


DATA STRUCTURES
USING C++

SECOND EDITION

D.S. MALIK




COURSE TECHNOLOGY

CENGAGE Learning’

Data Structures Using C++, Second Edition
D.S. Malik

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Editorial Assistant: Zina Kresin

Marketing Manager: Bryant Chrzan

Content Project Manager: Heather Furrow

Art Director: Faith Brosnan

Image credit: © Fancy Photography/Veer
(Royalty Free)

Cover Designer: Roycroft Design

Compositor: Integra

Printed in the United States of America
123456715141312111009

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit
all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-78201-1
ISBN-10: 0-324-78201-2

Course Technology

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our
preferred online store www.ichapters.com

Some of the product names and company names used in this book
have been used for identification purposes only and may be
trademarks or registered trademarks of their respective
manufacturers and sellers.

Any fictional data related to persons or companies or URLs used
throughout this book is intended for instructional purposes only. At
the time this book was printed, any such data was fictional and not
belonging to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right
to revise this publication and make changes from time to time in its
content without notice.

The programs in this book are for instructional purposes only.

They have been tested with care, but are not guaranteed for any
particular intent beyond educational purposes. The author and the
publisher do not offer any warranties or representations, nor do they
accept any liabilities with respect to the programs.


www.cengage.com/coursetechnology
www.ichapters.com

TO

My Parents



This page intentionally left blank



BRIEF CONTENTS

PREFACE XXili
1. Software Engineering Principles and C++ Classes 1
2. Object-Oriented Design (O0OD) and C++ 59
3. Pointers and Array-Based Lists 131
4. Standard Template Library (STL) | 209
5. Linked Lists 265
6. Recursion 355
7. Stacks 395
8. Queues 451
9. Searching and Hashing Algorithms 497
10. Sorting Algorithms 533
11. Binary Trees and B-Trees 599
12. Graphs 685
13. Standard Template Library (STL) Il 731
APPENDIX A Reserved Words 807
APPENDIX B Operator Precedence 809
APPENDIX C  Character Sets 811
APPENDIX D  Operator Overloading 815

APPENDIX E  Header Files 817



vi | Data Structures Using C++, Second Edition

APPENDIX F  Additional C++ Topics
APPENDIX G C++ for Java Programmers
APPENDIX H  References

APPENDIX |  Answers to Odd-Numbered
Exercises

INDEX

825
833
857

859
879



TABLE OF CONTENTS

Preface XXiii

n SOFTWARE ENGINEERING PRINCIPLES
AND C++ CLASSES

1

Software Life Cycle 2
Software Development Phase 3
Analysis 3
Design 3
Implementation 5
Testing and Debugging 7
Algorithm Analysis: The Big-O Notation 8
Classes 17
Constructors 21
Unified Modeling Language Diagrams 22
Variable (Object) Declaration 23
Accessing Class Members 24
Implementation of Member Functions 25
Reference Parameters and Class Objects (Variables) 30
Assignment Operator and Classes 31
Class Scope 32
Functions and Classes 32
Constructors and Default Parameters 32
Destructors 33

Structs 33



viii | Data Structures Using C++, Second Edition

Data Abstraction, Classes, and Abstract Data Types 33
Programming Example: Fruit Juice Machine 38
Identifying Classes, Objects, and Operations 48
Quick Review 49
Exercises 51
Programming Exercises 57
E OBJECT-ORIENTED DESIGN (00D) AND C++ 59
Inheritance 60
Redefining (Overriding) Member Functions of the Base Class 63
Constructors of Derived and Base Classes 69
Header File of a Derived Class 75
Multiple Inclusions of a Header File 76
Protected Members of a Class 78
Inheritance as public, protected, or private 78
Composition 79
Polymorphism: Operator and Function Overloading 84
Operator Overloading 85
Why Operator Overloading Is Needed 85
Operator Overloading 86
Syntax for Operator Functions 86
Overloading an Operator: Some Restrictions 87
The Pointer this 87
Friend Functions of Classes 91
Operator Functions as Member Functions and Nonmember
Functions 94
Overloading Binary Operators 95
Overloading the Stream Insertion (<<) and Extraction (>>)
Operators 98
Operator Overloading: Member Versus Nonmember 102
Programming Example: Complex Numbers 103

Function Overloading 108



Table of Contents | ix

Templates 108
Function Templates 109
Class Templates 111
Header File and Implementation File of a Class Template 112

Quick Review 113

Exercises 115

Programming Exercises 124

POINTERS AND ARRAY-BASED LISTS 131

The Pointer Data Type and Pointer Variables 132
Declaring Pointer Variables 132
Address of Operator (&) 133
Dereferencing Operator (*) 133
Pointers and Classes 137
Initializing Pointer Variables 138
Dynamic Variables 138
Operator new 138
Operator delete 139
Operations on Pointer Variables 145
Dynamic Arrays 147
Array Name: A Constant Pointer 148
Functions and Pointers 149
Pointers and Function Return Values 150
Dynamic Two-Dimensional Arrays 150
Shallow Vs. Deep Copy and Pointers 153

Classes and Pointers: Some Peculiarities 155
Destructor 155
Assignment Operator 157
Copy Constructor 159

Inheritance, Pointers, and Virtual Functions 162
Classes and Virtual Destructors 168

Abstract Classes and Pure Virtual Functions 169



x | Data Structures Using C++, Second Edition

Array-Based Lists
Copy Constructor
Overloading the Assignment Operator
Search
Insert
Remove
Time Complexity of List Operations

Programming Example: Polynomial Operations
Quick Review
Exercises

Programming Exercises

STANDARD TEMPLATE LIBRARY (STL) I

Components of the STL
Container Types
Sequence Containers
Sequence Container: vector
Declaring an lterator to a Vector Container
Containers and the Functions begin and end
Member Functions Common to All Containers
Member Functions Common to Sequence Containers
The copy Algorithm
ostream lterator and Function copy
Sequence Container: deque

Iterators
Types of Iterators
Input Iterators
Output lterators
Forward lterators
Bidirectional Iterators
Random Access lIterators
Stream Iterators

Programming Example: Grade Report

170
180
180
181
182
183
183

187
194
197
204

209

210
211
211
211
216
217
220
222
223
225
227

231
232
232
232
233
234
234
237

238



Table of Contents | xi

Quick Review 254
Exercises 256
Programming Exercises 259
LINKED LISTS 265
Linked Lists 266
Linked Lists: Some Properties 267
[tem Insertion and Deletion 270
Building a Linked List 274
Linked List as an ADT 278
Structure of Linked List Nodes 279
Member Variables of the class 1inkedListType 280
Linked List Iterators 280
Default Constructor 286
Destroy the List 286
Initialize the List 287
Print the List 287
Length of a List 287
Retrieve the Data of the First Node 288
Retrieve the Data of the Last Node 288
Begin and End 288
Copy the List 289
Destructor 290
Copy Constructor 290
Overloading the Assignment Operator 291
Unordered Linked Lists 292
Search the List 293
Insert the First Node 294
Insert the Last Node 294
Header File of the Unordered Linked List 298
Ordered Linked Lists 300
Search the List 301

Insert a Node 302



xii | Data Structures Using C++, Second Edition

Insert First and Insert Last 305
Delete a Node 306
Header File of the Ordered Linked List 307
Doubly Linked Lists 310
Default Constructor 313
isEmptyList 313
Destroy the List 313
Initialize the List 314
Length of the List 314
Print the List 314
Reverse Print the List 315
Search the List 315
First and Last Elements 316
STL Sequence Container: 1ist 321
Linked Lists with Header and Trailer Nodes 325
Circular Linked Lists 326
Programming Example: Video Store 327
Quick Review 343
Exercises 344
Programming Exercises 348
n RECURSION 355
Recursive Definitions 356
Direct and Indirect Recursion 358
Infinite Recursion 359
Problem Solving Using Recursion 359
Largest Element in an Array 360
Print a Linked List in Reverse Order 363
Fibonacci Number 366
Tower of Hanoi 369
Converting a Number from Decimal to Binary 372

Recursion or Iteration? 375



Table of Contents

Recursion and Backtracking: 8-Queens Puzzle
Backtracking
n-Queens Puzzle
Backtracking and the 4-Queens Puzzle
8-Queens Puzzle

Recursion, Backtracking, and Sudoku
Quick Review
Exercises

Programming Exercises

STACKS
Stacks

Implementation of Stacks as Arrays
Initialize Stack
Empty Stack
Full Stack
Push
Return the Top Element
Pop
Copy Stack
Constructor and Destructor
Copy Constructor
Overloading the Assignment Operator (=)
Stack Header File

Programming Example: Highest GPA

Linked Implementation of Stacks
Default Constructor
Empty Stack and Full Stack
Initialize Stack
Push
Return the Top Element
Pop
Copy Stack
Constructors and Destructors

| xiii

376
377
377
378
379

383
386
387
390

395
396

400
403
404
404
404
405
405
406
407
407
408
408

411

415
418
418
418
419
420
421
422
423



xiv. | Data Structures Using C++, Second Edition

Overloading the Assignment Operator (=) 423
Stack as Derived from the class unorderedlLinkedlList 426

Application of Stacks: Postfix Expressions Calculator 428

Removing Recursion: Nonrecursive Algorithm to Print a

Linked List Backward 438
STL class stack 440
Quick Review 442
Exercises 443
Programming Exercises 447

n QUEUES 451
452

Queue Operations

Implementation of Queues as Arrays 454
Empty Queue and Full Queue 460
Initialize Queue 461
Front 461
Back 461
Add Queue 462
Delete Queue 462
Constructors and Destructors 462

Linked Implementation of Queues 463
Empty and Full Queue 465
Initialize Queue 466

addQueue, front, back, and deleteQueue Operations 466
Queue Derived from the class

unorderedLinkedListType 469
STL class queue (Queue Container Adapter) 469
Priority Queues 471

STL class priority queue 472
Application of Queues: Simulation 472
Designing a Queuing System 473
Customer 474

Server 477



Table of Contents |

Server List
Waiting Customers Queue
Main Program

Quick Review
Exercises

Programming Exercises

SEARCHING AND HASHING ALGORITHMS

Search Algorithms
Sequential Search
Ordered Lists
Binary Search
Insertion into an Ordered List

Lower Bound on Comparison-Based Search Algorithms

Hashing
Hash Functions: Some Examples
Collision Resolution
Open Addressing
Deletion: Open Addressing
Hashing: Implementation Using Quadratic Probing
Chaining
Hashing Analysis
Quick Review
Exercises

Programming Exercises

SORTING ALGORITHMS
Sorting Algorithms

Selection Sort: Array-Based Lists
Analysis: Selection Sort

Insertion Sort: Array-Based Lists

Insertion Sort: Linked List-Based Lists
Analysis: Insertion Sort

481
484
486

490
491
495

497

498
499
501
502
506

508

509
512
512
512
519
521
523
524

525
527
530

533
534

534
539

540

544
548

XV



Xvi

Data Structures Using C++, Second Edition

Shellsort

Lower Bound on Comparison-Based Sort Algorithms

Quicksort: Array-Based Lists
Analysis: Quicksort

Mergesort: Linked List-Based Lists
Divide
Merge
Analysis: Mergesort

Heapsort: Array-Based Lists
Build Heap
Analysis: Heapsort

Priority Queues (Revisited)
Programming Example: Election Results
Quick Review

Exercises

Programming Exercises

BINARY TREES AND B-TREES

Binary Trees
Copy Tree

Binary Tree Traversal
Inorder Traversal
Preorder Traversal
Postorder Traversal
Implementing Binary Trees

Binary Search Trees
Search
Insert
Delete

Binary Search Tree: Analysis

549
551

552
558

558
560
562
566

567
569
575

575
576
593
594
596

599

600
604

605
605
605
605
609

616
618
620
621

627



Table of Contents | xvii

Nonrecursive Binary Tree Traversal Algorithms 628
Nonrecursive Inorder Traversal 628
Nonrecursive Preorder Traversal 630
Nonrecursive Postorder Traversal 631

Binary Tree Traversal and Functions as Parameters 632

AVL (Height-Balanced) Trees 635
Insertion 637
AVL Tree Rotations 641
Deletion from AVL Trees 652
Analysis: AVL Trees 653

Programming Example: Video Store (Revisited) 654

B-Trees 662
Search 665
Traversing a B-Tree 666
Insertion into a B-Tree 667
Deletion from a B-Tree 672

Quick Review 676

Exercises 678

Programming Exercises 682

GRAPHS 685

Introduction 686

Graph Definitions and Notations 687

Graph Representation 689
Adjacency Matrices 689
Adjacency Lists 690

Operations on Graphs 691

Graphs as ADTs 692

Graph Traversals 695
Depth-First Traversal 696

Breadth-First Traversal 698



xviii | Data Structures Using C++, Second Edition

Shortest Path Algorithm 700
Shortest Path 701
Minimum Spanning Tree 706
Topological Order 713
Breadth-First Topological Ordering 715
Euler Circuits 719
Quick Review 722
Exercises 724
Programming Exercises 727
m STANDARD TEMPLATE LIBRARY (STL) Il 731
Class pair 732
Comparing Objects of Type pair 734
Type pair and Function make pair 734
Associative Containers 736
Associative Containers: set and multiset 737
Associative Containers: map and multimap 742
Containers, Associated Header Files, and lterator Support 747
Algorithms 748
STL Algorithm Classification 748
Nonmodifying Algorithms 748
Modifying Algorithms 749
Numeric Algorithms 750
Heap Algorithms 750
Function Objects 751
Predicates 756
STL Algorithms 758
Functions £i11 and £i11 n 758
Functions generate and generate n 760

Functions £ind, find_if, find end, and find first of 762
Functions remove, remove if, remove copy, and
remove copy if 764



Table of Contents

Functions replace, replace if, replace copy, and

replace copy if
Functions swap, iter swap, and swap_ranges

Functions search, search n, sort, and binary search
Functions adjacent_ find, merge, and inplace merge

Functions reverse, reverse copy, rotate, and

rotate_copy
Functions count, count if, max element,
min_element, and random_shuffle
Functions for each and transform

Functions includes, set_intersection, set_union,
set difference, and set_symmetric difference

Functions accumulate, adjacent difference,

inner product, and partial sum
Quick Review
Exercises

Programming Exercises

APPENDIX A: RESERVED WORDS
APPENDIX B: OPERATOR PRECEDENCE

APPENDIX C: CHARACTER SETS

ASCII (American Standard Code for Information
Interchange)

EBCDIC (Extended Binary Coded Decimal
Interchange Code)

APPENDIX D: OPERATOR OVERLOADING

APPENDIX E: HEADER FILES
Header File cassert

Header File cctype

[ xix

768
770
773
777

779

782
786

788

794
799
803
804

807

809

811

811

812

815

817
817
818



XX

Data Structures Using C++, Second Edition

Header File cfloat
Header File climits

Header File cmath
Header File cstddef
Header File cstring

APPENDIX F: ADDITIONAL C++ TOPICS

Analysis: Insertion Sort

Analysis: Quicksort
Worst-Case Analysis
Average-Case Analysis

APPENDIX G: C++ FOR JAVA PROGRAMMERS

Data Types

Arithmetic Operators and Expressions
Named Constants, Variables, and Assignment Statements

C++ Library: Preprocessor Directives

C++ Program

Input and Output
Input
Input Failure
Output
setprecision
fixed
showpoint
setw
left and right Manipulators
File Input/Output

Control Structures

Namespaces

819
820

820
822
822

825
825

826
827
828

833
833
834

834
835
836

837
837
839
840
841
841
842
842
843
843

846
847



Table of Contents | xxi

Functions and Parameters 849
Value-Returning Functions 849
Void Functions 850
Reference Parameters and Value-Returning Functions 852
Functions with Default Parameters 852

Arrays 854
Accessing Array Components 854
Array Index Out of Bounds 854
Arrays as Parameters to Functions 855

APPENDIX H: REFERENCES 857

APPENDIX I: ANSWERS TO ODD-NUMBERED

EXERCISES 859
Chapter 1 859
Chapter 2 861
Chapter 3 862
Chapter 4 863
Chapter 5 863
Chapter 6 865
Chapter 7 866
Chapter 8 867
Chapter 9 868
Chapter 10 871
Chapter 11 872
Chapter 12 877
Chapter 13 878

INDEX 879



This page intentionally left blank



PREFACE TO SECOND

EDITION

Welcome to Data Structures Using C++, Second Edition. Designed for the CS2 C++ course,
this text will provide a breath of fresh air to you and your students. The CS2 course typically
completes the programming requirements of the Computer Science curriculum. This text is a
culmination and development of my classroom notes throughout more than 50 semesters of
teaching successful programming and data structures to computer science students.

This book is a continuation of the work started to write the CS1 book C++ Programming:
From Problem Analysis to Program Design, Fourth Edition. The approach taken in this book to
present the material is similar to the one used in the CS1 book and therefore driven by the
students’ demand for clarity and readability. The material was written and rewritten until
students felt comfortable with it. Most of the examples in this book resulted from student
interaction in the classroom.

This book assumes that you are familiar with the basic elements of C++ such as data types,
control structures, functions and parameters, and arrays. However, if you need to review these
concepts or you have taken Java as a first program language, you will find the relevant material
in Appendix G. If you need to quickly review CS1 topics in more details than given in
Appendix G, you are referred to the C++ programming book by the author listed in the
preceding paragraph and also to Appendix H. In addition, some adequate mathematics
background such as college algebra is required.

Changes in the Second Edition

In the second edition, the following changes have been implemented:

® In Chapter 1, the discussion of algorithm analysis is expanded with additional examples.

e In Chapter 3, a section on creating and manipulating dynamic two-dimensional
arrays, a section on virtual functions, and a section on abstract classes is included.

® To create generic code to process data in linked lists, Chapter 5 uses the concept of
abstract classes to capture the basic properties of linked lists and then derive two
separate classes to process unordered and ordered lists.

e In Chapter 6, a new section on how to use recursion and backtracking to solve
sudoku problems is added.



xxiv | Data Structures Using C++, Second Edition

e Chapters 7 and 8 use the concept of abstract classes to capture the basic properties of
stacks and queues and then discuss various implementations of stacks and queues.

e In Chapter 9, the discussion of hashing is expanded with additional examples illustrat-
ing how to resolve collisions.

e In Chapter 10, we have added the Shellsort algorithm.
e Chapter 11 contains a new section on B-trees.
e Chapter 12, on graphs, contains a new section on how to find Euler circuits in a graph.

e Appendix F provides a detailed discussion of the analysis of insertion sort and
quicksort algorithms.

® Throughout the book, new exercises and programming exercises have been added.

These changes were implemented based on comments from the reviewers of the second
proposal and readers of the first edition.

Approach

Intended as a second course in computer programming, this book focuses on the data
structure part as well as OOD. The programming examples given in this book effectively
use OOD techniques to solve and program a particular problem.

Chapter 1 introduces the software engineering principles. After describing the life cycle of a
software, this chapter discusses why algorithm analysis is important and introduces the Big-O
notation used in algorithm analysis. There are three basic principles of OOD—encapsulation,
inheritance, and polymorphism. Encapsulation in C++ is achieved via the use of classes. The
second half of this chapter discusses user-defined classes. If you are familiar with how to create
and use your own classes, you can skip this section. This chapter also discusses a basic OOD
technique to solve a particular problem.

Chapter 2 continues with the principles of OOD and discusses inheritance and two types of
polymorphism. If you are familiar with how inheritance, operator overloading, and templates
work in C++, then you can skip this chapter.

The three basic data types in C++ are simple, structured, and pointers. The book assumes that
you are familiar with the simple data types as well as arrays (a structured data type). The
structured data type class is introduced in Chapter 1. Chapter 3 discusses in detail how the
pointer data type works in C++. This chapter also discusses the relationship between pointers
and classes. Taking advantages of pointers and templates, this chapter explains and develops a
generic code to implement lists using dynamic arrays. Chapter 3 also discusses virtual func-
tions and abstract classes.

C++ is equipped with the Standard Template Library (STL). Among other things, the STL
provides code to process lists (contiguous or linked), stacks, and queues. Chapter 4 discusses
some of the STL’s important features and shows how to use certain tools provided by the
STL in a program. In particular, this chapter discusses the sequence containers vector and



Preface to Second Edition | xxv

deque. The ensuing chapters explain how to develop your own code to implement and
manipulate data, as well as how to use professionally written code.

Chapter 5 discusses linked lists in detail, by first discussing the basic properties of linked lists
such as item insertion and deletion and how to construct a linked list. This chapter then
develops a generic code to process data in a single linked list. Doubly linked lists are also
discussed in some detail. Linked lists with header and trailer nodes and circular linked lists are
also introduced. This chapter also discusses the STL class 1ist.

Chapter 6 introduces recursion and gives various examples to show how to use recursion to
solve a problem, as well as think in terms of recursion.

Chapters 7 and 8 discuss stacks and queues in detail. In addition to showing how to develop your
own generic codes to implement stacks and queues, these chapters also explain how the STL classes
stack and queue work. The programming code developed in these chapters is generic.

Chapter 9 is concerned with the searching algorithms. After analyzing the sequential search
algorithm, it discusses the binary search algorithm and provides a brief analysis of this
algorithm. After giving a lower bound on comparisons-based search algorithms, this chapter
discusses hashing in detail.

Sorting algorithms such as selection sort, insertion sort, Shellsort, quicksort, mergesort, and
heapsort are introduced and discussed in Chapter 10. Chapter 11 introduces and discusses binary
trees and B-trees. Chapter 12 introduces graphs and discusses graph algorithms such as shortest
path, minimum spanning tree, topological sorting, and how to find Euler circuits in a graph.

Chapter 13 continues with the discussion of STL started in Chapter 4. In particular, it
introduces the STL associative containers and algorithms.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and associa-
tivity of the C++ operators. Appendix C lists the ASCII (American Standard Code for
Information Interchange) and EBCDIC (Extended Binary Code Decimal Interchange) char-
acter sets. Appendix D lists the C++ operators that can be overloaded. Appendix E discusses
some of the most widely used library routines. Appendix F contains the detailed analysis of the
insertion sort and quicksort algorithms. Appendix G has two objectives. One of its objectives is
to provide a quick review of the basic elements of C++. The other objective of Appendix G is,
while giving a review of the basic elements of C++, to compare the basic concepts such as data
types, control structures, functions and parameters, and arrays of the languages C++ and Java.
Therefore, if you have taken Java as a first programming language, Appendix G helps familiarize
you with these basic elements of C++. Appendix H provides a list of references for further
study and to find additional C++ topics not reviewed in Appendix G. Appendix I gives the
answers to odd-numbered exercises in the text.

How to Use This Book

The main objective of this book is to teach data structure topics using C++ as well as to use
OOD to solve a particular problem. To do so, the book discusses data structures such as
linked lists, stacks, queues, and binary trees. C++’s Standard Template Library (STL) also



xxvi | Data Structures Using C++, Second Edition

provides the necessary code to implement these data structures. However, our emphasis is to
teach you how to develop your own code. At the same time, we also want you to learn how
to use professionally written code. Chapter 4 of this book introduces STL. In the subsequent
chapters, after explaining how to develop your own code, we also illustrate how to use the
existing STL code. The book can, therefore, be used in various ways. If you are not interested
in STL, say in the first reading, then you can skip Chapter 4 and in the subsequent chapters,
whenever we discuss a particular STL component, you can skip that section.

Chapter 6 discusses recursion. However, Chapter 6 is not a prerequisite for Chapters 7 and 8.
If you read Chapter 6 after these chapters, then you can skip the section “Removing
Recursion” in Chapter 7, and read this section after reading Chapter 6. Even though Chapter
6 is not required to study Chapter 9, ideally, Chapters 9 and 10 should be studied in sequence.
Therefore, we recommend that you should study Chapter 6 before Chapter 9. The following
diagram illustrates the dependency of chapters.

Chapter 4

A
Chapter b

5 b
Chapter 6

v v
Chapter 7
Coverd | [
Chapter 8 Chapter 9

A 4 A 4
Chapter 13 Chapter 12

A dotted arrow means that the chapter is not essential to study the
following chapter.

FIGURE 1 Chapter dependency diagram



FEATURES OF

THE BOOK

The features of this book are conducive to independent learning. From beginning to end, the
concepts are introduced at an appropriate pace. The presentation enables students to learn the
material in comfort and with confidence. The writing style of this book is simple and
straightforward. It parallels the teaching style of a classroom. Here is a brief summary of the
various pedagogical features in each chapter:

®  Learning objectives offer an outline of C++ programming concepts that will be
discussed in detail within the chapter.

®  Noftes highlight important facts regarding the concepts introduced in the chapter.

® Visual diagrams, both extensive and exhaustive, illustrate difficult concepts. The
book contains over 295 figures.

e  Numbered Examples within each chapter illustrate the key concepts with relevant code.

®  Programming Examples are programs featured at the end of each chapter. These
examples contain the accurate, concrete stages of Input, Output, Problem Analysis
and Algorithm Design, and a Program Listing. Moreover, the problems in these
programming examples are solved and programmed using OOD.

®  Quick Review offers a summary of the concepts covered within the chapter.

®  Exercises further reinforce learning and ensure that students have, in fact, learned the
material.

®  DProgramming Exercises challenge students to write C++ programs with a specified
outcome.

The writing style of this book is simple and straightforward. Before introducing a key
concept, we explain why certain elements are necessary. The concepts introduced are then
explained using examples and small programs.

Each chapter contains two types of programs. First, small programs called out as numbered
Examples are used to explain key concepts. Each line of the programming code in these
examples is numbered. The program, illustrated through a sample run, is then explained line-
by-line. The rationale behind each line is discussed in detail.

As mentioned above, the book also features numerous case studies called Programming
Examples. These Programming Examples form the backbone of the book. The programs



xxviii | Data Structures Using C++, Second Edition

are designed to be methodical and user-friendly. Beginning with Problem Analysis, the
Programming Example is then followed by Algorithm Design. Every step of the algorithm
is then coded in C++. In addition to teaching problem-solving techniques, these detailed
programs show the user how to implement concepts in an actual C++ program. I strongly
recommend that students study the Programming Examples very carefully in order to learn
C++ effectively.

Quick Review sections at the end of each chapter reinforce learning. After reading the
chapter, readers can quickly walk through the highlights of the chapter and then test
themselves using the ensuing Exercises. Many readers refer to the Quick Review as a way
to quickly review the chapter before an exam.

All source code and solutions have been written, compiled, and quality assurance tested.
Programs can be compiled with various compilers such as Microsoft Visual C++ 2008.



SUPPLEMENTAL

RESOURCES

The following supplemental materials are available when this book is used in a classroom
setting. All of the teaching tools available with this book are provided to the instructor on a
single CD-ROM.

Electronic Instructor’s Manual

The Instructor’s Manual that accompanies this textbook includes:

® Additional instructional material to assist in class preparation, including suggestions
for lecture topics

e Solutions to all the end-of-chapter materials, including the Programming Exercises

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package that allows
instructors to create and administer printed, computer (LAN-based), and Internet exams.
ExamView includes hundreds of questions that correspond to the topics covered in this text,
enabling students to generate detailed study guides that include page references for further
review. These computer-based and Internet testing components allow students to take exams
at their computers, and save the instructor time because each exam is graded automatically.

PowerPoint Presentations

This book comes with Microsoft PowerPoint slides for each chapter. These are included as a
teaching aid either to make available to students on the network for chapter review, or to be
used during classroom presentations. Instructors can modify slides or add their own slides to
tailor their presentations.

Distance Learning

Cengage Learning is proud to offer online courses in WebCT and Blackboard. For more
information on how to bring distance learning to your course, contact your local Cengage
Learning sales representative.




xxx | Data Structures Using C++, Second Edition

Source Code

The source code is available at www.cengage.com/coursetechnology, and also is available on the
Instructor Resources CD-ROM. If an input file is needed to run a program, it is included
with the source code.

Solution Files

The solution files for all programming exercises are available at wwiw.cengage.com /coursetechnology
and are available on the Instructor Resources CD-ROM. If an input file is needed to run a
programming exercise, it is included with the solution file.


www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

ACKNOWLEDGEMENTS

I owe a great deal to the following reviewers who patiently read each page of every chapter of
the current version and made critical comments to improve on the book: Stefano Basagni,
Northeastern University and Roman Tankelevich, Colorado School of Mines. Additionally, I
express thanks to the reviewers of the proposal package: Ted Krovetz, California State
University; Kenneth Lambert, Washington and Lee University; Stephen Scott, University
of Nebraska; and Deborah Silver, Rutgers, The State University of New Jersey. The
reviewers will recognize that their criticisms have not been overlooked, adding meaningfully
to the quality of the finished book. Next, I express thanks to Amy Jollymore, Acquisitions
Editor, for recognizing the importance and uniqueness of this project. All this would not have
been possible without the careful planning of Product Manager Alyssa Pratt. I extend my
sincere thanks to Alyssa, as well as to Content Project Manager Heather Furrow. I also thank
Tintu Thomas of Integra Software Services for assisting us in keeping the project on schedule.
I would like to thank Chris Scriver and Serge Palladino of QA department of Cengage
Learning for patiently and carefully proofreading the text, testing the code, and discovering
typos and errors.

I am thankful to my parents, to whom this book is dedicated, for their blessings. Finally, I
would like to thank my wife Sadhana and my daughter Shelly. They cheered me up whenever
I was overwhelmed during the writing of this book.

I welcome any comments concerning the text. Comments may be forwarded to the following
e-mail address: malik@creighton.edu.

D.S. Malik



This page intentionally left blank



CHAPTER

SOFTWARE ENGINEERING
PRINCIPLES AND CH++
CLASSES

IN THIS CHAPTER, YOU WILL:

Learn about software engineering principles

Discover what an algorithm is and explore problem-solving techniques

Become aware of structured design and object-oriented design programming methodologies
Learn about classes

Become aware of private, protected, and public members of a class

Explore how classes are implemented

Become aware of Unified Modeling Language (UML) notation

Examine constructors and destructors

Become aware of abstract data type (ADT)

Explore how classes are used to implement ADT




2 | Chapter 1: Software Engineering Principles and C++ Classes

Most everyone working with computers is familiar with the term soffware. Software are
computer programs designed to accomplish a specific task. For example, word processing
software is a program that enables you to write term papers, create impressive-looking
résumés, and even write a book. This book, for example, was created with the help of a
word processor. Students no longer type their papers on typewriters or write them by
hand. Instead, they use word processing software to complete their term papers. Many
people maintain and balance their checkbooks on computers.

Powerful, yet easy-to-use software has drastically changed the way we live and commu-
nicate. Terms such as the Internet, which was unfamiliar just a decade ago, are very
common today. With the help of computers and the software running on them, you
can send letters to, and receive letters from, loved ones within seconds. You no longer
need to send a résumé by mail to apply for a job; in many cases, you can simply submit
your job application via the Internet. You can watch how stocks perform in real time,
and instantly buy and sell them.

Without software a computer is of no use. It is the software that enables you to do things
that were, perhaps, fiction a few years ago. However, software is not created overnight.
From the time a software program is conceived until it is delivered, it goes through
several phases. There is a branch of computer science, called software engineering, which
specializes in this area. Most colleges and universities offer a course in software engineer-
ing. This book is not concerned with the teaching of software engineering principles.
However, this chapter briefly describes some of the basic software engineering principles
that can simplify program design.

Software Life Cycle

A program goes through many phases from the time it is first conceived until the time it is
retired, called the [ife cycle of the program. The three fundamental stages through which a
program goes are development, use, and maintenance. Usually a program is initially conceived
by a software developer because a customer has some problem that needs to be solved and
the customer is willing to pay money to have it solved. The new program is created in the
software development stage. The next section describes this stage in some detail.

Once the program is considered complete, it is released for the user to use. Once users
start using the program, they most certainly discover problems or have suggestions to
improve it. The problems and/or ideas for improvements are conveyed to the software
developer, and the program goes through the maintenance phase.

In the software maintenance process, the program is modified to fix the (identified)
problems and/or to enhance it. If there are serious/numerous changes, typically, a new
version of the program is created and released for use.

When a program is considered too expensive to maintain, the developer might decide to
retire the program and no new version of the program will be released.



Software Development Phase | 3

The software development phase is the first and perhaps most important phase of the
software life cycle. A program that is well developed will be easy and less expensive to
maintain. The next section describes this phase.

Software Development Phase

Software engineers typically break the software development process into the following
four phases:

e Analysis
® Design
e Implementation

e Testing and debugging

The next few sections describe these four phases in some detail.

Analysis

Analyzing the problem is the first and most important step. This step requires you to do
the following:

® Thoroughly understand the problem.

e Understand the problem requirements. R equirements can include whether
the program requires interaction with the user, whether it manipulates
data, whether it produces output, and what the output looks like.

Suppose that you need to develop a program to make an automated teller
machine (ATM) operational. In the analysis phase, you determine the
functionality of the machine. Here, you determine the necessary opera-
tions performed by the machine, such as withdraw money, deposit
money, transfer money, check account balance, and so on. During this
phase, you also talk to potential customers who would use the machine.
To make it user-friendly, you must understand their requirements and
add any necessary operations.

If the program manipulates data, the programmer must know what the
data is and how it is represented. That is, you need to look at sample data.
If the program produces output, you should know how the results should
be generated and formatted.

e If the problem is complex, divide the problem into subproblems, analyze
each subproblem, and understand each subproblem’s requirements.

Design

After you carefully analyze the problem, the next step is to design an algorithm to solve
the problem. If you broke the problem into subproblems, you need to design an
algorithm for each subproblem.



4 | Chapter 1: Software Engineering Principles and C++ Classes

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a
finite amount of time.

STRUCTURED DESIGN

Dividing a problem into smaller subproblems is called structured design. The structured
design approach is also known as top-down design, stepwise refinement, and mod-
ular programming. In structured design, the problem is divided into smaller problems.
Each subproblem is then analyzed, and a solution is obtained to solve the subproblem.
The solutions of all the subproblems are then combined to solve the overall problem.
This process of implementing a structured design is called structured programming.

OBJECT-ORIENTED DESIGN

In object-oriented design (OOD), the first step in the problem-solving process is to
identify the components called objects, which form the basis of the solution, and
determine how these objects interact with one another. For example, suppose you want
to write a program that automates the video rental process for a local video store. The
two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include the movie name, starring actors, producer, production company,
number of copies in stock, and so on. Some of the operations on a video object might
include checking the name of the movie, reducing the number of copies in stock by one
after a copy is rented, and incrementing the number of copies in stock by one after a
customer returns a particular video.

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

OOD has the following three basic principles:
¢ Encapsulation—The ability to combine data and operations in a single
unit
¢ Inheritance—The ability to create new (data) types from existing (data)

types

¢ Polymorphism—The ability to use the same expression to denote
different operations

In C++, encapsulation is accomplished via the use of data types called classes. How classes
are implemented in C++ is described later in this chapter. Chapter 2 discusses inheritance
and polymorphism.

In object-oriented design, you decide what classes you need and their relevant data
members and member functions. You then describe how classes interact with each other.



Software Development Phase | 5

Implementation

In the implementation phase, you write and compile programming code to implement the
classes and functions that were discovered in the design phase.

This book uses the OOD technique (in conjunction with structured programming)
to solve a particular problem. It contains many case studies—called Programming
Examples—to solve real-world problems.

The final program consists of several functions, each accomplishing a specific goal. Some
functions are part of the main program; others are used to implement various operations
on objects. Clearly, functions interact with each other, taking advantage of each other’s
capabilities. To use a function, the user needs to know only how to use the function and
what the function does. The user should not be concerned with the details of the
function, that is, how the function is written. Let us illustrate this with the help of the
following example.

Suppose that you want to write a function that converts a measurement given in inches
into equivalent centimeters. The conversion formula is 1 inch = 2.54 centimeters. The
following function accomplishes the job:

double inchesToCentimeters (double inches)

{
if (inches < 0)
{
cerr << "The given measurement must be nonnegative." << endl;
return -1.0;
}
else
return 2.54 * inches;
}

The object cerr corresponds to the unbuffered standard error stream. Unlike the
object cout (whose output first goes to the buffer), the output of cerr is immediately
sent to the standard error stream, which is usually the screen.

If you look at the body of the function, you can recognize that if the value of inches
is less than 0, that is, negative, the function returns —1.0; otherwise, the function
returns the equivalent length in centimeters. The user of this function does not need
to know the specific details of how the algorithm that finds the equivalent length in
centimeters is implemented. However, the user must know that in order to get the
valid answer, the input must be a nonnegative number. If the input to this function is
a negative number, the program returns —1.0. This information can be provided as
part of the documentation of this function using specific statements, called precondi-
tions and postconditions.

Precondition: A statement specifying the condition(s) that must be true before the
function is called.




6 | Chapter 1: Software Engineering Principles and C++ Classes

Postcondition: A statement specifying what is true after the function call is completed.

The precondition and postcondition for the function inchesToCentimeters can be
specified as follows:

//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function

// returns -1.0; otherwise, the function returns the
// equivalent length in centimeters.
double inchesToCentimeters (double inches)
{
if (inches < 0)
{
cerr << "The given measurement must be nonnegative." << endl;
return -1.0;
}
else
return 2.54 * inches;
}

In certain situations, you could use C++’s assert statement to validate the input. For
example, the preceding function can be written as follows:

//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function

// terminates; otherwise, the function returns the
// equivalent length in centimeters.
double inchesToCentimeters (double inches)
{
assert (inches >= 0);
return 2.54 * inches;
}

However, if the assert statement fails, the entire program will terminate, which
might be appropriate if the remainder of the program depends on the execution of
the function. On the other hand, the user can check the value returned by the
function, determine if the returned value is appropriate, and proceed accordingly.
To use the assert function, you need to include the header file cassert in your
program.

To turn off the assert statements in a program, use the preprocessor directive
#define NDEBUG. This directive must be placed before the statement #include
<cassert>.

As you can see, the same function can be implemented differently by different program-
mers. Because the user of a function need not be concerned with the details of the
function, the preconditions and postconditions are specified with the function prototype.
That is, the user is given the following information:



Software Development Phase | 7

double inchesToCentimeters (double inches);
//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function
// returns -1.0; otherwise, the function returns the
// equivalent length in centimeters.

As another example, to use a function that searches a list for a specific item, the list must
exist before the function is called. After the search is complete, the function returns true
or false depending on whether the search was successful.

bool search(int list[], int listLength, int searchItem);
//Precondition: The list must exist.
//Postcondition: The function returns true if searchItem is in
// list; otherwise, the function return false.

Testing and Debugging

The term festing refers to testing the correctness of the program,; that is, making sure that
the program does what it is supposed to do. The term debugging refers to finding and
fixing the errors, if they exist.

Once a function and/or an algorithm is written, the next step is to verify that it works
properly. However, in a large and complex program, errors almost certainly exist.
Therefore, to increase the reliability of the program, errors must be discovered and fixed
before the program is released to the user.

You can certainly prove this by using some (perhaps mathematical) analysis of the
correctness of a program. However, for large and complex programs, this technique
alone might not be enough because errors can be made in the proof. Therefore, we also
rely on testing to determine the quality of the program. The program is run through a
series of specific tests, called test cases, in an attempt to find problems.

A test case consists of a set of inputs, user actions, or other initial conditions, and the
expected output. Because a test case can be repeated several times, it must be properly
documented. Typically a program manipulates a large set of data. It is, therefore,
impractical (although possible) to create test cases for all possible inputs. For example,
suppose that a program manipulates integers. Clearly, it is not possible to create a test case
for each integer. You can categorize test cases into separate categories, called equivalence
categories. An equivalence category is a set of input values that are likely to produce the
same output. For example, suppose that you have a function that takes an integer as input
and returns true if the integer is nonnegative, and false otherwise. In this case, you can
form two equivalence categories—one consisting of negative numbers and the other
consisting of nonnegative numbers.

There are two types of testing—black-box testing and white-box testing. In black-box
testing, you do not know the internal working of the algorithm or function. You
know only what the function does. Black-box testing is based on inputs and outputs.
The test cases for black-box testing are usually selected by creating equivalence




8 | Chapter 1: Software Engineering Principles and C++ Classes

categories. If a function works for one input in the equivalence category, it is
expected to work for other inputs in the same category.

Suppose that the function isWithInRange returns a value true if an integer is greater
than or equal to 0 and less than or equal to 100. In black-box testing, the function is
tested on values that surround and fall on the boundaries, called boundary values, as
well as general values from the equivalence categories. For the function isWithInRange,
in black-box testing, the boundary values might be: -1, 0, 1, 99, 100, and 101; and so the
test values might be -500, -1, 0, 1, 50, 99, 100, 101, and 500.

White-box testing relies on the internal structure and implementation of a function or
algorithm. The objective is to ensure that every part of the function or algorithm is
executed at least once. Suppose that you want to ensure whether an if statement works
properly. The test cases must consist of at least one input for which the if statement
evaluates to true and at least one case for which it evaluates to false. Loops and other
structures can be tested similarly.

Algorithm Analysis: The Big-O Notation

Just as a problem is analyzed before writing the algorithm and the computer program,
after an algorithm is designed it should also be analyzed. Usually, there are various ways to
design a particular algorithm. Certain algorithms take very little computer time to
execute, whereas others take a considerable amount of time.

Let us consider the following problem. The holiday season is approaching and a gift
shop is expecting sales to be double or even triple the regular amount. They have hired
extra delivery people to deliver the packages on time. The company calculates the
shortest distance from the shop to a particular destination and hands the route to the
driver. Suppose that 50 packages are to be delivered to 50 different houses. The shop,
while making the route, finds that the 50 houses are one mile apart and are in the same
area. (See Figure 1-1, in which each dot represents a house and the distance between
houses is 1 mile.)

Gift
® ® ® ® *—©

Shop

FIGURE 1-1 Gift shop and each dot representing a house

To deliver 50 packages to their destinations, one of the drivers picks up all 50 packages,
drives one mile to the first house and delivers the first package. Then he drives another
mile and delivers the second package, drives another mile and delivers the third package,
and so on. Figure 1-2 illustrates this delivery scheme.



Algorithm Analysis: The Big-O Notation | 9

[ AR VAR VAR AR VAR R A VAN
Shop

FIGURE 1-2 Package delivering scheme

It now follows that using this scheme, the distance driven by the driver to deliver the
packages is:

1+1+14...4+1=>50 miles

Therefore, the total distance traveled by the driver to deliver the packages and then
getting back to the shop is:

50 + 50 = 100 miles

Another driver has a similar route to deliver another set of 50 packages. The driver looks at
the route and delivers the packages as follows: The driver picks up the first package, drives
one mile to the first house, delivers the package, and then comes back to the shop. Next,
the driver picks up the second package, drives 2 miles, delivers the second package, and
then returns to the shop. The driver then picks up the third package, drives 3 miles, delivers
the package, and comes back to the shop. Figure 1-3 illustrates this delivery scheme.

Gift
Shop

FIGURE 1-3 Another package delivery scheme

The driver delivers only one package at a time. After delivering a package, the driver comes
back to the shop to pick up and deliver the second package. Using this scheme, the total
distance traveled by this driver to deliver the packages and then getting back to the store is:

2-(142+3+...450) = 2550 miles

Now suppose that there are n packages to be delivered to n houses, and each house is one
mile apart from each other, as shown in Figure 1-1. If the packages are delivered using the
first scheme, the following equation gives the total distance traveled:

l+1+...+1+n=2n (1-1)

If the packages are delivered using the second method, the distance traveled is:

2-(14+2+3+...4+n)=2-(n(n+1)/2) =n’>+n (1-2)




10 | Chapter 1: Software Engineering Principles and C++ Classes

In Equation (1-1), we say that the distance traveled is a function of n. Let us consider
Equation (1-2). In this equation, for large values of n, we will find that the term consisting
of n* will become the dominant term and the term containing n will be negligible. In this
case, we say that the distance traveled is a function of n®. Table 1-1 evaluates Equations
(1-1) and (1-2) for certain values of n. (The table also shows the value of n”))

TABLE 1-1 Various values of n, 2n, n?, and n° + n

1 2 1 2

10 20 100 110

100 200 10,000 10,100
1000 2000 1,000,000 1,001,000
10,000 20,000 100,000,000 100,010,000

While analyzing a particular algorithm, we usually count the number of operations
performed by the algorithm. We focus on the number of operations, not on the actual
computer time to execute the algorithm. This is because a particular algorithm can be
implemented on a variety of computers and the speed of the computer can aftect the
execution time. However, the number of operations performed by the algorithm would
be the same on each computer. Let us consider the following examples.

Consider the following algorithm. (Assume that all variables are properly declared.)

cout << "Enter two numbers"; //Line 1
cin >> numl >> num2; //Line 2
if (numl >= num2) //Line 3

max = numl; //Line 4
else //Line 5

max = num2; //Line 6
cout << "The maximum number is: " << max << endl; //Line 7

Line 1 has one operation, <<; Line 2 has two operations; Line 3 has one operation, >=; Line 4
has one operation, =; Line 6 has one operation; and Line 7 has three operations. Either Line 4
or Line 6 executes. Therefore, the total number of operations executed in the preceding code
is1+2+ 1+ 1+ 3=8. In this algorithm, the number of operations executed is fixed.




Algorithm Analysis: The Big-O Notation | 11

Consider the following algorithm:

cout << "Enter positive integers ending with -1" << endl; //Line 1

count = 0; //Line 2
sum = 0; //Line 3
cin >> num; //Line 4
while (num != -1) //Line 5
{
sum = sum + num; //Line 6
count++; //Line 7
cin >> num; //Line 8
}
cout << "The sum of the numbers is: " << sum << endl; //Line 9
if (count != 0) //Line 10
average = sum / count; //Line 11
else //Line 12
average = 0; //Line 13
cout << "The average is: " << average << endl; //Line 14

This algorithm has five operations (Lines 1 through 4) before the while loop. Similarly,
there are nine or eight operations after the while loop, depending on whether Line 11 or
Line 13 executes.

Line 5 has one operation, and four operations within the while loop (Lines 6 through 8).
Thus, Lines 5 through 8 have five operations. If the while loop executes 10 times, these
five operations execute 10 times. One extra operation is also executed at Line 5 to
terminate the loop. Therefore, the number of operations executed is 51 from Lines 5
through 8.

If the while loop executes 10 times, the total number of operations executed is:
10-54+14+54+90r10-5+1+5+8

that is,

10-5+150r 10-5+ 14

We can generalize it to the case when the while loop executes # times. If the while loop
executes n times, the number of operations executed is:

5n+ 150rd5n + 14

In these expressions, for very large values of 1, the term 51 becomes the dominating term
and the terms 15 and 14 become negligible.



12 | Chapter 1: Software Engineering Principles and C++ Classes

Usually, in an algorithm, certain operations are dominant. For example, in the preceding
algorithm, to add numbers, the dominant operation is in Line 6. Similarly, in a search
algorithm, because the search item is compared with the items in the list, the dominant
operations would be comparison, that is, the relational operation. Therefore, in the case
of a search algorithm, we count the number of comparisons. For another example, suppose
that we write a program to multiply matrices. The multiplication of matrices involves
addition and multiplication. Because multiplication takes more computer time to execute,
to analyze a matrix multiplication algorithm, we count the number of multiplications.

In addition to developing algorithms, we also provide a reasonable analysis of each
algorithm. If there are various algorithms to accomplish a particular task, the algorithm
analysis allows the programmer to choose between various options.

Suppose that an algorithm performs f{n) basic operations to accomplish a task, where n is
the size of the problem. Suppose that you want to determine whether an item is in a list.
Moreover, suppose that the size of the list is #. To determine whether the item is in the
list, there are various algorithms, as you will see in Chapter 9. However, the basic method
is to compare the item with the items in the list. Therefore, the performance of the
algorithm depends on the number of comparisons.

Thus, in the case of a search, n is the size of the list and f{n) becomes the count function,
that is, f(n) gives the number of comparisons done by the search algorithm. Suppose that,
on a particular computer, it takes ¢ units of computer time to execute one operation.
Thus, the computer time it would take to execute f{n) operations is ¢f(n). Clearly, the
constant ¢ depends on the speed of the computer and, therefore, varies from computer to
computer. However, f(n), the number of basic operations, is the same on each computer.
If we know how the function fn) grows as the size of the problem grows, we can
determine the efficiency of the algorithm. Consider Table 1-2.

TABLE 1-2 Growth rates of various functions

1 0 0 1 2

2 1 2 2 4

4 2 8 16 16

8 3 24 64 256
16 4 64 256 65,536

32 5 160 1024 4,294,967,296



Algorithm Analysis: The Big-O Notation | 13

Table 1-2 shows how certain functions grow as the parameter n, that is, the problem size,
grows. Suppose that the problem size is doubled. From Table 1-2, it follows that if the
number of basic operations is a function of f{in) = n?, the number of basic operations is
quadrupled. If the number of basic operations is a function of f{n) = 2", the number of
basic operations is squared. However, if the number of operations is a function of f{n) =
logon, the change in the number of basic operations is insignificant.

Suppose that a computer can execute 1 billion basic operations per second. Table 1-3
shows the time that the computer takes to execute f(n) basic operations.

TABLE 1-3 Time for f(n) instructions on a computer that executes 1 billion instructions
per second

0.01ps 0.003us 0.033us 0.1us

20 0.02us 0.004pus 0.086us 0.4ps 1ms

30 0.03ps 0.005us 0.147us 0.9us 1s

40 0.04ps 0.005us 0.213us 1.6us 18.3min
50 0.05ps 0.006us 0.282us 2.5us 13 days
100 0.10ps 0.007ps 0.664ps 10ps 4x10"3 years
1000 1.00ps 0.010us 9.966us Ims

10,000 10us 0.013us 130us 100ms

100,000 0.10ms 0.017us 1.67ms 10s

1,000,000 1 ms 0.020us 19.93ms 16.7m

10,000,000 0.01s 0.023us 0.23s 1.16 days

100,000,000  0.10s 0.027us 2.66s 115.7 days

In Table 1-3, 1us = 10 seconds and 1ms = 107 seconds.



14 | Chapter 1: Software Engineering Principles and C++ Classes

Figure 1-4 shows the growth rate of functions in Table 1-3.

f(n)=2"
101
f(n) = nlogon

—n2
fm=n f(m=n

4] f(n) =logyn

FIGURE 1-4 Growth rate of various functions

The remainder of this section develops a notation that shows how a function f(n) grows as
n increases without bound. That is, we develop a notation that is useful in describing the
behavior of the algorithm, which gives us the most useful information about the algo-
rithm. First, we define the term asympfotic.

Let fbe a function of n. By the term asymptotic, we mean the study of the function fas
n becomes larger and larger without bound.

Consider the functions g(n) = n” and f{n) = n”> + 4n + 20. Clearly, the function g does not
contain any linear term, that is, the coefficient of n in ¢ is zero. Consider Table 1-4.

TABLE 1-4 Growth rate of n° and n® + 4n + 20

10 100 160

50 2500 2720

100 10,000 10,420
1000 1,000,000 1,004,020

10,000 100,000,000 100,040,020



Algorithm Analysis: The Big-O Notation | 15

Clearly, as n becomes larger and larger the term 4n + 20 in f{n) becomes insignificant, and
the term #n® becomes the dominant term. For large values of n, we can predict the
behavior of f(n) by looking at the behavior of g(n). In algorithm analysis, if the complexity
of a function can be described by the complexity of a quadratic function without the
linear term, we say that the function is of O(n?), called Big-O of n”.

Let fand g be real-valued functions. Assume that f and ¢ are nonnegative, that is, for all
real numbers n, f(n) > 0 and g(n) > 0.

