s	algorithm	for	finding	a	minimum-cost	
spanning	tree	
– Always	tries	the	lowest-cost	remaining	edge	

•  Prim’s	algorithm	for	finding	a	minimum-cost	
spanning	tree	
– Always	takes	the	lowest-cost	edge	between	nodes	in	
the	spanning	tree	and	nodes	not	yet	in	the	spanning	
tree	

15

16

Dijkstra’s	shortest-path	algorithm	
•  Dijkstra’s	algorithm	finds	the	shortest	paths	from	a	given	

node	to	all	other	nodes	in	a	graph	
–  IniAally,		

•  Mark	the	given	node	as	known	(path	length	is	zero)	
•  For	each	out-edge,	set	the	distance	in	each	neighboring	node	equal	to	the	
cost	(length)	of	the	out-edge,	and	set	its	predecessor	to	the	iniAally	given	
node	

–  Repeatedly	(unAl	all	nodes	are	known),	
•  Find	an	unknown	node	containing	the	smallest	distance	
•  Mark	the	new	node	as	known	
•  For	each	node	adjacent	to	the	new	node,	examine	its	neighbors	to	see	
whether	their	esAmated	distance	can	be	reduced	(distance	to	known	
node	plus	cost	of	out-edge)	
–  If	so,	also	reset	the	predecessor	of	the	new	node	

16

17

Analysis	of	Dijkstra’s	algorithm	I	

•  Assume	that	the	average	out-degree	of	a	
node	is	some	constant	k	
–  IniAally,		
•  Mark	the	given	node	as	known	(path	length	is	zero)	

–  This	takes	O(1)	(constant)	Ame	
•  For	each	out-edge,	set	the	distance	in	each	neighboring	
node	equal	to	the	cost	(length)	of	the	out-edge,	and	set	
its	predecessor	to	the	iniAally	given	node	
–  If	each	node	refers	to	a	list	of	k	adjacent	node/edge	pairs,	this	
takes	O(k) = O(1)	Ame,	that	is,	constant	Ame	

–  NoAce	that	this	operaAon	takes	longer	if	we	have	to	extract	a	
list	of	names	from	a	hash	table	

17

18

Analysis	of	Dijkstra’s	algorithm	II	

•  Repeatedly	(unAl	all	nodes	are	known),	(n	Ames)	
–  Find	an	unknown	node	containing	the	smallest	distance	

•  Probably	the	best	way	to	do	this	is	to	put	the	unknown	nodes	into	a	
priority	queue;	this	takes k * O(log n)	Ame	each	Ame	a	new	node	is	
marked	“known”	(and	this	happens	n	Ames)	

–  Mark	the	new	node	as	known	--	O(1)	Ame	
–  For	each	node	adjacent	to	the	new	node,	examine	its	neighbors	to	

see	whether	their	esAmated	distance	can	be	reduced	(distance	to	
known	node	plus	cost	of	out-edge)	
•  If	so,	also	reset	the	predecessor	of	the	new	node	
•  There	are	k	adjacent	nodes	(on	average),	operaAon	requires	constant	
Ame	at	each,	therefore	O(k)	(constant)	Ame	

–  Combining	all	the	parts,	we	get:	
O(1) + n*(k*O(log n)+O(k)),	that	is,	O(nk log n)	Ame	

18

19

ConnecAng	wires	
•  There	are	n	white	dots	and n	black	dots,	equally	spaced,	in	a	line	
•  You	want	to	connect	each	white	dot	with	some	one	black	dot,	

with	a	minimum	total	length	of	“wire”	
•  Example:	

•  Total	wire	length	above	is	1 + 1 + 1 + 5 = 8
•  Do	you	see	a	greedy	algorithm	for	doing	this?	
•  Does	the	algorithm	guarantee	an	opAmal	soluAon?	

–  Can	you	prove	it?	
–  Can	you	find	a	counterexample?	

19

20

CollecAng	coins	
•  A	checkerboard	has	a	certain	number	of	coins	on	it	
•  A	robot	starts	in	the	upper-lej	corner,	and	walks	to	the	

bo`om	lej-hand	corner	
–  The	robot	can	only	move	in	two	direcAons:	right	and	down	
–  The	robot	collects	coins	as	it	goes	

•  You	want	to	collect	all	the	coins	using	the	minimum	
number	of	robots	

•  Example:	 •  Do	you	see	a	greedy	algorithm	for	
doing	this?	