Definition: We say that f{n) is Big-O of g(n), written f(n) = O(g(n)), if there exists
positive constants ¢ and ng such that f{n) < ¢g(n) for all n > ng.

Let fln) = a, where a is a nonnegative real number and n > 0. Note that fis a constant
function. Now

fn)y=a<a-1toralln > a

Let ¢ = a, ny = a, and g(n) = 1. Then f(n) < ¢g(n) for all n > ny. It now follows that f(n) =
O(g(n) = O(1).

From Example 1-3, it follows that if fis a nonnegative constant function, then fis O(1).

Let fin) = 2n + 5, n > 0. Note that
fn) =2n+5<2n+n=3nforaln>5.

Let ¢ = 3, nyp = 5, and g(n) = n. Then f(n) < ¢g(n) for all n > 5. It now follows that f{(n) =
O(g(n)) = O(n).

Let f(n) = >+ 3n + 2,9(n) = n>, n > 0. Note that 3n + 2 < #° for all n > 4. This implies
that

fin) = 0+ 3n + 2 < nP+ n® < 2n’= 2¢(n) for all n > 4.
Let c= 2 and 1y = 4. Then f{in) < cg(n) for all n > 4. It now follows that fln) = O(g(n)) = O®n).




16 | Chapter 1: Software Engineering Principles and C++ Classes

In general, we can prove the following theorem. Here we state the theorem without proof.
Theorem: Let f(n) be a nonnegative real-valued function such that
fin) = aun™ + ap 0"+ - an + ag,

where a;’s are real numbers, a,, # 0, n > 0, and m is a nonnegative integer. Then f(n) =

Oo(n™).

In Example 1-6, we use the preceding theorem to establish the Big-O of certain functions.

EXAMPLE 1-6

In the following, f(n) is a nonnegative real-valued function.

Function Big-O

f(n) = an + b, where a and b are real numbers and a is nonzero. f(n) = 0(n)
f(m=n"+5n+1 f(n) = 0(n?)
fin) =4 +3m +1 f(n) = 0(n®)
f(n) = 10n” + 23 f(n) = 0(n")
f(n) = 6n'° f(n) = 0(n'%)

EXAMPLE 1-7

Suppose that f{n) = 2logon + a, where a is a real number. It can be shown that f(n) =
O(logyn).

EXAMPLE 1-8

Consider the following code, where m and n are int variables and their values are
nonnegative:

for (int 1 = 0; i < m; i++) //Line 1
for (int j = 0; j < n; j++) //Line 2
cout << 1 * j << endl; //Line 3

This code contains nested for loops. The outer for loop, at Line 1, executes m times.
For each iteration of the outer loop, the inner loop, at Line 2, executes # times. For each
iteration of the inner loop, the output statement in Line 3 executes. It follows that the
total number of iterations of the nested for loop is mn. So the number of times the
statement in Line 3 executes is mn. Therefore, this algorithm is O(mn). Note that if m =
n, then this algorithm is O(1°).




Classes | 17

Table 1-5 shows some common Big-O functions that appear in the algorithm analysis.
Let fin) = O(g(n)) where n is the problem size.

TABLE 1-5 Some Big-O functions that appear in algorithm analysis

The growth rate is constant and so does not depend on n, the size of the

gn=1

problem.
(1) = logan The growth rate is a function of logon. Because a logarithm function grows
glm = log2 slowly, the growth rate of the function fis also slow.
2l = n The growth rate is linear. The growth rate of fis directly proportional to the

size of the problem.
g(n) = nlogan The growth rate is faster than the linear algorithm.

The growth rate of such functions increases rapidly with the size of the

_ 2
gl = i problem. The growth rate is quadrupled when the problem size is doubled.

The growth rate is exponential. The growth rate is squared when the problem

__nn
gn =2 size is doubled.

It can be shown that
0(1) < O(logxn) < 0(n) < O(nlogon) < O(?) < 0(2M).

Classes

In this section, we review C++ classes. If you are familiar with how classes are imple-
mented in C++, you can skip this section.

Recall that in OOD, the first step is to identify the components called objects; an object
combines data and the operations on that data in a single unit, called encapsulation. In
C++, the mechanism that allows you to combine data and the operations on that data in a
single unit is called a class. A class is a collection of a fixed number of components. The
components of a class are called the members of the class.

The general syntax for defining a class is

class classlIdentifier

{

class members list

};




18 | Chapter 1: Software Engineering Principles and C++ Classes

where class members list consists of variable declarations and/or functions. That is, a
member of a class can be either a variable (to store data) or a function.

e If a member of a class is a variable, you declare it just like any other
variable. Furthermore, in the definition of the class, you cannot initialize
a variable when you declare it.

e If a member of a class is a function, you typically use the function
prototype to define that member.

e Ifa member of a class is a function, it can (directly) access any member of
the class—data members and function members. That is, when you write
the definition of the member function, you can directly access any data
member of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

In C++, class is a reserved word, and it defines only a data type; no memory is allocated. It
announces the declaration of a class. Moreover, note the semicolon (;) after the right brace. The
semicolon is part of the syntax. A missing semicolon, therefore, will result in a syntax error.

The members of a class are classified into three categories: private, public, and
protected, called member access specifiers. This chapter mainly discusses the first two
types—that is, private and public.

Following are some facts about private and public members of a class:

e By default, all members of a class are private.

e If a member of a class is private, you cannot access it outside the class.
e A public member is accessible outside the class.

e To make a member of a class public, you use the member access

specifier public with a colon.

In C++, private, protected, and public are reserved words.

Suppose that we want to define a class, clockType, to implement the time of day in a
program. Furthermore, suppose that the time is represented as a set of three integers: one
to represent the hours, one to represent the minutes, and one to represent the seconds.
We also want to perform the following operations on the time:

1. Set the time.

Return the time.

Print the time.

Increment the time by one second.
Increment the time by one minute.

Increment the time by one hour.

Nk

Compare two times for equality.



Classes | 19

From this discussion, it is clear that the class clockType has 10 members: three data
members and seven function members.

Some members of the class clockType will be private; others will be public.
Deciding which member to make private and which to make public depends on
the nature of the member. The general rule is that any member that needs to be accessed
outside the class is declared public; any member that should not be accessed directly by
the user should be declared private. For example, the user should be able to set the time
and print the time. Therefore, the members that set the time and print the time should be
declared public.

Similarly, the members to increment the time and compare the time for equality should
be declared public. On the other hand, to control the direct manipulation of the data
members hr, min, and sec, we will declare these data members private. Furthermore,
note that if the user has direct access to the data members, member functions such as
setTime are not needed.

The following statements define the class clockType:

class clockType
{
public:
void setTime (int hours, int minutes, int seconds);
//Function to set the time
//The time is set according to the parameters
//Postcondition: hr = hours; min = minutes; sec = seconds

// The function checks whether the values of hours,
// minutes, and seconds are valid. If a value is invalid,
// the default value 0 is assigned.

void getTime (int& hours, inté& minutes, inté& seconds) const;
//Function to return the time
//Postcondition: hours = hr; minutes = min; seconds = sec

vold printTime () const;
//Function to print the time
//Postcondition: Time is printed in the form hh:mm:ss.

void incrementSeconds();
//Function to increment the time by one second
//Postcondition: The time is incremented by one second.
// If the before-increment time is 23:59:59, the time
// is reset to 00:00:00.

void incrementMinutes();
//Function to increment the time by one minute
//Postcondition: The time is incremented by one minute.
// If the before-increment time is 23:59:53, the time
// is reset to 00:00:53.




20 | Chapter 1: Software Engineering Principles and C++ Classes
void incrementHours () ;
//Function to increment the time by one hour
//Postcondition: The time is incremented by one hour.
// If the before-increment time is 23:45:53, the time
// is reset to 00:45:53.
bool equalTime (const clockTypeé& otherClock) const;
//Function to compare the two times
//Postcondition: Returns true if this time is equal to
// otherClock; otherwise, returns false
private:
int hr; //stores the hours
int min; //store the minutes
int sec; //store the seconds
};

We note the following in the definition of the class clockType:

e The class clockType has seven function members: setTime, getTime,
printTime, incrementSeconds, incrementMinutes, incrementHours,
and equalTime. It has three data members: hr, min, and sec.

e The three data members—hr, min, and sec—are private to the class and
cannot be accessed outside the class.

e The seven function members—setTime, getTime, printTime,
incrementSeconds, incrementMinutes, incrementHours, and
equalTime—can directly access the data members (hr, min, and sec). In
other words, we do not pass data members as parameters to member functions.

* In the function equalTime, the parameter otherClock is a constant
reference parameter. That is, in a call to the function equalTime, the
parameter otherClock receives the address of the actual parameter, but
otherClock cannot modify the value of the actual parameter. You could
have declared otherClock as a value parameter, but that would require
otherClock to copy the value of the actual parameter, which could result
in poor performance. (For an explanation, see the section, “Reference
Parameters and Class Objects (Variables)” located later in this chapter.)

¢ The word const at the end of the member functions getTime,
printTime, and equalTime specifies that these functions cannot modify
the data members of a variable of type clockType.

(Order of public and private members of a class) C++ has no fixed order in which you
declare public and private members; you can declare them in any order. The only thing
you need to remember is that, by default, all members of a class are private. You must use
the public label to make a member available for public access. If you decide to declare
the private members after the public members (as is done in the case of cLockType),
you must use the private label to begin the declaration of the private members.



Classes | 21

In the definition of the class clockType, all data members are private and all
function members are public. However, a function member can also be private.
For example, if a member function is used only to implement other member functions
of the class, and the user does not need to access this function, you make it private.
Similarly, a data member of a class can also be public.

Note that we have not yet written the definitions of the function members of the class
clockType. You will learn how to write them shortly.

The function setTime sets the three data members—hr, min, and sec—to a given value. The
given values are passed as parameters to the function setTime. The function printTime prints
the time, that is, the values of hr, min, and sec. The function incrementSeconds increments
the time by one second, the function incrementMinutes increments the time by one
minute, the function incrementHours increments the time by one hour, and the function
equalTime compares the two times for equality.

Constructors

C++ does not automatically initialize variables when they are declared. Therefore, when
an object is instantiated, there is no guarantee that the data members of the object will be
initialized. To guarantee that the instance variables of a class are initialized, you use
constructors. There are two types of constructors: with parameters and without para-
meters. The constructor without parameters is called the default constructor.

Constructors have the following properties:

e The name of a constructor is the same as the name of the class.

e A constructor, even though it is a function, has no type. That is, it is
neither a value-returning function nor a void function.

e A class can have more than one constructor. However, all constructors of
a class have the same name.

e If a class has more than one constructor, the constructors must have
different formal parameter lists. That is, either they have a different
number of formal parameters or, if the number of formal parameters is
the same, the data type of the formal parameters, in the order you list,
must differ in at least one position.

e Constructors execute automatically when a class object enters its scope.
Because they have no types, they cannot be called like other functions.

®  Which constructor executes depends on the types of values passed to the
class object when the class object is declared.




22 | Chapter 1: Software Engineering Principles and C++ Classes

Let us extend the definition of the class clockType by including two constructors:

class clockType

{
public:
//Place the function prototypes of the functions setTime,
//getTime, printTime, incrementSeconds, incrementMinutes,
//incrementHours, and equalTime as described earlier, here.
clockType (int hours, int minutes, int seconds);
//Constructor with parameters
//The time is set according to the parameters.
//Postconditions: hr = hours; min = minutes; sec = seconds
// The constructor checks whether the values of hours,
// minutes, and seconds are valid. If a value is invalid,
// the default value 0 is assigned.
clockType () ;
//Default constructor with parameters
//The time is set to 00:00:00.
//Postcondition: hr = 0; min = 0; sec = 0
private:
int hr; //stores the hours
int min; //store the minutes
int sec; //store the seconds
};

Unified Modeling Language Diagrams

A class and its members can be described graphically using a notation known as Unified
Modeling Language (UML) notation. For example, Figure 1-5 shows the UML class
diagram of the class clockType.

clockType

-hr: int
-min: int
—-sec: int

+setTime (int, int, int): void
+getTime (int&, int&, int&) const: void

+printTime () const: void
+incrementSeconds () : int
+incrementMinutes () : int
+incrementHours () : int

+equalTime (clockType) const: bool
+clockType (int, int, int)
+clockType ()

FIGURE 1-5 UML class diagram of the elass clockType



Classes | 23

The top box contains the name of the class. The middle box contains the data members and
their data types. The last box contains the member function name, parameter list, and the
return type of the function. A + (plus) sign in front of a member indicates that this member is
a public member; a — (minus) sign indicates that this is a private member. The symbol #
before the member name indicates that the member is a protected member.

Variahle (Object) Declaration

Once a class is defined, you can declare variables of that type. In C++ terminology, a class
variable is called a class object or class instance. To help you become familiar with this
terminology, from now on we will use the term class object, or simply object, for a class variable.

A class can have both types of constructors—default constructor and constructors with
parameters. Therefore, when you declare a class object, either the default constructor
executes or the constructor with parameters executes. The general syntax for declaring a
class object that invokes the default constructor is:

className classObjectName;

For example, the statement
clockType myClock;
declares myClock to be an object of type clockType. In this case, the default constructor

executes and the instance variables of myClock are initialized to 0.

If you declare an object and want the default constructor to be executed, the empty
parentheses after the object name are not required in the object declaration statement. In
fact, if you accidentally include the empty parentheses, the compiler generates a syntax error
message. For example, the following statement to declare the object myClock is illegal:

clockType myClock(); //illegal object declaration

The general syntax for declaring a class object that invokes a constructor with a parameter is

className classObjectName (argumentl, argument2, ...);

where each of argumentl, argument2, and so on is either a variable or an expression.
Note the following:

¢ The number of arguments and their type should match the formal
parameters (in the order given) of one of the constructors.

e If the type of the arguments does not match the formal parameters of any
constructor (in the order given), C++ uses type conversion and looks for
the best match. For example, an integer value might be converted to a
floating-point value with a zero decimal part. Any ambiguity will result
in a compile-time error.




24 | Chapter 1: Software Engineering Principles and C++ Classes

Consider the following statement:
clockType myClock(5, 12, 40);

This statement declares the object myClock of type clockType. Here, we are passing
three values of type int, which matches the type of the formal parameters of the
constructor with a parameter. Therefore, the constructor with parameters of the class
clockType executes and the three instance variables of the object myClock are set to 5,
12, and 40.

Consider the following statements that declare two objects of type clockType:

clockType myClock(8, 12, 30);
clockType yourClock (12, 35, 45);

Each object has 10 members: seven member functions and three instance variables. Each
object has separate memory allocated for hr, min, and sec.

In actuality, memory is allocated only for the instance variables of each class object. The
C++ compiler generates only one physical copy of a member function of a class, and each
class object executes the same copy of the member function.

Accessing Class Members

Once an object of a class 1s declared, it can access the members of the class. The general
syntax for an object to access a member of a class is:

classObjectName.memberName

In C++, the dot, . (period), is an operator called the member access operator.
The class members that a class object can access depend on where the object is declared.

e If the object is declared in the definition of a member function of the
class, the object can access both the public and private members. (We
will elaborate on this when we write the definition of the member
function equalTime of the class clockType in the section “Imple-
mentation of Member Functions,” later in this chapter.)

e If the object is declared elsewhere (for example, in a user’s program), the
object can access only the public members of the class.

Example 1-10 illustrates how to access the members of a class.

Suppose we have the following declaration (say, in a user’s program):

clockType myClock;
clockType yourClock;



Classes | 25

Consider the following statements:

myClock.setTime (5, 2, 30):;
myClock.printTime () ;

if (myClock.equalTime (yourClock))

These statements are legal; that is, they are syntactically correct.

In the first statement, myClock.setTime (5, 2, 30) ;, the member function setTime is
executed. The values 5, 2, and 30 are passed as parameters to the function setTime, and
the function uses these values to set the values of the three instance variables hr, min, and
sec of myClock to 5, 2, and 30, respectively. Similarly, the second statement executes
the member function printTime and outputs the contents of the three instance variables
of myClock.

In the third statement, the member function equalTime executes and compares the three
instance variables of myClock to the corresponding instance variables of yourClock.
Because in this statement equalTime is a member of the object myClock, it has direct
access to the three instance variables of myClock. So it needs one more object, which in
this case is yourClock, to compare. This explains why the function equalTime has only
one parameter.

The objects myClock and yourClock can access only public members of the class.
Thus, the following statements are illegal because hr and min are declared as private
members of the class clockType and, therefore, cannot be accessed by the objects
myClock and yourClock:

myClock.hr = 10; //illegal
myClock.min = yourClock.min; //illegal

Implementation of Member Functions

When we defined the class clockType, we included only the function prototype for
the member functions. For these functions to work properly, we must write the related
algorithms. One way to implement these functions is to provide the function definition
rather than the function prototype in the class itself. Unfortunately, the class definition
would then be long and difficult to comprehend. Another reason for providing function
prototypes instead of function definitions relates to information hiding; that is, we want
to hide the details of the operations on the data.

Next, let us write the definitions of the member functions of the class clockType. That
is, we will write the definitions of the functions setTime, getTime, printTime,
incrementSeconds, equalTime, and so on. Because the identifiers setTime, printTime,




26 | Chapter 1: Software Engineering Principles and C++ Classes

and so forth are local to the class, we cannot reference them (directly) outside the class.
To reference these identifiers, we use the scope resolution operator, :: (double colon).
In the function definition’s heading, the name of the function is the name of the class, followed
by the scope resolution operator, followed by the function name. For example, the definition
of the function setTime is as follows:

void clockType::setTime (int hours, int minutes, int seconds)
{
if (0 <= hours && hours < 24)
hr hours;
else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec seconds;

else
sec = 0;

}

Note that the definition of the function setTime checks for the valid values of hours,
minutes, and seconds. If these values are out of range, the instance variables hr, min,
and sec are initialized to 0.

Suppose that myClock is an object of type clockType (as declared previously). The
object myClock has three instance variables. Consider the following statement:

myClock.setTime (3, 48, 52);

In the statement myClock.setTime (3, 48, 52);, setTime is accessed by the object
myClock. Therefore, the three variables—hr, min, and sec—to which the body of the
function setTime refers, are the three instance variables of myClock. Thus, the values 3,
48, and 52, which are passed as parameters in the preceding statement, are assigned to the
three instance variables of myClock by the function setTime (see the body of the
function setTime). After the previous statement executes, the object myClock is as
shown in Figure 1-6.

myClock hr

min

sec 2

FIGURE 1-6 Object myClock after the statement myClock.setTime (3, 48, 52); executes



Classes | 27

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow.

void clockType::getTime (int& hours, int& minutes, inté& seconds) const
{

hours = hr;

minutes = min;

seconds = sec;

}
void clockType: :printTime () const
{
if (hr < 10)
cout << "0";
cout << hr << ":";
if (min < 10)
cout << "0";
cout << min << ":";
if (sec < 10)
cout << "Q0";
cout << sec;
}
voild clockType::incrementHours ()
{
hr++;
if (hr > 23)
hr = 0;
}
void clockType::incrementMinutes ()
{
min++;
if (min > 59)
{
min = 0;
incrementHours () ; //increment hours
}
}

void clockType::incrementSeconds ()

{

sec++;

if (sec > 59)
{
sec = 0;
incrementMinutes () ; //increment minutes



28 | Chapter 1: Software Engineering Principles and C++ Classes

From the definitions of the functions incrementMinutes and incrementSeconds, it is
clear that a member function of a class can call other member functions of the class.

The function equalTime has the following definition:

bool clockType::equalTime (const clockType& otherClock) const
{

return (hr == otherClock.hr
&& min == otherClock.min
&& sec == otherClock.sec);

}

Let us see how the member function equalTime works.

Suppose that myClock and yourClock are objects of type clockType, as declared pre-
viously. Further suppose that we have myClock and yourClock, as shown in Figure 1-7.

myClock hr | 14 yourClock hr| 14

min

=
a.
i)
N
o

sec| 25 sec| 54

FIGURE 1-7 Objects myClock and yourClock

Consider the following statement:

if (myClock.equalTime (yourClock))

In the expression
myClock.equalTime (yourClock)

the object myClock accesses the member function equalTime. Because otherClock is a
reference parameter, the address of the actual parameter yourClock is passed to the
formal parameter otherClock, as shown in Figure 1-8.

myClock yourClock hr

min equalTime min

m -

FIGURE 1-8 Object myClock and parameter otherClock

gl -
Sl lo|| e




Classes | 29

The instance variables hr, min, and sec of otherClock have the values 14, 25, and 54,
respectively. In other words, when the body of the function equalTime executes, the
value of otherClock.hr is 14, the value of otherClock.min is 25, and the value of
otherClock.sec is 54. The function equalTime is a member of myClock. When the
function equalTime executes, the variables hr, min, and sec in the body of the function
equalTime are the instance variables of the variable myClock. Therefore, the member hr
of myClock is compared with otherClock.hr, the member min of myClock is com-
pared with otherClock.min, and the member sec of myClock is compared with
otherClock.sec.

Once again, from the definition of the function equalTime, it is clear why this function
has only one parameter.

Let us again look at the definition of the function equalTime. Notice that within the
definition of this function, the object otherClock accesses the instance variables hr, min,
and sec. However, these instance variables are private. So is there any violation? The
answer is no. The function equalTime is a member of the class clockType and hr,
min, and sec are the instance variables. Moreover, otherClock is an object of type
clockType. Therefore, the object otherClock can access its private instance variables
within the definition of the function equalTime.

The same is true for any member function of a class. In general, when you write the
definition of a member function, say dummyFunction, of a class, say dummyClass, and
the function uses an object, dummyObject of the class dummyClass, then within the
definition of dummyFunction, the object dummyObject can access its private instance
variables (in fact, any private member of the class).

This definition of the class clockType includes two constructors: one with three
parameters and one without any parameters. Let us now write the definitions of these
constructors.

clockType: :clockType() //default constructor

{
hr = 0;
min = 0;
sec = 0;
}

clockType: :clockType (int hours, int minutes, int seconds)
{
if (0 <= hours && hours < 24)
hr hours;
else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;




30 | Chapter 1: Software Engineering Principles and C++ Classes

if (0 <= seconds && seconds < 60)
sec seconds;

else
sec = 0;

}

From the definitions of these constructors, it follows that the default constructor sets the
three instance variables—hr, min, and sec—to 0. Also, the constructor with parameters
sets the instance variables to whatever values are assigned to the formal parameters.
Moreover, we can write the definition of the constructor with parameters by calling
the function setTime, as follows:

clockType: :clockType (int hours, int minutes, int seconds)

{

setTime (hours, minutes, seconds);

}

Once a class is properly defined and implemented, it can be used in a program. A
program or software that uses and manipulates the objects of a class is called a client
of that class.

When you declare objects of the class clockType, every object has its own copy of the
instance variables hr, min, and sec. In object-oriented terminology, variables such as hr,
min, and sec are called instance variables of the class because every object has its own
instance of the data.

Reference Parameters and Class Objects (Variables)

Recall that when a variable is passed by value, the formal parameter copies the value
of the actual parameter. That is, memory to copy the value of the actual parameter
is allocated for the formal parameter. As a parameter, a class object can be passed
by value.

Suppose that a class has several instance variables requiring a large amount of memory to
store data, and you need to pass a variable by value. The corresponding formal parameter
then receives a copy of the data of the variable. That is, the compiler must allocate
memory for the formal parameter, so as to copy the value of the instance variables of the
actual parameter. This operation might require, in addition to a large amount of storage
space, a considerable amount of computer time to copy the value of the actual parameter
into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only
the address of the actual parameter. Therefore, an efficient way to pass a variable as a
parameter is by reference. If a variable is passed by reference, then when the formal
parameter changes, the actual parameter also changes. Sometimes, however, you do not
want the function to be able to change the values of the instance variables. In C++, you
can pass a variable by reference and still prevent the function from changing its value by
using the keyword const in the formal parameter declaration. As an example, consider
the following function definition:



Classes | 31

void testTime (const clockType& otherClock)

{
clockType dClock;

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For
example, after the following statement executes, the value of myClock will not be altered:

testTime (myClock) ;

Generally, if you want to declare a class object as a value parameter, you declare it as a
reference parameter using the keyword const, as described previously.

Recall that if a formal parameter is a value parameter, within the function definition you
can change the value of the formal parameter. That is, you can use an assignment
statement to change the value of the formal parameter (which, of course, would have
no effect on the actual parameter). However, if a formal parameter is a constant reference
parameter, you cannot use an assighment statement to change its value within the
function, nor can you use any other function to change its value. Therefore, within
the definition of the function testTime, you cannot alter the value of otherClock. For
example, the following would be illegal in the definition of the function testTime:

otherClock.setTime (5, 34, 56); //illegal
otherClock = dClock; //illegal

BUILT-IN OPERATIONS ON CLASSES

The two built-in operations that are defined for class objects are member access (.) and
assignment (=). You have seen how to access an individual member of a class by using the
name of the class object, then a dot, and then the member name.

We now show how an assignment statement works with the help of an example.

Assignment Operator and Classes

Suppose that myClock and yourClock are variables of type clockType as defined
previously. The statement

myClock = yourClock; //Line 1

copies the value of yourClock into myClock. That is, the value of yourClock.hr is copied
into myClock.hr; the value of yourClock.min is copied into myClock.min; and the value
of yourClock.sec is copied into myClock.sec. In other words, the values of the three
instance variables of yourClock are copied into the corresponding instance variables of
myClock. Therefore, an assignment statement performs a memberwise copy.




32 | Chapter 1: Software Engineering Principles and C++ Classes

Class Scope

A class object can be either automatic (that is, created each time the control reaches its
declaration, and destroyed when the control exits the surrounding block) or static (that is,
created once, when the control reaches its declaration, and destroyed when the program
terminates). Also, you can declare an array of class objects. A class object has the same
scope as other variables. A member of a class is local to the class. You access a
(public) class member outside the class by using the class object name and the
member access operator (.).

Functions and Classes

The following rules describe the relationship between functions and classes:

e Class objects can be passed as parameters to functions and returned as
function values.

* As parameters to functions, class objects can be passed either by value or
by reference.

e Ifa class object is passed by value, the contents of the instance variables of
the actual parameter are copied into the corresponding instance variables
of the formal parameter.

Constructors and Default Parameters

A constructor can also have default parameters. In such a case, the rules for declaring
formal parameters are the same as those for declaring default formal parameters in a
function. Moreover, actual parameters to a constructor with default parameters are passed
according to the rules for functions with default parameters. Using the rules for defining
default parameters, in the definition of the class clockType, you can replace both
constructors using the following statement. (Notice that in the function prototype, the
name of a formal parameter is optional.)

clockType clockType(int = 0, int = 0, int = 0); //Line 1

In the implementation file, the definition of this constructor is the same as the definition
of the constructor with parameters.

If you replace the constructors of the class clockType with the constructor in Line 1,
(the constructor with the default parameters), you can declare clockType objects with 0,
1, 2, or 3 arguments as follows:

clockType clockl; //Line 2
clockType clock2(5); //Line 3
clockType clock3 (12, 30); //Line 4
clockType clock4 (7, 34, 18); //Line 5

The data members of clockl are initialized to 0. The data member hr of clock2 is
initialized to 5, and the data members min and sec of clock?2 are initialized to 0. The



Data Abstraction, Classes, and Abstract Data Types | 33

data member hr of clock3 is initialized to 12, the data member min of clock3 is
initialized to 30, and the data member sec of clock3 is initialized to 0. The data
member hr of clock4 is initialized to 7, the data member min of clock4 is initialized
to 34, and the data member sec of clock4 is initialized to 18.

Using these conventions, we can say that a constructor that has no parameters, or has all
default parameters, is called the default constructor.

Destructors

Like constructors, destructors are also functions. Moreover, like constructors, a destructor
does not have a type. That s, it is neither a value-returning function nor a void function.
However, a class can have only one destructor, and the destructor has no parameters. The
name of a destructor is the filde character (~), followed by the name of the class. For
example, the name of the destructor for the class clockType is:

~clockType () ;

The destructor automatically executes when the class object goes out of scope.

Structs

Structs are a special type of classes. By default, all members of a class are private,
whereas by default all members of a struct are public. In C++, you define structs by
using the reserved word struct. If all members of a class are public, C++ programmers
prefer to use a struct to group the members, as we will do in this book. A struct is
defined just like a class.

Data Abstraction, Classes, and Abstract
Data Types

For the car that we drive, most of us want to know how to start the car and drive it.
Most people are not concerned with the complexity of how the engine works. By
separating the design details of a car’s engine from its use, the manufacturer helps the
driver focus on how to drive the car. Our daily life has other similar examples. For the
most part, we are concerned only with how to use certain items, rather than with how
they work.

Separating the design details (that is, how the car’s engine works) from its use is called
abstraction. In other words, abstraction focuses on what the engine does and not on
how it works. Thus, abstraction is the process of separating the logical properties from
the implementation details. Driving the car is a logical property; the construction of the
engine constitutes the implementation details. We have an abstract view of what the
engine does, but are not interested in the engine’s actual implementation.




34 | Chapter 1: Software Engineering Principles and C++ Classes

Abstraction can also be applied to data. Earlier sections of this chapter defined a data type
clockType. The data type clockType has three instance variables and the following
basic operations:
1. Set the time.
Return the time.
Print the time.
Increment the time by one second.
Increment the time by one minute.

Increment the time by one hour.

Nk N

Compare two times to see whether they are equal.

The actual implementation of the operations, that is, the definitions of the member
functions of the class, clockType was postponed.

Data abstraction is defined as a process of separating the logical properties of the data from
its implementation. The definition of clockType and its basic operations are the logical
properties; storing clockType objects in the computer, and the algorithms to perform
these operations, are the implementation details of clockType.

Abstract data type (ADT): A data type that separates the logical properties from the
implementation details.

Like any other data type, an ADT has three things associated with it: the name of the
ADT, called the type name; the set of values belonging to the ADT, called the domain,;
and the set of operations on the data. Following these conventions, we can define the
clockType ADT as follows:

dataTypeName
clockType

domain
Each clockType value is a time of day in the form of hours,
minutes, and seconds.

operations
Set the time.
Return the time.
Print the time.
Increment the time by one second.
Increment the time by one minute.
Increment the time by one hour.
Compare the two times to see whether they are equal.

To implement an ADT, you must represent the data and write algorithms to perform the
operations.

The previous section used classes to group data and functions together. Furthermore, our
definition of a class consisted only of the specifications of the operations; functions to



Data Abstraction, Classes, and Abstract Data Types | 35

implement the operations were written separately. Thus, we see that classes are a

convenient way to implement an ADT. In fact, in C++, classes were specifically designed
to handle ADTs.

A list is defined as a set of values of the same type. Because all values in a list are of the
same type, a convenient way to represent and process a list is to use an array. You can
define a list as an ADT as follows:

typeName
listType
domain
Every element of listType is a set of, say at most 1000 numbers.
operations
Check to see whether the list is empty.
Check to see whether the list is full.
Search the list for a given item.
Delete an item from the list.
Insert an item in the list.
Sort the list.
Print the list.

The following class implements the ADT list. To be specific, suppose that the list is a set
of elements of the type int.

class intListType
{
public:
bool isEmpty():
//Function to determine whether the list is empty.
//Precondition: The list must exist.
//Postcondition: Returns true if the list is empty,
// false otherwise.
bool isFull();
//Function to determine whether the list is full.
//Precondition: The list must exist.
//Postcondition: Returns true if the list is full,
// false otherwise.
int search (int searchItem);
//Function to determine whether searchItem is in the list.
//Postcondition: If searchItem is in the list, returns its
// index, that is, its position in the list;
// otherwise, it returns -1.
void insert (int newltem);
//Function to insert newItem in the list.
//Precondition: The list must exist and must not be full.
//Postcondition: newItem is inserted in the list and
// length is incremented by one.




36 | Chapter 1: Software Engineering Principles and C++ Classes

void remove (int removeltem);
//Function to delete removeltem from the list.
//Precondition: The list must exist and must not be empty
//Postcondition: If found, removeItem is deleted from the
// list and the length is decremented by one;
// otherwise, an appropriate message is printed.
void printList();
//Function to output the elements of the list.
//Precondition: The list must exist.
//Postcondition: The elements of the list are
// printed on the standard output device.
intListType () ;
//Default constructor
//Postcondition: length = 0

private:
int 1ist[10001]:
int length;

};

The class personType that is designed in Example 1-12 is quite useful; we will use this
class in subsequent chapters.

The most common attributes of a person are the person’s first name and last name.
The typical operations on a person’s name are to set the name and print the name. The
following statements define a class with these properties.

//************************************************************
// Author: D.S. Malik

//

// class personType

// This class specifies the members to implement a name.
//************************************************************

#include <string>
using namespace std;

class personType
{
public:
void print () const;
//Function to output the first name and last name
//in the form firstName lastName.

void setName (string first, string last);
//Function to set firstName and lastName according to the
//parameters.
//Postcondition: firstName = first; lastName = last



Data Abstraction, Classes, and Abstract Data Types | 37

string getFirstName () const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName () const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType () ;
//Default constructor
//Sets firstName and lastName to null strings.
//Postcondition: firstName = ""; lastName = "";

personType (string first, string last):;
//Constructor with parameters.
//Sets firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last;

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name
}:

Figure 1-9 shows the UML class diagram of the class personType.

personType

—firstName: string
—lastName: string

+print () : void

+setName (string, string): void
+getFirstName () const: string
+getLastName () const: string
+personType ()

+personType (string, string)

FIGURE 1-9 UML class diagram of the class personType

We now give the definitions of the member functions of the class personType.

void personType::print () const
{
cout << firstName << " " << lastName;

}

void personType::setName (string first, string last)
{

firstName = first;

lastName = last;



38 | Chapter 1: Software Engineering Principles and C++ Classes

string personType::getFirstName () const

{
return firstName;
}
string personType::getLastName () const
{
return lastName;
}

//Default constructor
personType: :personType ()
{

firstName = "";

lastName = "";

//Constructor with parameters
personType: :personType (string first, string last)
{

firstName = first;

lastName = last;

PROGRAMMING EXAMPLE: Fruit Juice Machine

A new fruit juice machine has been purchased for the cafeteria, and a program is needed
to make the machine function properly. The machine dispenses apple juice, orange
juice, mango lassi, and fruit punch in recyclable containers. In this programming
example, we write a program for the fruit juice machine so that it can be put into
operation.

The program should do the following:

Show the customer the different products sold by the juice machine.

Let the customer make the selection.

Show the customer the cost of the item selected.

Accept money from the customer.

g e =

Release the item.
Input The item selection and the cost of the item.

Output The selected item.



Programming Example: Fruit Juice Machine | 39

PROBLEM A juice machine has two main components: a built-in cash register and several
ANALYSIS AND dispensers to hold and release the products.

ALGORITHM

DESIGN

Cash Let us first discuss the properties of a cash register. The cash register has some cash on

Register hand, it accepts the amount from the customer, and if the amount deposited is more

than the cost of the item, then—if possible—the cash register returns the change.

For simplicity, we assume that the user deposits at least the amount of money for the

product. The cash register should also be able to show the juice machine’s owner

the amount of money in the register at any given time. The following class defines the
properties of a cash register.

//****************************************************************

// Author: D.S. Malik
//
// class cashRegister

// This class specifies the members to implement a cash register.
//****************************************************************

class cashRegister

{
public:
int getCurrentBalance () const;
//Function to show the current amount in the cash register.
//Postcondition: The value of cashOnHand is returned.
void acceptAmount (int amountIn) ;
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;
cashRegister () ;
//Default constructor
//Sets the cash in the register to 500 cents.
//Postcondition: cashOnHand = 500.
cashRegister (int cashIn);
//Constructor with a parameter.
//Sets the cash in the register to a specific amount.
//Postcondition: cashOnHand = cashlIn;
private:

int cashOnHand; //variable to store the cash in the register

}:



40 | Chapter 1: Software Engineering Principles and C++ Classes

Figure 1-10 shows the UML class diagram of the class cashRegister.

cashRegister

-cashOnHand: int

+getCurrentBalance const(): int
+acceptAmount (int) : void
+cashRegister ()

+cashRegister (int)

FIGURE 1-10 UML class diagram of the class cashRegister

Next, we give the definitions of the functions to implement the operations of the
class cashRegister. The definitions of these functions are simple and easy to
follow.

The function getCurrentBalance shows the current amount in the cash register. It
returns the value of the instance variable cashOnHand. So, its definition is the
following:

int cashRegister::getCurrentBalance () const
{
return cashOnHand;

}
The definitions of the remaining function(s) and constructors are as follows:

void cashRegister::acceptAmount (int amountIn)

{
cashOnHand = cashOnHand + amountIn;
}
cashRegister: :cashRegister ()
{
cashOnHand = 500;
}
cashRegister: :cashRegister (int cashIn)
{
if (cashIn >= 0)
cashOnHand = cashlIn;
else
cashOnHand = 500;



Programming Example: Fruit Juice Machine | 41

Dispenser The dispenser releases the selected item if it is not empty. The dispenser should show
the number of items in the dispenser and the cost of the item. The following class
defines the properties of a dispenser. Let us call this class dispenserType.

//************************************************************
// Author: D.S. Malik

//

// class dispenserType

// This class specifies the members to implement a dispenser.
//************************************************************

class dispenserType

{
public:
int getNoOfItems () const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.
int getCost () const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.
void makeSale () ;
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;
dispenserType () ;
//Default constructor
//Sets the cost and number of items in the dispenser to 50.
//Postcondition: numberOfItems = 50; cost = 50;
dispenserType (int setNoOfItems, int setCost):;
//Constructor with parameters
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfltems;
// cost = setCost;
private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item
Y



42 | Chapter 1: Software Engineering Principles and C++ Classes

Figure 1-11 shows the UML class diagram of the class dispenserType.

dispenserType

—-numberOfItems: int
-cost: int

+getNoOfItems () const: int

+getCost () const: int
+makeSale () : void
+dispenserType ()

+dispenserType (int, int)

FIGURE 1-11 UML class diagram of the class dispenserType

Because the juice machine sells four types of items, we shall declare four objects of
type dispenserType. For example, the statement

dispenserType appleduice (100, 50);

declares appleduice to be an object of type dispenserType, and sets the number of
apple juice cans in the dispenser to 100 and the cost of each can to 50 cents.

Following the definitions of the class dispenserType, the definitions of the
member functions and constructors are as follows:

int dispenserType::getNoOfItems () const

{
return numberOfItems;
}
int dispenserType::getCost () const
{
return cost;
}
void dispenserType: :makeSale ()
{
numberOfItems——;
}

dispenserType: :dispenserType ()
{

numberOfItems = 50;

cost = 50;



Programming Example: Fruit Juice Machine | 43

dispenserType: :dispenserType (int setNoOfItems, int setCost)

{
if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;
else
numberOfItems = 50;
if (setCost >= 0)
cost = setCost;
else
cost = 50;
}

MAIN  When the program executes, it must do the following:

PROGRAM 1. Show the different products sold by the juice machine.

2. Show how to select a particular product.

3. Show how to terminate the program.

Furthermore, these instructions must be displayed after processing each selection
(except exiting the program), so that the user need not remember what to do if he
or she wants to buy two or more items. Once the user has made the appropriate
selection, the juice machine must act accordingly. If the user has opted to buy a product
and if that product is available, the juice machine should show the cost of the product
and ask the user to deposit the money. If the amount deposited is at least the cost of the
item, the juice machine should sell the item and display an appropriate message.

This discussion translates into the following algorithm:

1. Show the selection to the customer.
2.  Get the selection.

3. If the selection is valid and the dispenser corresponding to the
selection is not empty, sell the product.

We divide this program into three functions—showSelection, sellProduct, and main.

showSelection This function displays the information necessary to help the user select
and buy a product. The definition of this function is:

void showSelection ()
{
cout << "*** Welcome to Shelly's Fruit Juice Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for apple juice" << endl;
cout << "2 for orange juilce" << endl;
cout << "3 for mango lassi" << endl;
cout << "4 for fruit punch" << endl;
cout << "9 to exit" << endl;
}//end showSelection



sellProduct

44 | Chapter 1: Software Engineering Principles and C++ Classes

This function attempts to sell the product selected by the customer. Therefore, it must
have access to the dispenser holding the product. The first thing that this function
does is check whether the dispenser holding the product is empty. If the dispenser is
empty, the function informs the customer that this product is sold out. If the dispenser
1s not empty, it tells the user to deposit the necessary amount to buy the product.

If the user does not deposit enough money to buy the product, sel1Product tells the
user how much additional money must be deposited. If the user fails to deposit
enough money, in two tries, to buy the product, the function simply returns
the money. (Programming Exercise 5, at the end of this chapter, asks you to revise
the definition of the function sellProduct so that it keeps asking the user to enter
the additional amount as long as the user has not entered enough money to buy the
product.) If the amount deposited by the user is sufficient, it accepts the money and sells
the product. Selling the product means to decrement the number of items in the
dispenser by 1, and to update the money in the cash register by adding the cost of the
product. (We also assume that this program does not return the extra money deposited by
the customer. So the cash register is updated by adding the money entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as the cash register (to update the cash).
Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In pseudocode, the algorithm for this function is:
1. If the dispenser is not empty

a. Show and prompt the customer to enter the cost of the item.
b. Get the amount entered by the customer.
c. If the amount entered by the customer is less than the cost of the
product,
1. Show and prompt the customer to enter the additional amount.
ii. Calculate the total amount entered by the customer.
d. If the amount entered by the customer is at least the cost of the
product,
1.  Update the amount in the cash register.

ii.  Sell the product—that is, decrement the number of items in
the dispenser by 1.

ii.  Display an appropriate message.
e. Ifthe amount entered by the user is less than the cost of the item,
return the amount.



Programming Example: Fruit Juice Machine | 45

2. If the dispenser is empty, tell the user that this product is sold out.

The definition of the function sellProduct is:

void sellProduct (dispenserTypeé& product, cashRegister& pCounter)

{

int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not empty

{
cout << "Please deposit " << product.getCost ()
<< " cents" << endl;
cin >> amount;
if (amount < product.getCost())
{
cout << "Please deposit another "
<< product.getCost () - amount << " cents" << endl;
cin >> amount2;
amount = amount + amount2;
}
if (amount >= product.getCost())
{
pCounter.acceptAmount (amount) ;
product.makeSale () ;
cout << "Collect your item at the bottom and enjoy."
<< endl;
}
else
cout << "The amount is not enough. "
<< "Collect what you deposited.”™ << endl;
cout << Wk ok —k —k —k —h —k —k —h —k ko ko k% kT
<< endl << endl;
}
else

cout << "Sorry, this item is sold out." << endl;
}//end sellProduct

main The algorithm for the function main is as follows:

1. Create the cash register—that is, declare a varable of type
cashRegister.

2. Create four dispensers—that is, declare four objects of type
dispenserType and initialize these objects. For example, the statement

dispenserType mangolassi (75, 45);

creates a dispenser object, mangoLassi, to hold the juice cans. The
number of items in the dispenser is 75, and the cost of an item is 45 cents.



46 | Chapter 1: Software Engineering Principles and C++ Classes

Declare additional variables as necessary.
Show the selection; call the function showSelection.

Get the selection.

o @ g B

While not done (a selection of 9 exits the program),

a. Sell the product; call the function sellProduct
b. Show the selection; call the function showSelection.

c. Get the selection.
The definition of the function main is as follows:

int main ()

{
cashRegister counter;
dispenserType appledJuice (100, 50);
dispenserType orangeduice (100, 65);
dispenserType mangolassi (75, 45);
dispenserType fruitPunch (100, 85);

int choice; //variable to hold the selection

showSelection() ;
cin >> choice;

while (choice != 9)
{
switch (choice)
{
case 1:
sellProduct (appledJuice, counter);
break;
case 2:
sellProduct (orangedJuice, counter);
break;
case 3:
sellProduct (mangoLassi, counter):;
break;
case 4:
sellProduct (fruitPunch, counter);
break;
default:

cout << "Invalid selection." << endl;
}//end switch



Programming Example: Fruit Juice Machine

showSelection () ;
cin >> choice;
}//end while

return 0;
}//end main

47

PROGRAM LISTING

//**************************************************************

// Author: D.S. Malik
//
// This program uses the classes cashRegister and dispenserType

// to implement a fruit juice machine.
// khkkkhkhkkkhkkhkhkkhkkhkkhkkhkkhkhkhkhkkhkbkhkhkhkhbhkhbhbhkhkhbhbhkhkhbhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkik

#include <iostream>
#include "cashRegister.h"
#include "dispenserType.h"

using namespace std;

void showSelection():;
voild sellProduct (dispenserType& product, cashRegisteré& pCounter) ;

//Place the definitions of the functions main, showSelection, and
//sellProduct here.

Sample Run: In this sample run, the user input is shaded.

*** Welcome to Shelly's Fruit Juice Shop ***
To select an item, enter

for apple juice

for orange juice

for mango lassi

for fruit punch

to exit

P oOodwNh P

Please deposit 50 cents
50
Collect your item at the bottom and enjoy.

R S P U S R R U G R R T g .




48 | Chapter 1: Software Engineering Principles and C++ Classes

*** Welcome to Shelly's Fruit Juice Shop ***
To select an item, enter

for apple juice

for orange juice

for mango lassi

for fruit punch

to exit

OO wNPRr

The complete definitions of the classes cashRegister, dispenserType, the imple-
mentation files, and the main program is available at the Web site accompanying

this book.

|ldentifying Classes, Objects, and Operations

The hardest part of OOD is to identify the classes and objects. This section describes a
common and simple technique to identify classes and objects.

We begin with a description of the problem and then identify all of the nouns and verbs.
From the list of nouns we choose our classes, and from the list of verbs we choose our
operations.

For example, suppose that we want to write a program that calculates and prints the
volume and surface area of a cylinder. We can state this problem as follows:

Write a program to input the dimensions of a cylinder and calculate and print its surface
area and volume.

In this statement, the nouns are bold and the verbs are italic. From the list of nouns—
program, dimensions, cylinder, surface area, and volume—we can easily visualize
cylinder to be a class—say, cylinderType—from which we can create many cylinder
objects of various dimensions. The nouns—dimensions, surface area, and volume—
are characteristics of a cylinder and, thus, can hardly be considered classes.

After we identify a class, the next step is to determine three pieces of information:

e Operations that an object of that class type can perform
® Operations that can be performed on an object of that class type

e Information that an object of that class type must maintain

From the list of verbs identified in the problem description, we choose a list of possible
operations that an object of that class can perform, or has performed, on itself. For
example, from the list of verbs for the cylinder problem description—uwrite, input, calculate,
and print—the possible operations for a cylinder object are input, calculate, and print.

For the cylinderType class, the dimensions represent the data. The center of the base,
radius of the base, and height of the cylinder are the characteristics of the dimensions.
You can input data to the object either by a constructor or by a function.



Quick Review | 49

The verb calculate applies to determining the volume and the surface area. From this, you
can deduce the operations: cylinderVolume and cylinderSurfaceArea. Similarly, the
verb print applies to the display of the volume and the surface area on an output device.

Identifying classes via the nouns and verbs from the descriptions to the problem is not the
only technique possible. There are several other OOD techniques in the literature.
However, this technique is sufficient for the programming exercises in this book.

QUICK REVIEW

1. Software are programs run by the computer.

2. A program goes through many phases from the time it is first conceived
until the time it is retired, called the life cycle of the program.

3. The three fundamental stages through which a program goes are develop-
ment, use, and maintenance.

4. The new program is created in the software development stage.

In the software maintenance process, the program is modified to fix the
(identified) problems and/or to enhance it.

6. A program is retired if no new version of the program will be released.

7. The software development phases are analysis, design, implementation, and
testing and debugging.

8. During the design phase, algorithms are designed to solve the problem.

9. An algorithm is a step-by-step problem-solving process in which a solution
is arrived at in a finite amount of time.

10. Two well-known design techniques are structured-design and object-
oriented design.

1. In structured design, a problem is divided into smaller subproblems. Each
subproblem is solved, and the solutions of all the subproblems are then
combined to solve the problem.

12.  In object-oriented design (OOD), a program is a collection of interacting
objects.

13.  An object consists of data and operations on those data.

14. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

15.  In the implementation phase, you write and compile programming code to
implement the classes and functions that were discovered in the design phase.

16. A precondition is a statement specifying the condition(s) that must be true
before the function is called.

17. A postcondition is a statement specifying what is true after the function call
is completed.



50

18.

19.
20.
21.

22.
23.

24,

25.
26.
27.
28.
29.

30.
31.
32.
33.

34.

35.
36.

37.

38.

39.

| Chapter 1: Software Engineering Principles and C++ Classes

During the testing phase, the program is tested for its correctness; that is, for
making sure that the program does what it is supposed to do.

Debugging refers to finding and fixing the errors, if they exist.
To find problems in a program, it is run through a series of test cases.

A test case consists of a set of inputs, user actions, or other initial conditions,
and the expected output.

There are two types of testing—Dblack-box testing and white-box testing.

While analyzing a particular algorithm, we usually count the number of
operations performed by the algorithm.

Let f be a function of n. The term asymptotic refers to the study of the
function f as n becomes larger and larger without bound.

A class is a collection of a fixed number of components.
Components of a class are called the members of the class.
Members of a class are accessed by name.

In C++, class is a reserved word.

Members of a class are classified into one of three categories: private,
protected, and public.

The private members of a class are not accessible outside the class.
The public members of a class are accessible outside the class.
By default, all members of a class are private.

The public members are declared using the member access specifier
public.

The private members are declared using the member access specifier
private.

A member of a class can be a function or a variable (that is, data).

If any member of a class is a function, you usually use the function
prototype to declare it.

If any member of a class is a variable, it is declared like any other
variable.

In the definition of the class, you cannot initialize a variable when you
declare it.

In the Unified Modeling language (UML) diagram of a class, the top
box contains the name of the class. The middle box contains the data
members and their data types. The last box contains the member
function name, parameter list, and the return type of the function.
A + (plus) sign in front of a member indicates that this member is a
public member; a — (minus) sign indicates that this is a private
member. The symbol # before the member name indicates that the
member is a protected member.



Exercises | 51

40. In C++, a class is a definition. No memory is allocated; memory is
allocated for the class variables when you declare them.

41. In C++, class variables are called class objects or simply objects.

42. A class member is accessed using the class variable name, followed by the
dot operator (.), followed by the member name.

43. The only built-in operations on classes are the assignment and member
selection.

44, Class objects can be passed as parameters to functions and returned as
function values.

45. As parameters to functions, classes can be passed either by value or by
reference.

46. Constructors guarantee that the data members are initialized when an
object is declared.

47. The name of a constructor is the same as the name of the class.

48. A class can have more than one constructor.

49. A constructor without parameters is called the default constructor.

50. Constructors automatically execute when a class object enters its scope.
51. Destructors automatically execute when a class object goes out of scope.
52. A class can have only one destructor with no parameters.

53.  The name of a destructor is the tilde (~), followed by the class name (no
spaces in between).

54,  Constructors and destructors are functions without any type; that is, they
are neither value-returning nor void. As a result, they cannot be called like
other functions.

55. A data type that specifies the logical properties without the implementation
details is called an abstract data type (ADT).

56. An easy way to identify classes, objects, and operations is to describe the
problem in English and then identify all of the nouns and verbs. Choose
your classes (objects) from the list of nouns and operations from the list of
verbs.

EXERCISES

1. Mark the following statements as true or false.
a. The life cycle of software refers to the phases from the point the
software was conceived until it is retired.

b. The three fundamental stages of software are development, use, and
discard.

c. The expression 4n + 2n” + 5 is O(n).