•  Does	the	algorithm	guarantee	an	
opAmal	soluAon?	
–  Can	you	prove	it?	
–  Can	you	find	a	counterexample?	

20

2121

Dynamic	Programming	

17-Nov-18

22

CounAng	coins	
•  To	find	the	minimum	number	of	US	coins	to	make	any	

amount,	the	greedy	method	always	works	
–  At	each	step,	just	choose	the	largest	coin	that	does	not	overshoot	the	

desired	amount:	31¢=25	
•  The	greedy	method	would	not	work	if	we	did	not	have	5¢	

coins	
–  For	31	cents,	the	greedy	method	gives	seven	coins	(25+1+1+1+1+1+1),	

but	we	can	do	it	with	four	(10+10+10+1)	
•  The	greedy	method	also	would	not	work	if	we	had	a	21¢	coin	

–  For	63	cents,	the	greedy	method	gives	six	coins	(25+25+10+1+1+1),	
but	we	can	do	it	with	three	(21+21+21)	

•  How	can	we	find	the	minimum	number	of	coins	for	any	given	
coin	set?	

22

23

Coin	set	for	examples	

•  For	the	following	examples,	we	will	assume	coins	
in	the	following	denominaAons:	
					1¢					5¢					10¢					21¢					25¢	

•  We’ll	use	63¢	as	our	goal	
	
	
	
	
	

•  This	example	is	taken	from:	
Data	Structures	&	Problem	Solving	using	Java		by		Mark	Allen	Weiss	

23

24

A	simple	soluAon	

•  We	always	need	a	1¢	coin,	otherwise	no	soluAon	exists	for	making	one	
cent	

•  To make K cents:
–  If there is a K-cent coin, then that one coin is the minimum
–  Otherwise, for each value i < K,

•  Find the minimum number of coins needed to make i
cents

•  Find the minimum number of coins needed to make K - i
cents

–  Choose the i that minimizes this sum
•  This	algorithm	can	be	viewed	as	divide-and-conquer,	or	as	brute	force	

–  This	soluAon	is	very	recursive	
–  It	requires	exponenAal	work	
–  It	is	infeasible	to	solve	for	63¢	

24

25

Another	soluAon	
•  We	can	reduce	the	problem	recursively	by	choosing	
the	first	coin,	and	solving	for	the	amount	that	is	lej	

•  For	63¢:	
–  One	1¢	coin	plus	the	best	soluAon	for	62¢	
–  One	5¢	coin	plus	the	best	soluAon	for	58¢	
–  One	10¢	coin	plus	the	best	soluAon	for	53¢	
–  One	21¢	coin	plus	the	best	soluAon	for	42¢	
–  One	25¢	coin	plus	the	best	soluAon	for	38¢	

•  Choose	the	best	soluAon	from	among	the	5	given	
above	

•  Instead	of	solving	62	recursive	problems,	we	solve	5	
•  This	is	sAll	a	very	expensive	algorithm		

25

26

A	dynamic	programming	soluAon	
•  Idea:	Solve	first	for	one	cent,	then	two	cents,	then	three	cents,	

etc.,	up	to	the	desired	amount	
–  Save	each	answer	in	an	array	!	

•  For	each	new	amount	N,	compute	all	the	possible	pairs	of	
previous	answers	which	sum	to	N	
–  For	example,	to	find	the	soluAon	for	13¢,	

•  First,	solve	for	all	of	1¢,	2¢,	3¢,	...,	12¢	
•  Next,	choose	the	best	soluAon	among:	

–  SoluAon	for	1¢			+			soluAon	for	12¢	
–  SoluAon	for	2¢			+			soluAon	for	11¢	
–  SoluAon	for	3¢			+			soluAon	for	10¢	
–  SoluAon	for	4¢			+			soluAon	for	9¢	
–  SoluAon	for	5¢			+			soluAon	for	8¢	
–  SoluAon	for	6¢			+			soluAon	for	7¢	

26

27

Example	
•  Suppose	coins	are	1¢,	3¢,	and	4¢	

–  There’s	only	one	way	to	make	1¢	(one	coin)	
–  To	make	2¢,	try	1¢+1¢	(one	coin	+	one	coin	=	2	coins)	
–  To	make	3¢,	just	use	the	3¢	coin	(one	coin)	
–  To	make	4¢,	just	use	the	4¢	coin	(one	coin)	
–  To	make	5¢,	try	

•  1¢	+	4¢	(1	coin	+	1	coin	=	2	coins)	
•  2¢	+	3¢	(2	coins	+	1	coin	=	3	coins)	
•  The	first	soluAon	is	be`er,	so	best	soluAon	is	2	coins	

–  To	make	6¢,	try	
•  1¢	+	5¢	(1	coin	+	2	coins	=	3	coins)	
•  2¢	+	4¢	(2	coins	+	1	coin	=	3	coins)	
•  3¢	+	3¢	(1	coin	+	1	coin	=	2	coins)	–	best	soluAon	

–  Etc.	
27

28

The	algorithm	in	Java	
•  public static void makeChange(int[] coins, int differentCoins,

 int maxChange, int[] coinsUsed,
 int[] lastCoin) {
 coinsUsed[0] = 0; lastCoin[0] = 1;
 for (int cents = 1; cents < maxChange; cents++) {
 int minCoins = cents;
 int newCoin = 1;
 for (int j = 0; j < differentCoins; j++) {
 if (coins[j] > cents) continue; // cannot use coin
 if (coinsUsed[cents – coins[j]] + 1 < minCoins) {
 minCoins = coinsUsed[cents – coins[j]] + 1;
 newCoin = coins[j];
 }
 }
 coinsUsed[cents] = minCoins;
 lastCoin[cents] = newCoin;
 }
}

28

29

How	good	is	the	algorithm?	
•  The	first	algorithm	is	recursive,	with	a	branching	
factor	of	up	to	62	
–  Possibly	the	average	branching	factor	is	somewhere	
around	half	of	that	(31)	

–  The	algorithm	takes	exponenAal	Ame,	with	a	large	
base	

•  The	second	algorithm	is	much	be`er—it	has	a	
branching	factor	of	5	
–  This	is	exponenAal	Ame,	with	base	5	

•  The	dynamic	programming	algorithm	is	O(N*K),	
where	N	is	the	desired	amount	and	K	is	the	
number	of	different	kinds	of	coins	

29

30

Comparison	with	divide-and-conquer	

•  Divide-and-conquer	algorithms	split	a	problem	into	separate	
subproblems,	solve	the	subproblems,	and	combine	the	results	
for	a	soluAon	to	the	original	problem	
–  Example:	Quicksort	
–  Example:	Mergesort	
–  Example:	Binary	search	

•  Divide-and-conquer	algorithms	can	be	thought	of	as	top-
down	algorithms	

•  In	contrast,	a	dynamic	programming	algorithm	proceeds	by	
solving	small	problems,	then	combining	them	to	find	the	
soluAon	to	larger	problems	

•  Dynamic	programming	can	be	thought	of	as	bo`om-up	

30

31

Example	2:	Binomial	Coefficients	
•  (x + y)2 = x2 + 2xy + y2,	coefficients	are	1,2,1	
•  (x + y)3 = x3 + 3x2y + 3xy2 + y3,	coefficients	are	1,3,3,1	
•  (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,	

coefficients	are	1,4,6,4,1	
•  (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,	

coefficients	are	1,5,10,10,5,1	
•  The	n+1	coefficients	can	be	computed	for	(x + y)n according	to	

the	formula	c(n, i) = n! / (i! * (n – i)!)	
for	each	of		i = 0..n

•  The	repeated	computaAon	of	all	the	factorials	gets	to	be	
expensive	

•  We	can	use	dynamic	programming	to	save	the	factorials	as	we	go	

31

32

SoluAon	by	dynamic	programming	
•  n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
•  0 1
•  1 1 1
•  2 1 2 1
•  3 1 3 3 1
•  4 1 4 6 4 1
•  5 1 5 10 10 5 1
•  6 1 6 15 20 15 6 1
•  Each	row	depends	only	on	the	preceding	row	
•  Only	linear	space	and	quadraAc	Ame	are	needed	
•  This	algorithm	is	known	as	Pascal’s	Triangle	

32

33

The	algorithm	in	Java	
•  public static int binom(int n, int m) {

 int[] b = new int[n + 1];
 b[0] = 1;
 for (int i = 1; i <= n; i++) {
 b[i] = 1;
 for (int j = i – 1; j > 0; j--) {
 b[j] += b[j – 1];
 }
 }
 return b[m];
}

•  Source:	Data	Structures	and	Algorithms	with	Object-Oriented	Design	Pa`erns	
in	Java			by			Bruno	R.	Preiss	