52 | Chapter 1: Software Engineering Principles and C++ Classes

d. The instance variables of a class must be of the same type.
e. The function members of a class must be public.
f. A class can have more than one constructor.
g. A class can have more than one destructor.
h. Both constructors and destructors can have parameters.
2. What is black-box testing?
3. What is white-box testing?

4. Consider the following function prototype, which returns the square root
of a real number:

double sqgrt (double x);
What should be the pre- and postconditions for this function?

5. Each of the following expressions represents the number of operations for
certain algorithms. What is the order of each of these expressions?

a. n’+6n+4
b 5n° +2n + 8
c. (> +1) (3n+5)
d. 5(6n + 4)
e. n+ 2logn—=6
f. 4nlogon + 3n + 8
6. Consider the following function:

void funcExercise6 (int x, int y)

{

int z;

z=x+y;

X = y;

y = z;

z = X;

cout <K "x ="K x K", y="Ky<K" z="<KKz< endl;
}
Find the exact number of operations executed by the function
funcExercise6.

7. Consider the following function:

int funcExercise7 (int list[], int size)

{

int sum = 0;

for (int index = 0; index < size; index++)
sum = sum + list[index];

return sum;



10.

11.

12.

13.

14,

Exercises

a. Find the number of operations executed by the function
funcExercise? if the value of size is 10.

b. Find the number of operations executed by the function
funcExercise7 if the value of size is n.

c. What is the order of the function funcExercise7?
Consider the following function prototype:
int funcExercise8 (int x);

The function funcExercise8 returns the value as follows: If 0 <= x <= 50,
it returns 2x; if —=50 <= x < 0, it returns x°; otherwise it returns —999. What are
the reasonable boundary values for the function funcExercise8?

Write a function that uses a loop to find the sum of the squares of all
integers between 1 and n. What is the order of your function?

Characterize the following algorithm in terms of Big-O notation. Also find
the exact number of additions executed by the loop. (Assume that all
variables are properly declared.)
for (int 1 = 1; i <= n; i++4)

sum = sum + i * (i + 1);

Characterize the following algorithm in terms of Big-O notation. Also find
the exact number of additions, subtractions, and multiplications executed by
the loop. (Assume that all variables are properly declared.)

for (int 1 = 5; 1 <= 2 * n; i++)
cout << 2 * n + i - 1 << endl;
Characterize the following algorithm in terms of Big-O notation.
for (int i = 1; i <= 2 * n; i++)
for (int j = 1; j <= n; j++)
cout << 2 * 1 + j;
cout << endl;
Characterize the following algorithm in terms of Big-O notation.
for (int i = 1; i <= n; i++4)
for (int j = 1; Jj <= n; j++)
for (int k = 1; k <= n; k++)
cout << i + j + k;

Find the syntax errors in the definitions of the following classes:

a. class AA

{

public:
void print();
int sum();
AA();
int AA(int, int);

private:
int x;
int y;

}s;

53




54

15.

Chapter 1: Software Engineering Principles and C++ Classes

class BB
{
int one ;
int two;
public:
bool equal();
print();
BB (int, int);
}
class CC
{
public;
void set (int, int);
void print();
Ccc();
CC(int, int);
bool CC(int, int);
private:
int u;
int v;
Y

Consider the following declarations:

class xClass

{
public:
void func();
void print () const;
xClass ()
xClass (int, double);
private:
int u;
double w;
}:
xClass x;
a. How many members does class xClass have?
h. How many private members does class xClass have?
c. How many constructors does class xClass have?
d.  Write the definition of the member function func so that u is set to 10

and w is set to 15.3.

Write the definition of the member function print that prints the
contents of u and w.

Write the definition of the default constructor of the class xClass so
that the private data members are initialized to 0.



16.

17.

Exercises

g.  Write a C++ statement that prints the values of the data members of
the object x.

h.  Write a C++ statement that declares an object t of the type xClass,
and initializes the data members of t to 20 and 35.0, respectively.

Consider the definition of the following class:

class CC

{

public:
Ccc(): //Line 1
CC(int); //Line 2
CC(int, int); //Line 3
CC (double, int); //Line 4

private:
int u;

double v;
};

a. Give the line number containing the constructor that is executed in
each of the following declarations:

i. CC one;
ii. CCtwo(5, 6);
iii. CC three (3.5, 8):

h. Worite the definition of the constructor in Line 1 so that the private
data members are initialized to 0.

c. Worite the definition of the constructor in Line 2 so that the private
data member u is initialized according to the value of the parameter,
and the private data member v is initialized to 0.

d.  Write the definition of the constructors in Lines 3 and 4 so that the
private data members are initialized according to the values of the
parameters.

Given the definition of the class clockType with constructors (as
described in this chapter), what is the output of the following C++ code?

clockType clockl;
clockType clock2 (23, 13, 75);

clockl.printTime () ;
cout << endl;
clock2.printTime () ;
cout << endl;

clockl.setTime (6, 59, 39);
clockl.printTime () ;
cout << endl;

55




56 | Chapter 1: Software Engineering Principles and C++ Classes

clockl.incrementMinutes () ;
clockl.printTime () ;
cout << endl;

clockl.setTime (0, 13, 0);

if (clockl.equalTime (clock2))

cout << "Clockl time is the same as clock2 time." << endl;
else

cout << "The two times are different." << endl;

18.  Write the definition of a class that has the following properties:

a. The name of the class is secretType.

h. The class secretType has four instance variables: name of type
string, age and weight of type int, and height of type double.

c. The class secretType has the following member functions:
print—Outputs the data stored in the instance variables with the
appropriate titles
setName—TFunction to set the name
setAge—Function to set the age
setWeight—Function to set the weight
setHeight—Function to set the height
getName—Value-returning function to return the name
getAge—Value-returning function to return the age
getWeight—Value-returning function to return the weight
getHeight—Value-returning function to return the height

Default constructor—Sets name to the empty string and age, weight,
and height to 0

Constructor with parameter—Sets the values of the instance variables
to the values specified by the user

d. Write the definition of the member functions of the class
secretType as described in Part c.

19.  Assume the definition of the class personType as given in this chapter.
a. Write a C++ statement that declares student to be a personType
object, and initialize its first name to "Buddy™ and last name to "Arora".

h. Write a C++ statement that outputs the data stored in the object
student.

c. Write C++ statements that change the first name of student to
"Susan" and the last name to "Miller".



Programming Exercises | 57

PROGRAMMING EXERCISES

1. Write a program that converts a number entered in Roman numerals to
decimal form. Your program should consist of a class, say romanType. An
object of romanType should do the following:

a. Store the number as a Roman numeral.
bh. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested by
the user. (Write two separate functions—one to print the number as a
Roman numeral and the other to print the number as a decimal number.)

The decimal values of the Roman numerals are:

M 1000

D 500

C 100

L 50

X 10

v 5

I 1

Remember, a larger numeral preceding a smaller numeral means addition,
so LX is 60. A smaller numeral preceding a larger numeral means subtrac-
tion, so XL is 40. Any place in a decimal number, such as the 1s place, the
10s place, and so on, requires from zero to four Roman numerals.

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, and MDCLXVT.

2. Write the definition of the class dayType that implements the day of the
week in a program. The class dayType should store the day, such as
Sunday for Sunday. The program should be able to perform the following
operations on an object of type dayType:

a.  Set the day.

b. Print the day.

c. Return the day.

d. Return the next day.

e. Return the previous day.

f. Calculate and return the day by adding certain days to the current day.
For example, if the current day is Monday and we add 4 days, the day to
be returned is Friday. Similarly, if today is Tuesday and we add 13 days,
the day to be returned is Monday.

g.  Add the appropriate constructors.

3. Write the definitions of the functions to implement the operations for the
class dayType as defined in Programming Exercise 2. Also, write a pro-
gram to test various operations on this class.



58

| Chapter 1: Software Engineering Principles and C++ Classes

Example 1-12 defined a class personType to store the name of a person.
The member functions that we included merely print the name and set the
name of a person. Redefine the class personType so that, in addition to
what the existing class does, you also can do the following:

a.  Set the first name only.

b. Set the last name only.

c. Store and set the middle name.

d.  Check whether a given first name is the same as the first name of this person.

e. Check whether a given last name is the same as the last name of this person.

Write the definitions of the member functions to implement the operations
for this class. Also, write a program to test various operations on this class.

The function sellProduct of the Fruit Juice Machine programming example
gives the user only two chances to enter enough money to buy the product.
Rewrite the definition of the function se11Product so that it keeps prompting
the user to enter more money as long as the user has not entered enough money
to buy the product. Also, write a program to test your function.

The equation of a line in standard form is ax + by = ¢, where a and b both
cannot be zero, and g, b, and ¢ are real numbers. If b # 0, then —a / b is the
slope of the line. If a = 0, then it is a horizontal line, and if b = 0, then it is a
vertical line. The slope of a vertical line is undefined. Two lines are parallel if
they have the same slope or both are vertical lines. Two lines are perpendi-
cular if either one of the lines is horizontal and another is vertical, or if the
product of their slopes is —1. Design the class lineType to store a line. To
store a line, you need to store the values of a (coefficient of x), b (coefticient
of y), and ¢. Your class must contain the following operations:

a. If a line is nonvertical, then determine its slope.

b. Determine if two lines are equal. (Two lines a;x + by = ¢ and axx + byy =
¢ are equal if either a; = ap, by = by, and ;= ¢ or ay = kao, by = kb,, and ¢
= k¢, for some real number k.)

c. Determine if two lines are parallel.

d. Determine if two lines are perpendicular.

e. If two lines are not parallel, then find the point of intersection.

Add appropriate constructors to initialize variables of lineType. Also
write a program to test your class.

(Tic-Tac-Toe) Write a program that allows two players to play the tic-tac-
toe game. Your program must contain the class ticTacToe to implement
a ticTacToe object. Include a 3 by 3 two-dimensional array, as a private
instance variable, to create the board. If needed, include additional member
variables. Some of the operations on a ticTacToe object are printing the
current board, getting a move, checking if a move is valid, and determining
the winner after each move. Add additional operations as needed.



CHAPTER

OBJECT-ORIENTED DESIGN
OOD) anD C++

IN THIS CHAPTER, YOU WILL:

Learn about inheritance

Learn about derived and base classes

Explore how to redefine the member functions of a base class
Examine how the constructors of base and derived classes work
Learn how to construct the header file of a derived class

Explore three types of inheritance: public, protected, and private
Learn about composition

Become familiar with the three basic principles
of object-oriented design

Learn about overloading

Become aware of the restrictions on operator overloading
Examine the pointer this

Learn about friend functions

Explore the members and honmembers of a class

Discover how to overload various operators

Learn about templates

Explore how to construct function templates and class templates



60 | Chapter 2: Object-Oriented Design (O0D) and C++

Chapter 1 introduced classes, abstract data types (ADT), and ways to implement ADT in
C++. By using classes, you can combine data and operations in a single unit. An object,
therefore, becomes a self~contained entity. Operations can directly access the data, but the
internal state of an object cannot be manipulated directly.

In addition to implementing ADT, classes have other features. For instance, you can
create new classes from existing classes. This important feature encourages code reuse.

Inheritance

Suppose that you want to design a class, partTimeEmployee, to implement and process
the characteristics of a part-time employee. The main features associated with a part-time
employee are the name, pay rate, and number of hours worked. In Example 1-12 (in
Chapter 1), we designed a class to implement a person’s name. Every part-time employee
is a person. Therefore, rather than design the class partTimeEmployee from scratch, we
want to be able to extend the definition of the class personType (from Example 1-12)
by adding additional members (data and/or functions).

Of course, we do not want to make the necessary changes directly to the class
personType—that is, edit the class personType, and add and/or delete members.
In fact, we want to create the class partTimeEmployee without making any physical
changes to the class personType, by adding only the members that are necessary. For
example, because the class personType already has data members to store the first
name and last name, we will not include any such members in the class
partTimeEmployee. In fact, these data members will be inherited from the class
personType. (We will design such a class in Example 2-2.)

In Chapter 1, we extensively studied and designed the class clockType to implement the
time of day in a program. The class clockType has three data members to store hours,
minutes, and seconds. Certain applications—in addition to hours, minutes, and seconds—
might also require us to store the time zone. In this case, we would likely extend the
definition of the class clockType and create a class, extClockType, to accommodate
this new information. That is, we want to derive the class extClockType by adding a
data member—say, timezone—and the necessary function members to manipulate the
time (see Programming Exercise 1 at the end of this chapter). In C++, the mechanism that
allows us to accomplish this task is the principle of inheritance. Inheritance is an “is-a”
relationship; for instance, “every employee is a person.”

Inheritance lets us create new classes from existing classes. The existing classes are called
the base classes; the new class that we create from the existing classes is called the
derived class. The derived class inherits the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either a single inheritance or a multiple inheritance. In a single inheritance,



Inheritance | 61

the derived class is derived from a single base class; in a multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a treelike, or hierarchical, structure wherein a base class is
shown with its derived classes. Consider the tree diagram shown in Figure 2-1.

rectangle

circle

square

FIGURE 2-1 Inheritance hierarchy

In this diagram, shape is the base class. The classes circle and rectangle are derived
from shape, and the class square is derived from rectangle. Every circle and
every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName

{

member list
Y

where memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance. (We
discuss protected inheritance later in this chapter.)

Suppose that we have defined a class called shape. The following statements specify that
the class circle is derived from shape, and it is a public inheritance:

class circle: public shape



62 | Chapter 2: Object-Oriented Design (O0D) and C++

On the other hand, consider the following definition of the class circle:

class circle: private shape

{

}:

This is a private inheritance. In this definition, the public members of shape become
private members of the class circle. So any object of type circle cannot directly
access these members. The previous definition of circle is equivalent to the following:

class circle: shape

{

}:

That is, if we do not use either the memberAccessSpecifier public or private, the
public members of a base class are inherited as private members.

The following facts about the base and the derived classes should be kept in mind.

1. The private members of a base class are private to the base class;
hence, the members of the derived class cannot directly access them.
In other words, when you write the definitions of the member functions
of the derived class, you cannot directly access the private members
of the base class.

2. The public members of a base class can be inherited either as public
members or as private members by the derived class. That is, the
public members of the base class can become either public or
private members of the derived class.

3. The derived class can include additional members—data and/or functions.

4. The derived class can redefine the public member functions of the base
class. That is, in the derived class, you can have a member function with
the same name, number, and types of parameters as a function in the
base class. However, this redefinition applies only to the objects of the
derived class, not to the objects of the base class.

5.  All member variables of the base class are also member variables of the
derived class. Similarly, the member functions of the base class (unless
redefined) are also member functions of the derived class. (Remember
Rule 1 when accessing 2 member of the base class in the derived class.)

The next sections describe two important issues related to inheritance. The first issue is the
redefinition of the member functions of the base class in the derived class. While discussing



Inheritance | 63

this issue, we also address how to access the private (data) members of the base class in the
derived class. The second key inheritance issue is related to the constructor. The con-
structor of a derived class cannot directly access the private member variables of the base
class. Thus, we need to ensure that the private member variables that are inherited
from the base class are initialized when a constructor of the derived class executes.

Redefining (Overriding) Member Functions of the Base Class

Suppose that a class derivedClass is derived from the class baseClass. Further
assume that both derivedClass and baseClass have some member variables. It then
follows that the member variables of the class derivedClass are its own member
variables, together with the member variables of baseClass. Suppose that baseClass
contains a function, print, that prints the values of the member variables of baseClass.
Now derivedClass contains member variables in addition to the member variables
inherited from baseClass. Suppose that you want to include a function that prints the
member variables of derivedClass. You can give any name to this function. However,
in the class derivedClass, you can also name this function as print (the same name
used by baseClass). This is called redefining (or overriding) the member function of the
base class. Next, we illustrate how to redefine the member functions of a base class with
the help of an example.

To redefine a public member function of a base class in the derived class, the
corresponding function in the derived class must have the same name, number, and types
of parameters. In other words, the name of the function being redefined in the derived
class must have the same name and the same set of parameters. If the corresponding
functions in the base class and the derived class have the same name but different sets
of parameters, this is function overloading in the derived class, which is also allowed.

Consider the definition of the following class:

//***************************************************************

// Author: D.S. Malik

//

// class rectangleType

// This class specifies the members to implement the properties

// of a rectangle.
//***************************************************************

class rectangleType
{
public:
void setDimension (double 1, double w);
//Function to set the length and width of the rectangle.
//Postcondition: length = 1; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.




64 | Chapter 2: Object-Oriented Design (O0D) and C++

double getWidth () const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is calculated
// and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of the rectangle.

rectangleType () ;
//default constructor
//Postcondition: length = 0; width

I
o
~

rectangleType (double 1, double w);
//constructor with parameters
//Postcondition: length = 1; width = w;

private:
double length;
double width;
}:

Figure 2-2 shows the UML class diagram of the class rectangleType.

rectangleType

—length: double
—width: double

+setDimension (double, double): void
+getLength () const: double
+getWidth () const: double

+area () const: double

+perimeter () const: double

+print () const: void
+rectangleType ()

t+rectangleType (double, double)

FIGURE 2-2 UML class diagram of the class rectangleType



Inheritance | 65

Suppose that the definitions of the member functions of the class rectangleType are
as follows:

void rectangleType::setDimension (double 1, double w)

{
if (1 >= 0)
length = 1;
else
length = 0;
if (w >= 0)
width = w;
else
width = 0;
}
double rectangleType::getLength() const
{
return length;
}
double rectangleType::getWidth() const
{
return width;
}
double rectangleType::area() const
{
return length * width;
}
double rectangleType::perimeter () const
{
return 2 * (length + width):;
}
void rectangleType::print () const
{
cout << "Length = " << length
<< "; Width = " << width;
}
rectangleType: :rectangleType (double 1, double w)
{
setDimension(l, w);
}
rectangleType: :rectangleType ()
{
length = 0;
width = 0;



66 | Chapter 2: Object-Oriented Design (O0D) and C++

Now consider the definition of the following class boxType, derived from the
class rectangleType:

//***************************************************************

// Author: D.S. Malik

!/

// class boxType

// This class is derived from the class rectangleType and it

// specifies the members to implement the properties of a box.
//***************************************************************

class boxType: public rectangleType

{
public:
void setDimension (double 1, double w, double h);
//Function to set the length, width, and height of the box.
//Postcondition: length = 1; width = w; height = h;
double getHeight () const;
//Function to return the height of the box.
//Postcondition: The value of height is returned.
double area() const;
//Function to return the surface area of the box.
//Postcondition: The surface area of the box is
// calculated and returned.
double volume () const;
//Function to return the volume of the box.
//Postcondition: The volume of the box is calculated and
// returned.
void print () const;
//Function to output the length, width, and height of a box.
boxType () ;
//Default constructor
//Postcondition: length = 0; width = 0; height = 0;
boxType (double 1, double w, double h);
//Constructor with parameters
//Postcondition: length = 1; width = w; height = h;
private:

double height;
};



Inheritance | 67

Figure 2-3 shows the UML class diagram of the class boxType and the inheritance
hierarchy.

boxType

—height: double

+setDimension (double, double, double): void
+getHeight () const: double

+area () const: double

+volume () const: double

+print () const: void

+boxType ()

+boxType (double, double, double)

rectangleType

A

boxType

FIGURE 2-3 UML class diagram of the class boxType and the inheritance hierarchy

From the definition of the class boxType, it is clear that the class boxType is
derived from the class rectangleType, and that it is a public inheritance. There-
fore, all public members of the class rectangleType are public members of the
class boxType. The class boxType also overrides (redefines) the functions print
and area.

In general, while writing the definitions of the member functions of a derived class to
specify a call to a public member function of the base class, we do the following:

e If the derived class overrides a public member function of the base class,
then to specify a call to that public member function of the base class, you
use the name of the base class, followed by the scope resolution operator,
: :, followed by the function name with the appropriate parameter list.

e If the derived class does not override a public member function of
the base class, you may specify a call to that public member function
by using the name of the function and the appropriate parameter list.
(See the following note for member functions of the base class that are
overloaded in the derived class.)

If a derived class overloads a public member function of the base class, then while
writing the definition of a member function of the derived class, to specify a call to that
(overloaded) member function of the base class, you might need (depending on the
compiler) to use the name of the base class followed by the scope resolution operator, : :,
followed by the function name with the appropriate parameter list. For example, the
class boxType overloads the member function setDimension of the class
rectangleType. (See the definition of the function setDimension of the class
boxType given later in this section.)



68 | Chapter 2: Object-Oriented Design (O0D) and C++

Next, let us write the definition of the member function print of the class boxType.
The class boxType has three member variables: length, width, and height. The
member function print of the class boxType prints the values of these member
variables. To write the definition of the function print of the class boxType, keep
in mind the following:

e The member variables 1ength and width are private members of the
class rectangleType, and so cannot be directly accessed in the class
boxType. Therefore, when writing the definition of the function print
of the class boxType, we cannot access length and width directly.

e The member variables length and width of the class rectangleType
are accessible in the class boxType through the public member func-
tions of the class rectangleType. Therefore, when writing the defi-
nition of the member function print of the class boxType, we first
call the member function print of the class rectangleType to print
the values of length and width. After printing the values of length and
width, we output the values of height.

To call the member function print of rectangleType in the definition of the member
function print of boxType, we must use the following statement:

rectangleType: ::print () ;

This statement ensures that we call the member function print of the base class
rectangleType, not of the class boxType.

The definition of the member function print of the class boxType is:

void boxType::print () const

{

rectangleType: :print();

cout << "; Height = " << height;
}

Let us write the definitions of the remaining member functions of the class boxType.
The definition of the function setDimension is as follows:

void boxType: :setDimension (double 1, double w, double h)

{

rectangleType: :setDimension (1, w):;

if (h >= 0)
height = h;
else
height = 0;

}

Notice that in the preceding definition of the function setDimension, a call to the
member function setDimension of the class rectangleType is preceded by the
name of the class and the scope resolution operator, even though the class boxType
overloads—not overrides—the function setDimension.



Inheritance | 69

The definition of the function getHeight is as follows:

double boxType::getHeight () const
{

return height;

}

The member function area of the class boxType determines the surface area of a box.
To determine the surface area of a box, we need to access the length and width of the
box, which are declared as private members of the class rectangleType. Therefore,
we use the member functions getLength and getWidth of the class rectangleType
to retrieve the length and width, respectively. Because the class boxType does not
contain any member functions that have the names getLength or getWidth, we call
these member functions of the class rectangleType without using the name of the
base class.

double boxType::area() const

{
return 2 * (getLength() * getWidth ()
+ getLength() * height
+ getWidth() * height):;
}

The member function volume of the class boxType determines the volume of a box.
To determine the volume of a box, you multiply the length, width, and height of the
box, or multiply the area of the base of the box by its height. Let us write the definition of
the member function volume by using the second alternative. To do this, you can use the
member function area of the class rectangleType to determine the area of the base.
Because the class boxType overrides the member function area, to specify a call to the
member function area of the class rectangleType, we use the name of the base class
and the scope resolution operator, as shown in the following definition:

double boxType::volume () const

{

return rectangleType::area() * height;

}

In the next section, we discuss how to specify a call to the constructor of the base class
when writing the definition of a constructor of the derived class.

Constructors of Derived and Base Classes

A derived class can have its own private member variables, and so a derived class can
explicitly include its own constructors. A constructor typically serves to initialize
the member variables. When we declare a derived class object, this object inherits the
members of the base class, but the derived class object cannot directly access the private
(data) members of the base class. The same is true for the member functions of a derived
class. That is, the member functions of a derived class cannot directly access the private
members of the base class.




70 | Chapter 2: Object-Oriented Design (O0D) and C++

As a consequence, the constructors of a derived class can (directly) initialize only the
(public data) members inherited from the base class of the derived class. Thus, when a
derived class object is declared, it must also automatically execute one of the constructors
of the base class. Because constructors cannot be called like other functions, the execution
of a derived class constructor must trigger the execution of one of the base class
constructors. This is, in fact, what happens. To make this explicit, a call to the base class
constructor is specified in the heading of the definition of a derived class constructor.

In the preceding section, we defined the class rectangleType and derived the class
boxType from it. Moreover, we illustrated how to override a member function of the
class rectangleType. Let us now discuss how to write the definitions of the con-
structors of the class boxType.

The class rectangleType has two constructors and two member variables. The class
boxType has three member variables: length, width, and height. The member vari-
ables length and width are inherited from the class rectangleType.

First, let us write the definition of the default constructor of the class boxType.
Recall that, if a class contains the default constructor and no values are specified when
the object is declared, the default constructor executes and initializes the object.
Because the class rectangleType contains the default constructor, when writing
the definition of the default constructor of the class boxType, we do not specify any
constructor of the base class.

boxType: :boxType ()

{
height = 0.0;
}
Next, we discuss how to write the definitions of constructors with parameters. To trigger
the execution of a constructor (with parameters) of the base class, you specify the name of

a constructor of the base class with the parameters in the heading of the definition of the
constructor of the derived class.

Consider the following definition of the constructor with parameters of the class
boxType:

boxType: :boxType (double 1, double w, double h)
rectangleType (1, w)

{
if (h >= 0)
height = h;
else
height = 0;
}

In this definition, we specify the constructor of rectangleType with two parameters.
When this constructor of boxType executes, it triggers the execution of the constructor
with two parameters of type double of the class rectangleType.



Inheritance | 71

Consider the following statements:

rectangleType myRectangle(5.0, 3.0); //Line 1
boxType myBox (6.0, 5.0, 4.0); //Line 2

The statement in Line 1 creates the rectangleType object myRectangle. Thus, the
object myRectangle has two member variables: length and width. The statement in
Line 2 creates the boxType object myBox. Thus, the object myBox has three member
variables: length, width, and height. See Figure 2-4.

myBox

myRectangle length | 6.0
Y &l length | 5.0

width 5.0

height

width 3.0

FIGURE 2-4 Objects myRectangle and myBox

Consider the following statements:

myRectangle.print () ; //Line 3
cout << endl; //Line 4
myBox.print () ; //Line 5
cout << endl; //Line 6

In the statement in Line 3, the member function print of the class rectangleType is
executed. In the statement in Line 5, the function print associated with the class
boxType is executed. Recall that, if a derived class overrides a member function of the
base class, the redefinition applies only to the objects of the derived class. Thus, the
output of the statement in Line 3 is:

Length = 5.0; Width = 3.0
The output of the statement in Line 5 is:

Length = 6.0; Width = 5.0; Height = 4.0

(Constructors with default parameters and the inheritance hierarchy) Recall that a class can
have a constructor with default parameters. Therefore, a derived class can also have a
constructor with default parameters. For example, suppose that the definition of the
class rectangleType is as given next. (To save space, these definitions have no
documentation.)



72 | Chapter 2: Object-Oriented Design (O0D) and C++

class rectangleType
{
public:
void setDimension (double 1, double w);
double getLength() const;
double getWidth () const;
double area() const;
double perimeter ()const;
void print () const;
rectangleType (double 1 = 0, double w = 0);
//Constructor with default parameters

private:
double length;
double width;
}i

Suppose the definition of the constructor is:

rectangleType: :rectangleType (double 1, double w)
{
setDimension (1, w);

}

Now suppose that the definition of the class boxType is as follows:

class boxType: public rectangleType
{
public:
void setDimension (double 1, double w, double h);
double getHeight () const;
double area() const;
double volume () const;
void print () const;
boxType (double 1 = 0, double w = 0, double h = 0);
//Constructor with default parameters

private:
double height;
};

You can write the definition of the constructor of the class boxType as follows:

boxType: :boxType (double 1, double w, double h)
rectangleType (1, w)

{
if (h >= 0)
height = h;
else
height = 0;
}

Notice that this definition also takes care of the default constructor of the class boxType.



Inheritance | 73

Suppose that a base class, baseClass, has private member variables and
constructors. Further suppose that the class derivedClass is derived from
baseClass, and derivedClass has no member variables. Therefore, the member
variables of derivedClass are the ones inherited from baseClass. A constructor
cannot be called like other functions, and the member variables of baseClass
cannot be directly accessed by the member functions of derivedClass. To guarantee
the initialization of the inherited member variables of an object of type
derivedClass, even though derivedClass has no member variables, it must
have the appropriate constructors. A constructor (with parameters) of derivedClass
merely issues a call to a constructor (with parameters) of baseClass. Therefore,
when you write the definition of the constructor (with parameters) of derivedClass,
the heading of the definition of the constructor contains a call to an appropriate
constructor (with parameters) of baseClass, and the body of the constructor is
empty—that is, it contains only the opening and closing braces.

Suppose that you want to define a class to group the attributes of an employee. There
are both full-time employees and part-time employees. Part-time employees are paid
based on the number of hours worked and an hourly rate. Suppose that you want to
define a class to keep track of a part-time employee’s information such as name, pay
rate, and hours worked. You can then print the employee’s name together with his
or her wages. Because every employee is a person, and Example 1-12 (Chapter 1)
defined the class personType to store the first name and the last name together with
the necessary operations on name, we can define a class partTimeEmployee based on
the class personType. You can also redefine the print function to print the
appropriate information.

//***************************************************************
// Author: D.S. Malik

//

// class partTimeEmployee

// This class is derived from the class personType and it

// specifies the members to implement the properties of a

// part-time employee.
//**********‘k***‘k************************************************

class partTimeEmployee: public personType
{
public:
void print () const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs: firstName lastName wages are $$$$.$$




74

}:

Chapter 2: Object-Oriented Design (O0OD) and C++

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setNameRateHours (string first, string last,
double rate, double hours);
//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee (string first = "", string last = "",
double rate = 0, double hours = 0);
//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;

// payRate = rate; hoursWorked = hours
private:
double payRate; //variable to store the pay rate

double hoursWorked; //variable to store the hours worked

Figure 2-5 shows the UML class diagram of the class partTimeEmployee and the
inheritance hierarchy.

partTimeEmployee

-payRate: double
—hoursWorked: double

+print () const: void personType
+calculatePay () const: double
+setNameRateHours (string, string,
double, double) : void
+partTimeEmployee (string = "", string = "", partTimeEmployee
double 0, double = 0)

A

FIGURE 2-5 UML class diagram of the class partTimeEmployee and inheritance hierarchy

The definitions of the member functions of the class partTimeEmployee are as
follows:

void partTimeEmployee: :print () const

{

personType::print(); //print the name of the employee
cout << "'s wages are: $" << calculatePay() << endl;



Inheritance | 75

double partTimeEmployee::calculatePay() const

{

return (payRate * hoursWorked) ;

}

void partTimeEmployee: :setNameRateHours (string first,
string last, double rate, double hours)

{
personType: :setName (first, last):;
payRate = rate;
hoursWorked = hours;

}

//Constructor
partTimeEmployee: :partTimeEmployee (string first, string last,
double rate, double hours)
: personType (first, last)

payRate = rate;
hoursWorked = hours;

Header File of a Derived Class

The previous section explained how to derive new classes from previously defined classes.
To define new classes, you create new header files. The base classes are already defined,
and header files contain their definitions. Thus, to create new classes based on the
previously defined classes, the header files of the new classes contain commands that tell
the computer where to look for the definitions of the base classes.

Suppose that the definition of the class personType is placed in the header file
personType.h. To create the definition of the class partTimeEmployee, the header
file—say, partTimeEmployee.h—must contain the preprocessor directive:

#include "personType.h"

before the definition of the class partTimeEmployee. To be specific, the header file
partTimeEmployee.h is as follows:

//Header file partTimeEmployee

#include "personType.h"

//***************************************************************

// Author: D.S. Malik

//

// class partTimeEmployee

// This class is derived from the class personType and it
// specifies the members to implement the properties of a

// part-time employee.
//***************************************************************



76 | Chapter 2: Object-Oriented Design (O0D) and C++

class partTimeEmployee: public personType
{
public:
void print () const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs: firstName lastName wages are $$$$.$$

double calculatePay () const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setNameRateHours (string first, string last,
double rate, double hours);
//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee (string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

The definitions of the member functions can be placed in a separate file (whose extension
is .cpp). Recall that to include a system-provided header file, such as iostream, in a user
program, you enclose the header file between angular brackets; to include a user-defined
header file in a program, you enclose the header file between double quotation marks.

Multiple Inclusions of a Header File

The previous section discussed how to create the header file of a derived class. To include
a header file in a program, you use the preprocessor command include. Recall that
before a program is compiled, the preprocessor first processes the program. Consider the
following header file:

//Header file test.h

const int ONE 1;
const int TWO = 2;



Inheritance | 77

Suppose that the header file testa.h includes the file test.h to use the identifiers ONE
and TWO. To be specific, suppose that the header file testA.h looks like:

//Header file testA.h

#include "test.h"

Now consider the following program code:

//Program headerTest.cpp

#include "test.h"
#include "testA.h"

When the program headerTest.cpp is compiled, it is first processed by the preproces-
sor. The preprocessor includes first the header file test.h and then the header file
testA.h. When the header file testa.h is included, because it contains the preprocessor
directive #include "test.h", the header file test.h is included twice in the program.
The second inclusion of the header file test . h results in compile-time errors, such as the
identifier ONE already being declared. This problem occurs because the first inclusion of
the header file test.h has already defined the variables ONE and TWO. To avoid multiple
inclusion of a file in a program, we use certain preprocessor commands in the header file.
Let us first rewrite the header file test.h using these preprocessor commands, and then
explain the meaning of these commands.

//Header file test.h

#ifndef H_test
#define H test
const int ONE 1;
const int TWO = 2;
#endif

a. #ifndef H_test means “if not defined H_test”
b. #define H test means “define H test”

c. #endif means “end if”
Here H_test is a preprocessor identifier.

The effect of these commands is as follows: If the identifier H_test is not defined, we
must define the identifier H_test and let the remaining statements between #define and
#endif pass through the compiler. If the header file test.h is included the second time
in the program, the statement #ifndef fails and all the statements until #endif are
skipped. In fact, all header files are written using similar preprocessor commands.




78 | Chapter 2: Object-Oriented Design (O0D) and C++

Protected Members of a Class

The private members of a class are private to the class and cannot be directly accessed
outside the class. Only member functions of that class can access the private members.
As discussed previously, the derived class cannot access private members of a class.
However, it is sometimes necessary for a derived class to access a private member of a
base class. If you make a private member become public, anyone can access that
member. Recall that the members of a class are classified into three categories: public,
private, and protected. So, for a base class to give access to a member to its derived
class and still prevent its direct access outside the class, you must declare that member
under the member access specifier protected. Thus, the accessibility of a protected
member of a class is in between public and private. A derived class can directly access
the protected member of a base class.

To summarize, if a derived class needs to access a member of a base class, that member of
the base class should be declared under the member access specifier protected.

Inheritance as public, protected, Or private

Suppose class B is derived from class A. Then B cannot directly access the private
members of A. That is, the private members of A are hidden to B. What about the
public and protected members of A? This section gives the rules that generally apply
when accessing the members of a base class.

Consider the following statement:

class B: memberAccessSpecifier A

{

}:
In this statement, memberAccessSpecifier is either public, protected, or private.

1. If memberAccessSpecifier is public—that is, the inheritance is
public—then

a. The public members of A are public members of B. They can be
directly accessed in class B.

b. The protected members of A are protected members of B. They
can be directly accessed by the member functions (and friend
functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.



Composition | 79

2. If memberAccessSpecifier is protected—that is, the inheritance is
protected—then

a. The public members of A are protected members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are protected members of B. They
can be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.

3. If memberAccessSpecifier is private—that is, the inheritance is
private—then

a. The public members of A are private members of B. They can be
accessed by the member functions (and friend functions) of B.

b. The protected members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.

The section, “friend Functions of Classes” (located later in this chapter) describes the
friend functions.

Composition

Composition is another way to relate two classes. In composition, one or more members
of a class are objects of another class type. Composition is a “has-a” relationship; for
example, “every person has a date of birth.”

Example 1-12, in Chapter 1, defined a class called personType. The class personType
stores a person’s first name and last name. Suppose we want to keep track of additional
information for a person, such as a personal ID (for example, a Social Security number)
and a date of birth. Because every person has a personal ID and a date of birth, we can
define a new class, called personalInfoType, in which one of the members is an object
of type personType. We can declare additional members to store the personal ID and
date of birth for the class personalInfoType.

First, we define another class, dateType, to store only a person’s date of birth, and then
construct the class personalInfoType from the classes personType and dateType.
This way, we can demonstrate how to define a new class using two classes.




80 | Chapter 2: Object-Oriented Design (OOD) and C++

To define the class dateType, we need three data members to store the month, day
number, and year. Some of the operations that need to be performed on a date are to set
the date and to print the date. The following statements define the class dateType:

//************************************************************

// Author: D.S. Malik
//
// class dateType

// This class specifies the members to implement a date.
//************************************************************

class dateType

{
public:
void setDate(int month, int day, int year):;
//Function to set the date.
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year
int getDay () const;
//Function to return the day.
//Postcondition: The value of dDay is returned.
int getMonth () const;
//Function to return the month.
//Postcondition: The value of dMonth is returned.
int getYear() const;
//Function to return the year.
//Postcondition: The value of dYear is returned.
void printDate () const;
//Function to output the date in the form mm-dd-yyyy.
dateType (int month = 1, int day = 1, int year = 1900);
//Constructor to set the date
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year. If
// no values are specified, the default values are used to
// initialize the member variables.
private:

int dMonth; //variable to store the month

int dDay; //variable to store the day

int dYear; //variable to store the year
}:



Composition

Figure 2-6 shows the UML class diagram of the class dateType.

dateType

—dMonth:
—dDay:
—dYear:

int
int
int

+setDate (int,
+getDay () const:
+getMonth ()
+getYear () const:
+printDate ()

int,
int
const:
int
const:
+dateType (int = 1,

int): void

int

void

int = 1, int = 1900)

FIGURE 2-6 UML class diagram of the class dateType

The definitions of the member functions of the class dateType are as follows:

void dateType::setDate (int month,
{

dMonth = month;

dDay = day;

dYear = year;

}

int day, int year)

81

The definition of the function setDate, before storing the date into the data members,
does not check whether the date is valid. That is, it does not confirm whether month is
between 1 and 12, year is greater than 0, and day is valid (for example, for January, day
should be between 1 and 31). In Programming Exercise 2 at the end of this chapter, you
are asked to rewrite the definition of the function setDate so that the date is validated

before storing it in the data members.

The definitions of the remaining member functions are as follows:

int dateType::getDay() const

return dDay;

}

int dateType::getMonth() const
{ return dMonth;

}

int dateType::getYear () const
{

return dYear;




82 | Chapter 2: Object-Oriented Design (OOD) and C++

void dateType::printDate() const
{

cout << dMonth << "-" << dDay << "-" << dY¥ear;
}

//Constructor with parameters
dateType: :dateType (int month, int day, int year)
{

setDate (month, day, year):

}

Because the constructor uses the function setDate before storing the date into the data
members, the constructor also does not check whether the date is valid. In Programming
Exercise 2 at the end of this chapter, when you rewrite the definition of the function
setDate to validate the date, and the constructor uses the function setDate, the date set
by the constructor will also be validated.

Next, we give the definition of the class personalInfoType:

//************************************************************

// Author: D.S. Malik

//

// class personallnfo

// This class specifies the members to implement a person's

// personal information.
//**‘k‘k**‘k***‘k***‘k**********‘k*****************************‘k***‘k

class personalInfoType

{

public:

void setPersonalInfo(string first, string last, int month,
int day, int year, int ID);

//Function to set the personal information.
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day; dYear = year;
// personID = ID;

void printPersonalInfo () const;
//Function to print the personal information.

personalInfoType (string first = "", string last = "",

int month = 1, int day = 1, int year = 1900,
int ID = 0);

//Constructor

//The member variables are set according to the parameters.

//Postcondition: firstName = first; lastName = last;

// dMonth = month; dDay = day; dYear = year;

// personID = ID;

// If no values are specified, the default values are

// used to initialize the member variables.



Composition | 83

private:
personType name;
dateType bDay;
int personID;

}i

Figure 2-7 shows the UML class diagram of the class personalInfoType and com-
position (aggregation).

personalInfoType

—-name: personType
—-bDay: dateType
—-personID: int

setPersonalInfo(string, string, int, int,
int, int): void

printPersonalInfo() const: void | personalInfoType |
personalInfoType (string = "", string = "",

int = 1, int = 1,

int = 1900, int = 0) |personType| |dateType|

FIGURE 2-7 UML class diagram of the class personalInfoType and composition (aggregation)

Before we give the definition of the member functions of the class personalInfoType,
let us discuss how the constructors of the objects bDay and name are invoked.

Recall that a class constructor is automatically executed when a class object enters its
scope. Suppose that we have the following statement:

personalInfoType student;

When the object student enters its scope, the objects bDay and name, which are
members of student, also enter their scopes; as a result, one of their constructors is
executed. We therefore need to know how to pass arguments to the constructors of the
member objects (that is, bDay and name). Recall that constructors do not have a type and
so cannot be called like other functions. The arguments to the constructor of a member
object (such as bDay) are specified in the heading part of the definition of the constructor
of the class. The following statements illustrate how to pass arguments to the constructors
of the member objects:

personalInfoType: :personalInfoType (string first, string last, int month,
int day, int year, int ID)
: name (first, last), bDay(month, day, year)



84 | Chapter 2: Object-Oriented Design (OOD) and C++

Member objects of a class are constructed (that is, initialized) in the order they are
declared (not in the order they are listed in the constructor’s member initialization list)
and before the enclosing class objects are constructed. Thus, in our case, the object name
1s initialized first, then bDay, and, finally, student.

The definitions of the member functions of the class personalInfoType are as follows:

void personalInfoType: :setPersonallInfo(string first, string last,
int month, int day, int year, int ID)

{
name.setName (first, last) ;
bDay.setDate (month, day, year) ;
personlID = ID;
}
void personalInfoType: :printPersonalInfo() const
{
name.print () ;
cout << "'s date of birth is ";
bDay.printDate () ;
cout << endl;
cout << "and personal ID is " << personID;
}

personalInfoType: :personalInfoType (string first, string last,
int month, int day, int year, int ID)
name (first, last), bDay(month, day, year)

{
personlID = ID;

}

In the case of inheritance, use the class name to invoke the base class’s constructor. In the
case of composition, use the member object name to invoke its own constructor.

Polymorphism: Operator and Function Overloading

In Chapter 1, you learned how classes in C++ are used to combine data and operations
on that data in a single entity. The ability to combine data and operations is called
encapsulation. It is the first principle of object-oriented design (OOD). Chapter 1
defined the abstract data type (ADT) and described how classes in C++ implement
ADTs. The first section of this chapter discussed how new classes can be derived from
existing classes through the mechanism of inheritance. Inheritance, the second principle
of OOD, encourages code reuse.

The remainder of this chapter discusses the third principle of OOD—polymorphism.
First we discuss polymorphism via operator overloading, and then via templates.
Templates enable the programmer to write generic codes for related functions and classes.
We will simplify function overloading through the use of templates, called function
templates.



Operator Overloading | 85

Operator Overloading

This section describes how operators are loaded in C++. But first let us see why you
would want to overload operators.

Why Operator Overloading Is Needed

Chapter 1 defined and implemented the class clockType. It also showed how you can
use the class clockType to represent the time of day in a program. Let us review some
of the characteristics of the class clockType.

Consider the following statements:

clockType myClock(8,23,34);
clockType yourClock(4,5,30);

The first statement declares myClock to be an object of type clockType and initializes
the data members hr, min, and sec of myClock to 8, 23, and 34, respectively. The
second statement declares yourClock to be an object of type clockType and initializes
the data members hr, min, and sec of yourClock to 4, 5, and 30, respectively.

Now consider the following statements:

myClock.printTime () ;
myClock.incrementSeconds () ;
if (myClock.equalTime (yourClock))

The first statement prints the value of myClock in the form hr:min:sec. The second
statement increments the value of myClock by one second. The third statement checks
whether the value of myClock is the same as the value of yourClock.

These statements do their job. However, if we can use the insertion operator << to
output the value of myClock, the increment operator ++ to increment the value of
myClock by one second, and relational operators for comparison, we can enhance the
flexibility of C++ considerably and can improve code readability. More specifically, we
prefer to use the following statements instead of the previous ones:

cout << myClock;
myClock++;
if (myClock == yourClock)

Recall that the only built-in operations on classes are the assignment operator and the
member selection operator. Therefore, other operators cannot be directly applied to class
objects. However, C++ allows the programmer to extend the definitions of most of the
operators so that operators such as relational operators, arithmetic operators, insertion




86 | Chapter 2: Object-Oriented Design (OOD) and C++

operators for data output, and extraction operators for data input can be applied to classes.
In C++ terminology, this is called operator overloading. In addition to operator
overloading, this chapter discusses function overloading.

Operator Overloading

Recall how the arithmetic operator / works. If both operands of / are integers, the result
is an integer; otherwise, the result is a floating-point number. Similarly, the stream
insertion operator, <<, and the stream extraction operator, >>, are overloaded. The
operator << is used as both a stream insertion operator and a left shift operator. The
operator >> is used as both a stream extraction operator and a right shift operator. These
are examples of operator overloading.

Other examples of overloaded operators are + and -. The results of + and - are different
for integer arithmetic, floating-point arithmetic, and pointer arithmetic.

C++ allows the user to overload most of the operators so that the operators can work
effectively in a specific application. It does not allow the user to create new operators.
Most of the existing operators can be overloaded to manipulate class objects.

To overload an operator, you must write functions (that is, the header and body). The
name of the function that overloads an operator is the reserved word operator followed
by the operator to be overloaded. For example, the name of the function to overload the
operator >= is

operator>=

Operator function: The function that overloads an operator.

Syntax for Operator Functions

The result of an operation is a value; therefore, the operator function is a value-returning
function.

The syntax of the heading for an operator function is as follows:

returnType operator operatorSymbol (arguments)

In C++, operator is a reserved word.

Operator overloading provides the same concise expressions for user-defined data types as
it does for built-in data types. To overload an operator for a class, you do the following:

1. Include the statement to declare the function to overload the operator
(that is, the operator function) in the definition of the class.
2. Write the definition of the operator function.
Certain rules must be followed when you include an operator function in a class

definition. These rules are described in the section “Operator Functions as Member
Functions and Nonmember Functions,” later in this chapter.



Operator Overloading | 87

Overloading an Operator: Some Restrictions

When overloading an operator, keep the following in mind:

® You cannot change the precedence of an operator.

e The associativity cannot be changed. (For example, the associativity of
the arithmetic operator + is from left to right and it cannot be changed.)

®  You cannot use default arguments with an overloaded operator.

®  You cannot change the number of arguments that an operator takes.

® You cannot create new operators. Only existing operators can be over-
loaded. The operators that cannot be overloaded are

* i ?: sizeof
e The meaning of how an operator works with built-in types, such as int,
remains the same.

e Operators can be overloaded either for objects of the user-defined type,
or for a combination of objects of the user-defined type and objects of

the built-in type.

The Pointer this

A member function of a class can (directly) access the data members of that class for a
given object. Sometimes it 1s necessary for a function member to refer to the object as a
whole, rather than the object’s individual data members. How do you refer to the object
as a whole (that is, as a single unit) in the definition of the member function, especially
when the object is not passed as a parameter? Every object of a class maintains a (hidden)
pointer to itself, and the name of this pointer is this. In C++, this is a reserved word.
The pointer this is available for you to use. When an object invokes a member function,
the member function references the pointer this of the object. For example, suppose
that test is a class and has a member function called funcOne. Further suppose that the
definition of funcOne looks like the following:

test test::funcOne ()

{

return *this;

}
If x and y are objects of type test, the statement
y = xX.funcOne();

copies the value of the object x into the object y; that is, the data members of x are copied
into the corresponding data members of y. When the object x invokes the function
funcOne, the pointer this in the definition of the member function funcOne refers to
the object %, and so this means the address of x and * this means the value of x.



88 | Chapter 2: Object-Oriented Design (OOD) and C++

The following example illustrates how the pointer this works.

In Example 1-12 (in Chapter 1), we designed a class to implement a person’s name in a
program. Here we extend the definition of the class personType to individually set a
person’s first name and last name, and then return the entire object. The extended
definition of the class personType is as follows:

//************************************************************
// Author: D.S. Malik

//

// class personType

// This class specifies the members to implement a name.
//************************************************************

class personType
{
public:
void print() const;
//Function to output the first name and last name in
//the form firstName lastName

void setName (string first, string last):;
//Function to set firstName and lastName according to the
//parameters.
//Postcondition: firstName = first; lastName = last

personType& setFirstName (string first):;
//Function to set the first name.
//Postcondition: firstName = first

// After setting the first name, a reference to the
// object, that is, the address of the object, is
// returned.

personType& setlastName (string last);
//Function to set the last name.
//Postcondition: lastName = last
// After setting the last name, a reference to the object,
// that is, the address of the object, is returned.

string getFirstName () const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName () const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType (string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last



Operator Overloading | 89

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name
}:

Notice that in this definition of the class personType, we replace the default con-

structor and the constructor with parameters by one constructor with default parameters.

The definitions of the functions print, setTime, getFirstName, getLastName, and
the constructor is the same as before (see Example 1-12). The definitions of the functions
setFirstName and setLastName are as follows:

personType& personType::setLastName (string last)

{ lastName = last;
return *this;
}
personType& personType::setFirstName (string first)
{ firstName = first;
return *this;
}

The following program shows how to use the class personType. (We assume that the
definition of the class personType is in the file personType.h.)

//****************************************************************

// Author: D.S. Malik

// Test Program: class personType
//****************************************************************

#include <iostream> //Line 1
#include <string> //Line 2
#include "personType.h" //Line 3
using namespace std; //Line 4
int main () //Line 5
{ //Line 6
personType studentl ("Lisa", "Smith"); //Line 7
personType student2; //Line 8
personType student3; //Line 9
cout << "Line 10 -- Student 1: "; //Line 10
studentl.print () ; //Line 11
cout << endl; //Line 12

student2.setFirstName ("Shelly") .setLastName ("Malik"); //Line 13

cout << "Line 14 -- Student 2: "; //Line 14
student2.print () ; //Line 15
cout << endl; //Line 16



90 | Chapter 2: Object-Oriented Design (O0D) and C++

student3.setFirstName ("Cindy") ; //Line 17
cout << "Line 18 -- Student 3: "; //Line 18
student3.print () ; //Line 19
cout << endl; //Line 20
student3.setLastName ("Tomek") ; //Line 21
cout << "Line 22 -- Student 3: "; //Line 22
student3.print () //Line 23
cout << endl; //Line 24
return 0; //Line 25

} //Line 26

Sample Run:

Line 10 -- Student 1: Lisa Smith

Line 14 -- Student 2: Shelly Malik
Line 18 -- Student 3: Cindy
Line 22 -- Student 3: Cindy Tomek

The statements in Lines 7, 8, and 9 declare and initialize the objects studentl,
student2, and student3, respectively. The objects student2 and student3 are
initialized to empty strings. The statement in Line 11 outputs the value of studentl
(see Line 10 in the sample run, which contains the output of Lines 10, 11, and 12). The
statement in Line 13 works as follows. In the statement

student2.setFirstName ("Shelly") .setLastName ("Malik") ;
first the expression
student2.setFirstName ("Shelly")

is executed because the associativity of the dot operator is from left to right. This
expression sets the first name to "Shelly" and returns a reference to the object, which
is student2. Thus, the next expression executed is

student2.setLastName ("Malik")

which sets the last name of student2 to "Malik". The statement in Line 15 outputs the
value of student2. The statement in Line 17 sets the first name of the object student3
to "Cindy", and ignores the value returned. The statement in Line 19 outputs the value
of student3. Notice the output in Line 18. The output shows only the first name, not
the last name, because we have not yet set the last name of student3. The last name of
student3 is still empty, which was set by the statement in Line 9 when student3 was
declared. Next, the statement in Line 21 sets the last name of student3, and the
statement in Line 23 outputs the value of student3.




Operator Overloading | 91

Friend Functions of Classes

A friend function of a class is a nonmember function of the class, but has access to all
the members (public or non-public) of the class. To make a function as a friend of a
class, the reserved word friend precedes the function prototype (in the class definition).
The word friend appears only in the function prototype in the class definition, not in
the definition of the friend function.

Consider the following statements:

class classIllusFriend

{

friend void two (/*parameters*/);

}:

In the definition of the class classIllusFriend, two is declared as a friend of the
class classIllusFriend. That is, it is a nonmember function of the class
classIllusFriend. When you write the definition of the function two, any object of
type classIllusFriend—which is either a local variable of two or a formal parameter of
two—can access its private members within the definition of the function two. (Example
2-4 illustrates this concept.) Moreover, because a friend function is not a member of a
class, its declaration can be placed within the private, protected, or public part of the
class. However, they are typically placed before any member function declaration.

DEFINITION OF A £riend FUNCTION

When writing the definition of a friend function, the name of the class and the scope
resolution operator do not precede the name of the friend function in the function
heading. Also, recall that the word friend does not appear in the heading of the friend
function’s definition. Thus, the definition of the function two in the previous class
classIllusFriend is as follows:

void friendFunc (/*parameters*/)

{

Of course, we will place the definition of the friend function in the implementation file.

The next section illustrates the difference between a member function and a nonmember
function (friend function), when we overload some of the operators for a specific class.

The following example shows how a friend function accesses the private members of
a class.




92 | Chapter 2: Object-Oriented Design (O0D) and C++

Consider the following class:

class classIllusFriend

{

friend void friendFunc(classIllusFriend cIFObject);

public:
void print();
void setx(int a);

private:
int x;

}:

In the definition of the class classIllusFriend, friendFunc is declared as a
friend function. Suppose that the definitions of the member functions of the class
classIllusFriend are as follows:

voild classIllusFriend: :print()

{
cout << "In class classIllusFriend: x = " << x << endl;
}
void classIllusFriend::setx(int a)
{
X = a;
}

Consider the following definition of the function friendFunc:

void friendFunc(classIllusFriend cIFObject) //Line 1
{ //Line 2
classIllusFriend localTwoObject; //Line 3
localTwoObject.x = 45; //Line 4
localTwoObject.print () //Line 5

cout << "Line 6: In friendFunc accessing "
<< "private member variable " << "x ="
<< localTwoObject.x

<< endl; //Line 6
cIFObject.x = 88; //Line 7
cIFObject.print () ; //Line 8

cout << "Line 9: In friendFunc accessing "

<< "private member variable " << "x =

<< cIFObject.x << endl; //Line 9

} //Line 10



Operator Overloading | 93

The function friendFunc contains a formal parameter cIFObject and a local variable
localTwoObject, both of type classIllusFriend. In the statement in Line 4, the
object localTwoObject accesses its private member variable x and sets its value to 45.
If friendFunc is not declared as a friend function of the class classIllusFriend,
this statement would result in a syntax error because an object cannot directly access its
private members. Similarly, in the statement in Line 7, the formal parameter
cIFObject accesses its private member variable x and sets its value to 88. Once again,
this statement would result in a syntax error if friendFunc is not declared a friend
function of the class classIllusFriend. The statement in Line 6 outputs the value of
the private member variable x of localTwoObject by directly accessing x. Similarly,
the statement in Line 9 outputs the value of x of cIFObject by directly accessing it. The
function friendFunc also prints the value of x by using the function print (see the
statements in Lines 6 and 9).

Now consider the definition of the following function main:

int main () //Line 11
{ //Line 12
classIllusFriend aObject; //Line 13
alObject.setx (32); //Line 14
cout << "Line 15: aObject.x: "; //Line 15
aObject.print () ; //Line 16
cout << endl; //Line 17

cout << Mk~*~x o~k Tegting friendFunc * ~* ~*~x 1

<< endl << endl; //Line 18
friendFunc (aObject) ; //Line 19
return 0; //Line 20

} //Line 21

Sample Run:

Line 15: aObject.x: In class classIllusFriend: x = 32
¥~k kA% Testing friendFunc * ~* ~* ~*

In class classIllusFriend: x = 45
Line 6: In friendFunc accessing private member variable x = 45
In class classIllusFriend: x = 88
Line 9: In friendFunc accessing private member variable x = 88

For the most part, the output is self-explanatory. The statement in Line 19 calls the
function friendFunc (a friend function of the class classIllusFriend) and passes
the object aObject as an actual parameter. Notice that the function friendFunc
generates the four lines of output.




94 | Chapter 2: Object-Oriented Design (O0D) and C++

Operator Functions as Member Functions and Nonmember
Functions

Earlier in this chapter we stated that certain rules must be followed when you include an
operator function in the definition of a class. This section describes these rules.

Most operator functions can be either member functions or nonmember functions—that
is, friend functions of a class. To make an operator function be a member or non-
member function of a class, keep the following in mind:

1. The function that overloads any of the operators (), [1, =, or = for a
class must be declared as a member of the class.

2. Suppose that an operator op is overloaded for a class—say, opOverClass.
(Here, op stands for an operator that can be overloaded, such as + or >>.)

a. If the leftmost operand of op is an object of a difterent type (that is,
not of type opOverClass), the function that overloads the operator
op for opOverClass must be a nonmember—that is, a friend of the
class opOverClass.

b. If the operator function that overloads the operator op for the
class opOverClass is a member of the class opOverClass,
then when applying op on objects of type opOverClass, the left-
most operand of op must be of type opOverClass.

You must follow these rules when including an operator function in a class definition.

You will see later in this chapter that functions that overload the insertion operator, <<,
and the extraction operator, >>, for a class must be nonmembers—that is, they must be
friend functions of the class.

Except for certain operators noted previously, operators can be overloaded either as
member functions or as nonmember functions. The following discussion shows the
difference between these two types of functions.

To facilitate our discussion of operator overloading, we will use the class
rectangleType, defined earlier in this chapter. Also, suppose that you have the follow-
ing statements:

rectangleType myRectangle;
rectangleType yourRectangle;
rectangleType tempRect;

That is, myRectangle, yourRectangle, and tempRect are objects of type rectangleType.

C++ consists of both binary and unary operators. It also has a ternary operator, which
cannot be overloaded. The next few sections discuss how to overload various binary and
unary operators.



Operator Overloading | 95

Overloading Binary Operators

Suppose that # represents a binary operator (arithmetic, such as +; or relational, such as ==
that is to be overloaded for the class rectangleType. This operator can be overloaded as
either a member function of the class or as a friend function. We describe both ways to
overload this operator.

OVERLOADING THE BINARY OPERATORS AS MEMBER FUNCTIONS

Suppose that # is overloaded as a member function of the class rectangleType. The
name of the function to overload # for the class rectangleType is

operator#

Because myRectangle and yourRectangle are objects of type rectangleType, you
can perform the following operation:

myRectangle # yourRectangle
The compiler translates this expression into the following expression:
myRectangle.operator# (yourRectangle)

This expression clearly shows that the function operator# has only one parameter,
which is yourRectangle.

Because operator# is a member of the class rectangleType and myRectangle is an
object of type rectangleType, in the previous statement, operator# has direct access
to the private members of the object myRectangle. Thus, the first parameter of
operator# is the object that is invoking the function operator#, and the second
parameter is passed as a parameter to this function.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL) OPERATORS AS
MEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as member functions of a class.

Function Prototype (to be included in the definition of the class):
returnType operator# (const classNameg&) const;

where # stands for the binary operator, arithmetic or relational, to be overloaded,;
returnType is the type of value returned by the function; and className is the name
of the class for which the operator is being overloaded.

Function Definition:

returnType className: :operator#
(const className& otherObject) const

{

//algorithm to perform the operation

return value;




96 | Chapter 2: Object-Oriented Design (O0D) and C++

The return type of the function that overloads a relational operator is bool.

Let us overload +, *, ==, and != for the class rectangleType. These operators are
overloaded as member functions.

class rectangleType
{
public:
void setDimension (double 1, double w);
double getLength() const;
double getWidth () const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator* (const rectangleTypeé&) const;
//Overload the operator *

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

rectangleType () ;
rectangleType (double 1, double w);

private:
double length;
double width;
}:

The definition of the function operator+ is as follows:

rectangleType rectangleType: :operator+
(const rectangleTypeé& rectangle) const

{
rectangleType tempRect;

tempRect.length = length + rectangle.length;
tempRect.width = width + rectangle.width;

return tempRect;



Operator Overloading | 97

Notice that operator+ adds the corresponding lengths and widths of the two rectangles.
The definition of the function operator* is as follows:

rectangleType rectangleType::operator*
(const rectangleType& rectangle) const

{
rectangleType tempRect;
tempRect.length = length * rectangle.length;
tempRect.width = width * rectangle.width;
return tempRect;

}

Notice that operator* multiplies the corresponding lengths and widths of the two
rectangles.

Two rectangles are equal if their lengths and widths are equal. Therefore, the definition
of the function to overload the operator == is as follows:

bool rectangleType: :operator==
(const rectangleTypeé& rectangle) const

{
return (length == rectangle.length &&
width == rectangle.width):

}

Two rectangles are not equal if either their lengths are not equal or their widths are not
equal. Therefore, the definition of the function to overload the operator != is as follows:

bool rectangleType: :operator!=
(const rectangleType& rectangle) const
{
return (length != rectangle.length ||
width != rectangle.width);

OVERLOADING THE BINARY OPERATORS (ARITHMETIC OR RELATIONAL) AS NONMEMBER
FUNCTIONS

Suppose that # represents the binary operator (arithmetic or relational) that is to be
overloaded as a nonmember function of the class rectangleType.

Further suppose that the following operation is to be performed:
myRectangle # yourRectangle
In this case, the expression is compiled as follows:

operator# (myRectangle, yourRectangle)



98 | Chapter 2: Object-Oriented Design (O0D) and C++

Here, we see that the function operator# has two parameters. This expression also clearly
shows that the function operator# is neither a member of the object myRectangle nor
a member of the object yourRectangle. Both the objects, myRectangle and
yourRectangle, are passed as parameters to the function operator#.

To include the operator function operator# as a nonmember function of the class in the
definition of the class, the reserved word friend must appear before the function
heading. Also, the function operator# must have two parameters.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL) OPERATORS AS
NONMEMBER FUNCTIONS

This section describes the general form of the functions that overload binary operators as
nonmember functions of a class.

Function Prototype (to be included in the definition of the class):
friend returnType operator# (const className&, const classNameg);

where # stands for the binary operator to be overloaded, returnType is the type of value
returned by the function, and className is the name of the class for which the operator
is being overloaded.

Function Definition:

returnType operator# (const className& firstObject,
const classNameé& secondObject)

{

//algorithm to perform the operation

return value;

Overloading the Stream Insertion (<<) and Extraction (>>)
Operators

The operator function that overloads the insertion operator, <<, or the extraction operator,
>>, for a class must be a nonmember function of that class for the following reason.
Consider the following expression:

cout << myRectangle;

In this expression, the leftmost operand of << (that is, cout) is an ostream object, not an
object of type rectangleType. Because the leftmost operand of << is not an object of
type rectangleType, the operator function that overloads the insertion operator for
rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for
rectangleType must be a nonmember function of the class rectangleType.



Operator Overloading | 99

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.
Function Prototype (to be included in the definition of the class):

friend ostream& operator<< (ostreamé&, const classNameg);

Function Definition:

ostream& operator<< (ostream& osObject, const className& cObject)

{

//local declaration, if any
//0utput the members of cObject.
//o0sObject <<

//Return the stream object.
return osObject;

}
In this function definition:

® Both parameters are reference parameters.

e The first parameter—that is, osObject—is a reference to an ostream
object.

® The second parameter is a const reference to a particular class.

e The function return type is a reference to an ostream object.

OVERLOADING THE STREAM EXTRACTION OPERATOR (>>)

The general syntax to overload the stream extraction operator, >>, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend istreamé& operator>> (istreamé&, classNameé&);

Function Definition:

istream& operator>> (istream& isObject, className& cObject)

{
//local declaration, if any
//Read the data into cObject.
//isObject >>
//Return the stream object.
return isObject;
}

We note the following in this function definition.

e Both parameters are reference parameters.

® The first parameter—that is, 1 sObject—is a reference to an istream object.



100 | Chapter 2: Object-Oriented Design (OOD) and C++

® The second parameter is usually a reference to a particular class. The data
read will be stored in the object.

e The function return type is a reference to an istream object.

Example 2-6 shows how the stream insertion and extraction operators are overloaded for
the class rectangleType. We also show how to overload arithmetic and relational
operators as member functions of the class.

The definition of the class rectangleType and the definitions of the operator func-
tions are as follows:

#include <iostream>
using namespace std;

class rectangleType

{

//Overload the stream insertion and extraction operators
friend ostream& operator<< (ostream&, const rectangleType &);
friend istreamé& operator>> (istream&, rectangleType &):;

public:
void setDimension (double 1, double w);
double getLength () const;
double getWidth() const;
double area() const;
double perimeter () const;
void print () const;
rectangleType operator+ (const rectangleType&) const;

//Overload the operator +
rectangleType operator* (const rectangleType&) const;

//Overload the operator *
bool operator==(const rectangleType&) const;

//Overload the operator ==
bool operator!=(const rectangleType&) const;

//Overload the operator !=
rectangleType () 7
rectangleType (double 1, double w);

private:

double length;
double width;
}:

//The definitions of the functions operator+, operator*, operator==,
//operator!=, and the constructor are the same as in Example 2-5.



Operator Overloading | 101

ostream& operator<< (ostreamé& osObject,
const rectangleTypeé& rectangle)

{
osObject << "Length = " << rectangle.length
<< "; Width = " << rectangle.width;
return osObject;
}

istream& operator>> (istream& isObject,
rectangleType& rectangle)

{
isObject >> rectangle.length >> rectangle.width;

return isObject;

}

Consider the following program. (We assume that the definition of the class
rectangleType is in the header file rectangleType.h.)

//****************************************************************

// Author: D.S. Malik
//

// This program shows how to use the modified class rectangleType.
//****************************************************************

#include <iostream> //Line 1
#include "rectangleType.h" //Line 2
using namespace std; //Line 3
int main () //Line 4
{ //Line 5
rectangleType myRectangle (23, 45); //Line 6
rectangleType yourRectangle; //Line 7
cout << "Line 8: myRectangle: " << myRectangle
<< endl; //Line 8

cout << "Line 9: Enter the length and width "

<< "of a rectangle: "; //Line 9
cin >> yourRectangle; //Line 10
cout << endl; //Line 11

cout << "Line 12: yourRectangle: "
<< yourRectangle << endl; //Line 12

cout << "Line 13: myRectangle + yourRectangle: "

<< myRectangle + yourRectangle << endl; //Line 13
cout << "Line 14: myRectangle * yourRectangle: "

<< myRectangle * yourRectangle << endl; //Line 14
return 0; //Line 15

} //Line 16



102 | Chapter 2: Object-Oriented Design (OOD) and C++

Sample Run: In this sample run, the user input is shaded.

Line 8: myRectangle: Length = 23; Width = 45
Line 9: Enter the length and width of a rectangle: 32 15

Line 12: yourRectangle: Length = 32; Width = 15
Line 13: myRectangle + yourRectangle: Length = 55; Width = 60
Line 14: myRectangle * yourRectangle: Length 736; Width = 675

The statements in Lines 6 and 7 declare and initialize myRectangle and yourRectangle
to be objects of type rectangleType. The statement in Line 8 outputs the value of
myRectangle using cout and the insertion operator. The statement in Line 10 inputs the
data into yourRectangle using cin and the extraction operator. The statement in Line 12
outputs the value of yourRectangle using cout and the insertion operator. The cout
statement in Line 13 adds the lengths and widths of myRectangle and yourRectangle
and outputs the result. Similarly, the cout statement in Line 14 multiplies the lengths and
widths of myRectangle and yourRectangle and outputs the result. The output shows
that both the stream insertion and stream extraction operators were overloaded successfully.

OVERLOADING UNARY OPERATORS

The process of overloading unary operators is similar to the process of overloading binary
operators. The only difference is that in the case of unary operators, the operator has only
one argument; in the case of binary operators, the operator has two operands. Therefore,
to overload a unary operator for a class we do the following.

e If the operator function is a member of the class, it has no parameters.

e If the operator function is a nonmember—that is, a friend function of
the class—it has one parameter.

Operator Overloading: Member Versus
Nonmember

The preceding sections discussed and illustrated how to overload operators. Certain
operators must be overloaded as member functions of the class, and some must be
overloaded as nonmember (friend) functions. What about the ones that can be over-
loaded as either member functions or nonmember functions? For example, the binary
arithmetic operator + can be overloaded as a member function or a nonmember function.
If you overload + as a member function, the operator + has direct access to the data
members of one of the objects, and you need to pass only one object as a parameter. On
the other hand, if you overload + as a nonmember function, you must pass both objects as
parameters. Therefore, overloading + as a nonmember could require additional memory
and computer time to make a local copy of the data. Thus, for efficiency purposes,
wherever possible, you should overload operators as member functions.



Programming Example: Complex Numbers | 103

PROGRAMMING EXAMPLE: Complex Numbers

A number of the form a + ib, where i° = -1, and a and b are real numbers, is called a
complex number. We call a the real part and b the imaginary part of a + ib. Complex
numbers can also be represented as ordered pairs (a, b). The addition and multi-
plication of complex numbers is defined by the following rules:

(a+ib) + (ctid) =(a+ o +ib+d
(a + ib) * (c + id) = (ac - bd) + i(ad + bo)

Using the ordered pair notation, these rules are written as follows:

(@, 0) + (¢ d) = ((a+9, (b+d)
(a, b) * (¢, d) = ((ac - bd), (ad + bo))

C++ has no built-in data type that allows us to manipulate complex numbers. In this
example, we will construct a data type, complexType, that can be used to process
complex numbers. We will overload the stream insertion and stream extraction
operators for easy input and output. We will also overload the operators + and * to
perform addition and multiplication of complex numbers. If x and y are complex
numbers, we can evaluate expressions such as x + y and x * y.

#ifndef H_complexNumber
#define H_complexNumber

//*****************************************************************
// Author: D.S. Malik

// class complexType.h

// This class specifies the members to implement a complex number.
//*****************************************************************

#include <iostream>
using namespace std;

class complexType

{

//Overload the stream insertion and extraction operators
friend ostream& operator<< (ostream&, const complexTypeé&) ;
friend istream& operator>> (istream&, complexType&):

public:

void setComplex (const double& real, const double& imag);
//Function to set the complex numbers according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

void getComplex (double& real, double& imag) const;
//Function to retrieve the complex number.
//Postcondition: real = realPart; imag = imaginaryPart;



104 | Chapter 2: Object-Oriented Design (O0OD) and C++

complexType (double real = 0, double imag = 0);
//Constructor
//Initializes the complex number according to the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

complexType operator+
(const complexType& otherComplex) const;
//Overload the operator +

complexType operator*

(const complexType& otherComplex) const;
//Overload the operator *

bool operator== (const complexType& otherComplex) const;
//Overload the operator ==

private:
double realPart; //variable to store the real part
double imaginaryPart; //variable to store the imaginary part
}i
#endif

Next, we write the definitions of the functions to implement various operations of
the class complexType.

The definitions of most of these functions are straightforward. We discuss only the
definitions of the functions to overload the stream insertion operator, <<, and the
stream extraction operator, >>.

To output a complex number in the form:
(a, b)

where a is the real part and b is the imaginary part, clearly the algorithm is as follows:
Output the left parenthesis, (.

Output the real part.

Output the comma.

Output the imaginary part.

o a0 oo

Output the right parenthesis, ).

Therefore, the definition of the function operator<< is as follows:



Programming Example: Complex Numbers | 105

ostream& operator<< (ostream& osObject, const complexTypeé& complex)

{

osObject << "("; //Step a
osObject << complex.realPart; //Step b
osObject << ", "; //Step c
osObject << complex.imaginaryPart; //Step d
osObject << ™)"; //Step e
return osObject; //return the ostream object

}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:
(3, 5)

In this input, the real part of the complex number is 3 and the imaginary part is 5.
Clearly, the algorithm to read this complex number is as follows:

Read and discard the left parenthesis.

Read and store the real part.

Read and discard the comma.

Read and store the imaginary part.

o ae o ®

Read and discard the right parenthesis.

Following these steps, the definition of the function operator>> is as follows:

istream& operator>> (istream& isObject, complexType& complex)

{

char ch;

isObject >> ch; //Step a
isObject >> complex.realPart; //Step b
isObject >> ch; //Step c
isObject >> complex.imaginaryPart; //Step d
isObject >> ch; //Step e
return isObject; //return the istream object

}

The definitions of the other functions are as follows:

bool complexType: :operator==
(const complexType& otherComplex) const
{
return (realPart == otherComplex.realPart &&
imaginaryPart == otherComplex.imaginaryPart);



106

Chapter 2: Object-Oriented Design (O0OD) and C++

//Constructor

complexType: : complexType (double real, double imag)

{

{

}

realPart = real;

imaginaryPart

//Function to

= imag;

set the complex number after the object

//has been declared.
void complexType::setComplex (const double& real,

const double& imag)

realPart = real;

imaginaryPart

= imag;

void complexType: :getComplex (double& real, double& imag) const

{

{

{

real

realPart;

imag = imaginaryPart;

//overload the operator +
complexType complexType: :operator+

(const complexTypeé& otherComplex) const

complexType temp;

temp.realPart

= realPart + otherComplex.realPart;

temp.imaginaryPart = imaginaryPart

+ otherComplex.imaginaryPart;

return temp;

//overload the operator *
complexType complexType: :operator*

(const complexTypeé& otherComplex) const

complexType temp;

temp.realPart

= (realPart * otherComplex.realPart) -
(imaginaryPart * otherComplex.imaginaryPart) ;

temp.imaginaryPart = (realPart * otherComplex.imaginaryPart)

return temp;

+ (imaginaryPart * otherComplex.realPart) ;



Programming Example: Complex Numbers | 107

The following program illustrates the use of the class complexType:

//**********************************************************

// Author: D.S. Malik
//

// This program shows how to use the class complexType.
//**********************************************************

#include <iostream> //Line 1
#include "complexType.h" //Line 2
using namespace std; //Line 3
int main () //Line 4
{ //Line 5
complexType numl (23, 34); //Line 6
complexType num?2; //Line 7
complexType num3; //Line 8
cout << "Line 9: Numl = " << numl << endl; //Line 9
cout << "Line 10: Num2 = " << num2 << endl; //Line 10

cout << "Line 11l: Enter the complex number "

<< "in the form (a, b): "; //Line 11
cin >> num2; //Line 12
cout << endl; //Line 13

cout << "Line 14: New value of num2 = "

<< num2 << endl; //Line 14

num3 = numl + num?2; //Line 15

cout << "Line 16: Num3 = " << num3 << endl; //Line 16
cout << "Line 17: "™ << numl << " + " << num?2

<< " =" << numl + num2 << endl; //Line 17
cout << "Line 18: " << numl << " * " << num2

<< " =" << numl * num2 << endl; //Line 18

return 0; //Line 19

} //Line 20

Sample Run: In this sample run, the user input is shaded.

Line 9: Numl = (23, 34)
Line 10: Num2 = (0, 0)
Line 11: Enter the complex number in the form (a, b): (3, 4)

Line 14: New value of num2 = (3, 4)
Line 16: Num3 = (26, 38)

Line 17: (23, 34) + (3, 4) = (26, 38)
Line 18: (23, 34) * (3, 4) = (-67, 194)



108 | Chapter 2: Object-Oriented Design (OOD) and C++

Function Overloading

The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator has
with built-in types. The types of arguments used with an operator determine the action to take.

Similar to operator overloading, C++ allows the programmer to overload a function name.
Recall that a class can have more than one constructor, but all constructors of a class have the
same name, which is the name of the class. This case is an example of overloading a function.

Opverloading a function refers to the creation of several functions with the same name.
However, if several functions have the same name, every function must have a different
set of parameters. The types of parameters determine which function to execute.

Suppose you need to write a function that determines the larger of two items. Both items
can be integers, floating-point numbers, characters, or strings. You could write several
functions as follows:

int largerInt(int x, int y);

char largerChar (char first, char second):;

double largerDouble (double u, double v);

string largerString(string first, string second);

The function largerInt determines the larger of the two integers, the function
largerChar determines the larger of the two characters, and so on. These functions all
perform similar operations. Instead of giving different names to these functions, you can
use the same name—say, larger—for each function; that is, you can overload the
function larger. Thus, you can write the previous function prototypes simply as

int larger(int x, int y);

char larger (char first, char second):;
double larger (double u, double v):;

string larger(string first, string second);

If the call is larger(5,3), for example, the first function executes. If the call is
larger ('A', '9'"), the second function executes, and so on.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions to the compiler.

Templates

Templates are very powerful features of C++. By using templates, you can write a single
code segment for a set of related functions, called a function template, and for related
classes, called a class template. The syntax we use for templates is as follows:

template <class Type>
declaration;




Templates | 109

where Type is the type of data, and declaration is either a function declaration or a
class declaration. In C++, template is a reserved word. The word class in the heading
refers to any user-defined type or built-in type. Type is referred to as a formal parameter
to the template.

Just as variables are parameters to functions, types (that is, data types) are parameters to
templates.

Function Templates

In the section, “Function Overloading” (located earlier in this chapter), when we intro-
duced function overloading, the function larger was overloaded to find the larger of two
integers, characters, floating-point numbers, or strings. To implement the function larger,
we need to write four function definitions for the data type: one for int, one for char, one
for double, and one for string. However, the body of each function is similar. C++
simplifies the process of overloading functions by providing function templates.

The syntax of the function template is as follows:

template <class Type>
function definition;

where Type is referred to as a formal parameter of the template. It is used to specify the
type of parameters to the function and the return type of the function, and to declare
variables within the function.

The statements

template <class Type>
Type larger (Type x, Type V)

{
if (x >=y)
return x;
else
return y;
}

define a function template larger, which returns the larger of two items. In the function
heading, the type of the formal parameters x and y is Type, which will be specified by the
type of the actual parameters when the function is called. The statement

cout << larger (5, 6) << endl;

is a call to the function template larger. Because 5 and 6 are of type int, the data type
int is substituted for Type and the compiler generates the appropriate code.

If we omit the body of the function in the function template definition, the function
template, as usual, is the prototype.




110 | Chapter 2: Object-Oriented Design (OOD) and C++

The following example illustrates the use of function templates.

EXAMPLE 2-7

This example uses the function template larger to determine the larger of the two
items.

//****************************************************************
// Author: D.S. Malik

//
// This program illustrates how to write and use a template in a
// program.
//****************************************************************
#include <iostream> //Line 1
#include <string> //Line 2
using namespace std; //Line 3
template <class Type> //Line 4
Type larger (Type x, Type VY): //Line 5
int main () //Line 6
{ //Line 7
cout << "Line 8: Larger of 5 and 6 = "
<< larger(5, 6) << endl; //Line 8

cout << "Line 9: Larger of A and B

<< larger('A','B') << endl; //Line 9
cout << "Line 10: Larger of 5.6 and 3.2 ="
<< larger (5.6, 3.2) << endl; //Line 10
string strl = "Hello"; //Line 11
string str2 = "Happy": //Line 12
cout << "Line 13: Larger of " << strl << " and "
<< str2 << " = " << larger(strl, str2) << endl; //Line 13
return 0; //Line 14
} //Line 15

template <class Type>
Type larger (Type x, Type y)

if (x >= y)
return x;
else
return y;



Templates | 111

Output

Line 8: Larger of 5 and 6 = 6
Line 9: Larger of A and B = B
Line 10: Larger of 5.6 and 3.2 =

5.6
Line 13: Larger of Hello and Happy =

Hello

Class Templates

Like function templates, class templates are used to write a single code segment for a set of
related classes. For example, in Chapter 1, we defined a list as an ADT; our list element
type there was int. If the list element type changes from int to, say, char, double, or
string, we need to write separate classes for each element type. For the most part, the
operations on the list and the algorithms to implement those operations remain the same.
Using class templates, we can create a generic class listType, and the compiler can
generate the appropriate source code for a specific implementation.

The syntax we use for a class template is as follows:

template <class Type>
class declaration

Class templates are called parameterized types because, based on the parameter type, a
specific class is generated. For example, if the template parameter type is int, we can
generate a list to process integers; if the parameter type is string, we can generate a list
to process strings.

A class template for the ADT listType is defined as follows:

template <class elemType>

class listType

{

public:
bool isEmpty():
bool isFull():
vold search(const elemType& searchItem, bool& found);
void insert (const elemType& newElement) ;
void remove (const elemType& removeElement);
void destroyList();
void printList();

listType():

private:
elemType 1ist[100]; //array to hold the list elements
int length; //variable to store the number
//of elements in the list
};




112 | Chapter 2: Object-Oriented Design (OOD) and C++

This definition of the class template 1istType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement

listType<int> intList; //Line 1

declares intList to be a list of 100 components, with each component being of type
int. Similarly, the statement

listType<string> stringList; //Line 2

declares stringList to be a list of 100 components, with each component being of
type string.

In the statements in Lines 1 and 2, 1istType<int> and 1istType<string> are referred to
as template instantiations or instantiations of the class template 1istType<elemType>,
where elemType is the class parameter in the template header. A template instantiation can
be created with either a built-in or user-defined type.

The function members of a class template are considered function templates. Thus, when
giving the definitions of function members of a class template, we must follow the
definition of the function template. For example, the definition of the member insert
of the class 1istType is as follows:

template<class elemType>
void listType<elemType>::insert (const elemTypeé& newElement)
{

}

In the heading of the member function’s definition, elemType specifies the data type of
the list elements.

Header File and Implementation File of a Class Template

Until now, we have placed the definition of the class (in the specification file) and the
definition of the member functions (in the implementation file) in separate files. The
object code was generated from the implementation file (independently of any client
code) and linked with the client code. This strategy does not work with class templates.
Passing parameters to a function has an effect at run time, whereas passing a parameter to
a class template has an effect at compile time. Because the actual parameter to a class is
specified in the client code, and because the compiler cannot instantiate a function
template without the actual parameter to the template, we can no longer compile the
implementation file independently of the client code.



Quick Review | 113

This problem has several possible solutions. We could put the class definition and the
definitions of the function templates directly in the client code, or we could put the class
definition and the definitions of the function templates together in the same header file.
Another alternative is to put the class definition and the definitions of the functions in
separate files (as usual), but include a directive to the implementation file at the end of the
header file (that is, the specification file). In either case, the function definitions and the
client code are compiled together. For illustrative purposes, we will put the class defini-
tion and the function definitions in the same header file.

QUICK REVIEW

1. Inheritance and composition are meaningful ways to relate two or more
classes.

2. Inheritance is an “is a” relationship.
Composition is a “has a” relationship.

4. In single inheritance, the derived class is derived from only one existing
class, called the base class.

5. In multiple inheritance, a derived class is derived from more than one base
class.

6. The private members of a base class are private to the base class. The
derived class cannot directly access them.

7. The public members of a base class can be inherited either as public,
protected, or private by the derived class.

8. A derived class can redefine the function members of a base class, but this
redefinition applies only to the objects of the derived class.

9. A call to a base class’s constructor is specified in the heading of the
definition of the derived class’s constructor.

10.  When initializing the object of a derived class, the constructor of the base
class is executed first.

11.  Review the inheritance rules given in this chapter.
12.  In composition, a member of a class is an object of another class.

13.  In composition, a call to the constructor of the member objects is specified
in the heading of the definition of the class’s constructor.

14.  The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

15.  An operator that has different meanings with different data types is said to
be overloaded.

16. In C++, << is used as a stream insertion operator and as a left shift operator.
Similarly, >> is used as a stream extraction operator and as a right shift
operator. Both are examples of operator overloading.



114

17.
18.

19.
20.
21.

22.

23.

24,

25.
26.
27.
28.

29.
30.
31.
32.

33.

34.

35.

36.

37.
38.

39.

| Chapter 2: Object-Oriented Design (OOD) and C++

The function that overloads an operator is called an operator function.
The syntax of the heading of the operator function is

returnType operator operatorSymbol (parameters)

In C++, operator is a reserved word.

Operator functions are value-returning functions.

Except for the assignment operator and the member selection operator, to
use an operator on class objects, that operator must be overloaded.

Operator overloading provides the same concise notation for user-defined
data types as is available with built-in data types.

When an operator is overloaded, its precedence cannot be changed, its
associativity cannot be changed, default arguments cannot be used, the
number of arguments that the operator takes cannot be changed, and
the meaning of how an operator works with built-in data types remains
the same.

It is not possible to create new operators. Only existing operators can be
overloaded.

Most C++ operators can be overloaded.
The operators that cannot be overloaded are ., .*, ::, 2 :, and sizeof.
The pointer this refers to the object as a whole.

The operator function that overloads the operators (), [ 1, =>, or = must be
a member of a class.

A friend function is a nonmember of a class.
The heading of a friend function is preceded by the word friend.
In C++, friend is a reserved word.

If an operator function is a member of a class, the leftmost operand of the
operator must be a class object (or a reference to a class object) of that
operator’s class.

The binary operator function as a member of a class has only one para-
meter; as a nonmember of a class, it has two parameters.

The operator functions that overload the stream insertion operator, <<, and
the stream extraction operator, >>, for a class must be friend functions of
that class.

In C++, a function name can be overloaded.
Every instance of an overloaded function has different sets of parameters.
In C++, template is a reserved word.

Using templates, you can write a single code segment for a set of related
functions—called the function template.

Using templates, you can write a single code segment for a set of related
classes—called the class template.



40.

41.
42.

43.

Exercises

A syntax of a template is

template <class elemType>
declaration;

where elemType is a user-defined identifier, which is used to pass types
(that is, data types) as parameters, and declaration is either a function or a
class. The word class in the heading refers to any user-defined data type
or built-in data type.

Class templates are called parameterized types.

In a class template, the parameter elemType specifies how a generic class
template is to be customized to form a specific class.

Suppose cType is a class template and func is a member function of cType.
The heading of the function definition of func is

template <class elemType >
funcType cType<elemType>::func(formal parameters)

where funcType is the type of the function, such as void.

Suppose cType is a class template, which can take int as a parameter. The
statement

cType<int> x;

declares x to be an object of type cType, and the type passed to the class
cType 1s int.

EXERCISES

1.

Mark the following statements as true or false.
a.  The constructor of a derived class specifies a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class specifies a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the data members of x is an
object of type y, and both classes have constructors. The constructor of
x specifies a call to the constructor of y by using the object name of

type y.
d. A derived class must have a constructor.
e. In C++, all operators can be overloaded for user-defined data types.
f. In C++, operators cannot be redefined for built-in types.
g. The function that overloads an operator is called the operator function.
h. C++ allows users to create their own operators.

i. The precedence of an operator cannot be changed, but its associativity
can be changed.




116

| Chapter 2: Object-Oriented Design (OOD) and C++

j.  Every instance of an overloaded function has the same number of
parameters.

k. It is not necessary to overload relational operators for classes that have
only int data members.

I.  The member function of a class template is a function template.

m.  When writing the definition of a friend function, the keyword
friend must appear in the function heading.

n. The function heading of the operator function to overload the pre-
increment operator (++) and the postincrement operator (++) is the
same because both operators have the same symbols.

Draw a class hierarchy in which several classes are derived from a single base class.

Suppose that a class employeeType is derived from the class
personType (see Example 1-12, in Chapter 1). Give examples of data
and function members that can be added to the class employeeType.

Explain the difference between the private and protected members of
a class.

Consider the following class definition:

class aClass

{
public:
void print () const;
void set (int, int);
aClass () ;
aClass(int, int);
private:
int u;
int v;
}:

What is wrong with the following class definitions?

a. class bClass public aClass

{
public:
void print();
void set (int, int, int);
private:
int z;
}i
b. class cClass: public aClass
{
public:

void print():;
int sum();
cClass():
cClass(int);



1.

Exercises

Consider the following statements:

class yClass
{
public:
void one();
void two (int, int);
yClass () ;
private:
int a;
int b;
}s

class xClass: public yClass
{
public:
void one () ;
xClass () ;
private:
int z;

}:

yClass y;
xClass x;

a. The private members of yClass are public members of xClass
True or False?

b. Mark the following statements as valid or invalid. If a statement is
invalid, explain why.

i. wvoid yClass::one()
{
cout << a + b << endl;

}
i. y.a=15;
x.b 30;

iii. void xClass::one()
{
a = 10;
b = 15;
z = 30;
cout << a + b + z << endl;
}

iv. cout << y.a << " " << y.b << " " << x.z << endl;
Assume the declaration of Exercise 6.

a.  Write the definition of the default constructor of yClass so that the
private data members of yClass are initialized to 0.

b. Write the definition of the default constructor of xClass so that the
private data members of xClass are initialized to 0.

117




118

| Chapter 2: Object-Oriented Design (OOD) and C++

c. Write the definition of the member function two of yClass so that the
private data member a is initialized to the value of the first parameter
of two, and the private data member b is initialized to the value of the
second parameter of two.

What is wrong with the following code?

class classA

{
protected:
void setX(int a); //Line 1
//Postcondition: x = a; //Line 2
private: //Line 3
int x; //Line 4
};
int main ()
{
classA aObject; //Line 5
aObject.setX (4); //Line 6
return 0; //Line 7
}

Consider the following code:

class one
{
public:
void print () const;
//0utputs the values of x and y
protected:
void setData(int u, int v);
//Postcondition: x = u; y = v;

private:
int x;
int y;
}i
class two: public one
{
public:
void setData(int a, int b, int c);
//Postcondition: x = a; y = b; z = ¢;
void print () const;
//Outputs the values of x, y, and z
private:
int z;
}i

a. Write the definition of the function setData of the class two.

b. Write the definition of the function print of the class two.



10.

Exercises

What is the output of the following C++ program?

#include <iostream>
#include <string>

using namespace std;

class baseClass

{
public:
void print() const;
baseClass(string s = " ", int a = 0);
//Postcondition: str = s; X = a
protected:
int x;
private:
string str;
}:
class derivedClass: public baseClass
{
public:
void print () const;
derivedClass(string s = "", int a = 0, int b = 0);
//Postcondition: str = s; x = a; y =Db
private:
int y;
};
int main()
{
baseClass baseObject ("This is base class", 2);
derivedClass derivedObject ("DDDDDD", 3, 7);
baseObject.print () ;
derivedObject.print () ;
return 0;
}
void baseClass::print () const
{
cout << x << " " << str << endl;
}
baseClass::baseClass (string s, int a)
{
str = s;
X = aj;

119




120 | Chapter 2: Object-Oriented Design (OOD) and C++

void derivedClass::print () const

{
cout << "Derived class: " << y << endl;
baseClass: :print () ;

}

derivedClass::derivedClass(string s, int a, int b)
:baseClass ("Hello Base", a + b)
{
y = b;
}
11. What is the output of the following program?

#include <iostream>
using namespace std;

class baseClass

{
public:
void print () const;
int getX();
baseClass(int a = 0);
protected:
int x;
}:
class derivedClass: public baseClass
{
public:
void print ()const;
int getResult():;
derivedClass(int a = 0, int b = 0);
private:
int y;
}i

int main ()

{
baseClass baseObject (7);
derivedClass derivedObject (3,8):;

baseObject.print () ;
derivedObject.print () ;



12.
13.

14.

15.

Exercises

cout << "x*kk W << baseObject.getX () << endl;
cout << "###4 " << derivedObject.getResult() << endl;

return 0;

}
void baseClass::print() const
{
cout << "In base: x = " << x << endl;
}
baseClass: :baseClass (int a)
{
X = a;
}
int baseClass::getX()
{
return x;
}
void derivedClass::print () const
{
cout << "In derived: x = " <K<K x <K ", y ="Ky
<< ", x+y="<<x+y<< endl;
}
int derivedClass::getResult ()
{
return x + y;
}

derivedClass::derivedClass (int a, int b)
:baseClass (a)

{
y = b;
}
What is a friend function?

Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a friend function?

Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

Consider the following declaration:

class strange

{

121




122

16.

17.

18.

19.

20.

| Chapter 2: Object-Oriented Design (OOD) and C++

Write a statement that shows the declaration in the class strange to
overload the operator >>.

Write a statement that shows the declaration in the class strange
to overload the binary operator + as a member function.

Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

Write a statement that shows the declaration in the class strange
to overload the postincrement operator ++ as a member function.

Assume the declaration of Exercise 15.

a.

Write a statement that shows the declaration in the class strange to
overload the binary operator + as a £riend function.

Write a statement that shows the declaration in the class strange
to overload the operator == as a friend function.

Write a statement that shows the declaration in the class strange to
overload the postincrement operator ++ as a friend function.

Find the error(s) in the following code:

class mystery //Line 1

{

Y

bool operator <= (mystery); //Line 2

bool mystery::<=(mystery rightObj) //Line 3

{
}

Find the error(s) in the following code:

class mystery //Line 1

{

};

bool operator <= (mystery, mystery); //Line 2

Find the error(s) in the following code:

class mystery //Line 1

{

friend operator+ (mystery); //Line 2
//Overload the binary operator +

};

How many parameters are required to overload the preincrement operator
for a class as a member function?



21.

22,

23.

24,

25.

26.

Exercises

How many parameters are required to overload the preincrement operator
for a class as a friend function?

How many parameters are required to overload the postincrement operator
for a class as a member function?

How many parameters are required to overload the postincrement operator
for a class as a £riend function?

Find the error(s) in the following code:

template <class type> //Line 1
class strange //Line 2
{

}:

strange<int> sl; //Line 3
strange<type> s2; //Line 4

Consider the following declaration:

template <class type>
class strange

{

private:
Type a;
Type b;

}:

a.  Write a statement that declares sOb3j to be an object of type strange
such that the private data members a and b are of type int.

h. Worite a statement that shows the declaration in the class strange to
overload the operator == as a member function.

c. Assume that two objects of type strange are equal if their correspond-
ing data members are equal. Write the definition of the function
operator== for the class strange, which is overloaded as a member
function.

Consider the definition of the following function template:

template <class Type>
Type surprise(Type x, Type V)
{

return x + y ;

}
What is the output of the following statements?

a. cout << surprise(5, 7) << endl;

b. string strl = "Sunny";
string str2 = " Day":;
cout << surprise(strl, str2) << endl;

123




124

217.

28.

| Chapter 2: Object-Oriented Design (OOD) and C++

Consider the definition of the following function template:

Template <class Type>
Type funcExp (Type list[], int size)

{
Type x = 1list[0];
Type y = list[size - 11;
for (int Jj = 1; j < (size - 1)/2; j++)
{
if (x < list[3j])
x = list[]j];
if (y > list[size - 1 -31])
y = list[size - 1 -j1;
}
return x + y;
}

Further suppose that you have the following declarations:

int list[10] = {5,3,2,10,4,19,45,13,61,11};
string strList[] = {"One", "Hello", "Four", "Three", "How", "Six"}:;

What is the output of the following statements?
a. cout << funcExp(list, 10) << endl;
h. cout << funcExp (strlist, 6) << endl;

Write the definition of the function template that swaps the contents of two
variables.

PROGRAMMING EXERCISES

1.

In Chapter 1, the class clockType was designed to implement the time
of day in a program. Certain applications, in addition to hours, minutes,
and seconds, might require you to store the time zone. Derive the class
extClockType from the class clockType by adding a data member
to store the time zone. Add the necessary member functions and con-
structors to make the class functional. Also, write the definitions of the
member functions and the constructors. Finally, write a test program to test
your class.

In this chapter, the class dateType was designed to implement the date
in a program, but the member function setDate and the constructor do
not check whether the date is valid before storing the date in the data
members. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the data members. Add a function member,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.



Programming Exercises

A point in the x-y plane is represented by its x-coordinate and y-coordinate.
Design a class, pointType, that can store and process a point in the x-y
plane. You should then perform operations on the point, such as showing
the point, setting the coordinates of the point, printing the coordinates of the
point, returning the x-coordinate, and returning the y-coordinate. Also,
write a test program to test the various operations on the point.

Every circle has a center and a radius. Given the radius, we can determine
the circle’s area and circumference. Given the center, we can determine its
position in the x-y plane. The center of a circle is a point in the x-y plane.
Design a class, circleType, that can store the radius and center of the
circle. Because the center is a point in the x-y plane and you designed the
class to capture the properties of a point in Programming Exercise 3, you
must derive the class circleType from the class pointType. You
should be able to perform the usual operations on a circle, such as setting
the radius, printing the radius, calculating and printing the area and circum-
ference, and carrying out the usual operations on the center.

Every cylinder has a base and height, where the base is a circle. Design a
class, cylinderType, that can capture the properties of a cylinder and
perform the usual operations on a cylinder. Derive this class from the
class circleType designed in Programming Exercise 4. Some of the
operations that can be performed on a cylinder are as follows: Calculate
and print the volume, calculate and print the surface area, set the height, set
the radius of the base, and set the center of the base.

In Programming Exercise 2, the class dateType was designed and imple-
mented to keep track of a date, but it has very limited operations. Redefine
the class dateType so that it can perform the following operations on a
date in addition to the operations already defined:

a. Set the month.

b. Set the day.

c. Set the year.

d. Return the month.

e. Return the day.

. Return the year.

g.  Test whether the year is a leap year.

Return the number of days in the month. For example, if the date is
3-12-2011, the number of days to be returned is 31 because there are
31 days in March.

i. Return the number of days passed in the year. For example, if the date is
3-18-2011, the number of days passed in the year is 77. Note that the
number of days returned also includes the current day.

125




126

| Chapter 2: Object-Oriented Design (OOD) and C++

j.  Return the number of days remaining in the year. For example, if the
date is 3-18-2011, the number of days remaining in the year is 288.

k. Calculate the new date by adding a fixed number of days to the date. For
example, if the date is 3-18-2011 and the days to be added are 25, the
new date is 4-12-2011.

Write the definitions of the functions to implement the operations defined
for the class dateType in Programming Exercise 6.

The class dateType defined in Programming Exercise 6 prints the date in
numerical form. Some applications might require the date to be printed in
another form, such as March 24, 2003. Derive the class extDateType so
that the date can be printed in either form.

Add a data member to the class extDateType so that the month can also
be stored in string form. Add a function member to output the month in the
string format followed by the year—for example, in the form March 2003.

Write the definitions of the functions to implement the operations for the
class extDateType.

Using the classes extDateType (Programming Exercise 8) and dayType
(Chapter 1, Programming Exercise 2), design the class calendarType so that,
given the month and the year, we can print the calendar for that month. To print
a monthly calendar, you must know the first day of the month and the number of
days in that month. Thus, you must store the first day of the month, which is of
the form dayType, and the month and the year of the calendar. Clearly, the
month and the year can be stored in an object of the form extDateType by
setting the day component of the date to 1, and the month and year as specified
by the user. Thus, the class calendarType has two data members: an object
of type dayType and an object of type extDateType.

Design the class calendarType so that the program can print a calendar
for any month starting January 1, 1500. Note that the day for January 1 of
the year 1500 is a Monday. To calculate the first day of a month, you can add
the appropriate days to Monday of January 1, 1500.

For the class calendarType, include the following operations:

a. Determine the first day of the month for which the calendar will be
printed. Call this operation firstDayOfMonth.

b. Set the month.

c. Set the year.

d. Return the month.

e. Return the year.

f.  Print the calendar for the particular month.

g. Add the appropriate constructors to initialize the data members.



10.

11.

12.

13.

Programming Exercises

Write the definitions of the member functions of the class
calendarType (designed in Programming Exercise 8) to implement
the operations of the class calendarType.

Write a test program to print the calendar for either a particular month
or a particular year. For example, the calendar for September 2011 is as
follows:

September 2011

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24
25 26 27 28 29 30

In Chapter 1, the class clockType was designed and implemented to
implement the time of day in a program. This chapter discussed how to
overload various operators. Redesign the class clockType by overloading
the following operators: the stream insertion << and stream extraction >>
operators for input and output, the pre- and postincrement increment
operators to increment the time by one second, and the relational operators
to compare the two times. Also write a test program to test various
operations of the class clockType.

a.

Extend the definition of the class complexType so that it performs
the subtraction and division operations. Overload the operators sub-
traction and division for this class as member functions.

If (a, b) and (¢, d) are complex numbers,

(@ b) = (e d)=(a—cb—d,

If (¢, d) is nonzero,

(a,b) / (¢, d) = ((ac+ bd) / (& + &), (—ad + bo) / ( + &)

Write the definitions of the functions to overload the operators — and /
as defined in part a.

Write a test program that tests the various operations on the class
complexType. Format your answer with two decimal places.

Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

Write the definitions of the member functions of the class
complexType as designed in part a.

Write a test program that tests the various operations on the class
complexType as designed in parts a and b. Format your answer with
two decimal places.

127




128

14,

15.

16.

17.

18.

| Chapter 2: Object-Oriented Design (OOD) and C++

Let a + ib be a complex number. The conjugate of a + ib is a — ib and the
absolute value of a + ib is Va? + b%>.Extend the definition of the class
complexType of the Programming Example, Complex Numbers by over-
loading the operators ~ and ! as member functions so that ~ returns the
conjugate of a complex number and ! returns the absolute value. Write the
definitions of these operator functions.

Redo Programming Exercise 13 so that the operators ~ and ! are over-
loaded as nonmember functions.

In C++, the largest int value is 2147483647. So an integer larger than this
cannot be stored and processed as an integer. Similarly, if the sum or product of
two positive integers is greater than 2147483647, the result will be incorrect.
One way to store and manipulate large integers is to store each individual digit
of the number in an array. Design the class largeIntegers so that an
object of this class can store an integer up to 100 digits long. Overload the
operators + and — to add and subtract, respectively, the values of two objects
of this class. (In the Programming Exercises in Chapter 3, we will overload
the multiplication operator.) Overload the assignment operator to copy the
value of a large integer into another large integer. Overload the stream
extraction and insertion operators for easy input and output. Your program
must contain appropriate constructors to initialize objects of the class
largeIntegers. (Hint: Read numbers as strings and store the digits of the
number in the reverse order. Add instance variables to store the number of
digits and the sign of the number.)

The roots of the quadratic equation ax” + bx + ¢ = 0, a # 0 are given by the

following formula:
—b+ Vb — dac

2a

In this formula, the term b> — 4acis called the discriminant. If b* — 4ac = 0,
the equation has a single (repeated) root. If b — 4ac > 0, the equation
has two real roots. If b> — 4ac < 0, the equation has two complex roots.
Design and implement the class quadraticEq so that an object of this
class can store the coefficients of a quadratic equation. Overload the opera-
tors + and — to add and subtract, respectively, the corresponding coefficients
of two quadratic equations. Overload the relational operators == and != to
determine if two quadratic equations are the same. Add appropriate con-
structors to initialize objects. Overload the stream extraction and insertion
operator for easy input and output. Also, include function members to
determine and output the type and the roots of the equation. Write a
program to test your class.

Programming Exercise 6 in Chapter 1 describes how to design the class
lineType to implement a line. Redo this programming exercise so that the
class lineType:



19.