33

34

The	principle	of	opAmality,	I	
•  Dynamic	programming	is	a	technique	for	finding	an	op;mal	

soluAon	
•  The	principle	of	opAmality	applies	if	the	opAmal	soluAon	to	a	

problem	always	contains	opAmal	soluAons	to	all	subproblems	
•  Example:	Consider	the	problem	of	making	N¢	with	the	fewest	

number	of	coins	
–  Either	there	is	an	N¢	coin,	or	
–  The	set	of	coins	making	up	an	opAmal	soluAon	for	N¢	can	be	divided	

into	two	nonempty	subsets,	n1¢	and	n2¢
•  If	either	subset,	n1¢	or	n2¢,	can	be	made	with	fewer	coins,	then	clearly	N¢
can	be	made	with	fewer	coins,	hence	soluAon	was	not	opAmal

34

35

The	principle	of	opAmality,	II	
•  The	principle	of	opAmality	holds	if	

–  Every	opAmal	soluAon	to	a	problem	contains...	
–  ...opAmal	soluAons	to	all	subproblems	

•  The	principle	of	opAmality	does	not	say	
–  If	you	have	opAmal	soluAons	to	all	subproblems...	
–  ...then	you	can	combine	them	to	get	an	opAmal	soluAon	

•  Example:	In	US	coinage,	
–  The	opAmal	soluAon	to	7¢	is	5¢	+	1¢	+	1¢,	and	
–  The	opAmal	soluAon	to	6¢	is	5¢	+	1¢,	but	
–  The	opAmal	soluAon	to	13¢	is	not	5¢	+	1¢	+	1¢	+	5¢	+	1¢	

•  But	there	is	some	way	of	dividing	up	13¢	into	subsets	with	
opAmal	soluAons	(say,	11¢	+	2¢)	that	will	give	an	opAmal	
soluAon	for	13¢	
–  Hence,	the	principle	of	opAmality	holds	for	this	problem	

35

36

Longest	simple	path	
•  Consider	the	following	graph:	

•  The	longest	simple	path	(path	not	containing	a	cycle)	from	A	
to	D	is	A B C D		

•  However,	the	subpath	A B	is	not	the	longest	simple	path	
from	A	to	B	(A C B	is	longer)	

•  The	principle	of	opAmality	is	not	saAsfied	for	this	problem	
•  Hence,	the	longest	simple	path	problem	cannot	be	solved	

by	a	dynamic	programming	approach	

36

A C D

B

4
2

3
1

1

37

The	0-1	knapsack	problem	
•  A	thief	breaks	into	a	house,	carrying	a	knapsack...	

–  He	can	carry	up	to	25	pounds	of	loot	
–  He	has	to	choose	which	of	N	items	to	steal	

•  Each	item	has	some	weight	and	some	value	
•  “0-1”	because	each	item	is	stolen	(1)	or	not	stolen	(0)	

–  He	has	to	select	the	items	to	steal	in	order	to	maximize	the	value	of	his	
loot,	but	cannot	exceed	25	pounds	

•  A	greedy	algorithm	does	not	find	an	opAmal	soluAon	
•  A	dynamic	programming	algorithm	works	well	
•  This	is	similar	to,	but	not	idenAcal	to,	the	coins	problem	

–  In	the	coins	problem,	we	had	to	make	an	exact	amount	of	change	
–  In	the	0-1	knapsack	problem,	we	can’t	exceed	the	weight	limit,	but	the	

opAmal	soluAon	may	be	less	than	the	weight	limit	
–  The	dynamic	programming	soluAon	is	similar	to	that	of	the	coins	problem	37

38

Comments	
•  Dynamic	programming	relies	on	working	“from	the	bo`om	

up”	and	saving	the	results	of	solving	simpler	problems	
–  These	soluAons	to	simpler	problems	are	then	used	to	compute	the	

soluAon	to	more	complex	problems	

•  Dynamic	programming	soluAons	can	ojen	be	quite	complex	
and	tricky	

•  Dynamic	programming	is	used	for	opAmizaAon	problems,	
especially	ones	that	would	otherwise	take	exponenAal	Ame	
–  Only	problems	that	saAsfy	the	principle	of	opAmality	are	suitable	for	

dynamic	programming	soluAons	

•  Since	exponenAal	Ame	is	unacceptable	for	all	but	the	smallest	
problems,	dynamic	programming	is	someAmes	essenAal	

38