Programming Exercises

a. Overloads the stream insertion operator, <<, for easy output.

b.  Overloads the stream extraction operator, >>, for easy input. (The line
ax + by = ¢ is input as (a, b, ¢).

c. Overloads the assignment operator to copy a line into another line.

d. Overloads the unary operator + as a member function, so that it returns
true if a line is vertical; false otherwise.

e. Opverloads the unary operator - as a member function, so that it returns
true if a line is horizontal; false otherwise.

f.  Overloads the operator == as a member function, so that it returns true
if two lines are equal; false otherwise.

g.  Overloads the operator || as a member function, so that it returns
true if two lines are parallel; false otherwise.

h. Overloads the operator && as a member function, so that it returns
true if two lines are perpendicular; false otherwise.
Write a program to test your class.

Rational fractions are of the form a / b, where a and b are integers and b # 0.
In this exercise, by “fractions” we mean rational fractions. Suppose a / b
and ¢ / d are fractions. Arithmetic operations on fractions are defined by the
following rules:

a/b+c/d=(ad+ b))/ bd
a/b—c/d=(ad — bo)/bd
a/bxc/d=uac/ bd

(a/ by / (c/ d=ad/ bc, where ¢/ d # 0.

Fractions are compared as follows: a / b op ¢ / d if ad op bc, where op is any of
the relational operations. For example, a / b < ¢/ d it ad < be.

Design a class—say, fractionType—that performs the arithmetic and
relational operations on fractions. Overload the arithmetic and relational
operators so that the appropriate symbols can be used to perform the
operation. Also, overload the stream insertion and stream extraction opera-
tors for easy input and output.

a. Write a C++ program that, using the class fractionType, performs
operations on fractions.

b.  Among other things, test the following: Suppose x, y, and z are objects
of type fractionType. If the input is 2/3, the statement

cin >> x;
should store 2/3 in x. The statement

cout << x + y << endl;

129




130

20.

Chapter 2: Object-Oriented Design (O0OD) and C++

should output the value of x + y in fraction form. The statement
z=x+y;

should store the sum of x and y in z in fraction form. Your answer
need not be in the lowest terms.

In Programming Exercise 1 in Chapter 1, we defined a class
romanType to implement Roman numerals in a program. In that
exercise, we also implemented a function, romanToDecimal, to con-
vert 2 Roman numeral into its equivalent decimal number.

Modify the definition of the class romanType so that the data mem-
bers are declared as protected. Use the class string to manipulate
the strings. Furthermore, overload the stream insertion and stream
extraction operators for easy input and output. The stream insertion
operator outputs the Roman numeral in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman numeral format. Write the definition of the member
function decimalToRoman.

For simplicity, we assume that only the letter I can appear in front of
another letter and that it appears only in front of the letters V and X. For
example, 4 is represented as IV, 9 is represented as IX, 39 is represented
as XXXIX, and 49 is represented as XXXXIX. Also, 40 will be represented
as XXxx, 190 will be represented as CLXXXX, and so on.

Derive a class extRomanType from the class romanType to do the
following. In the class extRomanType, overload the arithmetic
operators +, —, *, and / so that arithmetic operations can be performed
on Roman numerals. Also, overload the pre- and postincrement and
decrement operators as member functions of the class
extRomanType.

To add (subtract, multiply, or divide) Roman numerals, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman numeral format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, “Because the first number is smaller than the second,
the numbers cannot be subtracted”. Similarly, for division, the
numerator must be larger than the denominator. Use similar conven-
tions for the increment and decrement operators.

Write the definitions of the functions to overload the operators
described in part b.

Write a program to test your class extRomanType.



CHAPTER

POINTERS AND
ARRAY-BASED LisTsS

IN THIS CHAPTER, YOU WILL:

Learn about the pointer data type and pointer variables

Explore how to declare and manipulate pointer variables

Learn about the address of operator and dereferencing operator
Discover dynamic variables

Examine how to use the new and delete operators to manipulate dynamic variables
Learn about pointer arithmetic

Discover dynamic arrays

Become aware of the shallow and deep copies of data

Discover the peculiarities of classes with pointer data members
Explore how dynamic arrays are used to process lists

Learn about virtual functions

Become aware of abstract classes



132 | Chapter 3: Pointers and Array-Based Lists

The data types in C++ are classified into three categories: simple, structured, and pointers.
Until now, you have worked with only the first two data types. This chapter discusses
the third data type: the pointer data type. You first learn how to declare pointer variables
(or pointers, for short) and manipulate the data to which they point. Later, you use
these concepts when you study dynamic arrays and linked lists. Linked lists are discussed
in Chapter 5.

The Pointer Data Type and Pointer Variables

The values belonging to pointer data types are the memory addresses of your computer.
However, there is no name associated with the pointer data type in C++. Because the
domain, (that is, the values of a pointer data type), consists of addresses (memory
locations), a pointer variable is a variable whose content is an address, that is, a memory
location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables

The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location to which the pointer variable points.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the
data type and the variable name. The general syntax to declare a pointer variable is as
follows:

dataType *identifier;
As an example, consider the following statements:

int *p;

char *ch;

In these statements, both p and ch are pointer variables. The content of p (when properly
assigned) points to a memory location of type int, and the content of ch points to a
memory location of type char. Usually p is called a pointer variable of type int, and ch
is called a pointer variable of type char.

Before discussing how pointers work, let us make the following observations. The
following statements that declare p to be a pointer variable of type int are
equivalent:

int *p;

int* p;

int * p;



The Pointer Data Type and Pointer Variables | 133

Thus, the character * can appear anywhere between the data type name and the variable
name.

Now consider the following statement:
int* p, qi

In this statement, only p is a pointer variable, not q. Here g is an int variable. To avoid
confusion, we prefer to attach the character * to the variable name. So the preceding
statement is written as follows:

int *p, g;

Of course, the statement

int *p, *q;

declares both p and q to be pointer variables of type int.

Now that you know how to declare pointers, next we discuss how to make a pointer
point to a memory space and how to manipulate the data stored in these memory
locations.

Because the value of a pointer is 2 memory address, a pointer can store the address of a
memory space of the designated type. For example, if p is a pointer of type int, p can
store the address of any memory space of type int. C++ provides two operators—the
address of operator (&) and the dereferencing operator (*)—to work with pointers. The
next two sections describe these operators.

Address of Operator (&)

In C++, the ampersand, &, called the address of operator, is a unary operator that
returns the address of its operand. For example, given the statements

int x;
int *p;

the statement
P = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)

The previous chapters used the asterisk character, *, as the binary multiplication operator.
C++ also uses * as a unary operator. When *, commonly referred to as the dereferen-
cing operator or indirection operator, is used as a unary operator, * refers to the




134 | Chapter 3: Pointers and Array-Based Lists

object to which the operand of the * (that is, the pointer) points. For example, given the
statements

int x = 25;

int *p;

P = &x; //store the address of x in p
the statement

cout << *p << endl;

prints the value stored in the memory space to which p points, which is the value of x.
Also, the statement

*p = 55;
stores 55 in the memory location to which p points—that is, 55 is stored in x.

Example 3-1 shows how a pointer variable works.

Let us consider the following statements:

int *p;
int num;
In these statements, p is a pointer variable of type int and num is a variable of type int.

Let us assume that memory location 1200 is allocated for p and memory location 1800 is
allocated for num. (See Figure 3-1.)

1200 1800
P num

FIGURE 3-1 Variables p and num

Consider the following statements:
1. num=78;
2. p=&num;
3. *p=24;



The Pointer Data Type and Pointer Variables | 135

The following shows the values of the variables after the execution of each
statement.

After
statement Values of the variables Explanation
1 | | | 78 | The statement num = 78; stores 78 into
A A .. num.
1200 1800
o) num
> |1eoo| | . | The statement p = &num; stores the
- - - address of num, which is 1800, into p.
1200 1800
P num
The statement*p = 24; stores 24 into the
. |1800| - | 24 | R memory location to which p points. Because
3 1200 1800 the value of p is 1800, statement 3 stores
P num 24 into memory location 1800. Note that

the value of num is also changed.

Let us summarize the preceding discussion.
1. A declaration such as int *p; allocates memory for p only, not for *p.
Later, you learn how to allocate memory for *p.
The content of p points only to a memory location of type int.
&p, p, and *p all have different meanings.

&p means the address of p—that is, 1200 (as shown in Figure 3-1).

R SR

p means the content of p, which is 1800, after the statement p = &num;
executes.

6. *p means the content of the memory location to which p points. Note
that the value of *p is 78 after the statement p = &num; executes; the
value of *p is 24 after the statement *p = 24; executes.

The program in Example 3-2 further illustrates how a pointer variable works.

//***********************************************************

// Author: D.S. Malik
//

// This program illustrates how a pointer variable works.
//***********************************************************

#include <iostream> //Line 1

using namespace std; //Line 2



136 | Chapter 3: Pointers and Array-Based Lists

int main() //Line 3
{ //Line 4
int *p; //Line 5
int numl = 5; //Line 6
int num2 = 8; //Line 7

p = &numl; //store the address of numl into p; Line 8

cout << "Line 9: &numl = " << &numl

<< ", p="<< p << endl; //Line 9
cout << "Line 10: numl = " << numl

<< ", *p = " << *p << endl; //Line 10
*p = 10; //Line 11
cout << "Line 12: numl = " << numl

<< ", *p = " << *p << endl << endl; //Line 12

p = &num2; //store the address of num2 into p; Line 13

cout << "Line 14: &num2 = " << &num2
<< ", p="<< p<< endl; //Line 14
cout << "Line 15: num2 = " << num2
<< ", *p = " << *p << endl; //Line 15
*p=2%* (*p); //Line 16
cout << "Line 17: num2 = " << num2
<< ", *p = " << *p << endl; //Line 17
return 0; //Line 18
} //Line 19
Sample Run:

Line 9: &numl
Line 10: numl
Line 12: numl

0012FF54, p = 0012FF54
5 *p =5
10, *p = 10

Line 14: &num2 = 0012FF48, p = 0012FF48
Line 15: num2 = 8, *p = 8
Line 17: num2 = 16, *p = 16

For the most part, the preceding output is straightforward. Let us look at some of these
statements. The statement in Line 8 stores the address of numl into p. The statement in
Line 9 outputs the value of &numl, the address of numl, and the value of p. (Note that the
values output by Line 9 are machine dependent. When you execute this program on your
computer, you are likely to get different values of &numl and p.) The statement in Line
10 outputs the value of numl and *p. Because p points to the memory location of numl,
*p outputs the value of this memory location, that is, of numl. The statement in Line 11
changes the value of *p to 10. Because p points to the memory location numl, the value
of numl is also changed. The statement in Line 12 outputs the value of numl and *p.

The statement in Line 13 stores the address of num2 into p. So after the execution of this
statement, p points to num2. So, any change that *p makes immediately changes the value



The Pointer Data Type and Pointer Variables | 137

of num2. The statement in Line 14 outputs the address of num2 and the value of p. This
statement in Line 16 multiplies the value of *p, which is the value of num2, by 2 and
stores the new value into *p. This statement also changes the value of num2. The
statement in Line 17 outputs the value of num2 and *p.

Pointers and Classes

Consider the following statements:

string *str;
str = new string;
*str = "Sunny Day";

The first statement declares str to be a pointer variable of type string. The second
statement allocates memory of type string and stores the address of the allocated memory
in str. The third statement stores the string "Sunny Day" in the memory to which str
points. Now suppose that you want to use the string function length to find the length of
the string "Sunny Day". The statement (*str) .length () returns the length of the string.
Note the parentheses around *str. The expression (*str).length() is a mixture of
pointer dereferencing and the class component selection. In C++, the dot operator, ., has a
higher precedence than the dereferencing operator, *. Let us elaborate on this a little more.
In the expression (*str) .length (), the operator * evaluates first, so the expression * str
evaluates first. Because str is a pointer variable of type string, * str refers to a memory
space of type string. Therefore, in the expression (*str).length(), the function
length of the class string executes. Now consider the expression * str.length ().
Let us see how this expression gets evaluated. Because . has a higher precedence than *, the
expression str.length () evaluates first. The expression str.length () would result in a
syntax error because str is not a string object, so it cannot use the function length of
the class string.

As you can see, in the expression (*str).length(), the parentheses around * str are
important. However, typos are unavoidable. Therefore, to simplify the accessing of
class or struct components via a pointer, C++ provides another operator, called
the member access operator arrow, —>. The operator —=> consists of two consecutive
symbols: a hyphen and the “greater than” symbol.

The syntax for accessing a class (struct) member using the operator —> is as follows:
pointerVariableName->classMemberName

Thus, the expression

(*str) .length()

is equivalent to the expression

str—->length ()




138 | Chapter 3: Pointers and Array-Based Lists

Accessing class (struct) components via pointers using the operator —> thus eliminates
the use both of the parentheses and of the dereferencing operator. Because typos are
unavoidable and missing parentheses can result in either an abnormal program termination
or erroneous results, when accessing class (struct) components via pointers, this book
uses the arrow notation.

Initializing Pointer Variables

Because C++ does not automatically initialize variables, pointer variables must be
initialized if you do not want them to point to anything. Pointer variables are initialized
using the constant value 0, called the null pointer. Thus, the statement p = 0; stores the
null pointer in p; that is, p points to nothing. Some programmers use the named constant
NULL to initialize pointer variables. The following two statements are equivalent:

p = NULL;
p=0;

The number 0 is the only number that can be directly assigned to a pointer variable.

Dynamic Variables

In the previous sections, you learned how to declare pointer variables, how to store the
address of a variable into a pointer variable of the same type as the variable, and how to
manipulate data using pointers. However, you learned how to use pointers to manipulate
data only into memory spaces that were created using other variables. In other words, the
pointers manipulated data into existing memory spaces. So what is the benefit to using
pointers? You can access these memory spaces by working with the variables that were
used to create them. In this section, you learn about the power behind pointers. In
particular, you learn how to allocate and deallocate memory during program execution
using pointers.

Variables that are created during program execution are called dynamic variables. With
the help of pointers, C++ creates dynamic variables. C++ provides two operators, new
and delete, to create and destroy dynamic variables, respectively. When a program
requires a new variable, the operator new is used. When a program no longer needs a
dynamic variable, the operator delete is used.

In C++, new and delete are reserved words.

Operator new

The operator new has two forms: one to allocate a single variable, and another to allocate
an array of variables. The syntax to use the operator new is as follows:

new dataType; //to allocate a single variable
new dataType[intExp]; //to allocate an array of variables

where intExp is any expression evaluating to a positive integer.



The Pointer Data Type and Pointer Variables | 139

The operator new allocates memory (a variable) of the designated type and returns a
pointer to it—that is, the address of this allocated memory. Moreover, the allocated
memory is uninitialized.

Consider the following declaration:
int *p;

char *qg;

int x;

The statement

P = &x;

stores the address of x in p. However, no new memory is allocated. On the other hand,
consider the following statement:

P = new int;

This statement creates a variable during program execution somewhere in memory, and
stores the address of the allocated memory in p. The allocated memory is accessed via
pointer dereferencing—namely, *p. Similarly, the statement

g = new char[16];
creates an array of 16 components of type char and stores the base address of the array in q.

Because a dynamic variable is unnamed, it cannot be accessed directly. It is accessed
indirectly by the pointer returned by new. The following statements illustrate this concept:

int *p; //p is a pointer of type int

p = new int; //allocates memory of type int and stores the address
//of the allocated memory in p
*p = 28; //stores 28 in the allocated memory

The operator new allocates memory space of a specific type and returns the (starting)
address of the allocated memory space. However, if the operator new is unable to allocate
the required memory space (for example, there is not enough memory space), the program
might terminate with an error message.

Operator delete

Suppose you have the following declaration:
int *p;

This statement declares p to be a pointer variable of type int. Next, consider the
following statements:

P = new int; //Line 1
*p = 54; //Line 2
P = new int; //Line 3
*p = 173; //Line 4



140 | Chapter 3: Pointers and Array-Based Lists

Let us see the effect of these statements. The statement in Line 1 allocates memory space
of type int and stores the address of the allocated memory space into p. Suppose that the
address of allocated memory space is 1500. Then, the value of p after the execution of
this statement is 1500. (See Figure 3-2.)

1500

p|15004+— |

FIGURE 3-2 p after the execution of p = new int;

In Figure 3-2, the number 1500 on top of the box indicates the address of the memory
space. The statement in Line 2 stores 54 into the memory space to which p points, which
is 1500. In other words, after execution of the statement in Line 2, the value stored into
memory space at location 1500 is 54. (See Figure 3-3.)

1500

pl1s00f—] 54 |

FIGURE 3-3 p and * p after the execution of *p = 54;

Next, the statement in Line 3 executes, which allocates a memory space of type int and
stores the address of the allocated memory space into p. Suppose the address of
this allocated memory space is 1800. It follows that the value of p is now 1800. (See
Figure 3-4.)

1500

1800

P 18004+ |

FIGURE 3-4 p after the execution of p = new int;

The statement in Line 4 stores 73 into the memory space to which p points, which is
1800. In other words, after execution of the statement in Line 4, the value stored into the
memory space at location 1800 is 73. (See Figure 3-5.)



The Pointer Data Type and Pointer Variables | 141

1500

1800

pl1soot—| 73 |

FIGURE 3-5 p after the execution of *p = 73;

Now the obvious question is, what happened to the memory space 1500, to which p was
pointing, before the execution of the statement in Line 3? After execution of the
statement in Line 3, p points to the new memory space at location 1800. The previous
memory space at location 1500 is now inaccessible. In addition, the memory space 1500
remains marked as allocated. In other words, it cannot be reallocated. This is called
memory leak. That is, there is an unused memory space that cannot be allocated.

Imagine what would happen if you execute statements such as Line 1 a few thousand
times, or a few million times. There will be a good amount of memory leak. The
program might then run out of memory space for data manipulation, and eventually
result in an abnormal termination of the program.

The question at hand is how to avoid memory leak. When a dynamic variable is no longer
needed, it can be destroyed; that is, its memory can be deallocated. The C++ operator
delete is used to destroy dynamic variables, so that its memory space can be allocated
again when needed. The syntax to use the operator delete has the following two forms:

delete pointerVariable; //to deallocate a single dynamic variable
delete [] pointerVariable; //to deallocate a dynamic array

Thus, given the declarations of the previous section, the statements

delete p:
delete str;

deallocate the memory spaces to which the pointers p and str point.
Suppose p is a pointer variable, as declared previously. Note that an expression such as
delete p;

only marks as deallocated the memory spaces to which these pointer variables point. Depending
on a particular system, after these statements execute, these pointer variables might still contain
the addresses of the deallocated memory spaces. In this case, we say that these pointers are
dangling. Therefore, if you later access the memory spaces via these pointers without properly
initializing them, depending on a particular system, either the program will access a wrong
memory space, which might result in corrupting data, or the program will terminate with an error
message. One way to avoid this pitfall is to set these pointers to NULL after the delete operation.

The program in the following example illustrates how to allocate dynamic memory and
how to manipulate data into that dynamic memory.




142 | Chapter 3: Pointers and Array-Based Lists

//***********************************************************

// Author: D.S. Malik

//

// This program illustrates how to allocate dynamic memory
// using a pointer variable and how to manipulate data into

// that memory location.
//***********************************************************

#include <iostream> //Line 1
using namespace std; //Line 2
int main () //Line 3
{ //Line 4
int *p; //Line 5
int *q; //Line 6
p = new int; //Line 7
*p = 34; //Line 8
cout << "Line 9: p = " << p
<< ", *p = " << *p << endl; //Line 9
q=p; //Line 10
cout << "Line 11l: g = " << g
<< ", *g = " << *g << endl; //Line 11
*q = 45; //Line 12
cout << "Line 13: p = " << p
<< M, *p = " << *p << endl; //Line 13
cout << "Line 14: g = " << ¢gq
<< ", *g = " << *g << endl; //Line 14
P = new int; //Line 15
*p = 18; //Line 16
cout << "Line 17: p = " << p
<< M, *p = " << *p << endl; //Line 17
cout << "Line 18: g = " << g
<< ", *g = " << *q << endl; //Line 18
delete q; //Line 19
q = NULL; //Line 20
g = new int; //Line 21
*q = 62; //Line 22
cout << "Line 23: p =" <K p
<< ", *p = " << *p << endl; //Line 23
cout << "Line 24: g =" << g
<< ", *g = " << *q << endl; //Line 24
return 0; //Line 25

} //Line 26



The Pointer Data Type and Pointer Variables | 143

Sample Run:
Line 9: p = 00355620, *p = 34

Line 11: g = 00355620, *gq = 34
Line 13: p = 00355620, *p = 45
Line 14: g = 00355620, *gq = 45
Line 17: p = 003556C8, *p = 18
Line 18: g = 00355620, *gq = 45
Line 23: p = 003556C8, *p = 18
Line 24: g = 00355620, *g = 62

The statements in Lines 5 and 6 declare p and g to be pointer variables of type int. The
statement in Line 7 allocates memory of type int and stores the address of the allocated
memory into p. (See Figure 3-6.)

o[- ]

FIGURE 3-6 Pointer p and the memory space to which it points

The box indicates the allocated memory (in this case, of type int), and p together with
the arrow indicates that p points to the allocated memory. The statement in Line 8 stores
34 into the memory location to which p points. (See Figure 3-7.)

pl - 3 |

FIGURE 3-7 Pointer p and the value of the memory location to which p points

The statement in Line 9 outputs the value of p and *p. (Note that the values of p and g
shown in the sample run are machine dependent. When you execute this program, you
are likely to get different values of p and q.)

The statement in Line 10 copies the value of p into q. (See Figure 3-8.)

e -

af

FIGURE 3-8 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 10



144 | Chapter 3: Pointers and Array-Based Lists

After the execution of the statement in Line 10, p and g both point to the same memory
location. So any changes made into that memory location by q immediately change the
value of *p. The statement in Line 11 outputs the value of g and *q. The statement in
Line 12 stores 45 into the memory location to which g points. (See Figure 3-9.)

p| -

al

FIGURE 3-9 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 12
The statements in Lines 13 and 14 output the values of p, *p, g, and *q.

The statement in Line 15 allocates memory space of type int and stores the address of
that memory into p. (See Figure 3-10.)

o[- ]
E

FIGURE 3-10 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 15

The statement in Line 16 stores 18 into the memory location to which p points.
(See Figure 3-11.)

9

FIGURE 3-11 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 16

The statements in Lines 17 and 18 output the values of p, *p, gq, and *q.

The statement in Line 19 deallocates the memory space to which g points and the
statement in Line 20 sets the value of g to NULL. After the execution of the statement
in Line 20, g does not point to any memory location. (See Figure 3-12.)



The Pointer Data Type and Pointer Variables | 145

=
o[

FIGURE 3-12 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 20

The statement in Line 21 allocates a memory space of type int and stores the address of
that memory space into q. The statement in Line 22 stores 62 in the memory space to
which q points. (See Figure 3-13.)

1

°[
=

9

FIGURE 3-13 Pointers p and g and the memory space to which they point after the execution
of the statement in Line 22

The statements in Lines 23 and 24 output the values of p, *p, q, and *q.

In the preceding program, omit statements in Lines 19 and 20, rerun the program, and
note how the last output statements change.

Operations on Pointer Variables

The operations that are allowed on pointer variables are the assignment and relational
operations and some limited arithmetic operations. The value of one pointer variable can
be assigned to another pointer variable of the same type. Two pointer variables of the
same type can be compared for equality, and so on. Integer values can be added and
subtracted from a pointer variable. The value of one pointer variable can be subtracted
from another pointer variable.

For example, suppose that we have the following statements:
int *p, *q;

The statement

p=4q;

copies the value of q into p. After this statement executes, both p and g point to the same
memory location. Any changes made to * p automatically change the value of * g, and vice versa.



146 | Chapter 3: Pointers and Array-Based Lists

The expression

p ==

evaluates to true if p and g have the same value—that is, if they point to the same
memory location. Similarly, the expression

pl!=q
evaluates to true if p and q point to different memory locations.

The arithmetic operations that are allowed differ from the arithmetic operations on
numbers. First, let us use the following statements to explain the increment and decre-
ment operations on pointer variables:

int *p;

double *q;

char *chPtr;

Suppose that the size of the memory allocated for an int variable is 4 bytes, a double
variable is 8 bytes, and a char variable is 1 byte.

The statement
pt+; orp=p+1;
increments the value of p by 4 bytes because p is a pointer of type int. Similarly, the statements

qt+;
chPtr++;

increment the value of g by 8 bytes and the value of chpPtr by 1 byte, respectively.

The increment operator increments the value of a pointer variable by the size of the
memory to which it is pointing. Similarly, the decrement operator decrements the value
of a pointer variable by the size of the memory to which it is pointing.

Moreover, the statement
p=p+2;
increments the value of p by 8 bytes.

Thus, when an integer is added to a pointer variable, the value of the pointer variable is
incremented by the integer times the size of the memory to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer variable, the value of the pointer variable
1s decremented by the integer times the size of the memory to which the pointer is pointing,.

Pointer arithmetic can be quite dangerous. Using pointer arithmetic, the program can
accidentally access the memory locations of other variables and change their content
without warning. The programmer is then left to try to find out what went wrong. If a
pointer variable tries to access either the memory spaces of other variables or an illegal
memory space, some systems might terminate the program with an appropriate error
message. Always exercise extra care when doing pointer arithmetic.



The Pointer Data Type and Pointer Variables | 147

Dynamic Arrays

The arrays used earlier are called static arrays because their size was fixed at compile time. One
of the limitations of a static array is that every time you execute the program, the size of
the array is fixed, so it might not be possible to use the same array to process different data sets of
the same type. One way to handle this limitation is to declare an array that is large enough to
process a variety of data sets. However, if the array is big and the data set is small, such a
declaration would result in memory waste. On the other hand, it would be helpful if, during
program execution, you could prompt the user to enter the size of the array and then create an
array of the appropriate size. This approach is especially helpful if you cannot even guess the
array size. In this section, you learn how to create arrays during program execution and how to
process such arrays.

An array created during the execution of a program is called a dynamic array. To create
a dynamic array, we use the second form of the new operator.

The statement

int *p;

declares p to be a pointer variable of type int. The statement
p = new int[10];

allocates 10 contiguous memory locations, each of type int, and stores the address of the
first memory location into p. In other words, the operator new creates an array of 10
components of type int, it returns the base address of the array, and the assignment
operator stores the base address of the array into p. Thus, the statement

stores 25 into the first memory location, and the statements

pt+; //p points to the next array component

*p = 35;

store 35 into the second memory location. Thus, by using the increment and decrement
operations, you can access the components of the array. Of course, after performing a few
increment operations, it is possible to lose track of the first array component. C++ allows
us to use array notation to access these memory locations. For example, the statements

pl0] = 25;
pll]l = 35;

store 25 and 35 into the first and second array components, respectively. That is, p[0]
refers to the first array component, p[ 1] refers to the second array component, and so on.
In general, p[1] refers to the (i + 1)th array component. After the preceding statements
execute, p still points to the first array component.

The following for loop initializes each array component to 0:

for (int j 0; 3 < 10; j++)

plJl 0;



148 | Chapter 3: Pointers and Array-Based Lists

When the array notation is used to process the array to which p points, p stays fixed at
the first memory location. Note that p is a dynamic array, created during program
execution.

The following program segment illustrates how to obtain a user’s response to get the array size
and create a dynamic array during program execution. Consider the following statements:

int *intList; //Line 1
int arraySize; //Line 2
cout << "Enter array size: "; //Line 3
cin >> arraySize; //Line 4
cout << endl; //Line 5
intList = new int[arraySize]; //Line 6

The statement in Line 1 declares intList to be a pointer of type int, and the statement
in Line 2 declares arraySize to be an int variable. The statement in Line 3 prompts the
user to enter the size of the array, and the statement in Line 4 inputs the array size into the
variable arraySize. The statement in Line 6 creates an array of the size specified by
arraySize, and the base address of the array is stored in intList. From this point on,
you can treat intList just like any other array. For example, you can use the array
notation to process the elements of intList and pass intList as a parameter to the
function.

Array Name: A Constant Pointer
The statement
int 1list[5];

declares 1ist to be an array of five components. Recall that list itself is a variable
and the value stored in 1ist is the base address of the array—that is, it is the address of
the first array component. Suppose the address of the first array component is 1000.
Figure 3-14 shows 1ist and the array list.

1ist [ 1000 | | | | ‘

1000 1004 1008 1012 1016
1ist[0] 1ist[1] 1list[2] 1list[3] 1list[4]

FIGURE 3-14 1list and array list



The Pointer Data Type and Pointer Variables | 149

Because the value of 1ist, which is 1000, is a memory address, 1ist is a pointer variable.
However, the value stored in 1ist, which is 1000, cannot be altered during program execution.
That is, the value of 1ist is constant. Therefore, the increment and decrement operations
cannot be applied to 1ist. In fact, any attempt to use the increment or decrement operations
on list results in a compile-time error.

Notice that here we are only saying that the value of 1ist cannot be changed. However,
the data in the array list can be manipulated as usual. For example, the statement
1ist[0] = 25; stores 25 into the first array component. Similarly, the statement
list[2] = 78; stores 78 into the third component of 1ist. (See Figure 3-15.)

list|[ 1000 o5 | | 78 | | ‘

1000 1004 1008 1012 1016
list[0] 1list[1] 1list[2] 1ist[3] 1list[4]

FIGURE 3-15 Array 11 st after the execution of the statements 1ist[0] =25; and 1ist[2] =78;

If p is a pointer variable of type int, then the statement
p = list;

copies the value of 1ist, which is 1000, the base address of the array, into p. We are
allowed to perform increment and decrement operations on p.

An array name 1s a constant pointer.

Functions and Pointers

A pointer variable can be passed as a parameter to a function either by value or by
reference. To declare a pointer as a value parameter in a function heading, you use the
same mechanism as you use to declare a variable. To make a formal parameter be a
reference parameter, you use & when you declare the formal parameter in the function
heading. Therefore, to declare a formal parameter as a reference parameter, you must
use & Between the data type name and the identifier name, you must include * to make
the identifier a pointer and & to make it a reference parameter. The obvious question is:
In what order should & and * appear between the data type name and the identifier to
declare a pointer as a reference parameter? In C++, to make a pointer a reference
parameter in a function heading, * appears before the & between the data type name
and the identifier. The following example illustrates this concept:

void example (int* &p, double *q)
{




150 | Chapter 3: Pointers and Array-Based Lists

In this example, both p and q are pointers. The parameter p is a reference parameter; the
parameter q is a value parameter.

Pointers and Function Return Values

In C++, the return type of a function can be a pointer. For example, the return type of
the function

int* testExp(...)
{

}

is a pointer of type int.

Dynamic Two-Dimensional Arrays

The beginning of this section discussed how to create dynamic one-dimensional arrays. You
can also create dynamic multidimensional arrays. In this section, we discuss how to create
dynamic two-dimensional arrays. Dynamic multidimensional arrays are created similarly.

There are various ways you can create dynamic two-dimensional arrays. One way is as
follows. Consider the statement:

int *board[4];

This statement declares board to be an array of four pointers wherein each pointer is of
type int. Because board[0], board[1], board[2], and board[3] are pointers, you
can now use these pointers to create the rows of board. Suppose that each row of board
has six columns. Then the following for loop creates the rows of board.

for (int row

= 0; row < 4; rowt++)
board[row] =

new int[6];

Note that the expression new int[6] creates an array of six components of type int and
returns the base address of the array. The assignment statement then stores the returned
address into board[row]. It follows that after the execution of the previous for loop,
board is a two-dimensional array of 4 rows and 6 columns.

In the previous for loop, if you replace the number 6 with the number 10, the loop will
create a two-dimensional array of 4 rows and 10 columns. In other words, the number of
columns of board can be specified during execution. However, the way board 1s declared,
the number of rows is fixed. So in reality, board is not a true dynamic two-dimensional array.

Next, consider the following statement:
int **board;

This statement declares board to be a pointer to a pointer. In other words, board and
*board are pointers. Now board can store the address of a pointer or an array of pointers of
type int, and *board can store the address of an int memory space or an array of int values.



The Pointer Data Type and Pointer Variables | 151

Suppose that you want board to be an array of 10 rows and 15 columns. To accomplish
this, first we create an array of 10 pointers of type int and assign the address of that array
to board. The following statement accomplishes this:

board = new int* [10];
Next we create the columns of board. The following for loop accomplishes this:

for (int row

= 0; row < 10; row++)
board[row] =

new int[15];

To access the components of board, you can use the array subscripting notation. For
example, see the next example. Note that the number of rows and the number of columns
of board can be specified during program execution. The program in Example 3-5 further
explains how to create two-dimensional arrays.

//*************************************************************

// Author: D.S. Malik
//
// This program illustrates how to use two-dimensional dynamic

// arrays.
//*************************************************************

#include <iostream> //Line 1
#include <iomanip> //Line 2
using namespace std; //Line 3
void fill(int **p, int rowSize, int columnSize); //Line 4
void print (int **p, int rowSize, int columnSize); //Line 5
int main () //Line 6
{ //Line 7
int **board; //Line 8
int rows; //Line 9
int columns; //Line 10

cout << "Line 11: Enter the number of rows "

<<"and columns: "; //Line 11
cin >> rows >> columns; //Line 12
cout << endl; //Line 13

//Create the rows of board
board = new int* [rows]; //Line 14

//Create the columns of board
for (int row = 0; row < rows; rowt+) //Line 15
board[row] = new int[columns]; //Line 16



152 | Chapter 3: Pointers and Array-Based Lists

//Insert elements into board
fill (board, rows, columns); //Line 17

cout << "Line 18: Board:" << endl; //Line 18

//0utput the elements of board

print (board, rows, columns); //Line 19
return 0; //Line 20
} //Line 21
void fill(int **p, int rowSize, int columnSize)
{
for (int row = 0; row < rowSize; row++)
{
cout << "Enter " << columnSize << " number(s) for row "
<< "number " << row << ": ";
for (int col = 0; col < columnSize; col++)
cin >> p[row][col];
cout << endl;
}
}
void print(int **p, int rowSize, int columnSize)
{
for (int row = 0; row < rowSize; row++)
{
for (int col = 0; col < columnSize; col++)
cout << setw(5) << p[row][col];
cout << endl;
}
}

Sample Run: In this sample run, the user input is shaded.

Line 11: Enter the number of rows and columns: 3 4
Enter 4 number(s) for row number 0: 1 2 3 4

Enter 4 number(s) for row number 1: 5 6 7 8

Enter 4 number(s) for row number 2: 9 10 11 12

Line 18: Board:

1 2 3 4

5 6 7 8

9 10 11 12
The preceding program contains the functions £ill and print. The function £ill
prompts the user to enter the elements of a two-dimensional array of type int. The
function print outputs the elements of a two-dimensional array of type int.



The Pointer Data Type and Pointer Variables | 153

For the most part, the preceding output is self-explanatory. Let us look at the statements
in the function main. The statement in Line 8 declares board to be a pointer to a pointer
of type int. The statements in Lines 9 and 10 declare int variables rows and columns.
The statement in Line 11 prompts the user to input the number of rows and number of
columns. The statement in Line 12 stores the number of rows in the variable rows and
the number of columns in the variable columns. The statement in Line 14 creates the
rows of board and the for loop in Lines 15 and 16 creates the columns of board. The
statement in Line 17 used the function £i11 to fill the array board and the statement in
Line 19 uses the function print to output the elements of board.

Shallow Vs. Deep Copy and Pointers

In an earlier section, we discussed pointer arithmetic and explained that if we are not
careful, one pointer might access the data of another (completely unrelated) pointer. This
event might result in unsuspected or erroneous results. Here, we discuss another pecu-
liarity of pointers. To facilitate the discussion, we will use diagrams to show pointers and
their related memory.

Suppose that you have the following declarations:

int *first;
int *second;

Further suppose that first points to an int array, as shown in Figure 3-16.

first[:z}———+|10 |36 |89 |29 |47 |64 |28 |92 |37 |73‘

FIGURE 3-16 Pointer first and its array

Next, consider the following statement:
second = first; //Line A

This statement copies the value of first into second. After this statement executes,
both first and second point to the same array, as shown in Figure 3-17.

fEaliss 10|36|89|29|47|64|28|92|37|73‘

second

FIGURE 3-17 first and second after the statement second = first; executes




154 | Chapter 3: Pointers and Array-Based Lists

The statement first[4] = 10; not only changes the value of first[4], it also changes
the value of second[4] because they point to the same array.

Let us execute the following statement:
delete [] second;

After this statement executes, the array to which second points is deleted. This action
results in Figure 3-18.

second

first B—»
EI_.

FIGURE 3-18 first and second after the statement delete [ ] second; executes

Because first and second pointed to the same array, after the statement
delete [] second;

executes, first becomes invalid, that is, first (as well as second) are now dangling
pointers. Therefore, if the program later tries to access the memory to which first
pointed, either the program will access the wrong memory or it will terminate in an
error. This case is an example of a shallow copy. More formally, in a shallow copy, two
or more pointers of the same type point to the same memory; that is, they point to the
same data.

On the other hand, suppose that instead of the earlier statement, second = first; (in
Line A), we have the following statements:

second = new int[10];

for (int j = 0; j < 10; j++)
second[j] = first[j]:

The first statement creates an array of 10 components of type int, and the base address of
the array is stored in second. The second statement copies the array to which first
points into the array to which second points. (See Figure 3-19.)

first [ {1036 [ 89294764 28] 02]37]73]
second| ——[ 10 [36[89 [ 294764 [28]92]37]73]

FIGURE 3-19 first and second both pointing to their own data



Classes and Pointers: Some Peculiarities | 155

Both first and second now point to their own data. If second deletes its memory,
there is no effect on first. This case is an example of a deep copy. More formally, in a
deep copy, two or more pointers have their own data.

From the preceding discussion, it follows that you must know when to use a shallow
copy and when to use a deep copy.

Classes and Pointers: Some Peculiarities

Because a class can have pointer member variables, this section discusses some peculia-
rities of such classes. To facilitate the discussion, we use the following class:

class pointerDataClass

{
public:

private:
int x;
int lenP;
int *p;

i
Also consider the following statements. (See Figure 3-20.)

pointerDataClass objectOne;
pointerDataClass objectTwo;

objectOne % objectTwo x
lenP lenP
P P

FIGURE 3-20 Objects objectOne and objectTwo

Destructor

The object objectOne has a pointer member variable p. Suppose that during program
execution the pointer p creates a dynamic array. When objectOne goes out of scope, all
the member variables of objectOne are destroyed. However, p created a dynamic array,
and dynamic memory must be deallocated using the operator delete. Thus, if the
pointer p does not use the delete operator to deallocate the dynamic array, the memory
space of the dynamic array would stay marked as allocated, even though it cannot be




156 | Chapter 3: Pointers and Array-Based Lists

accessed. How do we ensure that when p is destroyed, the dynamic memory created by p
is also destroyed? Suppose that objectOne is as shown in Figure 3-21.

objectOne 52 n
lenP

p

L[ 5 [36]24]15] ... ]

FIGURE 3-21 Object objectOne and its data

Recall that if a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope (see Chapter 1). Therefore, we can put the necessary code
in the destructor to ensure that when objectOne goes out of scope, the memory created
by the pointer p is deallocated. For example, the definition of the destructor for the
class pointerDataClass is as follows:

pointerDataClass: :~pointerDataClass ()

{
delete [] p;
}

Of course, you must include the destructor as a member of the class in its definition. Let
us extend the definition of the class pointerDataClass by including the destructor.
Moreover, the remainder of this section assumes that the definition of the destructor is as
given previously—that is, the destructor deallocates the memory space pointed to by p.

class pointerDataClass

{
public:
~pointerDataClass () ;
private:
int x;
int lenP;
int *p;
}i

For the destructor to work properly, the pointer p must have a valid value. If p is not
properly initialized (that is, if the value of p is garbage) and the destructor executes,
either the program terminates with an error message or the destructor deallocates an
unrelated memory space. For this reason, you should exercise extra caution while working
with pointers.



Classes and Pointers: Some Peculiarities | 157

Assignment Operator

This section describes the limitations of the built-in assighment operators for classes with pointer
member variables. Suppose that objectOne and objectTwo are as shown in Figure 3-22.

objectOne x n objectTwo x
lenP lenP
P b

L[ 5 [36]24]15] ... ]

FIGURE 3-22 Objects objectOne and objectTwo

Recall that one of the built-in operations on classes is the assignment operator. For
example, the statement:

objectTwo = objectOne;

copies the member variables of objectOne into objectTwo. That is, the value of
objectOne.x is copied into objectTwo.x, and the value of objectOne.p is copied
into objectTwo.p. Because p is a pointer, this memberwise copying of the data would
lead to a shallow copying of the data. That is, both objectTwo.p and objectOne.p
would point to the same memory space, as shown in Figure 3-23.

objectOne =2 n objectTwo = n

lenP lenP
P P n
j

_L:I 5 [36]24]15] ... ]

FIGURE 3-23 Objects objectOne and objectTwo after the statement objectTwo =
objectOne; executes

Now, if objectTwo.p deallocates the memory space to which it points, objectOne.p would
become invalid. This situation could very well happen, if the class pointerDataClass
has a destructor that deallocates the memory space pointed to by p when an object of
type pointerDataClass goes out of scope. It suggests that there must be a way to avoid
this pitfall. To avoid this shallow copying of data for classes with a pointer member
variable, C++ allows the programmer to extend the definition of the assignment
operator. This process is called overloading the assignment operator. In the next section,
we explain how to accomplish this task by using operator overloading. Once the
assignment operator is properly overloaded, both objectOne and objectTwo have their
own data, as shown in Figure 3-24.



158 | Chapter 3: Pointers and Array-Based Lists

objectOne P n objectTwo = n
lenP lenP

P P

L J5[36[2a]15]...] L—l5([36[24]15]...]

FIGURE 3-24 Objects objectOne and objectTwo

OVERLOADING THE ASSIGNMENT OPERATOR

Next we describe how to overload the assignment operator.
General Syntax to Overload the Assignment Operator = for a Class
Function Prototype (to be included in the definition of the class):

const className& operator=(const classNameé&) ;
Function Definition:

const classNameé& className::operator=(const classNameé& rightObject)
{

//local declaration, if any

if (this != &rightObject) //avoids self-assignment
{

//algorithm to copy rightObject into this object
}

//returns the object assigned
return *this;

}

In the definition of the function operator=:

e There is only one formal parameter.
® The formal parameter is generally a const reference to a particular class.

® The return type of the function is a reference to a particular class.
Consider the statement
X = X;

Here, we are trying to copy the value of x into x; that is, this statement is a self-
assignment. We must prevent such statements because they waste computer time.

The body of the function operator= does prevent such assignments. Let us see how.
Consider the if statement in the body of the operator function operator=:

if (this != grightObject) //avoids self-assignment
{

//algorithm to copy rightObject into this object
}



Classes and Pointers: Some Peculiarities | 159

Now the statement

X = X;

1s compiled into the statement
X.operator=(x);

Because the function operator= is invoked by the object x, the pointer this in the
body of the function operator= refers to the object x. Furthermore, because x is also a
parameter to the function operator=, the formal parameter rightObject also refers to
the object x. Therefore, in the expression

this != &rightObject

this means the address of x, and &rightObject also means the address of x. Thus, this
expression will evaluate to false and, therefore, the body of the if statement will be skipped.

Notice that the return type of the function to overload the assignment operator is a
reference. This is so that the statements such as x = y = z; can be executed, that is, the
assignment operator can be used in a cascaded form.

In the section “Array-Based Lists,” later in this chapter, we explicitly illustrate how to
overload the assignment operator.

Copy Constructor

When declaring a class object, you can initialize it by using the value of an existing object
of the same type. For example, consider the following statement:

pointerDataClass objectThree (objectOne) ;

The object objectThree is being declared and is also being initialized by using the value of
objectOne. That is, the values of the member variables of objectOne are copied into the
corresponding member variables of objectThree. This initialization is called the default
memberwise initialization. The default memberwise initialization is due to the constructor,
called the copy constructor (provided by the compiler). Just as in the case of the assignment
operator, because the class pointerDataClass has pointer member variables, this default
initialization would lead to a shallow copying of the data, as shown in Figure 3-25. (Assume
that objectOne is given as before.)

objectOne = n objectThree 52 n

lenP lenP
p P n
|

_":| 5 [36]24]15] ... ]

FIGURE 3-25 Objects objectOne and objectThree




160 | Chapter 3: Pointers and Array-Based Lists

Before describing how to overcome this deficiency, let us describe one more situation
that could also lead to a shallow copying of the data. The solution to both these problems
is the same.

Recall that, as parameters to a function, class objects can be passed either by reference or by
value. Remember that the class pointerDataClass has the destructor, which deallocates
the memory space pointed to by p. Suppose that objectOne is as shown in Figure 3-26.

objectOne 5= n
lenP

P

5 [36]24]15] ... |

FIGURE 3-26 Object objectOne

Let us consider the following function prototype:

void destroyList (pointerDataClass paramObject) ;

The function pointerDataClass has a formal value parameter, paramObject. Now
consider the following statement:

destroylist (objectOne) ;

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just

as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 3-27.

destroyList

objectOne 2 n paramObject = n

lenP lenP
p P n

bs [36]24]15] ... |

FIGURE 3-27 Pointer member variables of objects objectOne and paramObject pointing
to the same array

Because objectOne is passed by value, the member variables of paramObject should
have their own copy of the data. In particular, paramObject.p should have its own
memory space. How do we ensure that this is, in fact, the case?



Classes and Pointers: Some Peculiarities | 161

If a class has pointer member variables:

¢ During object declaration, the initialization of one object using the value
of another object leads to a shallow copying of the data, if the default
memberwise copying of data is allowed.

e [f, as a parameter, an object is passed by value and the default member-

wise copying of data is allowed, it leads to a shallow copying of the data.

In both cases, to force each object to have its own copy of the data, we must override the
definition of the copy constructor provided by the compiler; that is, we must provide our
own definition of the copy constructor. This is usually done by putting a statement that
includes the copy constructor in the definition of the class, and then writing the definition
of the copy constructor. Then, whenever the copy constructor needs to be executed, the

system would execute the definition provided by us, not the one provided by the compiler.
Therefore, for the class pointerDataClass, we can overcome this shallow copying
problem by including the copy constructor in the class pointerDataClass.

The copy constructor automatically executes in three situations (the first two are described

previously):

e  When an object is declared and initialized by using the value of another

object

e When, as a parameter, an object is passed by value

e When the return value of a function is an object

Therefore, once the copy constructor is properly defined for the class pointerDataClass,
both objectOne.p and objectThree.p will have their own copies of the data.
Similarly, objectOne.p and paramObject.p will have their own copies of the data, as
shown in Figure 3-28.

objectOne

destroyList

= n paramObject

p| ]

x| 8 |
lenP lenP

p

L»{ 5 [36]24]15] ... ]

L 5 [36]24]15] ... ]

FIGURE 3-28 Pointer member variables of objects objectOne and paramObject

with their own data

When the function destroyList exits, the formal parameter paramObject goes out
of scope, and the destructor for the object paramObject deallocates the memory
space pointed to by paramObject.p. However, this deallocation has no effect on

objectOne.



162 | Chapter 3: Pointers and Array-Based Lists

The general syntax to include the copy constructor in the definition of a class is as
follows:

className (const classNameé& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference
parameter.

In the section, “Array-Based Lists,” we explicitly illustrate how to include the copy constructor
in a class and how it works.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.
2. Opverload the assignment operator for the class.

3. Include the copy constructor.

Inheritance, Pointers, and Virtual Functions

Recall that, as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a
formal parameter of the base class type.

First, let us discuss the case when the formal parameter is either a reference parameter or a
pointer. To be specific, let us consider the following classes:

class baseClass

{

public:
void print();
baseClass(int u = 0);

private:
int x;

}i

class derivedClass: public baseClass

{
public:
void print();
derivedClass(int u = 0, int v = 0);

private:
int a;

}i

The class baseClass has three members. The class derivedClass is derived from the
class baseClass, and has three members of its own. Both classes have a member function
print. Suppose that the definitions of the member functions of both classes are as follows:



Inheritance, Pointers, and Virtual Functions

void baseClass::print ()

{
cout << "In baseClass x = " << x << endl;
}
baseClass: :baseClass (int u)
{
X = u;
}
void derivedClass: :print ()
{
cout << "In derivedClass ***: ";
baseClass::print();
cout << "In derivedClass a = " << a << endl;
}

derivedClass: :derivedClass (int u, int v)
: baseClass (u)

Consider the following function in a user program (client code):

void callPrint (baseClassé& p)
{

p.print();
}

163

The function callPrint has a formal reference parameter p of type baseClass. You
can call the function callPrint by using an object of either type baseClass or type
derivedClass as a parameter. Moreover, the body of the function callPrint calls the

member function print. Consider the following function main:

int main () //Line 1
{ //Line 2
baseClass one(5); //Line 3
derivedClass two (3, 15); //Line 4
one.print():; //Line 5
two.print () ; //Line 6

cout << "*** Calling the function "

<< "callPrint ***" << endl; //Line 7
callPrint (one) ; //Line 8
callPrint (two) ; //Line 9
return O; //Line 10

} //Line 11




164 | Chapter 3: Pointers and Array-Based Lists

Sample Run:

In baseClass x = 5

In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

*** Calling the function callPrint ***
In baseClass x = 5

In baseClass x 3

The statements in Lines 3 through 7 are quite straightforward. Let us look at the statements
in Lines 8 and 9. The statement in Line 8 calls the function callPrint and passes the
object one as the parameter; it generates the fifth line of the output. The statement in Line
9 also calls the function callPrint, but passes the object two as the parameter; it generates
the sixth line of the output. The output generated by the statements in Lines 8 and 9 shows
only the value of %, even though in these statements a different class object is passed as a
parameter. (Because in Line 9 object two is passed as a parameter to the function
callPrint, one would expect that the output generated by the statement in Line 9 should
be similar to the output in the second and third lines of the output.) What actually occurred
is that for both statements (Lines 8 and 9), the member function print of the class
baseClass is executed. This is due to the fact that the binding of the member function
print, in the body of the function callPrint, occurred at compile time. Because the
formal parameter p of the function callPrint is of type baseClass, for the statement
p.print () ;, the compiler associates the function print of the class baseClass. More
specifically, in compile-time binding, the necessary code to call a specific function is
generated by the compiler. (Compile-time binding is also known as static binding.)

For the statement in Line 9, the actual parameter is of type derivedClass. Thus, when
the body of the function callPrint executes, logically the print function of object two
should execute, which is not the case. So, during program execution, how does C++
correct this problem of making the call to the appropriate function? C++ corrects this
problem by providing the mechanism of virtual functions. The binding of virtual
functions occurs at program execution time, not at compile time. This kind of binding
is called run-time binding. More formally, in run-time binding, the compiler does not
generate the code to call a specific function. Instead, it generates enough information to
enable the run-time system to generate the specific code for the appropriate function call.
Run-time binding is also known as dynamic binding.

In C++, virtual functions are declared using the reserved word virtual. Let us redefine
the previous classes using this feature:

class baseClass

{

public:
virtual void print(); //virtual function
baseClass(int u = 0);

private:

int x;

}:



Inheritance, Pointers, and Virtual Functions | 165

class derivedClass: public baseClass

{
public:
void print():;
derivedClass(int u = 0, int v = 0);
private:
int a;
}:

Note that we need to declare a virtual function only in the base class.

The definition of the member function print is the same as before. If we execute the
p
previous program with these modifications, the output is as follows.

Sample Run:

In baseClass x = 5

In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

*** Calling the function callPrint ***
In baseClass x = 5

In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

This output shows that for the statement in Line 9, the print function of derivedClass
is executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature, suppose
we have the preceding classes. (We assume that the definition of the class baseClass is in
the header file baseClass.h, and the definition of the class derivedClass is in the
header file derivedClass.h.) Consider the following program:

//******************************************************

// Author: D.S. Malik
//
// This program illustrates how virtual functions and

// pointer formal parameters work.
//******************************************************

#include <iostream> //Line 1
#include "derivedClass.h" //Line 2
using namespace std; //Line 3
void callPrint (baseClass *p); //Line 4
int main () //Line 5
{ //Line 6

baseClass *qg; //Line 7

derivedClass *r; //Line 8



166 | Chapter 3: Pointers and Array-Based Lists

d = new baseClass(5);
r new derivedClass (3, 15);

g->print () ;
r—>print():;

cout << ™*** Calling the function "
<< "callPrint ***" << endl;

callPrint(q):
callPrint(r);

return 0;

}

void callPrint (baseClass *p)
{

p—>print () ;
}

Sample Run:

In baseClass x = 5

In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

*** Calling the function callPrint ***
In baseClass x = 5

In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

The preceding examples show that if a formal parameter, say p of a class type, is either a
reference parameter or a pointer and p uses a virtual function of the base class, we can
effectively pass a derived class object as an actual parameter to p.

However, if p is a value parameter, then this mechanism of passing a derived class object as
an actual parameter to p does not work, even if p uses a virtual function. Recall that, if a
formal parameter is a value parameter, the value of the actual parameter is copied into the
formal parameter. Therefore, if a formal parameter is of a class type, the member
variables of the actual object are copied into the corresponding member variables of the

formal parameter.

Suppose that we have the classes defined above—that is, baseClass and derivedClass.

Consider the following function definition:

//Line
//Line

//Line
//Line
//Line

//Line
//Line

//Line
//Line

9
10

11

12

13

14
15

16
17

void callPrint (baseClass p) //p is a value parameter

{
p.print () ;
}

Further suppose that we have the following declaration:

derivedClass two;



Inheritance, Pointers, and Virtual Functions | 167

The object two has two member variables, x and a. The member variable x is inherited
from the base class. Consider the following function call:

callPrint (two) ;

In this statement, because the formal parameter p is a value parameter, the member
variables of two are copied into the member variables of p. However, because p is an
object of type baseClass, it has only one member variable. Consequently, only the
member variable x of two will be copied into the member variable x of p. Also, the
statement:

p.print();

in the body of the function will result in executing the member function print of the
class baseClass.

The output of the following program further illustrates this concept. (As before, we
assume that the definition of the class baseClass is in the header file baseClass.h,
and the definition of the class derivedClass is in the header file derivedClass.h.)

//*******************************************************

// Author: D.S. Malik

/7

// This program illustrates how virtual functions and a
// pointer variable of base class as a formal parameter

// work.
//**‘k‘k**‘k***‘k***‘k**********‘k***‘k******‘k***‘k**************

#include <iostream> //Line 1
#include "derivedClass.h" //Line 2
using namespace std; //Line 3
void callPrint (baseClass p):; //Line 4
int main () //Line 5
{ //Line 6
baseClass one(5); //Line 7
derivedClass two (3, 15); //Line 8
one.print():; //Line 9
two.print(); //Line 10

cout << "*** Calling the function "

<< "callPrint ***" << endl; //Line 11
callPrint (one) ; //Line 12
callPrint (two) ; //Line 13
return 0; //Line 14

} //Line 15




168 | Chapter 3: Pointers and Array-Based Lists

void callPrint (baseClass p) //p is a value parameter
{

p.print () ;
}

Sample Run:

In baseClass x = 5

In derivedClass ***: In baseClass x
In derivedClass a = 15

*** Calling the function callPrint ***
In baseClass x 5

In baseClass x = 3

Il
w

Look closely at the output of the statements in Lines 12 and 13 (the last two lines of
output). In Line 13, because the formal parameter p is a value parameter, the member
variables of two are copied into the corresponding member variables of p. However,
because p is an object of type baseClass, it has only one member variable. Conse-
quently, only the member variable x of two is copied into the member variable x of p.
Moreover, the statement p.print () ; in the function callPrint executes the function
print of the class baseClass, not the class derivedClass. Therefore, the last line
of the output shows only the value of x (the member variable of two).

An object of the base class type cannot be passed to a formal parameter of the derived
class type.

Classes and Virtual Destructors

One thing recommended for classes with pointer member variables is that these classes
should have the destructor. The destructor is automatically executed when the class
object goes out of scope. Thus, if the object creates dynamic objects, the destructor
can be designed to deallocate the storage for them. If a derived class object is passed to a
formal parameter of the base class type, the destructor of the base class executes regardless
of whether the derived class object is passed by reference or by value. Logically, however,
the destructor of the derived class should be executed when the derived class object goes
out of scope.

To correct this problem, the destructor of the base class must be virtual. The virtual
destructor of a base class automatically makes the destructor of a derived class virtual.
When a derived class object is passed to a formal parameter of the base class type, then
when the object goes out of scope, the destructor of the derived class executes. After
executing the destructor of the derived class, the destructor of the base class executes.
Therefore, when the derived class object is destroyed, the base class part (that is, the
members inherited from the base class) of the derived class object is also destroyed.

If a base class contains virtual functions, make the destructor of the base class virtual.



Abstract Classes and Pure Virtual Functions | 169

Abstract Classes and Pure Virtual Functions

The preceding section discussed virtual functions. Other than enforcing run-time binding
of functions, virtual functions also have another use, which is discussed in this section.
Chapter 2 described the second principal of OOD—inheritance. Through inheritance we
can derive new classes without designing them from scratch. The derived classes, in
addition to inheriting the existing members of the base class, can add their own members
and also redefine or override public and protected member functions of the base class.
The base class can contain functions that you would want each derived class to imple-
ment. There are many scenarios when a class is desired to be served as a base class for a
number of derived classes, however, the base class may contain certain functions that may
not have meaningful definitions in the base class.

Let us consider the class shape given in Chapter 2. As noted in that chapter, from the
class shape you can derive other classes such as rectangle, circle, ellipse, and
so on. Some of the things common to every shape are its center, using the center to move
a shape to a different location, and drawing the shape. Among others, we can include
these in the class shape. For example, you could have the definition of the class
shape similar to the following:

class shape

{
public:
virtual void draw () ;
//Function to draw the shape.
virtual void move (double x, double y):
//Function to move the shape at the position (x, y).
}:

Because the definitions of the functions draw and move are specific to a particular shape,
each derived class can provide an appropriate definition of these functions. Note that we
have made the functions draw and move virtual to enforce run-time binding of these
functions.

The way the definition of the class shape is written when you write the definition of
the functions of the class shape, you must also write the definitions of the functions
draw and move. However, at this point there is no shape to draw or move. Therefore,
these function bodies have no code. One way to handle this is to make the body of these
tunctions empty. This solution would work, but it has another drawback. Once we write
the definitions of the functions of the class shape, then we could create an object of
this class. Because there is no shape to work with, we would like to prevent the user from
creating objects of the class shape. It follows that we would like to do the following
two things—to not include the definitions of the functions draw and move, and to
prevent the user from creating objects of the class shape.




170 | Chapter 3: Pointers and Array-Based Lists

Because we do not want to include the definitions of the functions draw and move of the
class shape, we must convert these functions to pure virtual functions. In this case,
the prototypes of these functions are:

virtual void draw() = 0;
virtual void move (double x, double y) = 0;

Note the expression = 0 before the semicolon. Once you make these functions pure
virtual functions in the class shape, you no longer need to provide the definitions of
these functions for the class shape.

Once a class contains one or more pure virtual functions, then that class is called an abstract
class. Thus, the abstract definition of the class shape is similar to the following:

class shape

{
public:
virtual void draw() = 0;
//Function to draw the shape. Note that this is a
//pure virtual function.
virtual void move (double x, double y) = 0;
//Function to move the shape at the position (%, y).
//Note that this is a pure virtual function.
}:

Because an abstract class is not a complete class, as it (or its implementation file) does not
contain the definitions of certain functions, you cannot create objects of that class.

Now suppose that we derive the class rectangle from the class shape. To make
rectangle a nonabstract class, so that we can create objects of this class, the class (or its
implementation file) must provide the definitions of the pure virtual functions of its
base class, which is the class shape.

Note that in addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the abstract class
must provide the definitions of constructor and functions that are not pure virtual.

Array-Based Lists

Everyone is familiar with the term list. You might have a list consisting of employee data,
student data, sales data, or a list of rental properties. One thing common to all lists is that all
the elements of a list are of the same type. More formally, we can define a list as follows:

List: A collection of elements of the same type.

The length of a list is the number of elements in the list.



Array-Based Lists | 171

Following are some of the operations performed on a list:

1. Create the list. The list is initialized to an empty state.
Determine whether the list is empty.

Determine whether the list is full.

Find the size of the list.

Destroy, or clear, the list.

Determine whether an item is the same as a given list element.
Insert an item in the list at the specified location.

Remove an item from the list at the specified location.

A A A Sl

Replace an item at the specified location with another item.

_
e

Retrieve an item from the list from the specified location.

11.  Search the list for a given item.

Before discussing how to implement these operations, we must first decide how to store the
list in the computer’s memory. Because all the elements of a list are of the same type, an
effective and convenient way to process a list is to store it in an array. Initially, the size of the
array holding the list elements is usually larger than the number of elements in the list so that,
at a later stage, the list can grow. Thus, we must know how full the array is; that is, we must
keep track of the number of list elements stored in the array. C++ allows the programmer to
create dynamic arrays. Therefore, we leave it for the user to specify the size of the array. The
size of the array can be specified when a list object is declared. It follows that, to maintain and
process the list in an array, we need the following three variables:

e The array holding the list elements

e A variable to store the length of the list (that is, the number of list
elements currently in the array)

e A variable to store the size of the array (that is, the maximum number of
elements that can be stored in the array)

Suppose that the variable length indicates the number of elements in the list and that
maxSize indicates the maximum number of elements that can be stored in the list. Then
length and maxSize are nonnegative integers and, therefore, we can declare them to be
of type int. What about the type of the array, that is, the data type of the array elements?
If we have a list of numbers, the array elements could be of type int or double. If we
have a list of names, the array elements are of type string. Similarly, if we have a list of
students, the array elements are of type studentType (a data type you can define). As
you can see, there are various types of lists.

A list of sales data or a list of students’ data is empty if its length is zero. To insert an item
at the end of a list of any type would require you to add the element after the current last
element and then increment the length by one. Similarly, it can be seen that, for the most
part, the algorithms to implement operations on a list of names, on a list of sales data, or
on a list of students’ data are the same. We do not want to spend time and efforts to




172 | Chapter 3: Pointers and Array-Based Lists

develop separate code for each type of list we encounter. Instead, we want to develop a
generic code that can be used to implement any type of list in a program. In other words,
while designing the algorithms, we do not want to be concerned whether we are
processing a list of numbers, a list of names, or a list of students’ data. However, while
illustrating a particular algorithm, we will consider a specific type of list. To develop
generic algorithms to implement list operations, we make use of class templates.

Now that we know the operations to be performed on a list and how to store the list into
the computer’s memory, next we define the class implementing the list as an abstract data
type (ADT). The following class, arrayListType, defines the list as an ADT:

//***********************************************************

// Author: D.S. Malik
//
// This class specifies the members to implement the basic

// properties of array-based lists.
//***********************************************************

template <class elemType>
class arrayListType
{
public:
const arraylListType<elemType>& operator=
(const arrayListType<elemType>&) ;
//Overloads the assignment operator
bool isEmpty() const;
//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.
bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full;
// otherwise, returns false.
int listSize () const;
//Function to determine the number of elements in the list
//Postcondition: Returns the value of length.
int maxListSize () const;
//Function to determine the size of the list.
//Postcondition: Returns the value of maxSize.
void print () const;
//Function to output the elements of the list
//Postcondition: Elements of the list are output on the
// standard output device.
bool isItemAtEqual (int location, const elemType& item) const;
//Function to determine whether the item is the same
//as the item in the list at the position specified by
//Postcondition: Returns true if list[location]
// is the same as the item; otherwise,
// returns false.
void insertAt (int location, const elemTypeé& insertItem);
//Function to insert an item in the list at the
//position specified by location. The item to be inserted
//is passed as a parameter to the function.



Array-Based Lists | 173

//Postcondition: Starting at location, the elements of the

// list are shifted down, list[location] = insertItem;,
// and length++;. If the list is full or location is
// out of range, an appropriate message is displayed.

void insertEnd(const elemType& insertItem);
//Function to insert an item at the end of the list.
//The parameter insertItem specifies the item to be inserted.
//Postcondition: list[length] = insertItem; and length++;
// If the 1ist is full, an appropriate message is
// displayed.

void removeAt (int location);
//Function to remove the item from the list at the
//position specified by location
//Postcondition: The list element at list[location] is removed
// and length is decremented by 1. If location is out of
// range, an appropriate message is displayed.

void retrieveAt (int location, elemTypeé& retItem) const;
//Function to retrieve the element from the list at the
//position specified by location.
//Postcondition: retItem = list[location]
// If location is out of range, an appropriate message is
// displayed.

void replaceAt (int location, const elemType& repltem);
//Function to replace the elements in the list at the
//position specified by location. The item to be replaced
//is specified by the parameter repItem.
//Postcondition: list[location] = repltem
// If location is out of range, an appropriate message is
// displayed.

void clearList();
//Function to remove all the elements from the list.
//After this operation, the size of the list is zero.
//Postcondition: length = 0;

int segSearch (const elemType& item) const;
//Function to search the list for a given item.
//Postcondition: If the item is found, returns the location
// in the array where the item is found; otherwise,
// returns -1.

voild insert (const elemType& insertItem);
//Function to insert the item specified by the parameter
//insertItem at the end of the list. However, first the
//list is searched to see whether the item to be inserted
//is already in the list.
//Postcondition: list[length] = insertItem and length++
// If the item is already in the list or the list
// is full, an appropriate message is displayed.

void remove (const elemType& removeltem);
//Function to remove an item from the list. The parameter
//removeltem specifies the item to be removed.
//Postcondition: If removeItem is found in the list,
// it is removed from the list and length is
// decremented by one.




174 | Chapter 3: Pointers and Array-Based Lists

arrayListType (int size = 100);
//constructor
//Creates an array of the size specified by the
//parameter size. The default array size is 100.
//Postcondition: The list points to the array, length = 0,
// and maxSize = size

arrayListType (const arrayListType<elemType>& otherList);
//copy constructor

~arrayListType () ;
//destructor
//Deallocates the memory occupied by the array.

protected:

elemType *list; //array to hold the list elements

int length; //to store the length of the list

int maxSize; //to store the maximum size of the list
};

Figure 3-29 shows the UML class diagram of the class arrayListType.

arrayListType

#*list: elemType
#length: int
#maxSize: int

+isEmpty () const: bool

+isFull () const: bool

+listSize()const: int

+maxListSize () const: int

+print () const: void

+isItemAtEqual (int, const elemTypeé&)const: bool

+insertAt (int, const elemTypeé&) : void

+insertEnd (const elemType&) : void

+removeAt (int) : void

+retrieveAt (int, elemTypeé&)const: void

+replaceAt (int, const elemTypeé&) : void

+clearList () : void

+seqgSearch (const elemTypeé&)const: int

+insert (const elemTypeé&) : void

+remove (const elemTypeé&) : void

+arrayListType (int = 100)

+arrayListType (const arraylListType<elemType>&)

+~arrayListType ()

+operator=(const arrayListType<elemType>&) :
const arrayListType<elemType>é&

FIGURE 3-29 UML class diagram of the class arrayListType



Array-Based Lists | 175

Notice that the data members of the class arrayListType are declared as protected.
This is because we want to derive classes from this class to implement special lists such as
an ordered list. Next, we write the definitions of these functions.

The list is empty if length is zero; it is full if length is equal to maxSize. Therefore,
the definitions of the functions isEmpty and isFull are as follows:

template <class elemType>
bool arrayListType<elemType>::isEmpty() const
{
return (length == 0);
}

template <class elemType>
bool arraylistType<elemType>::isFull() const
{

return (length == maxSize);

}

The data member length of the class stores the number of elements currently in the list.
Similarly, because the size of the array holding the list elements is stored in the data
member maxSize, maxSize specifies the maximum size of the list. Therefore, the
definitions of the functions listSize and maxListSize are as follows:

template <class elemType>
int arrayListType<elemType>::1listSize () const
{

return length;

}

template <class elemType>
int arrayListType<elemType>::maxListSize () const

{

return maxSize;

}

Each of the functions isEmpty, isFull, listSize, and maxListSize contain only one
statement, which is either a comparison statement or a statement returning a value. It
follows that each of these functions is of O(1).

The member function print outputs the elements of the list. We assume that the output
is sent to the standard output device.

template <class elemType>
void arraylistType<elemType>::print () const

{
for (int i = 0; 1 < length; i++)
cout << list[i] << " ™;
cout << endl;
}

The function print uses a loop to output the elements of the list. The number of times
the for loop executes depends on the number of elements of the list. If the list has 100



176 | Chapter 3: Pointers and Array-Based Lists

elements, the for loop executes 100 times. In general, suppose that the number of
elements in the list is #. Then the function print is of O(n).

The definition of the function isItemAtEqual is straightforward.

template <class elemType>
bool arraylistType<elemType>::isItemAtEqual
(int location, const elemType& item) const

{
return (list[location] == item);

}

The body of function isItemAtEqual has only one statement, which is a comparison
statement. It is easy to see that this function is of O(1).

The function insertAt inserts an item at a specific location in the list. The item to be
inserted and the insert location in the array are passed as parameters to this function. To
insert the item somewhere in the middle of the list, we must first make room for the new
item. That is, we need to move certain elements right one array slot. Suppose that the
data member list of an arrayListType object is as shown in Figure 3-30. (Note that
this figure does not show the data members length and maxSize.)

(01 [11 (21 (3] ([4]1 (51 ([e] [7] I[8]
list| 35 [ 24 [ 45 [ 17 [ 26 [ 78 ] | | |

FIGURE 3-30 Array 1ist

The number of elements currently in the list is 6, so length is 6. Thus, after inserting a
new element, the length of the list is 7. If the item is to be inserted at, say location 6, we
can easily accomplish this by copying the item into 1ist[6]. On the other hand, if the
item is to be inserted at, say location 3, we first need to move elements 1ist[3],
list[4], and 1ist[5] one array slot right to make room for the new item. Thus, we
must first copy 1ist[5] into list[6], 1list[4] into 1list[5], and 1list[3] into
list[4], in this order. Then we can copy the new item into 1ist[3].

Of course, special cases such as trying to insert in a full list must be handled separately.
Other member functions can handle some of these cases.

The definition of the function insertAt is as follows:

template <class elemType>
void arraylListType<elemType>::insertAt
(int location, const elemType& insertItem)
{
if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "
<< "is out of range" << endl;



Array-Based Lists | 177

else
if (length >= maxSize) //list is full
cerr << "Cannot insert in a full list" << endl;
else

{
for (int i = length; i > location; i--)
list[i] = list[i - 11]; //move the elements down

list[location] = insertItem; //insert the item at the
//specified position

length++; //increment the length

}
} //end insertAt

The function insertAt uses a for loop to shift the elements of the list. The number of
times the for loop executes depends on where in the list the item is to be inserted. If the
item is to be inserted at the first position, all the elements of the list are shifted. It can be
easily shown that this function is of O(n).

The function insertEnd can be implemented by using the function insertAt. How-
ever, the function insertEnd does not require the shifting of elements. Therefore, we
give its definition directly.

template <class elemType>
void arraylistType<elemType>::insertEnd(const elemType& insertItem)
{
if (length >= maxSize) //the list is full
cerr << "Cannot insert in a full 1list"™ << endl;

else

{
list[length] = insertItem; //insert the item at the end
length++; //increment the length

}

} //end insertEnd

The number of statements and, hence, the number of operations executed in the body of
the function insertEnd are fixed. Therefore, this function is of O(1).

The function removeAt is the opposite of the function insertAt. The function
removeAt removes an item from a specific location in the list. The location of the
item to be removed is passed as a parameter to this function. After removing the item
from the list, the length of the list is reduced by 1. If the item to be removed is
somewhere in the middle of the list, after removing the item we must move certain
elements left one array slot because we cannot leave holes in the portion of the array
containing the list. Suppose that the data member 1ist of an arrayListType object
is as shown in Figure 3-31. (Note that this figure does not show the data members
length and maxSize.)




178 | Chapter 3: Pointers and Array-Based Lists

(01 [11 (21 (3] ([4] (51 ([e6] [7] I[8]
list|[ 35 [ 24 [ 4517 |26 ] 78] | | |

FIGURE 3-31 Array 1ist

The number of elements currently in the list is 6, so length is 6. Thus, after removing an
element, the length of the list is 5. Suppose that the item to be removed is at, say
location 3. Clearly, we must move 1ist[4] into 1ist[3] and list[5] into 1ist[4],
in this order.

The definition of the function removeAt is as follows:

template <class elemType>
void arraylListType<elemType>::removeAt (int location)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be removed "
<< "is out of range" << endl;
else

{
for (int i = location; i < length - 1; i++)
list[i] = 1list[i+1];

length--;
}
} //end removeAt

Similar to the function insertAt, it is easily seen that the function removeAt is of O(n).

The definition of the function retrieveAt is straightforward. The index of the item to
be retrieved, and the location where to retrieve the item, are passed as parameters to this
function. Similarly, the definition of the function replaceAt is straightforward. The
definitions of these functions are as follows:

template <class elemType>
void arraylistType<elemType>::retrieveAt
(int location, elemType& retItem) const
{
if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is
<< "out of range." << endl;

else
retItem = list[location];
} //end retrieveAt

template <class elemType>
void arraylistType<elemType>::replaceAt
(int location, const elemTypeé& repltem)



Array-Based Lists | 179

if (location < 0 || location >= length)
cerr << "The location of the item to be replaced is "
<< "out of range." << endl;
else
list[location] = repltem;

} //end replaceAt

The function clearList removes the elements from the list, leaving it empty. Because
the data member length indicates the number of elements in the list, the elements are
removed by simply setting length to 0. Therefore, the definition of this function is as
follows:

template <class elemType>
void arraylListType<elemType>::clearList ()

{
length = 0;
} //end clearlList

We now discuss the definition of the constructor and the destructor. The constructor
creates an array of the size specified by the user, and initializes the length of the list to 0
and the maxSize to the size of the array specified by the user. The size of the array is
passed as a parameter to the constructor. The default array size is 100. The destructor
deallocates the memory occupied by the array holding the list elements. The definition of
the constructor and the destructor are as follows:

template <class elemType>
arrayListType<elemType>: :arrayListType (int size)

{
if (size < 0)
{
cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;
maxSize = 100;
}
else
maxSize = size;
length = 0;
list = new elemType[maxSize]:;
assert(list != NULL);
}

template <class elemType>
arrayListType<elemType>::~arrayListType ()
{

delete [] list;
}



180 | Chapter 3: Pointers and Array-Based Lists

As before, it is easy to see that each of the functions retrieveAt, replaceAt,
clearList, as well as the constructor and destructor is of O(1).

Copy Constructor

Recall that the copy constructor is called when an object is passed as a (value) parameter
to a function, and when an object is declared and initialized using the value of another
object of the same type. It copies the data members of the actual object into the
corresponding data members of the formal parameter and the object being created. Its
definition is as follows:

template <class elemType>
arrayListType<elemType>::arrayListType
(const arraylistType<elemType>& otherList)
{
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize]; //create the array
assert (list != NULL); //terminate if unable to allocate
//memory space

for (int j = 0; j < length; j++) //copy otherList
list [j] = otherList.list[]j]:
} //end copy constructor

Overloading the Assignment Operator

Next, because we are overloading the assignment operator for the class arrayListType,
we give the definition of the function template to overload the assignment operator.

template <class elemType>
const arraylListType<elemType>& arraylListType<elemType>::operator=
(const arrayListType<elemType>& otherList)
{
if (this != &otherList) //avoid self-assignment
{
delete [] list;
maxSize = otherList.maxSize;
length = otherlList.length;

list = new elemType[maxSize]; //create the array
assert(list != NULL); //1if unable to allocate memory
//space, terminate the program
for (int 1 = 0; i < length; i++)
list[i] = otherList.list[i];
}

return *this;



Array-Based Lists | 181

Similar to the function print, it is easy to see that both the copy constructor and the
function to overload the assignment operator are of O(n).

Search

The search algorithm described next is called a sequential or linear search.

Consider the list of seven elements shown in Figure 3-32.

(0] [1] [2] (3] (4] (5] [6] [7]
list| 35 [ 12 [ 27 [ 18] 45 | 16 | 38 | |

FIGURE 3-32 List of seven elements

Suppose that you want to determine whether 27 is in the list. The sequential search
works as follows: First, you compare 27 with 1ist[0]—that is, compare 27 with 35.
Because 14st[ 01 5 27, you then compare 27 with 1ist[1] (that is, with 12, the second
item in the list). Because 1ist[1] # 27, you compare 27 with the next element in the
list—that is, compare 27 with 1ist[2]. Because 1ist[2] =27, the search stops. This is a
successful search.

Let us now search for 10. As before, the search starts with the first element in the list—
that is, at 1ist[0]. This time the search item, which is 10, is compared with every item
in the list. Eventually, no more data is left in the list to compare with the search item.
This is an unsuccessful search.

It now follows that, as soon as you find an element in the list that is equal to the search
item, you must stop the search and report “success.” (In this case, you usually also tell the
location in the list where the search item was found.) Otherwise, after the search item is
compared with every element in the list, you must stop the search and report “failure.”

Suppose that the name of the array containing the list elements is 1ist. The following
function performs a sequential search on a list:

template <class elemType>
int arrayListType<elemType>::seqgSearch (const elemType& item) const
{

int loc;

bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{
found = true;
break;




182 | Chapter 3: Pointers and Array-Based Lists

if (found)
return loc;
else
return -1;
} //end seqSearch

Now that we know how to implement the (sequential) search algorithm, we can give
the definitions of the functions insert and remove. Recall that the function insert
inserts a new item at the end of the list if this item does not exist in the list and
the list is not full. The function remove removes an item from the list if the list is
not empty.

Chapter 9 explicitly shows that the function seqSearch is of O(n).

Insert

The function insert inserts a new item in the list. Because duplicates are not allowed,
this function first searches the list to determine whether the item to be inserted is already
in the list. To determine whether the item to be inserted is already in the list, this
function calls the member function segSearch, described previously. If the item to be
inserted is not in the list, the new item is inserted at the end of the list and the length of
the list is increased by 1. Also, the item to be inserted is passed as a parameter to this
function. The definition of this function is as follows:

template <class elemType>
void arraylistType<elemType>::insert (const elemType& insertItem)

{

int loc;

if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and
//increment the length

else if (length == maxSize)

cerr << "Cannot insert in a full list." << endl;
else
{

loc = seqgSearch(insertItem);

if (loc == -1) //the item to be inserted
//does not exist in the list
list[length++] = insertItem;
else
cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;
}
} //end insert

The function insert uses the function segSearch to determine whether the
insertItem is already in the list. Because the function seqSearch is of O(n), it follows
that the function insert is of O(n).



Array-Based Lists | 183

Remove

The function remove deletes an item from the list. The item to be deleted is passed as a
parameter to this function. To delete the item, the function calls the member function
segSearch to determine whether the item to be deleted is in the list. If the item to be
deleted is found in the list, the item is removed from the list and the length of the list is
decremented by 1. If the item to be removed is found in the list, the function seqSearch
returns the index of the item in the list to be deleted. We can now use the index
returned by the function seqSearch, and use the function removeAt to remove the item
from the list. Therefore, the definition of the function remove is as follows:

template<class elemType>
void arraylListType<elemType>::remove (const elemType& removeltem)

{

int loc;

if (length == 0)
cerr << "Cannot delete from an empty list." << endl;

else
{
loc = seqgSearch (removeltem) ;
if (loc != -1)
removeAt (loc) ;
else
cout << "The item to be deleted is not in the list."
<< endl;

}

} //end remove

The function remove uses the functions seqgSearch and removeAt to remove an item
from the list. Because each of these functions is of O(n) and because they are called in
sequence, it follows that the function remove is of O(n).

Time Complexity of List Operations

The following table summarizes the time complexity of list operations.

TABLE 3-1 Time complexity of list operations

isEmpty 0(1)
isFull 0(1)
listSize 0(1)

maxListSize 0(1)



184 | Chapter 3: Pointers and Array-Based Lists

TABLE 3-1 Time complexity of list operations (continued)

print O(n)
isItemAtEqual o(1)
insertAt O(n)
insertEnd 0o(1)
removeAt O(n)
retrieveAt 0(1)
replaceAt Oo(n)
clearlist 0(1)
constructor 0o(1)
destructor 0o(1)
copy constructor O(n)
overloading the assignment o)
operator

seqSearch O(n)
insert 0(n)
remove 0(n)

The following program tests the various operations on array-based lists.

//****************************************************************

// Author: D.S. Malik
//

// This program illustrates how to use the class arrayListType.
//****************************************************************

#include <iostream> //Line 1

#include <string> //Line 2
#include "arrayListType.h" //Line 3



Array-Based Lists

using namespace std; //Line
int main () //Line
{ //Line
arrayListType<int> intList(100); //Line
arrayListType<string> stringlList; //Line
int number; //Line
cout << "List 10: Enter 5 integers: "; //Line
for (int counter = 0; counter < 5; counter++) //Line
{ //Line
cin >> number; //Line
intList.insertAt (counter, number); //Line
} //Line
cout << endl; //Line
cout << "List 19: The list you entered is: "; //Line
intList.print(); //Line
cout << endl; //Line
cout << "Line 20: Enter the item to be deleted: "; //Line
cin >> number; //Line
intList.remove (number) ; //Line
cout << "Line 23: After removing " << number
<< ", the list is:" << endl; //Line
intList.print(); //Line
cout << endl; //Line
string str; //Line
cout << "Line 27: Enter 5 strings: "; //Line
for (int counter = 0; counter < 5; counter++) //Line
{ //Line
cin >> str; //Line
stringlList.insertAt (counter, str); //Line
} //Line
cout << endl; //Line
cout << "Line 34: The list you entered is: " << endl; //Line
stringList.print(); //Line
cout << endl; //Line
cout << "Line 37: Enter the string to be deleted: "; //Line
cin >> str; //Line
stringList.remove (str); //Line
cout << "Line 40: After removing " << str
<< ", the 1list is:" << endl; //Line

185

Iy

0 J oy U

10

11
12
13
14
15

16
17
18
19

20
21
22

23
24
25

26

27

28
29
30
31
32

33
34
35
36

37
38
39

40




186 | Chapter 3: Pointers and Array-Based Lists

stringlList.print(); //Line 41
cout << endl; //Line 42
return 0; //Line 43
} //Line 44

Sample Run: In this sample run, the user input is shaded.

List 10: Enter 5 integers: 23 78 56 12 79
List 19: The list you entered is: 23 78 56 12 79

Line 20: Enter the item to be deleted: 56
Line 23: After removing 56, the list is:
23 78 12 79

Line 27: Enter 5 strings: hello sunny warm winter summer

Line 34: The list you entered is:
hello sunny warm winter summer

Line 37: Enter the string to be deleted: hello
Line 40: After removing hello, the list is:
sunny warm winter summer

The preceding program works as follows. The statement in Line 7 declares intList to
be an object of type arrayListType. The data member 1ist of intList is an array of
100 components and the component type is int. The statement in Line 8 declares
stringlist to be an object of type arrayListType. The data member list of
stringList is an array of 100 components (the default size) and the component type
is string. The statement in Line 10 prompts the user to enter five integers. The
statement in Line 13 gets the next number from the input stream. The statement in Line
14 uses the member function insertAt of intList to store the number into intList.
The statement in Line 18 uses the member function print of intList to output the
elements of intList. The statement in Line 20 prompts the user to enter the number to
be deleted from intList; the statement in Line 21 gets the number to be deleted from
the input stream. The statement in Line 22 uses the member function remove of
intList to remove the number from intList.

The statements in Lines 27 through 42 work the same way as the statements in Lines 10
through 25. These statements process a list of strings.



Programming Example: Polynomial Operations | 187

PROGRAMMING EXAMPLE: Polynomial Operations

You learned in a college algebra or calculus course that a polynomial, p(x), in one
variable, x, is an expression of the form:

p(x) =ay+az+... +a,_ 12" +a,2",

where a; are real (or complex) numbers and # is a nonnegative integer. If p(x) = ay,
p(x) is called a constant polynomial. If p(x) is a nonzero constant polynomial,
the degree of p(x) is defined to be 0. Even though, in mathematics, the degree of
the zero polynomial is undefined, for the purpose of this program, we consider
the degree of such polynomials to be zero. If p(x) is not constant and a, # 0, n is
called the degree of p(x); that is, the degree of a nonconstant polynomial is defined
to be the exponent of the highest power of x. (Note that the symbol # means not
equal to.)

The basic operations performed on polynomials are add, subtract, multiply, divide,
and evaluate a polynomial at any given point. For example, suppose that

p(x) =1+ 2z + 322,

and

q(z) =4+ x.

The degree of p(x) is 2 and the degree of g(x) is 1. Moreover,
p(2)=1+2-2+3-22=17

p(z) + q(x) = 5 + 3z + 3x°

p(z) — q(x) = =3 + = + 32

p(z)'q(z) = 4 + 9z + 1427 + 32°

The purpose of this programming example is to design and implement the class
polynomialType to perform the various polynomial operations in a program.

To be specific, in this program, we will implement the following operations on
polynomials:

1. Evaluate a polynomial at a given value.

2. Add polynomials.

3. Subtract polynomials.

4. Multiply polynomials.
Furthermore, we assume that the coefficients of polynomials are real numbers. You

will be asked in Programming Exercise 8 to generalize it so that the coefficients can
also be complex numbers.To store a polynomial, we use a dynamic array as follows:



188 | Chapter 3: Pointers and Array-Based Lists

Suppose p(x) is a polynomial of degree n > 0. Let 1ist be an array of size n + 1. The
coefficient a; of x" is stored in 1ist[i]. See Figure 3-33.

(01 [1] [1] [n-11 [n]

p(x)| ao | a; | | a; | |an,1| a, ‘

FIGURE 3-33 Polynomial p(x)

Figure 3-33 shows that if p(x) is a polynomial of degree n, we need an array of size
n+1 to store the coefficients of p(x). Suppose that p(x) = 1 + 8x — 3x” + 5x* + 7a®.
Then the array storing the coefficient of p(x) is given in Figure 3-34.

[0] [1]1 [2] [31 [4] [5] [6] [7] [8]
p(x)|1|8|—3|0|5|o|o|o|7‘

FIGURE 3-34 Polynomial p(x) of degree 8 and its coefficients

Similarly, if g(x) = —5x> + 16x°, the array storing the coeflicient of ¢(x) is given in
Figure 3-35.

[0] [1] [2] [3] [4] [5]
q(x)| 0 | 0 |75| 0 | 0 |16‘

FIGURE 3-35 Polynomial g(x) of degree 5 and its coefficients

Next, we define the operations +, —, and *. Suppose that
p(z) =ap+ax+...+a, 12" + a,z" and

q(x) =bg + 017 + ... + bp_12™ 7 + apz™.

Let t = max(n, m). Then

px)+q(z) =c+az+...+a " +qa,

where fori =0, 1,2, ..., ¢t



Programming Example: Polynomial Operations | 189

a; +b; if i <min(n,m)
c =1 a; ifi>m

The difterence, p(x) - q(x), of p(x) and q(x) can be defined similarly. It follows that the
degree of the polynomials is < max(n, m).

The product, p(x) * q(x), of p(x) and g(x) is defined as follows:

p(x) *q(z) =dy + diz + ... + dpymz™t™,

The coetficient d;, for k =0, 1, 2, .., ¢, is given by the formula

drp = ag* by + a1 x b1+ ...+ ag * by,
where if either g; or b; does not exist, it is assumed to be zero. For example,

do = CLQbO
dy = agby + arby

dn+m = Gp bm

In Chapter 2, you learned how to overload various operators. This program overloads
the operators +, —, and * to perform polynomial addition, subtraction, and multi-
plication. Moreover, we also overload the function call operator, (), to evaluate a
polynomial at a given value. To simplify the input and output of polynomials, the
operators << and >> are also overloaded.

Because the coefficients of a polynomial are stored in a dynamic array, we use the
class arrayListType to store and manipulate the coefficients of a polynomial. In
fact, we derive the class polynomialType to implement polynomial operations
from the class arrayListType, which requires us to implement only the operations
needed to manipulate polynomials.

The following class defines polynomials as an ADT:

//***********************************************************

// Author: D.S. Malik
//
// This class specifies the members to implement the basic

// polynomial operations.
//*‘k***‘k**********************‘k******************************

class polynomialType: public arrayListType<double>
{
friend ostreamé& operator<< (ostreamé&, const polynomialTypeé&) ;
//Overloads the stream insertion operator
friend istream& operator>> (istream&, polynomialTypeé&) ;
//Overloads the stream extraction operator



190 | Chapter 3: Pointers and Array-Based Lists

public:
polynomialType operator+ (const polynomialTypeé&) ;
//Overloads the operator +
polynomialType operator- (const polynomialTypeé&) ;
//Overloads the operator -
polynomialType operator* (const polynomialTypeé&) ;
//Overloads the operator *

double operator() (double x):;
//Overloads the operator () to evaluate the polynomial at
//a given point
//Postcondition: The value of the polynomial at x is
// calculated and returned

polynomialType (int size = 100);
//constructor

int min(int x, int y) const;
//Function to return the smaller of x and y
int max (int x, int y) const;
//Function to return the larger of x and y
}i
In Exercise 24 (at the end of this chapter), you are asked to draw the UML diagram of
the class polynomialType.

If p(x) is a polynomial of degree 3, we can create an object, say p, of type polynomialType
and set the size of the array list to 4. The following statement declares such an
object p:

polynomialType p(4);

The degree of the polynomial is stored in the data member length, which is
inherited from the class arrayListType.

Next we discuss the definitions of the functions.

The constructor sets the value of length to the size of the array and initializes the
array list to O.

polynomialType: :polynomialType (int size)
arrayListType<double> (size)

{
length = size;
for (int 1 = 0; 1 < size; i++)
list[i] = O;
}

The definition of the function to overload the operator () is quite straightforward
and is given next.



Programming Example: Polynomial Operations | 191

double polynomialType::operator () (double x)

{
double value = 0.0;
for (int i = 0; i < length; i++)
{
if (list[i] != 0.0)
value = value + list[i] * pow(x,1i);
}
return value;
}

Suppose that p(x) is a polynomial of degree n and ¢(x) is a polynomial of degree m.
If n = m, the operator + adds the corresponding coeflicients of p(x) and g(x). If n> m, the
first m coefhicients of p(x) are added with the corresponding coefficients of g(x). The
remaining coefficients of p(x) are copied into the polynomial containing the sum of p(x)
and q(x). Similarly, if n < m, the first n coefficients of g(x) are added with the correspond-
ing coefficients of p(x). The remaining coefficients of q(x) are copied into the polynomial
containing the sum. The definition of the operator — is similar to the definition of the
operator +. The definitions of these two operator functions are as follows:

polynomialType polynomialType: :operator+
(const polynomialType& right)
{
int size = max(length, right.length):;

polynomialType temp (size); //polynomial to store the sum

for (int i = 0; i1 < min(length, right.length); i++)
temp.list[i] = list[i] + right.list[i];

if (size == length)
for (int i = min(length, right.length); i < length; i++)
temp.list[i] = list[i];
else
for (int i = min(length, right.length); i < right.length;
i++)
temp.list[i] = right.list[i];

return temp;

}

polynomialType polynomialType: :operator-
(const polynomialType& right)
{
int size = max(length, right.length):;

polynomialType temp (size); //polynomial to store the difference



192 | Chapter 3: Pointers and Array-Based Lists

for (int i = 0; i < min(length, right.length); i++)
temp.list[i] = list[i] - right.list[i];

if (size == length)
for (int i = min(length, right.length); i < length; i++)
temp.list[i] = list[i];
else
for (int i = min(length, right.length); i < right.length;
i++)
temp.list[i] = -right.list[i];

return temp;

}

The definition of the function to overload the operator * to multiply two poly-
nomials is left as an exercise for you. See Programming Exercise 6 at the end of this
chapter. The definitions of the remaining functions of the class polynomialType
are as follows:

int polynomialType::min(int x, int y) const

{
if (x <= y)
return x;
else
return y;
}
int polynomialType::max(int x, int y) const
{
if (x >= vy)
return x;
else
return y;
}

ostream& operator<< (ostream& os, const polynomialTypeé& p)

{

int indexFirstNonzeroCoeff = 0;

for (int i = 0; i < p.length; i++) //determine the index of the
//first nonzero coefficient
if (p.list[i] != 0.0)
{
indexFirstNonzeroCoeff = i;
break;

}

if (indexFirstNonzeroCoeff < p.length)
{
if (indexFirstNonzeroCoeff == 0)
0s << p.list[indexFirstNonzeroCoeff] << " ";



Programming Example: Polynomial Operations | 193

else
0s << p.list[indexFirstNonzeroCoeff] << "x*"
<< indexFirstNonzeroCoeff << " ";

for (int i = indexFirstNonzeroCoeff + 1; i < p.length; i++)

{
if (p.list[i] != 0.0)
if (p.list[i] >= 0.0)
0s << "+ " << p.list[i] << "M KK 1" ",
else
0s << "- " << -p.list[i] <K "xM" KK ik " ",
}
}
else

os << "Q";

return os;

}
istream& operator>> (istream& is, polynomialType& p)
{
cout << "The degree of this polynomial is: "
<< p.length - 1 << endl;
for (int i = 0; i1 < p.length; i++)
{
cout << "Enter the coefficient of x"" << 1 << ": ";
is >> p.list[i];
}
return is;
}
MAIN //****************************************************************
PROGRAM // Author: D.S. Malik
//

// This program illustrates how to use the class polynomialType.
//****************************************************************

#include <iostream> //Line 1
#include "polynomialType.h" //Line 2
using namespace std; //Line 3
int main () //Line 4
{ //Line 5
polynomialType p(8); //Line 6
polynomialType q(4):; //Line 7
polynomialType t; //Line 8



194 | Chapter 3: Pointers and Array-Based Lists

cin >> p;
cout << endl << "Line 10: p(x): " << p << endl;
cout << "Line 11: p(5): " << p(5) << endl << endl;
cin >> qg;
cout << endl << "Line 13: g(x): " << g << endl

<< endl;
t=p + qg;
cout << "Line 15: p(x) + g(x): " << t << endl;
cout << "Line 16: p(x) - g(x): " << p - g << endl;

return 0;

}

Sample Run: In this sample run, the user input is shaded.
The degree of this polynomial is: 7
Enter the coefficient of x*0: 0
Enter the coefficient of x*1: 1
Enter the coefficient of x*2: 4
Enter the coefficient of x*3: 0
Enter the coefficient of x*4: 0
Enter the coefficient of x*5: 0
Enter the coefficient of x%6: 0
Enter the coefficient of x*7: 6

Line 10: p(x): 1x*1 + 4x"2 + 6x*7
Line 11: p(5): 468855

The degree of this polynomial is: 3
Enter the coefficient of x70: 1
Enter the coefficient of x*1: 2
Enter the coefficient of x72: 0
Enter the coefficient of x*3: 3

Line 13: g(x): 1 + 2x*1 + 3x"3

Line 15: p(x) + g(x): 1 + 3x*1 + 4x"2 + 3x"3 + 6x"7
Line 16: p(x) - g(x): -1 - 1x"1 + 4x72 - 3x"3 + o6x"7

QUICK REVIEW

//Line
//Line

//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line

1.  Pointer variables contain the addresses of other variables as their values.

2. In C++, no name is associated with the pointer data type.

3. A pointer variable is declared using an asterisk, *, between the data type and

the variable.

9
10

11

12

13

14

15

16

17
18



10.
11.

12.

13.

14,

15.
16.
17.

18.
19.

20.

Quick Review

In C++, & is called the address of operator.

The address of operator returns the address of its operand. For example, if p
is a pointer variable of type int and num is an int variable, the statement

P = &num;
sets the value of p to the address of num.
When used as a unary operator, * is called the dereferencing operator.

The memory location indicated by the value of a pointer variable is accessed
by using the dereferencing operator, *. For example, if p is a pointer variable
of type int, the statement

*p = 25;
sets the value of the memory location indicated by the value of p to 25.

You can use the member access operator arrow, —>, to access the compo-
nent of an object pointed to by a pointer.

Pointer variables are initialized using either 0 (the integer zero), NULL, or
the address of a variable of the same type.

The only integer value that can be directly assigned to a pointer variable is 0.

The only arithmetic operations allowed on pointer variables are increment (++),
decrement (--), addition of an integer to a pointer variable, subtraction of an
integer from a pointer variable, and subtraction of a pointer from another pointer.
Pointer arithmetic is different from ordinary arithmetic. When an integer is
added to a pointer, the value added to the value of the pointer variable is
the integer times the size of the object to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer, the value subtracted
from the value of the pointer variable is the integer times the size of the
object to which the pointer is pointing.

Pointer variables can be compared using relational operators. (It makes
sense to compare pointers of the same type.)

The value of one pointer variable can be assigned to another pointer
variable of the same type.

A variable created during program execution is called a dynamic variable.
The operator new is used to create a dynamic variable.

The operator delete is used to deallocate the memory occupied by a
dynamic variable.

In C++, both new and delete are reserved words.

The operator new has two forms: one to create a single dynamic variable,
and another to create an array of dynamic variables.

If p is a pointer of type int, the statement
P = new int;

allocates storage of type int somewhere in memory and stores the address
of the allocated storage in p.

195




196

21.

22.

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

| Chapter 3: Pointers and Array-Based Lists

The operator delete has two forms: one to deallocate the memory
occupied by a single dynamic variable, and another to deallocate the
memory occupied by an array of dynamic variables.

If p is a pointer of type int, the statement delete p; deallocates the
memory to which p points.

The array name is a constant pointer. It always points to the same memory
location, which is the location of the first array component.

To create a dynamic array, the form of the new operator that creates an
array of dynamic variables is used. For example, if p is a pointer of type
int, the statement

p = new int[10];
creates an array of 10 components of type int. The base address of the array
is stored in p. We call p a dynamic array.

Array notation can be used to access the components of a dynamic array. For
example, suppose p is a dynamic array of 10 components. Then p[0] refers
to the first array component, p[1] refers to the second array component,
and so on. In particular, p[i] refers to the (1 + 1) th component of the array.

An array created during program execution is called a dynamic array.
If p is a dynamic array, then the statement

delete [] p;

deallocates the memory occupied by p—that is, the components of p.

In a shallow copy, two or more pointers of the same type point to the same
memory space; that is, they point to the same data.

In a deep copy, two or more pointers of the same type have their own
copies of the data.

If a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope.

If a class has pointer data members, the built-in assignment operators
provide a shallow copy of the data.

A copy constructor executes when an object is declared and initialized by
using the value of another object, and when an object is passed by value as a
parameter.

C++ allows a user to pass an object of a derived class to a formal parameter
of the base class type.

The binding of virtual functions occurs at execution time, not at compile
time, and is called dynamic or run-time binding.

In C++, virtual functions are declared using the reserved word virtual.

A class 1s called an abstract class if it contains one or more pure virtual
functions.



37.

38.

39.
40.

Exercises

Because an abstract class is nof a complete classas—it (or its implementation
file) does not contain the definitions of certain functions as you cannot
create objects of that class.

In addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the
abstract class must provide the definitions of constructors and functions that
are not pure virtual.

A list is a collection of elements of the same type.

The commonly performed operations on a list are create the list, deter-
mine whether the list is empty, determine whether the list is full, find the
size of the list, destroy or clear the list, determine whether an item is the
same as a given list element, insert an item in the list at the specified
location, remove an item from the list at the specified location, replace an
item at the specified location with another item, retrieve an item from the
list from the specified location, and search the list for a given item.

EXERCISES

197

Mark the following statements as true or false.

a. In C++, pointer is a reserved word.
b. In C++, pointer variables are declared using the reserved word pointer.
c. The statement delete p; deallocates the variable pointer p.

d. The statement delete p; deallocates the dynamic variable to which p
points.

e. Given the declaration
int 1ist[10];
int *p;
the statement
p = list;
is valid in C++.
f.  Given the declaration
int *p;
the statement
p = new int[50];
dynamically allocates an array of 50 components of type int, and p
contains the base address of the array.
g. The address of operator returns the address and value of its operand.

h. If p is a pointer variable, the statement p = p * 2; is valid in C++.




198 | Chapter 3: Pointers and Array-Based Lists

2. Given the declaration
int x;
int *p;
int *q;
Mark the following statements as valid or invalid. If a statement is invalid,
explain why.

a. p=q;
bh. *p=>56;
c. p=x;
d. *p=*q;
e. gq=&x;
. *p=q;
3. What is the output of the following C++ code?
int x;
int y;

int *p = &x;
int *qg = &y;

*p = 35;

*q = 98;

*p = *q;

cout << x << " " << y << endl;
cout << *p << " " <K *gq << endl;

4.  What is the output of the following C++ code?

int x;

int y;

int *p = &x;

int *qg = &y;

x = 35; vy = 46;

p = 4q;

*p = 78;

cout << X << " " << y << endl;
cout << *p << " " K *gq << endl;

5. Given the declaration

int num = 6;
int *p = &num;

which of the following statement(s) increment the value of num?

a. pt++;
bh. (*p)++;
c. num+t+

d. (*num)++;



What is the output of the following code?

int *p;

int * qg;

P = new int;

q = p;

*p = 46;

*q = 39;

cout << *p << " " << *g << endl;

What is the output of the following code?

int *p;

int *q;

P = new int;
*p = 43;

qa = p;

*q = 52;

P = new int;
*p = 78;

q = new int;
*q = *p;
cout << *p << " " << *g << endl;

What is wrong with the following code?
int *p;

int *qg;

p = new int;

*p = 43;

*.Q

a = 52;

delete g;

cout << *p << " " << *g << endl;
What is the output of the following code?

int x;

int *p;

int *qg;

p = new int[10] ;
q = p;

*p=4;

for(int j = 0; j < 10; j++)
{

X = *p;

pt+;

*p=xt3;

//Line
//Line

//Line
//Line

//Line
//Line

//Line

//Line

Exercises

199




200 | Chapter 3: Pointers and Array-Based Lists

for (int k = 0; k < 10; k++)
{
cout <K *g<k< " ";
qt+;
}
cout << endl;

10.  What is the output of the following code?

int *secret;

secret = new int[10];
secret[0] = 10;
for (int j = 1; j < 10; j++)
secret[j] = secret[j -1] + 5;
for(int §j = 0; j < 10; j++)
cout << secret[j]l << " ";
cout << endl;

11.  Explain the difference between a shallow copy and a deep copy of data.
12.  What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2
p = new int [5]; //Line 3
*p = 2; //Line 4
for (int i = 1; i < 5; i++) //Line 5
pli] = pl[i-1] + i; //Line 6
q = ps //Line 7
delete [] p: //Line 8
for (int j = 0; j < 5; j++) //Line 9
cout << g[j]l << " "; //Line 10
cout << endl; //Line 11

13.  What is the output of the following code?
int *p;
int *qg;

p = new int [5];
p[0] = 5;

for (int 1 = 1; i1 < 5; i++)
pli]l = pl[i - 11 + 2 * 1i;

cout << "Array p: ";

for (int 1 = 0; 1 < 5; i++)
cout << p[i]l << " ";

cout << endl;



14,

15.
16.
17.

18.

Exercises

g = new int[5];

for (int i = 0; i < 5; i++)
ali] = pl4 - 1]

cout << "Array q: ";

for (int i = 0; i < 5; i++)
cout << g[i] << " ";

cout << endl;
What is the output of the following code?

int **p;

p = new int* [5];

[N

for (int =0; 1 < 5; i++)
pli] = new int[3];

for (int 1 = 1; 1 < 5; i++)
for (int j = 0; Jj < 3; j++)
plil[j] =2 * 1 + 3;

for (int 1 = 1; i < 5; i++)

{
for (int j = 0; j < 3; j++)
cout << p[il[j]l << " ";
cout << endl;
}

What is the purpose of the copy constructor?
Name three situations when a copy constructor executes.

Name three things that you should do for classes with pointer data
members.

Suppose that you have the following definition of a class.

class dummyClass

{

public:
void print();

private:
int listLength;
int *1list;
double salary;
string name;

}

a.  Write the function prototype to overload the assignment operator for
the class dummyClass.

b. Worite the definition of the function to overload the assignment opera-
tor for the class dummyClass.

201




202

19.

| Chapter 3: Pointers and Array-Based Lists

c. Write the function prototype to include the copy constructor for the
class dummyClass.

d.  Worite the definition of the copy constructor for the class dummyClass.
Suppose that you have the following classes, classA and classB:

class classA

{
public:
virtual void print() const;
void doubleNum() ;
classA(int a = 0);
private:
int x;
}:
void classA::print() const
{
cout << "ClassA x: " << x << endl;
}
void classA::doubleNum/()
{
X =2 * x;
}
classA::classA(int a)
{
X = a;
}
class classB: public classA
{
public:
void print () const;
void doubleNum() ;
classB(int a = 0, int b = 0);
private:
int y;
}s;

void classB::print() const
{
classA::print():;
cout << "ClassB y: " << y << endl;



Exercises | 203

void classB: :doubleNum()

{
classA: :doubleNum() ;
y=2%*y;

}

classB::classB(int a, int b)

classA(a)

{
y = b;

}

What is the output of the following function main?

int main ()

{
classA *ptrA;
classA objectA(2);

classB objectB(3, 5):

ptrA = &objectA;
ptrA->doubleNum() ;
ptrA->print () ;
cout << endl;

ptrA = &objectB;

ptrA->doubleNum() ;
ptrA->print () ;
cout << endl;

return 0;

}
What is the output of the function main of Exercise 19, if the definition of
classaA is replaced by the following definition?

class classA

{

public:
virtual void print() const;
virtual void doubleNum() ;
classA(int a = 0);

private:
int x;

}:

What is the difference between compile-time binding and run-time binding?



204 | Chapter 3: Pointers and Array-Based Lists

22.  Consider the following definition of the class student.
public studentType: public personType

{
public:
void print():;
void calculateGPA();
void setID(long id):;
voild setCourses (const string c[], int noOfC):;
void setGrades (const char cG[], int noOfC);
void getID();
void getCourses (string c[], int noOfC);
void getGrades(char cG[], int noOfC);
void studentType (string fName = "", string lastName = "",
long id, string c[] = NULL,
char cG[] = NULL, int noOfC = 0);
private:
long studentlId;
string courses[6];
char coursesGrade[6]
int noOfCourses;
}

Rewrite the definition of the class student so that the functions print
and calculateGPA are pure virtual functions.

23.  What is the eftect of the following statements?

a. arrayListType<int> intList (100);
h. arrayListType<string> stringList (1000);
c. arrayListType<double> salesList (-10);

24.  Draw the UML diagram of the class polynomialType. Also show the
inheritance hierarchy.

PROGRAMMING EXERCISES

1. The function removeAt of the class arrayListType removes an element
from the list by shifting the elements of the list. However, if the element to be
removed is at the beginning of the list and the list is fairly large, it could take a
lot of computer time. Because the list elements are in no particular order, you
could simply remove the element by swapping the last element of the list with
the item to be removed and reducing the length of the list. Rewrite the
definition of the function removeAt using this technique.

2. The function remove of the class arrayListType removes only the first
occurrence of an element. Add the function removeAll to the class
arrayListType that would remove all occurrences of a given element. Also,
write the definition of the function removeAll and a program to test this function.



Programming Exercises

Add the function min to the class arrayListType to return the smallest
element of the list. Also, write the definition of the function min and a
program to test this function.

Add the function max to the class arrayListType to return the largest
element of the list. Also, write the definition of the function max and a
program to test this function.

The operators + and - are overloaded as member functions for the class
polynomialType. Redo Programming Example Polynomial Operations so
that these operators are overloaded as nonmember functions. Also write a
test program to test these operators.

Write the definition of the function to overload the operator * (as a member
function) for the class polynomialType to multiply two polynomials.
Also write a test program to test the operator *.

Let p(x) = ap + ayx + ... +a,1x"" + a,x" be a polynomial of degree n, where
a; are real (or complex) numbers and # is a nonnegative integer. The
derivative of p(x), written p' (x), is defined to be p' (x) = a; + 2ax” +. ..
+ nax" U If p(x) 1s constant, then p' (x) = 0. Overload the operator ~ as a
member function for the class polynomialType so that ~ returns the
derivative of a polynomial.

The class polynomialType as given in the Programming Example Poly-
nomial Operations processes polynomials with coefficients that are real
numbers. Design and implement a similar class that can be used to process
polynomials with coefficients as complex numbers. Your class must overload
the operators +, =, * to perform addition, subtraction, and multiplication;
and the operator () to evaluate a polynomial at a given complex number.
Also write a program to test various operations.

Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close friends,
and certain business associates. Your program should be able to handle a
maximum of 500 entries.

a. Define a class, addressType, that can store a street address, city, state,
and zip code. Use the appropriate functions to print and store the address.
Also, use constructors to automatically initialize the data members.

b. Define a class extPersonType using the class personType (as defined
in Example 1-12, Chapter 1), the class dateType (as designed in Pro-
gramming Exercise 2 of Chapter 2), and the class addressType. Add a
data member to this class to classify the person as a family member, friend,
or business associate. Also, add a data member to store the phone number.
Add (or override) the functions to print and store the appropriate informa-
tion. Use constructors to automatically initialize the data members.

c. Derive the class addressBookType from the class arrayListType, as
defined in this chapter, so that an object of type addressBookType can store

205




206

10.

11.

12.

| Chapter 3: Pointers and Array-Based Lists

objects of type extPersonType. An object of type addressBookType
should be able to process a maximum of 500 entries. Add necessary opera-
tions to the class addressBookType so that the program should perform
the following operations:

i. Load the data into the address book from a disk.
ii. Search for a person by last name.

iii. ~ Print the address, phone number, and date of birth (if it exists) of a
given person.

iv.  Print the names of the people whose birthdays are in a given month
or between two given dates.

v. Print the names of all the people having the same status, such as
family, friend, or business.

vi.  Print the names of all the people between two last names.

(Safe Arrays) In C++, there is no check to determine whether the array
index is out of bounds. During program execution, an out-of-bound array
index can cause serious problems. Also, recall that in C++ the array index
starts at 0.

Design a class safeArray that solves the out-of-bound array index
problem and allows the user to begin the array index starting at any integer,
positive or negative. Every object of type safeArray should be an array of
type int. During execution, when accessing an array component, if the
index is out of bounds, the program must terminate with an appropriate
error message. For example,

safeArray list(2,13);
safeArray yourList(-5,9);

In this example, list is an array of 11 components, the component type is

int, and the components are 1list[2], 1ist[3], ..., list[12]. Also,
yourList is an array of 15 components, the component type is int, and the
components are yourList[-5], yourlist[-4], ..., yourList[O0], ...,
yourList[8].

Programming Exercise 10 processes only int arrays. Redesign the class
safeArray using class templates so that the class can be used in any
application that requires arrays to process data.

Design a class to perform various matrix operations. A matrix is a set of
numbers arranged in rows and columns. Therefore, every element of a
matrix has a row position and a column position. If A is a matrix of 5
rows and 6 columns, we say that matrix A is of the size 5 X 6 and
sometimes denote it as Asy.e. Clearly, a convenient place to store a
matrix is in a two-dimensional array. Two matrices can be added
and subtracted if they have the same size. Suppose that A = [q;] and



13.

Programming Exercises

B = [b;] are two matrices of the size m X n, where a; denotes the
element of A in the ith row and the jth column, and so on. The sum
and difference of A and B is given by

A+ B = lai; + byl; A= B = [aj; — by

The multiplication of A and B (A * B) is defined only if the number
of columns of A are the same as the number of rows of B. If A is of the
size m X n and B is of the size n X t, then A * B = [¢;] is of the size m X ¢
and the element ¢ is given by the formula

cik = anbix + aibox + ... + @by

Design and implement a class matrixType that can store a matrix of any
size. Overload the operators +, -, and * to perform the addition, subtrac-
tion, and multiplication operations, respectively, and overload the operator
<< to output a matrix. Also, write a test program to test various operations
on matrices.

The class largeIntegers in Programming Exercise 16, in Chapter 2, is
designed to process large integers of at most 100 digits. Using dynamic
arrays, redesign this class so that integers of any digits can be added and/or
subtracted. Also overload the multiplication operator to multiply large
integers.

207




This page intentionally left blank



CHAPTER

STANDARD TEMPLATE
LiBRARY (STL) |

IN THIS CHAPTER, YOU WILL:

Learn about the Standard Template Library (STL)
Become familiar with the three basic components of the STL—containers, iterators, and algorithms

Explore how vector and deque containers are used
to manipulate data in a program

Discover the use of iterators



210 | Chapter 4: Standard Template Library (STL) |

Chapter 2 introduced and examined templates. With the help of class templates, we
developed (and used) a generic code to process lists. For example, in Chapter 3, we used
the class arrayListType to process a list of integers and a list of strings. In Chapters 5,
7, and 8, we will study the three most important data structures: linked lists, stacks,
and queues. In Chapter 5, using class templates, we will develop a generic code to
process linked lists. In addition, using the second principle, inheritance, of object-
oriented programming (OOP), we will develop a generic code to process ordered lists.
Then, in Chapters 7 and 8, we will use class templates to develop a generic code to
implement stacks and queues. Along the way, you will see that a template is a powerful
tool that promotes code reuse.

C++ is equipped with a Standard Template Library (STL). Among other things, the STL
provides class templates to process lists (contiguous or linked), stacks, and queues. This
chapter discusses some of the STL’s important features, and shows how to use certain
tools provided by the STL in a program. Chapter 13 describes the features of the STL not
described in this chapter.

In the ensuing chapters, you will learn how to develop your own code to implement and
manipulate data, as well as how to use professionally written code.

Components of the STL

The main objective of a program is to manipulate data and generate results. Achieving
this goal requires the ability to store data into computer memory, access a particular piece
of data, and write algorithms to manipulate the data.

For example, if all the data items are of the same type and we have some idea of the
number of data items, we could use an array to store the data. We can then use an
index to access a particular component of the array. Using a loop and the array index,
we can step through the elements of the array. Algorithms, such as those for initializ-
ing the array, sorting, and searching, are used to manipulate the data stored in an array.
On the other hand, if we do not want to worry about the size of the data, we can use a
linked list, as is described in Chapter 5, to process it. If the data needs to be processed
in a Last In First Out (LIFO) manner, we can use a stack (Chapter 7). Similarly, if the
data needs to be processed in a First In First Out (FIFO) manner, we can use a queue

(Chapter 8).
The STL is equipped with these features to effectively manipulate data. More formally,
the STL has three main components:

¢ Containers

® terators

* Algorithms



Components of the STL | 211

Containers and iterators are class templates. Iterators are used to step through the elements
of a container. Algorithms are used to manipulate data. This chapter discusses some of the
containers and iterators. Algorithms are discussed in Chapter 13.

Container Types

Containers are used to manage objects of a given type. The STL containers are classified
into three categories:

e Sequence containers (also called sequential containers)
* Associative containers
e Container adapters

Associative containers are described in Chapter 13, and container adapters are described
in Chapters 7 and 8.

Sequence Containers

Every object in a sequence container has a specific position. The three predefined
sequence containers are as follows:

® vector
® deque
e list

Before discussing container types in general, let us first briefly describe the sequence
container vector. We do so because vector containers are logically the same as arrays
and, therefore, they can be processed like arrays. Also, with the help of vector containers,
we can describe several properties that are common to all containers. In fact, all containers
use the same names for the common operations. Of course, there are operations that are
specific to a container. These operations are discussed when describing a specific container.
This chapter discusses vector and deque containers. Chapter 5 discusses 1ist containers.

Sequence Container: vector

A vector container stores and manages its objects in a dynamic array. Because an array is a
random access data structure, the elements of a vector can be accessed randomly. Item
insertion in the middle or beginning of an array is time consuming, especially if the array
is large. However, inserting an item at the end is fast.

The name of the class that implements the vector container is vector. (Recall that
containers are class templates.) The name of the header file containing the class vector
is vector. Thus, to use a vector container in a program, the program must include the
following statement:

#include <vector>




212 | Chapter 4: Standard Template Library (STL) |

Furthermore, to define an object of type vector, we must specify the type of the object
because the class vector is a class template. For example, the statement

vector<int> intList;

declares intList to be a vector and the component type to be int. Similarly, the
statement

vector<string> stringList;

declares stringList to be a vector container and the component type to be string.

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default constructor.
Therefore, a vector container can be declared and initialized in several ways.
Table 4-1 describes how a vector container of a specific type can be declared and
initialized.

TABLE 4-1 Various ways to declare and initialize a vector container

Creates an empty vector, vecList,
vector<elementType> veclList; without any elements. (The default
constructor is invoked.)

Creates a vector, vecList, and
initializes vecList to the elements
of the vector otherVeclList.
vecList and otherVecList
are of the same type.

vector<elementType>
vecList (otherVecList) ;

Creates a vector, vecList, of size size.
vecList is initialized using the default
constructor.

vector<elementType>
vecList (size) ;

Creates a vector, vecList, of size n.
vecList is initialized using n copies of
the element elem.

vector<elementType>
vecList (n, elem);

Creates a vector, vecList. vecList is
vector<elementType> initialized to the elements in the range
vecList (begin, end); [begin, end), thatis, all elements in

the range begin. . .end-1.



Components of the STL | 213

EXAMPLE 4-1

a. The following statement declares intList to be an empty vector
container and the element type is int.

vector<int> intlList;
b. The following statement declares intList to be a vector container

of size 10 and the element type is int. The elements of intList
are initialized to 0.

vector<int> intList (10);

c. The following statement declares intList to be a vector container
of size 5 and the element type is int. The container intList is
initialized using the elements of the array.

int intArray[5] = {2,4,6,8,10};
vector<int> intlList (intArray, intArray + 5);

The container intList is initialized using the elements of the array
intArray. Thatis, intList = {2,4,6,8,10}.

Now that we know how to declare a vector sequence container, let us now discuss how
to manipulate data stored in a vector container. To do so, we must know the following
basic operations:

® Jtem insertion

e Item deletion

e Stepping through the elements of a vector container
The elements in a vector container can be accessed directly by using the operations given
in Table 4-2.

TABLE 4-2 Operations to access the elements of a vector container

vecList.at (index) Returns the element at the position specified by index.
vecList[index] Returns the element at the position specified by index.

vecList.front () Returns the first element. (Does not check whether the
: container is empty.)
Returns the last element. (Does not check whether the

Vel e S () container is empty.)




214 | Chapter 4: Standard Template Library (STL) |

From Table 4-2, it follows that that the elements in a vector can be processed just as they
can in an array. (Recall that in C++, arrays start at location 0. Similarly, the first element
in a vector container is at location 0.)

Consider the following statement, which declares intList to be a vector container of
size 5 and the element type is int.

vector<int> intList (5);
You can use a loop, such as the following, to store elements into intList:

for (int j = 0; j < 5; j++)
intList[j] = J;

Similarly, you can use a for loop to output the elements of intList.

The class vector provides various operations to process the elements of a vector
container. Suppose that vecList is a container of type vector. Item insertion and
deletion in vecList can be accomplished using the operations given in Table 4-3. These
operations are implemented as member functions of the class vector and are shown in
bold. Table 4-3 also shows how these operations are used.

TABLE 4-3 Various operations on a vector container

vecList.clear () Deletgs all elements from the
container.

. s Deletes the element at the position

vecList.erase (position) e o
specified by position.

. Deletes all elements starting at beg

vecList.erase (beg, end) until end—-1.

A copy of elem is inserted at the

position specified by position. The

position of the new element is returned.

vecList.insert (position, elem)

. . . n copies of elem are inserted at the

veclList.insert (position, n, elem) " . ..
position specified by position.

A copy of the elements, starting at beg

vecList.insert (position, beg, end) until end-1, is inserted into vecList

at the position specified by position.



Components of the STL | 215

TABLE 4-3 Various operations on a vector container (continued)

vecList.push back (elem) ‘Alecg%li(;ftejﬁlrr]lelser:réserted i

vecList.pop back () Deletes the last element.

Changes the number of elements to
num. If size (), thatis, the number
of elements in the container
increases, the default constructor
creates the new elements.

vecList.resize (num)

Changes the number of elements to
num. If size () increases, the
default constructor creates the new
elements.

vecList.resize (num, elem)

~ InTable 4-3, the argument position in STL terminology is called an iterator. An
iterator works just like a pointer. In general, iterators are used to step through the
elements of a container. In other words, with the help of an iterator, we can walk
through the elements of a container and process them one at a time. In the next
section, we describe how to declare an iterator in a vector container and how to
manipulate the data stored in a container. Because iterators are an integral part of
the STL, they are discussed in detail in the section “lterators,” located later in
this chapter.

The function push back is quite useful. This function is used to add an element
at the end of a container. The container intList of size 5 was declared in
Example 4-2. You might think that you can only add five elements to the container
intList. However, this is not the case. If you need to add more than five elements, you
can use the function push_back. You cannot use the array subscripting operator, as in
Example 4-2, to add elements past the position 4 unless you increase the size of the
container.

If you do not know the number of elements you need to store in a vector container,
then when you declare the vector container you do not need to specify its size (see
Example 4-3). In this case, you can use the function push_back, as shown in Examples
4-3 and 4-5, to add elements into a vector container.




216 | Chapter 4: Standard Template Library (STL) |

The following statement declares intList to be a vector container of size 0.

vector<int> intList;
To add elements into intList, we can use the function push_back as follows:

intList.push_back(34);
intList.push_back(55);

After these statements execute, the size of intList is 2 and intList = {34, 55}. Of
course, you could have used the resize function to increase the size of intList and
then use the array subscripting operator. However, at times, the push_back function is
more convenient because it does not need to know the size of the container; it simply
adds elements at the end.

Declaring an Iterator to a Vector Container

Even though we can process a vector container just like an array using the array subscripting
operator, there are situations where we would like to process the elements of a vector
container using an iterator. (Recall that an iterator is just like a pointer.) For example,
suppose that we want to insert an element at a specific position in a vector container. Because
the element is to be inserted at a specific position, this would require shifting the elements of
the container (unless the element is added at the end). Of course, we must also think about
the size of the container. To make element(s) insertion convenient, the class vector
provides the function insert to insert the elements at a specific position in a vector
container. However, to use the function insert, the position where to insert the element(s)
must be specified by an iterator. Similarly, the function erase, to remove an element, also
requires the use of an iterator. This section describes how to declare and use an iterator on a
vector container.

The class vector contains a typedef iterator, which is declared as a public
member. An iterator to a vector container is declared using the typedef iterator.
For example, the statement

vector<int>::iterator intVecIter;
declares intVecIter to be an iterator into a vector container of type int.

Because iterator is a typedef defined inside the class vector, we must use the
container name (vector), container element type, and scope resolution operator to use
the typedef iterator.

Suppose that the iterator intVecIter points to an element of a vector container whose
elements are of type int. The expression

++intVecIter



Components of the STL | 217

advances the iterator intVecIter to the next element into the container. The expression
*intVecIter
returns the element at the current iterator position.

Note that these operations are the same as the operations on pointers, discussed in Chapter 3.
Recall that when used as a unary operator, * is called the dereferencing operator.

We now discuss how to use an iterator into a vector container to manipulate the data
stored into it. Suppose that we have the following statements:

vector<int> intList; //Line 1
vector<int>::iterator intVecIter; //Line 2

The statement in Line 1 declares intList to be a vector container and the element type
to be int. The statement in Line 2 declares intVecIter to be an iterator into a vector
container whose element type is int.

Containers and the Functions begin and end

Every container contains the member functions begin and end. The function begin
returns the position of the first element into the container; the function end returns the
position of the last element into the container. These functions have no parameters.

After the following statement executes:
intVecIter = intList.begin();
the iterator intVecIter points to the first element into the container intList.

The following for loop uses an iterator to output the elements of intList onto the
standard output device:

for (intVecIter = intlList.begin():; intVecIter != intList.end();
intVeclist)
cout << *intVecIter << " ";

EXAMPLE 4-4

Consider the following statements:

int intArray[7] = {1, 3, 5, 7, 9, 11, 13}; //Line 1
vector<int> veclList (intArray, intArray + 7}; //Line 2
vector<int>::iterator intVecIter; //Line 3

The statement in Line 2 declares and initializes the vector container vecList. Now
consider the following statements:

intVecIter = vecList.begin () ; //Line 4
++intVeclIter; //Line 5
vecList.insert (intVecIter, 22}; //Line 6



218 | Chapter 4: Standard Template Library (STL) |

The statement in Line 4 initializes the iterator intVecIter to the first element of
vecList. The statement in Line 5 advances intVecIter to the second element of
vecList. The statement in Line 6 inserts 22 at the position specified by intvecIter.
After the statement in Line 6 executes, vecList = {1, 22, 3, 5, 7, 9, 11, 13}. Notice
that the size of the container also increases.

The class vector also contains member functions that can be used to find the number
of elements currently in the container, the maximum number of elements that can be
inserted in a container, and so on. Table 4-4 describes some of these operations. (Suppose
that vecCont is a vector container.)

TABLE 4-4 Functions to determine the size of a vector container

Returns the maximum number of elements that can be
vecCont.capacity () inserted into the container vecCont without
reallocation.

Returns true if the container vecCont is empty

EECEIE L CEAST {) and false otherwise.

Returns the number of elements currently in the

vecCont.size .
0 container vecCont.

Returns the maximum number of elements that can be

WREIOIME o I EEEO () inserted into the container vecCont.

Example 4-5 illustrates how to use a vector container in a program and how to process
the elements into a vector container.

//***********************************************************
// Author: D.S. Malik

//

// This program illustrates how to use a vector container in a
// program.
//***********************************************************
#include <iostream> //Line 1
#include <vector> //Line 2

using namespace std; //Line 3



Components of the STL | 219

int main() //Line 4
{ //Line 5
vector<int> intList; //Line 6
intList.push _back(13); //Line 7
intList.push _back(75); //Line 8
intList.push_back(28); //Line 9
intList.push_back(35); //Line 10
cout << "Line 11l: List Elements: "; //Line 11
for (int 1 = 0; 1 < 4; i++) //Line 12
cout << intList[i] << " "; //Line 13
cout << endl; //Line 14
for (int 1 = 0; i < 4; i++) //Line 15
intList[i] *= 2; //Line 16
cout << "Line 17: List Elements: "; //Line 17
for (int i = 0; i < 4; i++) //Line 18
cout << intList[i] << " "; //Line 19
cout << endl; //Line 20
vector<int>::iterator 1listIt; //Line 21
cout << "Line 22: List Elements: "; //Line 22
for (listIt = intList.begin():;
listIt != intList.end(); ++listIt) //Line 23
cout << *listIt << " "; //Line 24
cout << endl; //Line 25
listIt = intList.begin(); //Line 26
++1istIt; //Line 27
++1listIt; //Line 28
intList.insert (listIt, 88); //Line 29
cout << "Line 30: List Elements: "; //Line 30
for (listIt = intList.begin();
listIt != intlList.end(); ++1listIt) //Line 31
cout << *listIt << " "; //Line 32
cout << endl; //Line 33
return 0; //Line 34
} //Line 35
Sample Run:

Line 11: List Elements: 13 75 28 35
Line 17: List Elements: 26 150 56 70
Line 22: List Elements: 26 150 56 70
Line 30: List Elements: 26 150 88 56 70




220 | Chapter 4: Standard Template Library (STL) |

The statement in Line 6 declares a vector container (or vector for short), intList, of
type int. The statements in Lines 7 through 10 use the operation push_back to insert
four numbers—13, 75, 28, and 35—into intList. The statements in Lines 12 and 13
use the for loop and the array subscripting operator [] to output the elements of
intList. In the output, see the line marked Line 11, which contains the output of
Lines 11 through 14 of the program. The statements in Lines 15 and 16 use a for loop to
double the value of each element of intList; the statements in Lines 18 and 19 output
the elements of intList. In the output, see the line marked Line 17, which contains the
output of Lines 17 through 20 of the program.

The statement in Line 21 declares 1istIt to be a vector iterator that processes any vector
container whose elements are of type int. Using the iterator 1istIt, the statements in
Lines 23 and 24 output the elements of intList. After the statement in Line 26 executes,
listIt points to the first element of intList. The statements in Lines 27 and 28
advance 1listIt twice; after these statements execute, 1listIt points to the third
element of intList. The statement in Line 29 inserts 88 into intList at the position
specified by the iterator 1istIt. Because 1istIt points to the component at position 2
(the third element of intList), 88 is inserted at position 2 in intList; that is, 88
becomes the third element of intList. The statements in Lines 31 and 32 output the
modified intList.

Member Functions Common to All Containers

The previous section discussed vector containers. We now look at operations that are
common to all containers. For example, every container class has a default constructor,
several constructors with parameters, a destructor, a function to insert an element into a
container, and so on.

Recall that a class encapsulates data, and operations on that data, into a single unit.
Because every container is a class, several operations are directly defined for a container
and are provided as part of the class definition. Also, recall that the operations to
manipulate the data are implemented with the help of functions and are called member
functions of the class. Table 4-5 describes the member functions that are common to all
containers; that is, these functions are included as members of the class template imple-
menting the container.

Suppose that ct, ctl, and ct2 are containers of the same type. Table 4-5 shows the name
of the function in bold, and shows how a function is called.



Components of the STL | 221

TABLE 4-5 Member functions common to all containers

Default constructor Initializes the object to an empty state.

In addition to the default constructor, every
container has constructors with parameters. We
describe these constructors when we discuss a
specific container.

Constructor with parameters

Executes when an object is passed as a parameter
Copy constructor by value, and when an object is declared and
initialized using another object of the same type.

Destructor Executes when the object goes out of scope.

o () Returns true if container ct is empty and
- empty false otherwise.

SR ) Returns the number of elements currently in
: container ct.

Sfers: e () Returns the maximum number of elements that
: = can be inserted into container ct.

ctl.swap (ct2) Swaps the elements of containers ct1 and ct2.

e isepla ) Returns an iterator to the first element into
-0eg container ct.
—TT Returns an iterator to the last element into
: container ct.
Reverse begin. Returns a pointer to the last
ct.rbegin () element into container ct. This function is used
to process the elements of ct in reverse.

Reverse end. Returns a pointer to the first

ct.rend () . .
element into container ct.

Inserts elem into container ct at the position

ct.insert (position, elem) specified by the argument position. Note

that here position is an iterator.

Deletes all elements between begin. . .end-1

e from container ct



222 | Chapter 4: Standard Template Library (STL) |

TABLE 4-5 Member functions common to all containers (continued)

et clear () Deletes all elements from the container. After a
. call to this function, container ct is empty.
Operator functions

Copies the elements of ct2 into ct1. After this
ctl = ct2 operation, the elements in both containers are
the same.

Returns true if containers ctl and ct2 are

Giel, == Gl equal and false otherwise.

Returns true if containers ctl and ct2 are
ctl !'= ct2 :

not equal and false otherwise.

Returns true if container ctl is less than
sl < e container ct2 and false otherwise.
ct] <= ct?2 Returns true if container ctl is less than or

equal to container ct2 and false otherwise.

Returns true if container ctl is greater than
R container ct2 and false otherwise.

Returns true if container ctl is greater than
ctl >= ct2 or equal to container ct2 and false

otherwise.

Because these operations are common to all containers, when discussing a specific
container, to save space, these operations are not listed again.

Member Functions Common to Sequence Containers

The previous section described the member functions that are common to all containers.
In addition to these member functions, Table 4-6 describes the member functions that are
common to all sequence containers—that is, containers of type vector, deque, and
list. (Suppose that seqCont is a sequence container.)



Components of the STL | 223

TABLE 4-6 Member functions common to all sequence containers

A copy of elem is inserted at the
position specified by position.
The position of the new element is
returned.

seqCont.insert (position, elem)

cea@ent Snccrtpeeiiion, m, clom n copies of elem are inserted at the
: roo position specified by position.
A copy of the elements, starting at
beg until end-1, are inserted
into segCont at the position
specified by position.

seqCont.insert (position, beg, end)

seqCont.push back (elem) éec(c;[é);c:te;etﬁelsé:;serted o

seqCont.pop_back () Deletes the last element.

et G (Tosediefen) Deletes the element at the

g . p position specified by position.
seqgCont.erase (beg, end) Ezlstiiﬁllleerllegefts starting at
Deletes all elements from the
seqgCont.clear () ——
Changes the number of elements
to num. If size () grows, the
new elements are created by their
default constructor.

seqCont.resize (num)

Changes the number of elements to
seqCont.resize (num, elem) num. If size () grows, the new
elements are copies of elem.

The copy Algorithm

Example 4-5 used a for loop to output the elements of a vector container. The STL
provides a convenient way to output the elements of a container with the help of the
function copy. The function copy is provided as a part of the generic algorithms of the STL
and can be used with any container type as well as arrays. Because we frequently need to
output the elements of a container, before continuing with our discussion of containers, let
us describe this function.



224 | Chapter 4: Standard Template Library (STL) |

Like the function copy, the STL contains many functions as part of generic algorithms,
which are described in Chapter 13.

The function copy does more than output the elements of a container. In general, it
allows us to copy the elements from one place to another. For example, to output the
elements of a vector or to copy the elements of a vector into another vector, we can use
the function copy. The prototype of the function template copy is as follows:

template <class inputIterator, class outputlterator>
outputItr copy(inputIterator firstl, inputIterator last,
outputIterator first2);

The parameter £irstl specifies the position from which to begin copying the elements;
the parameter last specifies the end position. The parameter £irst2 specifies where to
copy the elements. Therefore, the parameters firstl and last specify the source, and
the parameter £irst2 specifies the destination. Note that the elements within the range
firstl...last-1 are copied.

The definition of the function template copy is contained in the header file algorithm.
Thus, to use the function copy, the program must include the statement

#include <algorithm>
The function copy works as follows. Consider the following statement:

int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75}; //Line 1
vector<int> wvecList (9); //Line 2

This statement in Line 1 creates the array intArray of nine components—that is,
intArray = {5, 6, 8, 3, 40, 36, 98, 29, 75}
Here intArray[0] = 5, intArray[1] = 6, and so on.

The statement in Line 2 creates an empty container of nine components of type vector
and the element type int.

Recall that the array name, intArray, is actually a pointer and contains the base
address of the array. Therefore, intArray points to the first component of the array,
intArray + 1 points to the second component of the array, and so on.

Now consider the statement
copy (intArray, intArray+9, vecList.begin()); //Line 3

This statement copies the elements starting at the location intArray, which is the first
component of the array intArray, until intArray + 9 - 1 (that is, intArray + 8),
which is the last element of the array intArray, into the container vecList. (Note that
here firstl is intArray, last is intArray + 9, and first2 is vecList.begin().)
After the statement in Line 3 executes,



Components of the STL | 225

veclist = {5, 6, 8, 3, 40, 36, 98, 29, 75} //Line 4
Next, consider the statement
copy (intArray + 1, intArray + 9, intArray); //Line 5

Here firstl is intArray + 1; that is, firstl points to the location of the second
element of the array intArray, and last is intArray + 9. Also, first2 is intArray;
that is, first2 points to the location of the first element of the array intArray.
Therefore, the second array element is copied into the first array component, the third
array element into the second array component, and so on. After the statement in Line 5
executes,

intArray[] = {6, 8, 3, 40, 36, 98, 29, 75, 75} //Line 6

Notice that the elements of the array intArray are shifted to the left by one position.

Suppose that vecList is as in Line 4. Consider the statement

copy (vecList.rbegin() + 2, vecList.rend(),
vecList.rbegin()); //Line 7

Recall that the function rbegin (reverse begin) returns a pointer to the last element into
a container; it is used to process the elements of a container in reverse. Therefore,
vecList.rbegin() + 2 returns a pointer to the third-to-last element into the container
vecList. Similarly, the function rend (reverse end) returns a pointer to the first element
of a container. The previous statement shifts the elements of the container vecList to
the right by two positions. After the statement in Line 7 executes, the container vecList
is as follows:

veclList = {5, 6, 5, 6, 8, 3, 40, 36, 98}

Example 4-6 shows the effect of the preceding statements using a C++ program. Before
discussing Example 4-6, let us describe a special type of iterator, called ostream iterators,
which work well with the function copy to copy the elements of a container to an output
device.

ostream lterator and Function copy

One way to output the contents of a container is to use a for loop and the function
begin to initialize the for loop control variable, and to use the function end to set the
limit. Alternatively, the function copy can be used to output the elements of a container.
In this case, an iterator of type ostream specifies the destination (ostream iterators are
discussed in detail later in this chapter). When we create an iterator of type ostream, we
also specify the type of element the iterator will output.

The following statement illustrates how to create an ostream iterator of type int:

ostream iterator<int> screen(cout, " "); //Line A



226 | Chapter 4: Standard Template Library (STL) |

This statement creates screen to be an ostream iterator with the element type int. The
iterator screen has two arguments: the object cout and a space. Thus, the iterator
screen is initialized using the object cout, and when this iterator outputs the elements
they are separated by a space.

The statement

copy (intArray, intArray+9, screen);

outputs the elements of intArray on the screen.

Similarly, the statement

copy (vecList.begin(), vecList.end(), screen):;
outputs the elements of the container vecList on the screen.

We will frequently use the function copy to output the elements of a container by using
an ostream iterator. Also, until we discuss ostream iterators in detail, we will use
statements similar to the statement in Line A to create an ostream iterator.

Of course, we can directly specify an ostream iterator in the function copy. For
example, the statement (shown previously)

copy (vecList.begin(), vecList.end(), screen);

is equivalent to the statement

copy (vecList.begin(), veclList.end (), ostream iterator<int>(cout, ""));
Finally, the statement

copy (vecList.begin(), wvecList.end(),
ostream iterator<int>(cout, ", "));

outputs the elements of vecList with a comma and space between them.

Example 4-6 illustrates how to use the function copy and an ostream iterator in a
program.

EXAMPLE 4-6

//***********************************************************

// Author: D.S. Malik
//
// This program illustrates how to use the function copy and

// an ostream iterator in a program.
//***********************************************************

#include <algorithm> //Line 1
#include <vector> //Line 2
#include <iterator> //Line 3
#include <iostream> //Line 4



Components of the STL | 227

using namespace std; //Line 5
int main() //Line 6
{ //Line 7
int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75}; //Line 8
vector<int> vecList(9); //Line 9
ostream iterator<int> screen(cout, " "); //Line 10
cout << "Line 11: intArray: "; //Line 11
copy (intArray, intArray + 9, screen); //Line 12
cout << endl; //Line 13
copy (intArray, intArray + 9, vecList.begin()):; //Line 14
cout << "Line 15: vecList: "; //Line 15
copy (vecList.begin(), vecList.end(), screen); //Line 16
cout << endl; //Line 17
copy (intArray + 1, intArray + 9, intArray); //Line 18
cout << "Line 19: After shifting the elements one "
<< "position to the left, intArray: "™ << endl; //Line 19
copy (intArray, intArray + 9, screen); //Line 20
cout << endl; //Line 21

copy (vecList.rbegin() + 2, vecList.rend(),

vecList.rbegin()); //Line 22

cout << "Line 23: After shifting the elements down "
<< "by two positions, vecList:" << endl; //Line 23
copy (vecList.begin(), vecList.end(), screen); //Line 24
cout << endl; //Line 25
return 0; //Line 26
} //Line 27

Sample Run:

Line 11: intArray: 5 6 8 3 40 36 98 29 75

Line 15: vecList: 5 6 8 3 40 36 98 29 75

Line 19: After shifting the elements one position to the left, intArray:
6 8 3 40 36 98 29 75 75

Line 23: After shifting the elements down by two positions, vecList:
56568 3 40 36 98

Sequence Container: deque

This section describes the deque sequence containers. The term deque stands for
double-ended queue. Deque containers are implemented as dynamic arrays in such a
way that the elements can be inserted at both ends. Thus, a deque can expand in either



228 | Chapter 4: Standard Template Library (STL) |

direction. Elements can also be inserted in the middle. Inserting elements at the beginning
or at the end is fast; inserting elements in the middle, however, is time consuming
because the elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. The definition of the
class deque, and the functions to implement the various operations on a deque object,
are also contained in the header file deque. Therefore, to use a deque container in a
program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized
in various ways when it 1s declared, as described in Table 4-7.

TABLE 4-7 Various ways to declare a deque object

Creates an empty deque container without
deque<elementType> deq; any elements. (The default constructor is
invoked.)

Creates a deque container, deq, and
deque<elementType> initializes deq to the elements of
deqg (otherDeq) ; otherDegq; deq and otherDeq are of
the same type.

Creates a deque container, deq, of size
size. deq is initialized using the default
constructor.

deque<elementType>
deq(size);

Creates a deque container, deq, of size n.
deq is initialized using n copies of the
element elem.

deque<elementType>
deg(n, elem);

Creates a deque container, deq. deq is
deque<elementType> initialized to the elements in the range
deqg(begin, end); [begin, end)—thatis, all elements in

the range begin. . .end-1.

In addition to the operations that are common to all containers (see Table 4-6), Table 4-8
describes the operations that can be used to manipulate the elements of a deque
container. The name of the function implementing the operations is shown in bold.
The statement also shows how to use a particular function. Suppose that deq is a deque
container.



Components of the STL | 229

TABLE 4-8 Various operations that can be performed on a deque object

deg.assign(n,elem) Assigns n copies of elem.

deqg.assign (beg, end) Assigns all the elements in the range beg. . .end-1.
deq.push_front (elem) Inserts elem at the beginning of deq.
deq.pop_front () Removes the first element from degq.

Returns the element at the position specified by

deqg.at (index) i ndex

. Returns the element at the position specified b

deq[ index] P P p y

Sl Baeas (1) Returns the first element. (Does not check whether
q- the container is empty.)

Returns the last element. (Does not check whether

deq.back() the container is empty.)

Example 4-7 illustrates how to use a deque container in a program.

EXAMPLE 4-7

//***********************************************************

// Author: D.S. Malik

!/
// This program illustrates how to use a deque container in a
// program.
//***********************************************************
#include <iostream> //Line 1
#include <deque> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4
using namespace std; //Line 5
int main () //Line 6
{ //Line 7
deque<int> intDeq; //Line 8
ostream iterator<int> screen(cout, " "); //Line 9
intDeqg.push_back(13); //Line 10

intDeqg.push_back(75); //Line 11



230 | Chapter 4: Standard Template Library (STL) |

intDeg.push_back(28); //Line 12
intDeqg.push back(35); //Line 13
cout << "Line 14: intDeq: "; //Line 14
copy (intDeq.begin(), intDeqg.end(), screen):; //Line 15
cout << endl; //Line 16
intDeq.push_front (0); //Line 17
intDeq.push_back(100); //Line 18

cout << "Line 19: After adding two more "
<< "elements, one at the front " << endl

<< " and one at the back, intDeq: "; //Line 19
copy (intDeqg.begin(), intDeqg.end(), screen):; //Line 20
cout << endl; //Line 21
intDeqg.pop_ front(); //Line 22
intDeq.pop front(); //Line 23
cout << "Line 24: After removing the first "
<< "two elements, intDeqg: "; //Line 24
copy (intDeq.begin (), intDeq.end(), screen); //Line 25
cout << endl; //Line 26
intDeq.pop back(); //Line 27
intDeqg.pop_back(); //Line 28
cout << "Line 29: After removing the last "
<< "two elements, intDeq = "; //Line 29
copy (intDeq.begin(), intDeg.end(), screen); //Line 30
cout << endl; //Line 31
deque<int>::iterator deqlt; //Line 32
deqlt = intDeqg.begin():; //Line 33
++deqIt; //deqlt points to the second element //Line 34
intDeq.insert (deqlt, 444); //Line 35
cout << "Line 36: After inserting 444, intDeq: "; //Line 36
copy (intDeq.begin (), intDeq.end(), screen); //Line 37
cout << endl; //Line 38
return 0; //Line 39
} //Line 40
Sample Run:

Line 14: intDeq: 13 75 28 35
Line 19: After adding two more elements, one at the front
and one at the back, intDeq: 0 13 75 28 35 100
Line 24: After removing the first two elements, intDeq: 75 28 35 100
Line 29: After removing the last two elements, intDeq = 75 28
Line 36: After inserting 444, intDeq: 75 444 28



Ilterators | 231

The statement in Line 8 declares a deque container intDeq of type int; that is, all the
elements of intDeq are of type int. The statement in Line 9 declares screen to be
an ostream iterator initialized to the standard output device. The statements in Lines
10 through 13 use the push back operation to insert four numbers—13, 75, 28, and
35—into intDeq. The statement in Line 15 outputs the elements of intDeq. In the
output, see the line marked Line 14, which contains the output of the statements in Lines
14 through 16 of the program.

The statement in Line 17 inserts 0 at the beginning of intDeq. The statement in
Line 18 inserts 100 at the end of intDeq. The statement in Line 20 outputs the
modified intDeq.

The statements in Lines 22 and 23 use the operation pop front to remove the
first two elements of intDeq; the statement in Line 25 outputs the modified
intDeq. The statements in Lines 27 and 28 use the operation pop back to remove
the last two elements of intDeq; the statement in Line 30 outputs the modified
intDeq.

The statement in Line 32 declares deqIt to be a deque iterator that processes all
deque containers whose elements are of type int. After the statement in Line 33
executes, deqIt points to the first element of intDeq. The statement in Line 34
advances deqIt to the next element of intDeq. The statement in Line 35 inserts 444
into intDeq at the position specified by deqIt. The statement in Line 37 outputs
intDegq.

lterators

Examples 4-5 through 4-7 further clarify that iterators are quite important to efficiently
process the elements of a container. Let us discuss iterators in some detail.

[terators work just like pointers. In general, an iterator points to the elements of a
container (sequence or associative). Thus, with the help of iterators, we can successively
access each element of a container.

The two most common operations on iterators are ++ (the increment operator) and * (the
dereferencing operator). Suppose that cntItr is an iterator into a container. The statement

++cntItr;
advances cntItr so that it points to the next element in the container. The statement
*cntItr;

returns the value of the element of the container pointed to by cntItr.




232 | Chapter 4: Standard Template Library (STL) |

Types of Iterators

There are five types of iterators: input iterators, output iterators, forward iterators,
bidirectional iterators, and random access iterators. In the next few sections, we describe
these iterators.

Input Iterators
Input iterators, with read access, step forward element-by-element and so return the values

element-by-element. These iterators are provided for reading data from an input stream.

Suppose inputIterator is an input iterator. Table 4-9 describes the operations on
inputIterator.

TABLE 4-9 Operations on an input iterator

Gives access to the element to which

o
inputlterator inputIterator points.

inputlterator—->member Gives access to the member of the element.
++inputIterator Moves forward, returns the new position (preincrement).
inputIterator++ Moves forward, returns the old position (postincrement).
inputTtl —— inputIt2 Returns true if the two iterators are the same and

false otherwise.

Returns true if the two iterators are not the same

: ' s
inputltl != inputlt2 and false otherwise.

Type (inputIterator) Copies the iterators.

Output lterators

Output iterators, with write access, step forward element-by-element. These iterators are
typically used for writing data to an output stream.

Suppose outputIterator is an output iterator. Table 4-10 describes the operations on
outputIterator.



Iterators | 233

TABLE 4-10 Operations on an output iterator

Writes the value at the position specified

ORETEAECERENECE = YRR by the outputIterator.

Moves forward, returns the new position

++outputIterator .
(preincrement).
outputTterator++ Moveg forward, returns the old position
(postincrement).
Type (outputIterator) Copies the iterators.

~ | Output iterators cannot be used to iterate over a range twice. Thus, if we write data at the
same position twice, there is no guarantee that the new value will replace the old value.

Forward lterators

Forward iterators combine all of the functionality of input iterators and almost all of the
functionality of output iterators. Suppose forwardIterator is a forward iterator. Table
4-11 describes the operations on forwardIterator.

TABLE 4-11 Operations on a forward iterator

Gives access to the element to which
* forwardIterator g
forwardIterator points.
forwardIterator—->member Gives access to the member of the element.

Moves forward, returns the new position

++forwardIterator )
(preincrement).

Moves forward, returns the old position

forwardIterator++ .
(postincrement).
forwardItl == forwardIt2 Returns true if the two _|terators are the
same and false otherwise.
forwardItl != forwardIt2 Returns true if the two iterators are not

the same and false otherwise.

forwardItl = forwardIt2 Assignment.



234 | Chapter 4: Standard Template Library (STL) |

- Aforward iterator can refer to the same element in the same collection and process the
same element more than once.

Bidirectional Iterators

Bidirectional iterators are forward iterators that can also iterate backward over
the elements. Suppose biDirectionalIterator is a bidirectional iterator. The
operations defined for forward iterators (Table 4-11) are also applicable to bidirec-
tional iterators. To step backward, the decrement operations are also defined for
biDirectionalIterator. Table 4-12 shows additional operations on a bidirec-
tional iterator.

TABLE 4-12 Additional operations on a bidirectional iterator

Moves backward, returns the new position

—-biDirectionallterator
(predecrement).

Moves backward, returns the old position

biDirectionalIlIterator—--—
(postdecrement).

~ Bidirectional iterators can be used only with containers of type vector, deque, 1ist,
set, multiset, map, and multimap.

Random Access lterators

Random access iterators are bidirectional iterators that can randomly process the elements of
a container. These iterators can be used with containers of type vector, deque, string,
and arrays. The operations defined for bidirectional iterators (for example, Tables 4-11
and 4-12) are also applicable to random access iterators. Table 4-13 describes the additional
operations that are defined for random access iterators. (Suppose rAccessIterator is a
random access iterator.)



Iterators | 235

TABLE 4-13 Additional operations on a random access iterator
rAccesslterator([n] Accesses the nth element.

Moves rAccessIterator forward
rAccesslterator += n n elements if n >= 0 and backward
ifn < 0.

Moves rAccessIterator backward

rAccesslIterator —= n n elements if n >= 0 and forward

ifn < 0.
rAccesslIterator + n Returns the iterator of the next nth element.
n + rAccesslIterator Returns the iterator of the next nth element.

rAccessIterator — n Returns the iterator of the previous nth
element.
Returns the distance between the iterators
EReERRELEL = FhosegeliEs rAccessItl and rAccessIt2.
Returns true if rAccessItl is before
CREBEHEIEL § IREEREEIE rAccessIt2 and false otherwise.
Returns true if rAccessItl is before or
rAccessItl <= rAccesslIt2 equal to rAccessIt2 and false
otherwise.

Returns true if rAccessItl is after
SREEESELEL > LREEaReliE rAccessIt2 and false otherwise.
Returns true if rAccessItl is after
rAccessItl >= rAccessIt2 or equal to rAccessIt2 and false
otherwise.



236 | Chapter 4: Standard Template Library (STL) |

Figure 4-1 shows the iterator hierarchy.

Input iterators Output iterators

Forward iterators

| Bidirectional iterators |

| Random access iterators |

FIGURE 4-1 Iterator hierarchy

Now that you know the different types of iterators, next we describe how to declare an
iterator to a container.

typedef iterator Every container (sequence or associative) contains a typedef
iterator. Thus, an iterator into a container is declared using the typedef iterator.
For example, the statement

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator into a vector container of type int. Moreover,
the iterator intVecIter can be used on any vector<int>, but not on any other
container, such as vector<double>, vector<string>, and deque.

Because iterator is a typedef defined inside a container (that is, a class) such as
vector, we must use the appropriate container name, container element type, and the
scope resolution operator to use the typedef iterator.

typedef const_iterator Because an iterator works like a pointer, with the help
of an iterator into a container and the dereferencing operator, *, we can modify the
elements of the container. However, if a container is declared as const, then we must
prevent the iterator from modifying the elements of the container, especially accidentally.
To handle this situation, every container contains another typedef const iterator.
For example, the statement

vector<int>::const_iterator intConstVecIt;

declares intConstVecIt to be an iterator into a vector container whose elements are of
type int. The iterator intConstVecIt is used to process the elements of those vector
containers that are declared as constant vector containers of type vector<int>.

An iterator of type const_iterator is a read-only iterator.



Iterators | 237

typedef reverse_ iterator Every container also contains the typedef
reverse_iterator. An iterator of this type is used to iterate through the elements of
a container in reverse.

typedef const_reverse_ iterator Aniterator of this type is a read-only iterator
and is used to iterate through the elements of a container in reverse. It is required if the
container is declared as const and we need to iterate through the elements of the
container in reverse.

In addition to the previous four typedefs, several other typedefs are common to all

containers. Table 4-14 describes them.

TABLE 4-14 Various typedefs common to all containers

The type of result from subtracting two iterators
referring to the same container.

difference_ type

A pointer to the type of elements stored in the

ointer )
p container.

A reference to the type of elements stored in the

reference -
container.

A constant reference to the type of elements stored in

const reference . .
— the container. A constant reference is read-only.

The type used to count the elements in a container. This
size type type is also used to index through sequence containers,
except 1ist containers.

value type The type of container elements.

Stream lterators

Another useful set of iterators is stream iterators—istream iterators and ostream
iterators. This section describes both types of iterators.

istream iterator The istream iterator is used to input data into a program from
an input stream. The class istream iterator contains the definition of an input
stream iterator. The general syntax to use an istream iterator is as follows:

istream iterator<Type> isIdentifier (istreamé&);



238 | Chapter 4: Standard Template Library (STL) |

where Type is either a built-in type or a user-defined class type, for which an input
iterator is defined. The identifier isIdentifier is initialized using the constructor
whose argument is either an istream class object such as cin, or any publicly defined
istream subtype, such as ifstream.

ostream_iterator The ostream iterators are used to output data from a program into
an output stream. These iterators were defined earlier in this chapter. We review them
here for the sake of completeness.

The class ostream_iterator contains the definition of an output stream iterator. The
general syntax to use an ostream iterator is as follows:

ostream_iterator<Type> osIdentifier (ostreamé&);
or
ostream iterator<Type> osIdentifier (ostream&, char* delLimit);

where Type is either a built-in type or a user-defined class type, for which an output
iterator is defined. The identifier osIdentifier is initialized using the constructor
whose argument is either an ostream class object such as cout, or any publicly defined
ostream subtype, such as ofstream. In the second form used for declaring an ostream
iterator, by using the second argument (deLimit) of the initializing constructor, we can
specify a character separating the output.

PROGRAMMING EXAMPLE: Grade Report

The midsemester point at your local university is approaching. The registrar’s office
wants to prepare the grade reports as soon as the students” grades are recorded. Some
of the students enrolled have not yet paid their tuition, however.

If a student has paid the tuition, the grades are shown on the grade report together
with the grade point average (GPA). If a student has not paid the tuition, the grades
are not printed. For these students, the grade report contains a message indicating that
the grades have been held for nonpayment of the tuition. The grade report also shows
the billing amount.

The registrar’s office and the business office want your help in writing a program that
can analyze the students’ data and print the appropriate grade reports. The data is
stored in a file in the following form:

345
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade



Programming Example: Grade Report | 239

courseName courseNumber creditHours grade

studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade

The first line indicates the tuition rate per credit hour. The students’ data is given
thereafter.

A sample input file follows:

345

Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A

The first line indicates that the tuition rate is $345 per credit hour. Next, the course data
for student Lisa Miller is given: Lisa Miller’s ID is 890238, she has paid the tuition,
and 1s taking 4 courses. The course number for the mathematics class she is taking is
MTH345, the course has 4 credit hours, her midsemester grade is A, and so on.

The desired output for each student is in the following form:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade

CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credits: 13
Midsemester GPA: 3.54

This output shows that the courses must be ordered according to the course number.
To calculate the GPA, we assume that the grade A is equivalent to 4 points, B is
equivalent to 3 points, C is equivalent to 2 points, D is equivalent to 1 point, and F is
equivalent to 0 points.

Input A file containing the data in the form given previously. For easy reference
in the rest of the discussion, let us assume that the name of the input file is
stData.txt.

Output A file containing the output of the form given previously. Let us assume

that the name of the output file is stDataOut.txt.



240 | Chapter 4: Standard Template Library (STL) |

PROBLEM We must first identify the main components of the program. The university has

ANALYSIS students, and every student takes courses. Thus, the two main components are the
AND student and the course.
ALGORITHM

Let us first describe the component course.
DESIGN

Course The main characteristics of a course are the course name, course number, and number
of credit hours. Although the grade a student receives is not really a characteristic of
a course, to simplify the program this component also includes the student’s grade.

Some of the basic operations that need to be performed on an object of the course
type are as follows:

Set the course information.

Print the course information.

Show the credit hours.

Show the course number.

N

Show the grade.

The following class defines the course as an ADT:

class courseType
{
public:
void setCourseInfo(string cName, string cNo,
char grade, int credits);
//Function to set the course information
//The course information is set according to the
//incoming parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseGrade = grade; courseCredits = credits;

void print (ostream& outp, bool isGrade) ;
//Function to print the course information
//If the bool parameter isGrade is true, the grade is
//shown, otherwise three stars are printed.

int getCredits():
//Function to return the credit hours
//The value of the private data member courseCredits
//is returned.

void getCourseNumber (string& cNo) ;
//Function to return the course number
//Postcondition: c¢cNo = courseNo;

char getGrade();
//Function to return the grade for the course
//The value of the private data member courseGrade
//is returned.



Programming Example: Grade Report | 241

bool operator==(const courseType&) const;
bool operator!=(const courseType&) const;
bool operator<=(const courseTypeé&) const;
bool operator< (const courseTypeé&) const;
bool operator>=(const courseType&) const;
bool operator> (const courseTypeé&) const;

courseType (string cName = "", string cNo = ""
char grade = '*', int credits = 0);
//Constructor

//The object is initialized according to the parameters.
//Postcondition: courseName = cName; courseNo = cNo;

// courseGrade = grade; courseCredits = credits;
private:
string courseName; //variable to store the course name
string courseNo; //variable to store the course number
char courseGrade; //variable to store the grade

int courseCredits; //variable to store the course credits
}:

Figure 4-2 shows the UML class diagram of the class courseType.

courseType

—courseName: string
—courseNo: string
—courseGrade: char
—-courseCredits: int

+setCourselInfo(string, string, char, int): void
+print (ostream&, bool): void

+getCredits () : int

+getCourseNumber (stringé&) : void
t+getGrade () : char

toperator==(const courseType&) const: bool

(
+operator!=(const courseType&) const: bool
+operator<=(const courseType&) const: bool
+operator< (const courseType&) const: bool
+operator>=(const courseType&) const: bool
+operator> (const courseType&) const: bool
+courseType (string = "", string = "", char = '*', int = 0)

FIGURE 4-2 UML class diagram of the class courseType

Next, we discuss the definition of the functions to implement the operations of the
class courseType. These definitions are quite straightforward and easy to follow.

The function setCourseInfo sets the values of the private data members accord-
ing to the values of the parameters. Its definition is as follows:



242 | Chapter 4: Standard Template Library (STL) |

void courseType::setCourseInfo(string cName, string cNo,
char grade, int credits)

{
courseName = cName;
courseNo = cNo;
courseGrade = grade;
courseCredits = credits;
}

The function print prints the course information. If the bool parameter isGrade
is true, the grade is printed on the screen; otherwise, three stars are shown in place
of the grade. Also, we print the course name and course number left-justified rather
than right-justified (the default). Thus, we need to set the left manipulator. This
manipulator will be unset before we print the grade and the credit hours. The
following steps describe this function:

Set the left manipulator.

Print the course number.

Print the course name.

Unset the left manipulator.

Print the credit hours.

oo =

If isGrade is true

Output the grade
else
Output three stars.

The definition of the function print is as follows:

void courseType: :print (ostream& outp, bool isGrade)

{

outp << left; //Step 1
outp << setw(8) << courseNo << " "; //Step 2
outp << setw(15) << courseName; //Step 3
outp.unsetf (ios::left); //Step 4
outp << setw(3) << courseCredits << " "; //Step 5
if (isGrade) //Step 6
outp << setw(4) << courseGrade << endl;
else

outp << setw(4) << "x** " << endl;
}

The constructor is declared with default values. If no values are specified when a
courseType object is declared, the constructor uses the default to initialize the object.
Using the default values, the object’s data members are initialized as follows:
courseNo to blank, courseName to blank, courseGrade to *, and creditHours to
0. Otherwise, the values specified in the object declaration are used to initialize the
object. Its definition is as follows:



Programming Example: Grade Report | 243

courseType: :courseType (string cName, string cNo,
char grade, int credits)

{

setCourseInfo (cName, cNo, grade, credits):;

}
The definitions of the remaining functions are straightforward.

int courseType: :getCredits ()

{
return courseCredits;
}
char courseType: :getGrade ()
{
return courseGrade;
}

void courseType: :getCourseNumber (string& cNo)

{
cNo = courseNo;
}
bool courseType::operator==(const courseType& right) const
{
return (courseNo == right.courseNo) ;
}

bool courseType::operator!=(const courseType& right) const

{
return (courseNo != right.courseNo) ;
}
bool courseType: :operator<=(const courseTypeé& right) const
{
return (courseNo <= right.courseNo) ;
}
bool courseType::operator< (const courseType& right) const
{
return (courseNo < right.courseNo) ;
}
bool courseType::operator>=(const courseType& right) const
{
return (courseNo >= right.courseNo) ;
}

bool courseType: :operator> (const courseType& right) const

{
return (courseNo > right.courseNo) ;

}



Student

244 | Chapter 4: Standard Template Library (STL) |

Next we discuss the component student.

The main characteristics of a student are the student name, student ID, number of
courses in which enrolled, courses in which enrolled, and the grade for each course.
Because every student has to pay tuition, we also include a member to indicate
whether the student has paid the tuition.

Every student is a person, and every student takes courses. We have already designed a
class personType to process a person’s first name and last name. We have also
designed a class to process the information of a course. Thus, we see that we can
derive the class studentType to keep track of a student’s information from the
class personType, and one member of this class is of type courseType. We can
add more members as needed.

The basic operations to be performed on an object of type studentType are as follows:
1. Set the student information.

Print the student information.

Calculate the number of credit hours taken.
Calculate the GPA.

Calculate the billing amount.

S A

Because the grade report will print the courses in ascending order,
sort the courses according to the course number.

The following class defines studentType as an ADT. We assume that a student takes
no more than six courses per semester:

class studentType: public personType
{
public:
voild setInfo(string fname, string 1Name, int ID,
bool isTPaid,
vector<courseType> courses);
//Function to set the student's information
//The private data members are set according
//to the parameters.

vold print (ostream& out, double tuitionRate);
//Function to print the student's grade report
//The output is stored in a file specified by the
//parameter out.

studentType () ;
//Default constructor
//Postcondition: Data members are initialized to
//the default values.



Programming Example: Grade Report | 245

int getHoursEnrolled():;
//Function to return the credit hours a student
//is enrolled in.
//Postcondition: The number of credit hours in which a
// student is enrolled is calculated and returned.

double getGpa() ;
//Function to return the grade point average.
//Postcondition: The GPA is calculated and returned.

double billingAmount (double tuitionRate) ;
//Function to return the tuition fees
//Postcondition: The tuition fees due is calculated

// and returned.
private:
int sId; //variable to store the student ID

int numberOfCourses; //variable to store the number
//of courses
bool isTuitionPaid; //variable to indicate if the tuition
//is paid
vector<courseType> coursesEnrolled;//vector to store the courses
}i

Figure 4-3 shows the UML class diagram of the class studentType and the
inheritance hierarchy.

studentType

-sId: int

—numberOfCourses: int
—isTuitionPaid: bool
—coursesEnrolled: vector<courseType>

+setInfo(string, string, int, bool,
vector<courseType>) : void [:égggggigég:]
+print (ostream& out, double tuitionRate): void
+getHoursEnrolled () : int
+getGpa () : double
+billingAmount (double) : double

+studentType () studentType

FIGURE 4-3 UML class diagram of the class studentType and the inheritance hierarchy

Next, we discuss the definitions of the functions to implement the operations of the
class studentType.

The function setInfo first initializes the private data members according to the
incoming parameters. The class studentType is derived from the class
personType, and the variables to store the first name and last name are private data



246 | Chapter 4: Standard Template Library (STL) |

members of that class. Therefore, we call the member function setName of the
class personType, and we pass the appropriate variables to set the first and last
names. To sort the array coursesEnrolled we use the algorithm sort provided by
the STL.

To use the algorithm sort, to sort the vector coursesEnrolled, we need to know
the position of the first element and last element in the vector coursesEnrolled.
When we declare the vector coursesEnrolled, we did not specify its size. The
function begin of the class vector returns the position of the first element in a
vector container; the function end specifies the position of the last element.
Therefore, coursesEnrolled.begin () specifies the position of the first element of
the vector coursesEnrolled, and coursesEnrolled.end() specifies the position
of the last element. Now the operator <= is overloaded for the class courseType
and it compares the courses by the course number; the sort algorithm will use this
criteria to sort the vector coursesEnrolled. The following statement sorts the
vector coursesEnrolled.

sort (courseskEnrolled.begin (), coursesEnrolled.end()):;
The definition of the function setInfo is as follows:

void studentType::setInfo(string fName, string 1Name, int ID,
bool isTPaid,
vector<courseType> courses)

setName (fName, 1lName) ;
sId = ID;

isTuitionPaid = isTPaid;
numberOfCourses = courses.size();

coursesEnrolled courses;

sort (coursesEnrolled.begin (), coursesEnrolled.end()):;

}

The default constructor initializes the private data members to the default values.
Note that because the private data member coursesEnrolled is of type vector,
the default constructor of the class vector executes automatically and initializes
coursesEnrolled.

studentType: : studentType ()
{
numberOfCourses = 0;
sId = 0;
isTuitionPaid = false;



Programming Example: Grade Report | 247

The function print prints the grade report. If the student has paid his or her tuition, the
grades and the GPA are shown. Otherwise, three stars are printed in place of each grade,
the GPA is not shown, a message indicates that the grades are being held for nonpayment
of the tuition, and the amount due is shown. This function has the following steps:

1. Output the student’s name.
Output the student’s ID.
Output the number of courses in which enrolled.
Output heading: CourseNo CourseName Credits Grade
Print each course’s information.

Print the total credit hours.

Noey Bogs

To output the GPA and billing amount in a fixed decimal format
with the decimal point and trailing zeros, set the necessary flag. Also,
set the precision to two decimal places.

8. if isTuitionPaid is true
Output the GPA
else
Output the billing amount and a message about withholding the
grades.

This definition of the function print is as follows:

void studentType::print (ostreamé& outp, double tuitionRate)

{
outp << "Student Name: " << personType: :getFirstName ()
<< " " << personType::getLastName () << endl; //Step 1
outp << "Student ID: " << sId << endl; //Step 2

outp << "Number of courses enrolled: "
<< numberOfCourses << endl << endl; //Step 3

outp << left;

outp << "Course No" << setw(1l5) << " Course Name"
<< setw(8) << "Credits"
<< setw(6) << "Grade" << endl; //Step 4

outp.unsetf (ios::left);

for (int i = 0; i < numberOfCourses; i++)
coursesEnrolled[i].print (outp, isTuitionPaid); //Step 5

outp << endl;

outp << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outp << fixed << showpoint << setprecision(2); //Step 7



248 | Chapter 4: Standard Template Library (STL) |

if (isTuitionPaid) //Step 8
outp << "Midsemester GPA: " << getGpa() << endl;

else

{

outp << "*¥** Grades are being held for not paying "
<< "the tuition. ***" << endl;
outp << "Amount Due: $" << billingAmount (tuitionRate)
<< endl;
}

outp << Wk ok —k —k —k —k —k —k —k —k %k —k —k —k —k —k —k k% _*x W
<< Mk kK _x_" << endl << endl;

}

The function getHoursEnrolled calculates and returns the total credit hours that a
student is taking. These credit hours are needed to calculate both the GPA and the
billing amount. The total credit hours are calculated by adding the credit hours of
each course in which the student is enrolled. The credit hours for a course are in the
private data member of an object of type courseType. Therefore, we use the
member function getCredits of the class courseType to retrieve the credit
hours. The definition of this function is as follows:

int studentType::getHoursEnrolled ()

{
int totalCredits = 0;
for (int i = 0; i < numberOfCourses; i++)
totalCredits += courseskEnrolled[i].getCredits():;
return totalCredits;
}

If a student has not paid the tuition, the function billingAmount calculates and
returns the amount due, based on the number of credit hours enrolled. The definition
of this function is as follows:

double studentType::billingAmount (double tuitionRate)
{

return tuitionRate * getHoursEnrolled();

}

We now discuss the function getGpa. This function calculates a student’s GPA. To
find the GPA, we find the equivalent points for each grade, add the points, and then
divide the sum by the total credit hours the student is taking. The definition of this
function is as follows:

double studentType: :getGpa ()
{

double sum = 0.0;



Programming Example: Grade Report | 249

for (int i = 0; i < numberOfCourses; i++)

{
switch (coursesEnrolled[i].getGrade())
{
case 'A':
sum += coursesEnrolled[i].getCredits() * 4;
break;
case 'B':
sum += coursesEnrolled[i].getCredits() * 3;
break;
case 'C':
sum += coursesEnrolled[i].getCredits() * 2;
break;
case 'D':
sum += coursesEnrolled[i].getCredits() * 1;
break;
case 'F':
break;
default:
cout << "Invalid Course Grade" << endl;
}
}
if (getHoursEnrolled() != 0)
return sum / getHoursEnrolled() ;
else
return 0;
)
MAIN Now that we have designed the classes courseType and studentType, we will use

PROGRAM these classes to complete the program.

Because the function print of the class does the necessary computations to print the
final grade report, the main program has very little work to do. In fact, all that is left
for the main program is to declare the objects to hold the students’ data, load the data
into these objects, and then print the grade reports. Because the input is in a file and
the output will be sent to a file, we declare stream variables to access the input and
output files. Essentially, the main algorithm for the program is as follows:

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.
4. Open the output file.



Variables

Function
getStudent
Data

250 | Chapter 4: Standard Template Library (STL) |

5. Get the tuition rate.
6. Load the students’ data.
7. Print the grade reports.

To store students’ data, we use the vector container, studentList, whose

elements are of type studentType. We also need to store the tuition rate. Because the
data will be read from a file, and because the output is sent to a file, we need two stream
variables to access the input and output files. Thus, we need the following variables:

vector<studentType> studentlList; //vector to store the
// students' data

double tuitionRate; //variable to store the tuition rate
ifstream infile; //input stream variable
ofstream outfile; //output stream variable

To simplify the complexity of the function main, we write a function, getStudentData,
to load the students’ data and another function, printGradeReports, to print the grade
reports. The next two sections describe these functions.

This function has two parameters: a parameter to access the input file and a parameter
to access the vector container studentList. In pseudocode, the definition of this
function is as follows:

For each student in the university,

1. Get the first name, last name, student ID, and isPaid.
2. if isPaidis 'Y'
set isTuitionPaid to true
else
set isTuitionPaid to false

3. Get the number of courses the student is taking.

For each course

a. Get the course name, course number, credit hours, and grade.
b. Load the course information into a courseType object.

c. Push the object containing course information into the vector
container that stores course data.

5. Load the data into a studentType object.
6. Push the object containing student’s data into studentList.

We need to declare several local variables to read and store the data. The definition of
the function getStudentData is as follows:



Programming Example: Grade Report |

void getStudentData (ifstream& infile,
vector<studentType> &studentlList)

{

//Local variable

string fName; //variable
string 1Name; //variable
int ID; //variable
int noOfCourses; //variable
char isPaid; //variable

to
to
to
to
to

store
store
store
store
store

//is tuition paid
bool isTuitionPaid; //variable to store true/false

string cName; //variable to

string cNo; //variable to
int credits; //variable to
char grade; //variable to

store the
store the
store the
store the

the first name

the last name

the student ID

the number of courses
Y/N, that is,

course name
course number
course credit hours
course grade

251

vector<courseType> courses; //vector of objects to store course
//information

courseType cTemp;
studentType sTemp;

infile >> fName;

while (infile)

{
infile >> 1Name >> ID >> isPaid;
if (isPaid == 'Y')
isTuitionPaid = true;
else

isTuitionPaid = false;

infile >> noOfCourses;

courses.clear();

infile >> cName >> cNo >> credits >> grade; //Step 4.

for (int i = 0; i1 < noOfCourses; i
{
cTemp.setCourseInfo (cName, cNo
grade, cre
courses.push back (cTemp) ;
}

sTemp.setInfo (fName, 1Name,

courses) ;

ID, is

studentList.push back (sTemp) ;

infile >> fName;
}//end while

//Step 1

//Step 1

//Step 2

//Step 3

++) //Step 4

14

dits); //Step 4.
//Step 4.

TuitionPaid,
//Step
//Step

//Step




Function
printGrade
Reports

MAIN
PROGRAM

252 | Chapter 4: Standard Template Library (STL) |

This function prints the grade reports. For each student, it calls the function print of
the class studentType to print the grade report. The definition of the function
printGradeReports is as follows:

void printGradeReports (ofstream& outfile,
vector<studentType> studentlist,
double tuitionRate)

for (int count = 0; count < studentlList.size(); count++)
studentList[count].print (outfile, tuitionRate) ;

//****************************************************************

// Author: D.S. Malik
//
// This program illustrates how to use the classes courseType,

// studentType, and vector.
//****************************************************************

#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include <vector>
#include <iterator>

#include "studentType.h"
using namespace std;

void getStudentData (ifstream& infile,
vector<studentType> &studentlList);

void printGradeReports (ofstream& outfile,
vector<studentType> studentlList,
double tuitionRate);
int main ()
{
vector<studentType> studentList;

double tuitionRate;

ifstream infile;
ofstream outfile;

infile.open ("stData.txt");



Programming Example: Grade Report | 253

if (!infile)

{
cout << "Input file does not exist. "
<< "Program terminates." << endl;
return 1;
}

outfile.open ("stDataOut.txt");
infile >> tuitionRate; //get the tuition rate

getStudentData (infile, studentList);
printGradeReports (outfile, studentList, tuitionRate):;

return 0;

}

//Place the definition of the function getStudentData here
//Place the definition of the function printGradeReports here

Sample Run:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade

CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credit hours: 13

Midsemester GPA: 3.54
—k _k _k _k _k ok Kk _k Kk _k_k ok _k_k_k_k_k_k kK _k Kk _k _k

Student Name: Bill Wilton
Student ID: 798324
Number of courses enrolled: 5

Course No Course Name Credits Grade

BIO234 Biology 4 LI
CHM256 Chemistry 4 LILIEY
ENG378 English 3 B
MTH346 Mathematics 3 LIy
PHL534 Philosophy 3 LY

Total number of credit hours: 17
*** Grades are being held for not paying the tuition. ***

Amount Due: $5865.00
_k ok ke ke Kk ke ke ke ok ke ok ke ke ke ke ke ke ke ke



254 | Chapter 4: Standard Template Library (STL) |

Student Name: Dandy Goat
Student ID: 746333
Number of courses enrolled: 6

Course No Course Name Credits Grade

BUS128 Business 3 @
CHM348 Chemistry 4 B
Csc201 ComputerSci 3 B
ENG328 English 3 B
HIS101 History 3 A
MTH137 Mathematics 3 A

Total number of credit hours: 19

Midsemester GPA: 3.16
_k ke ko ke ke ke ke ke ke ke ke ke ok ke ke ke ke ke ke ke ok ke

Input File

345

Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A

Bill Wilton 798324 N 5
English ENG378 3 B
Philosophy PHL534 3 A
Chemistry CHM256 4 C
Biology BIO234 4 A
Mathematics MTH346 3 C

Dandy Goat 746333 Y 6
History HIS101 3 A
English ENG328 3 B
Mathematics MTH137 3 A
Chemistry CHM348 4 B
ComputerSci CSC201 3 B
Business BUS128 3 C

QUICK REVIEW

1. The STL provides class templates that process lists, stacks, and queues.

2. The three main components of the STL are containers, iterators, and
algorithms.

3. STL containers are class templates.

4. Iterators are used to step through the elements of a container.



10.
11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.
23.

24,

Quick Review

Algorithms are used to manipulate the elements in a container.

The main categories of containers are sequence containers, associative
containers, and container adapters.

The three predefined sequence containers are vector, deque, and list.
A vector container stores and manages its objects in a dynamic array.

Because an array is a random access data structure, elements of a vector can
be accessed randomly.

The name of the class that implements the vector container is vector.

Item insertion in a vector container is accomplished by using the operations
insert and push_back.

Item deletion in a vector container is accomplished by using the operations
pop_back, erase, and clear.

An iterator to a vector container is declared using the typedef iterator,
which is declared as a public member of the class vector.

Member functions common to all containers are the default constructor,
constructors with parameters, the copy constructor, the destructor, empty,
size, max size, swap, begin, end, rbegin, rend, insert, erase,
clear, and the relational operator functions.

The member function begin returns an iterator to the first element into
the container.

The member function end returns an iterator to the last element into the
container.

In addition to the member functions listed in 14, the other member
functions common to all sequence containers are insert, push_back,
pop_back, erase, clear, and resize.

The copy algorithm is used to copy the elements in a given range to
another place.

The function copy, using an ostream iterator, can also be used to output
the elements of a container.

When we create an iterator of the type ostream, we also specify the type
of element that the iterator will output.

Deque containers are implemented as dynamic arrays in such a way that the
elements can be inserted at both ends of the array.

A deque can expand in either direction.

The name of the header file containing the definition of the class deque
is deque.

In addition to the operations that are common to all containers, the other
operations that can be used to manipulate the elements of a deque are
assign, push_ front, pop_front, at, array subscripting operator [1],
front, and back.

255




256

| Chapter 4: Standard Template Library (STL) |

25. The five categories of iterators are: input, output, forward, bidirectional,
and random access iterator.
26. Input iterators are used to input data from an input stream.
27.  Qutput iterators are used to output data to an output stream.
28. A forward iterator can refer to the same element in the same collection and
process the same element more than once.
29. Bidirectional iterators are forward iterators that can also iterate backwards
over the elements.
30. Bidirectional iterators can be used with containers of type list, set,
multiset, map, and multimap.
31.  Random access iterators are bidirectional iterators that can randomly pro-
cess the elements of a container.
32.  Random access iterators can be used with containers of type vector,
deque,string,andamny&
EXERCISES
1. What are the three main components of the STL?
2. What is the difference between an STL container and an STL iterator?
3. Write a statement that declares a vector object that can store 50 decimal numbers.
4. Write a statement that declares and stores the elements of the following
array into a vector object:
char vowels[5] = {'a', 'e', 'i', 'oO', 'u'};
5.  Worite a statement to declare screen to be an ostream_ iterator initialized
to the standard output device that outputs the elements of an int vector object.
6. Consider the following statements:
vector<int> intVector;
Suppose that intvVector = {5, 7, 9, 11, 13}. Moreover, suppose that
screen is an ostream iterator initialized to the standard output device
to output the elements of an int vector object. What is the effect of the
following statement?
copy (vecList.begin(), vecList.end(), screen);
7. What 1s the output of the following program segment?

vector<int> vecList (5);

for (int j = 0; j < 5;
vecList[j] = 2 * j;
for (int j = 0; Jj < 5; j++)
cout << wveclist[j] << " ";
cout << endl;

j++)



10.

11.

Exercises

What is the output of the following program segment? (Assume that
screen is an ostream iterator initialized to the standard output device
to output elements of type int.)

int list[5] = {2,4,6,8,10};
vector<int> vecList (5);

copy(list, list + 5, vecList.begin()):;

copy (vecList.begin (), vecList.end(), screen);

cout << endl;

What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type int.)

vector<int> vecList;
vector<int>::iterator vecIt;

vecList.push _back(3);
vecList.push back(5);
vecList.push_back(7);
vecIt = vecList.begin();
++veclt;

veclList.erase (vecIt):
vecList.push_back(9);

copy (vecList.begin(), vecList.end(), screen);

cout << endl;

What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type int.)

int list[5] = {2,41618110};
vector<int> wvecList (7);

copy(list, list + 5, vecList.begin()):
vecList.push_back(12);
copy (vecList.begin(), vecList.end(), screen);

cout << endl;

What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type double.)

vector<double> sales(3);
sales[0] 50.00;

sales[1l] 75.00;
sales[2] = 100.00;

257




258

12.

13.

14,

15.

| Chapter 4: Standard Template Library (STL) |

sales.resize (5);

sales[3] = 200.00;
sales[4] 95.00;

copy (sales.begin(), sales.end(), screen);
cout << endl;

What 1s the output of the following program segment? (Assume that
screen is an ostream iterator initialized to the standard output device
that outputs elements of type int.)

vector<int> intVector;
vector<int>::iterator vecIt;

intVector.push _back(15);
intVector.push _back(2);
intVector.push back(10);
intVector.push _back(7);
vecIt = intVector.begin();
vecIt++;

intVector.erase (veclIt);
intVector.pop_back();

copy (intVector.begin(),intVector.end(), screen);

Suppose that vecList is a vector container and
vecList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes:
copy(vecList.begin() + 2, vecList.end(), wvecList.begin()):
Suppose that vecList is a vector container and

veclList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes:
copy (vecList.rbegin() + 3, vecList.rend(), vecList.rbegin());
What is the output of the following program segment?

deque<int> intDeq;
ostream iterator<int> screen(cout, " ");
deque<int>::iterator deqlt;

intDeq.push_back(5);

intDeq.push_front (23);
intDeq.push_front (45);
intDeq.push_back (35) ;
intDeq.push front (0);
intDeq.push_back (50) ;
intDeqg.push front (34);

deqIt = intDeqg.begin();
intDeq.insert (deqIt,76);
intDeq.pop_back() ;



Programming Exercises

deqIt = intDeq.begin();
++deqIt;
++deqIt;

intDeg.erase (deqlt);
intDeq.push_front (2 * intDeq.back());
intDeq.push_back(3 * intDeq.front());

copy (intDeq.begin(), intDeqg.end(), screen):;
cout << endl;

PROGRAMMING EXERCISES

259

1. Write a program that allows the user to enter the last names of five candidates in
a local election and the votes received by each candidate. The program should
then output each candidate’s name, votes received by that candidate, and the
percentage of the total votes received by the candidate. Your program should
also output the winner of the election. A sample output is as follows:

Candidate Votes Received $ of Total Votes
Johnson 5000 25.91

Miller 4000 20.72

Duffy 6000 31.09
Robinson 2500 12.95

Sam 1800 9.33

Total 19300

The Winner of the Election is Duffy.

2. Write a program that allows the user to input the students’ names followed
by their test scores and outputs the following:

a. Class average

b. Names of all students whose test scores are below the class average
with an appropriate message

c. Highest test score and the names of all students having the highest score

3. Write a program that uses a vector object to store a set of real numbers. The
program outputs the smallest, largest, and average of the numbers. When declar-
ing the vector object, do not specify its size. Use the function push back to
insert elements in the vector object.

4. Write the definition of the function template reverseVector to reverse the
elements of a vector object.

template<class elemType>
void reverseVector (vector<elemType> &list);
//Reverses the elements of the vector list.
//Example: Suppose list = {4, 8, 2, 5}.
// After a call to this function, list = {5, 2, 8, 4}.




260

| Chapter 4: Standard Template Library (STL) |

Also, write a program to test the function reversevector. When declaring
the vector object, do not specify its size. Use the function push_back to
insert elements in the vector object.

Write the definition of the function template seqSearch to implement the
sequential search on a vector object.

template<class elemType>

int segSearch (const vector<elemType> &list, const elemType& item);
//1If item is found in the list, returns the
//position of the item in the list; otherwise, returns -1.

Also, write a program to test the function seqSearch. Use the function
push_back to insert elements in the vector object.

Write a program to find the mean and standard deviation of numbers. The
mean (average) of n numbers xy, x5, ..., X, 8 x = (x; + % + ... + x,) / n.
The standard deviation of these numbers is as follows:

2

(1 —2)’ + (@ —2)’ + -+ (i —2) + -+ (2, — )

n

Use a vector object to store the numbers.

a.  Some of the characteristics of a book are the title, author(s), publisher,
ISBN, price, and year of publication. Design the class bookType that
defines the book as an ADT.

Each object of the class bookType can hold the following information
about a book: title, up to four authors, publisher, ISBN, price, and
number of copies in stock. To keep track of the number of authors,
add another data member.

Include the member functions to perform the various operations on the
objects of bookType. For example, the typical operations that can be per-
formed on the title are to show the title, set the title, and check whether a title
is the same as the actual title of the book. Similarly, the typical operations that
can be performed on the number of copies in stock are to show the number
of copies in stock, set the number of copies in stock, update the number of
copies in stock, and return the number of copies in stock. Add similar
operations for the publisher, ISBN, book price, and authors. Add the appro-
priate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookType.

c. Write a program that uses the class bookType and tests the various

operations on the objects of class bookType. Declare a vector container of
type bookType. Some of the operations that you should perform are to
search for a book by its title, search by ISBN, and update the number of
copies in stock.



8.

9.

10.

Programming Exercises

a. In the first part of this exercise, you will design a class memberType.

i. Each object of memberType can hold the name of a person,
member ID, number of books bought, and amount spent.

i. Include the member functions to perform the various operations
on the objects of memberType—for example, modify, set, and
show a person’s name. Similarly, update, modify, and show the
number of books bought and the amount spent.

ii. Add the appropriate constructors and a destructor (if one is needed).
iv. Worite the definitions of the member functions of memberType.

h. Using the classes designed in Programming Exercise 7 and part (8a),
write a program to simulate a bookstore. The bookstore has two types
of customers: those who are members of the bookstore and those who
buy books from the bookstore only occasionally. Each member has to
pay a $10 yearly membership fee and receives a 5% discount on each

book bought.

For each member, the bookstore keeps track of the number of books
bought and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of
the last 10 books bought, applies this amount as a discount, and then
resets the total amount spent to 0.

Your program should contain a menu that gives the user different
choices to effectively run the program; in other words, your program

should be self-driven.

Redo Programming Exercise 9 of Chapter 3 so that the address book is
stored in a vector object.

(Stock Market) Write a program to help a local stock trading company
automate its systems. The company invests only in the stock market. At the
end of each trading day, the company would like to generate and post the
listing of its stocks so that investors can see how their holdings performed
that day. We assume that the company invests in, say, 10 different stocks.
The desired output is to produce two listings, one sorted by stock symbol
and another sorted by percent gain from highest to lowest.

The input data is stored in a file in the following format:

symbol openingPrice closingPrice todayHigh todayLow prevClose
volume

For example, the sample data is as follows:

MSMT 112.50 115.75 116.50 111.75 113.50 6723823
CBA 67.50 75.50 78.75 67.50 65.75 378233

261




262 | Chapter 4: Standard Template Library (STL) |

The first line indicates that the stock symbol is MSMT, today’s opening price
was 112.50, the closing price was 115.75, today’s high price was 116.50,
today’s low price was 111.75, yesterday’s closing price was 113.50, and the
number of shares currently being held is 6723823.

The listing sorted by stock symbols must be in the following form:

¥xkxkxkkkFkkk  First Investor's Heaven Frxrrxxkxx

* Kk khkkkkkk Financial Report * Kk kkkkkkkk
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume

ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CSCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000
MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920
Closing Assets: $9628300.00

L S R [ (N G U S R N (T QL G N N G N

Develop this programming exercise in two steps. In the first step (part a),
design and implement a stock object. In the second step (part b), design and
implement an object to maintain a list of stocks.

a. (Stock Object) Design and implement the stock object. Call the class
that captures the various characteristics of a stock object stockType.

The main components of a stock are the stock symbol, stock price, and
number of shares. Moreover, we need to output the opening price, high
price, low price, previous price, and the percent gain/loss for the day.
These are also all the characteristics of a stock. Therefore, the stock
object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.
ii. Print the stock information.
ii. Show the different prices.
iv. Calculate and print the percent gain/loss.
v. Show the number of shares.
a.1. The natural ordering of the stock list is by stock symbol. Overload the
relational operators to compare two stock objects by their symbols.
a.2. Opverload the insertion operator, <<, for easy output.

a.3. Because data is stored in a file, overload the stream extraction operator,
>>, for easy input.
For example, suppose infile is an ifstream object and the input
file was opened using the object infile. Further suppose that
myStock is a stock object. Then, the statement

infile >> myStock;



Programming Exercises

reads data from the input file and stores it in the object myStock.
(Note that this statement reads and stores data in relevant components
of myStock.)

Now that you have designed and implemented the class stockType
to implement a stock object in a program, it is time to create a list of
stock objects. Let us call the class to implement a list of stock objects
stockListType. To store the list of stocks, you need to declare a
vector. The component type of this vector is stockType.

Because the company also requires you to produce the list ordered by
the percent gain/loss, you need to sort the stock list by this compo-
nent. However, you are not to physically sort the list by the compo-
nent percent gain/loss; instead, you will provide a logical ordering
with respect to this component.

To do so, add a data member, a vector, to hold the indices of the stock list
ordered by the component percent gain/loss. Call this array indexByGain.
When printing the list ordered by the component percent gain/loss, use
the array indexByGain to print the list. The elements of the array
indexByGain will tell which component of the stock list to print next.
In skeleton form, the definition of the class stockListType is as follows:

class stockListType
{
public:
void insert (const stockType& item)):;
//Function to insert a stock in the list.

private:
vector<int> indexByGain;

263

vector<stockType> list; //vector to store the list //of stocks

y:
Write a program that uses these two classes to automate the company’s
analysis of stock data.




This page intentionally left blank



CHAPTER

LINKED LISTS

IN THIS CHAPTER, YOU WILL:

Learn about linked lists

Become aware of the basic properties of linked lists
Explore the insertion and deletion operations on linked lists
Discover how to build and manipulate a linked list

Learn how to construct a doubly linked list

Discover how to use the STL container 1ist

Learn about linked lists with header and trailer nodes

Become aware of circular linked lists



266 | Chapter b: Linked Lists

You have already seen how data is organized and processed sequentially using an array, called a
sequential list. Y ou have performed several operations on sequential lists, such as sorting, inserting,
deleting, and searching. You also found that if data is not sorted, searching for an item in the list
can be very time consuming, especially with large lists. Once the data is sorted, you can use a
binary search and improve the search algorithm. However, in this case, insertion and deletion
become time consuming, especially with large lists because these operations require data
movement. Also, because the array size must be fixed during execution, new items can be
added only if there is room. Thus, there are limitations when you organize data in an array.

This chapter helps you to overcome some of these problems. Chapter 3 showed how
memory (variables) can be dynamically allocated and deallocated using pointers. This chapter
uses pointers to organize and process data in lists, called linked lists. Recall that when data is
stored in an array, memory for the components of the array is contiguous—that is, the blocks
are allocated one after the other. However, as we will see, the components (called nodes) of a
linked list need not be contiguous.

Linked Lists

A linked list is a collection of components, called nodes. Every node (except the last node)
contains the address of the next node. Thus, every node in a linked list has two components:
one to store the relevant information (that is, data) and one to store the address, called the
link, of the next node in the list. The address of the first node in the list is stored in a separate
location, called the head or first. Figure 5-1 is a pictorial representation of a node.

FIGURE 5-1 Structure of a node

Linked list: A list of items, called nodes, in which the order of the nodes is determined
by the address, called the link, stored in each node.

The list in Figure 5-2 is an example of a linked list.

head [F— 45| F~{ 65 [ {32 [+ 76 [ 5

FIGURE 5-2 Linked list

The arrow in each node indicates that the address of the node to which it is pointing is
stored in that node. The down arrow in the last node indicates that this link field is NULL.



Linked Lists | 267

For a better understanding of this notation, suppose that the first node is at memory
location 1200, and the second node is at memory location 1575, see Figure 5-3.

1200 1575
head [1200] | 45 [1575] [65] |

FIGURE 5-3 Linked list and values of the links

The value of the head is 1200, the data part of the first node is 45, and the link component
of the first node contains 1575, the address of the second node. If no confusion arises, we
will use the arrow notation whenever we draw the figure of a linked list.

For simplicity and for the ease of understanding and clarity, Figures 5-3 through 5-5 use
decimal integers as the values of memory addresses. However, in computer memory the
memory addresses are in binary.

Because each node of a linked list has two components, we need to declare each node as a
class or struct. The data type of each node depends on the specific application—that is,
what kind of data is being processed. However, the link component of each node is a
pointer. The data type of this pointer variable is the node type itself. For the previous linked
list, the definition of the node is as follows. (Suppose that the data type is int.)

struct nodeType
{

int info;
nodeType *1link;
};

The variable declaration is as follows:

nodeType *head;

Linked Lists: Some Properties

To better understand the concept of a linked list and a node, some important properties
of linked lists are described next.

Consider the linked list in Figure 5-4.

head 2000 2800 1500 3600
17 [28004—] 92 [15004—] 63 [3600—{ 45 | o0 —|—1
info 1link info 1link info 1link info 1link

FIGURE 5-4 Linked list with four nodes



268 | Chapter 5: Linked Lists

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and 1ink, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800, the
third node is at location 1500, and the fourth node is at location 3600. Table 5-1 shows
the values of head and some other nodes in the list shown in Figure 5-4.

TABLE 5-1 Values of head and some of the nodes of the linked list in Figure 5-4

head 2000
. Because head is 2000 and the info of the
Iegid=r e L7 node at location 2000 is 17
head->1ink 2800
head=>1ink—=>info 92 Because head—>11ink is 2800 and the

info of the node at location 2800 is 92

Suppose that current is a pointer of the same type as the pointer head. Then the
statement

current = head;
copies the value of head into current. Now consider the following statement:
current = current—>1link;

This statement copies the value of current->1link, which is 2800, into current.
Therefore, after this statement executes, current points to the second node in the list.
(When working with linked lists, we typically use these types of statements to advance a
pointer to the next node in the list.) See Figure 5-5.

head 2000 2800 1500 3600
17 [2800 92 [1500+4— 63 [36004—1 45 | o —|—l
info link info 1link info link info link
current

FIGURE 5-5 List after the statement current = current->11ink; executes



Linked Lists | 269

Table 5-2 shows the values of current, head, and some other nodes in Figure 5-5.

TABLE 5-2 Values of current, head, and some of the nodes of the linked list in Figure 5-5

current 2800

current—->info 92

current—->1link 1500
current->link->info 63

head->1ink->1ink 1500
head->1ink->1ink->info 63
head—>1ink—>1ink->1ink 3600
current—>1link->1ink->1ink 0 (that is, NULL)
current—>1ink->1ink->link->info Does not exist (run-time error)

From now on, when working with linked lists, we will use only the arrow notation.

TRAVERSING A LINKED LIST

The basic operations of a linked list are as follows: Search the list to determine whether a
particular item is in the list, insert an item in the list, and delete an item from the list.
These operations require the list to be traversed. That is, given a pointer to the first node
of the list, we must step through the nodes of the list.

Suppose that the pointer head points to the first node in the list, and the link of the last
node is NULL. We cannot use the pointer head to traverse the list because if we use the
head to traverse the list, we would lose the nodes of the list. This problem occurs because
the links are in only one direction. The pointer head contains the address of the first
node, the first node contains the address of the second node, the second node contains the
address of the third node, and so on. If we move head to the second node, the first node
is lost (unless we save a pointer to this node). If we keep advancing head to the next
node, we will lose all the nodes of the list (unless we save a pointer to each node before
advancing head, which is impractical because it would require additional computer time
and memory space to maintain the list).

Therefore, we always want head to point to the first node. It now follows that we must
traverse the list using another pointer of the same type. Suppose that current is a pointer
of the same type as head. The following code traverses the list:



270 | Chapter 5: Linked Lists

current = head;

while (current != NULL)
{

//Process current
current = current->1link;

}

For example, suppose that head points to a linked list of numbers. The following code
outputs the data stored in each node:

current = head;

while (current != NULL)
{

cout << current->info << " ";
current = current->1link;

Item Insertion and Deletion

This section discusses how to insert an item into, and delete an item from, a linked list.
Consider the following definition of a node. (For simplicity, we assume that the info
type is int. The next section, which discusses linked lists as an abstract data type (ADT)
using templates, uses the generic definition of a node.)

struct nodeType
{

int info;
nodeType *1link;
}i

We will use the following variable declaration:

nodeType *head, *p, *q, *newNode;

INSERTION
Consider the linked list shown in Figure 5-6.

nead [J{a5] J—fes] -] el

P

FIGURE 5-6 Linked list before item insertion



Linked Lists | 271

Suppose that p points to the node with info 65, and a new node with info 50 is to be
created and inserted after p. Consider the following statements:

newNode = new nodeType; //create newNode
newNode->info = 50; //store 50 in the new node
newNode->1ink = p->1link;

p—>1link = newNode;

Table 5-3 shows the effect of these statements.

TABLE 5-3 Inserting a node in a linked list

headB—>|45|—||£>|65|—|—>|34|-|—>|76|-|—l
newNodeE—»[D
headB—»|45|—||£»|65|—|—~|34|-|—v|76|-|—1

newNode = new nodeType;

newNode—>info = 50;

newNode

newNode->1ink = p—>1link;

p—>1link = newNode;

Note that the sequence of statements to insert the node, that is,

newNode->1ink = p—>1link;
p—>1link = newNode;

is very important because to insert newNode in the list we use only one pointer, p, to
adjust the links of the nodes of the linked list. Suppose that we reverse the sequence of the
statements and execute the statements in the following order:

p—>1link = newNode;
newNode->1ink = p->1link;



272 | Chapter b: Linked Lists

Figure 5-7 shows the resulting list after these statements execute.

FIGURE 5-7 List after the execution of the statement p—>1ink = newNode; followed by the
execution of the statement newNode->1ink = p->1ink;

From Figure 5-7, it is clear that newNode points back to itself and the remainder of the
list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to
the node with info 34. (See Figure 5-8.)

head [J—-[45]F—f65[ F—f34] - 76]
0 o ik

P

newNode

FIGURE 5-8 List with pointers p and g

The following statements insert newNode between p and q:

newNode->1ink = g;
p—>1link = newNode;

The order in which these statements execute does not matter. To illustrate this, suppose
that we execute the statements in the following order:

p—>1link = newNode;
newNode->1ink = qg;



Linked Lists | 273

Table 5-4 shows the effect of these statements.

TABLE 5-4 Inserting a node in a linked list using two pointers

nead[F-{as[F—fe5[] EQSE S
p->link = newNode; o] al ']

newNode l
head (a5 [4—]65] 34 76

newNode—>1ink = q; p[ "]

newNode

DELETION
Consider the linked list shown in Figure 5-9.

headE—>|45|—|£-|65| {34 +-{76] 1

p

FIGURE 5-9 Node to be deleted is with info 34

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list:

p—>1link = p->link->1ink;

Figure 5-10 shows the resulting list after the preceding statement executes.

headE—-|45|—E>|65| |34|—|—>|76|—|—l

FIGURE 5-10 List after the statement p—>1ink = p—>1ink->1ink; executes

From Figure 5-10, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node and this memory is inaccessible; that



274 | Chapter 5: Linked Lists

is, this node is dangling. To deallocate the memory, we need a pointer to this node. The
following statements delete the node from the list and deallocate the memory occupied
by this node:

q = p—>link;

p—>link = g->1link;

delete qg;

Table 5-5 shows the effect of these statements.

TABLE 5-5 Deleting a node from a linked list

headB—»|45|—|—-|65|-|—:|34|—|—~|76|-|—l

g = p—>link; P|i—, Cﬂi—,

p->link = g->link; head[ J—{45] F—f65] +|£J sa] —]re] 1
[0«

neaa [z F—ges[ e[

delete g; o[

Building a Linked List

Now that we know how to insert a node in a linked list, let us see how to build a linked list.
First, we consider a linked list in general. If the data we read is unsorted, the linked list will be
unsorted. Such a list can be built in two ways: forward and backward. In the forward manner,
a new node is always inserted at the end of the linked list. In the backward manner, a new
node is always inserted at the beginning of the list. We will consider both cases.

BUILDING A LINKED LIST FORWARD

Suppose that the nodes are in the usual info-1ink form and info is of type int. Let us
assume that we process the following data:

2 15 8 24 34

We need three pointers to build the list: one to point to the first node in the list, which
cannot be moved, one to point to the last node in the list, and one to create the new
node. Consider the following variable declaration:

nodeType *first, *last, *newNode;
int num;



Linked Lists | 275

Suppose that £irst points to the first node in the list. Initially, the list is empty, so both
first and last are NULL. Thus, we must have the statements

first = NULL;
last = NULL;

to initialize first and last to NULL.
Next, consider the following statements:

1 cin >> num; //read and store a number in num
2 newNode = new nodeType; //allocate memory of type nodeType
//and store the address of the
//allocated memory in newNode
num; //copy the value of num into the
//info field of newNode
4 newNode->link = NULL; //initialize the link field of
//newNode to NULL
5 if (first == NULL) //if first is NULL, the list is empty;
//make first and last point to newNode

3 newNode->info

{
ba first = newNode;
5b last = newNode;
}
6 else //list is not empty
{
6a last->1ink = newNode; //insert newNode at the end of the list
6b last = newNode; //set last so that it points to the
//actual last node in the list
}

Let us now execute these statements. Initially, both £irst and last are NULL. Therefore,
we have the list as shown in Figure 5-11.

first E_l
last[

FIGURE 5-11 Empty list

After statement 1 executes, num is 2. Statement 2 creates a node and stores the address of
that node in newNode. Statement 3 stores 2 in the info field of newNode, and statement 4
stores NULL in the link field of newNode. (See Figure 5-12.)

newNode

FIGURE 5-12 newNode with info 2



276 | Chapter b: Linked Lists

Because first is NULL, we execute statements 5a and 5b. Figure 5-13 shows the resulting list.

first

last

newNode

ke
N

FIGURE 5-13 List after inserting newNode in it

We now repeat statements 1 through 6b. After statement 1 executes, num is 15.
Statement 2 creates a node and stores the address of this node in newNode. Statement
3 stores 15 in the info field of newNode, and statement 4 stores NULL in the link field of
newNode. (See Figure 5-14.)

last E_. 173 newNodeE—> 150 1

FIGURE 5-14 List and newNode with info 15

Because first is not NULL, we execute statements 6a and 6b. Figure 5-15 shows the
resulting list.

first| - 2 15| 1
last [f]newNode

FIGURE 5-15 List after inserting newNode at the end

We now repeat statements 1 through 6b three more times. Figure 5-16 shows the resulting list.

first[ T 2 15 8 24 34| 1
last [f]newNode

FIGURE 5-16 List after inserting 8, 24, and 34




Linked Lists | 277

We can put the previous statements in a loop, and execute the loop until certain conditions
are met, to build the linked list. We can, in fact, write a C++ function to build a linked list.

Suppose that we read a list of integers ending with -999. The following function,
buildListForward, builds a linked list (in a forward manner) and returns the pointer
of the built list:

nodeType* buildListForward ()

{
nodeType * first, *newNode, *last;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;

first = NULL;

while (num != -999)

{
newNode = new nodeType;
newNode->info = num;
newNode->1ink = NULL;

if (first == NULL)

{
first = newNode;
last = newNode;
}
else
{
last->1ink = newNode;
last = newNode;
}

cin >> num;
} //end while

return first;
} //end buildListForward

BUILDING A LINKED LIST BACKWARD

Now we consider the case of building a linked list backward. For the previously given
data—2, 15, 8, 24, and 34—the linked list is as shown in Figure 5-17.

. N mEN R N

newNode

FIGURE 5-17 List after building it backward



278 | Chapter b: Linked Lists

Because the new node is always inserted at the beginning of the list, we do not need to know
the end of the list, so the pointer last is not needed. Also, after inserting the new node at the
beginning, the new node becomes the first node in the list. Thus, we need to update the value
of the pointer first to correctly point to the first node in the list. We see, then, that we need
only two pointers to build the linked list: one to point to the list and one to create the new
node. Because initially the list is empty, the pointer £irst must be initialized to NULL. The
following C++ function builds the linked list backward and returns the pointer of the built list:

nodeType* buildListBackward ()

{
nodeType *first, *newNode;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;

first = NULL;

while (num != -999)
{
newNode = new nodeType; //create a node
newNode->info = num; //store the data in newNode
newNode->1link = first; //put newNode at the beginning
//of the list
first = newNode; //update the head pointer of
//the list, that is, first
cin >> num; //read the next number

}

return first;
} //end buildListBackward

Linked List as an ADT

The previous sections taught you the basic properties of linked lists and how to construct and
manipulate linked lists. Because a linked list is a very important data structure, rather than
discuss specific lists such as a list of integers or a list of strings, this section discusses linked lists
as an abstract data type (ADT). Using templates, this section gives a generic definition of
linked lists, which is then used in the next section and later in this book. The programming
example at the end of this chapter also uses this generic definition of linked lists.

The basic operations on linked lists are as follows:

Initialize the list.

Determine whether the list is empty.
Print the list.

Find the length of the list.

Destroy the list.

I N



Linked List as an ADT | 279

Retrieve the info contained in the first node.
Retrieve the info contained in the last node.

Search the list for a given item.

Y e N

Insert an item in the list.
10. Delete an item from the list.
11.  Make a copy of the linked list.

In general, there are two types of linked lists—sorted lists, whose elements are arranged according
to some criteria, and unsorted lists, whose elements are in no particular order. The algorithms to
implement the operations search, insert, and remove slightly differ for sorted and unsorted lists.
Therefore, we will define the class 1inkedListType to implement the basic operations on a
linked list as an abstract class. Using the principal of inheritance, we derive two classes—
unorderedLinkedList and orderedLinkedlist—from the class linkedListType.

Objects of the class unorderedLinkedList would arrange list elements in no particular
order, that is, these lists may not be sorted. On the other hand, objects of the class
orderedLinkedList would arrange elements according to some comparison criteria, usually
less than or equal to. That is, these lists will be in ascending order. Moreover, after inserting an
element into or removing an element from an ordered list, the resulting list will be ordered.

If a linked list is unordered, we can insert a new item at either the end or the beginning.
Furthermore, you can build such a list in either a forward manner or a backward manner.
The function buildListForward inserts the new item at the end, whereas the function
buildListBackward inserts the new item at the beginning. To accommodate both
operations, we will write two functions: insertFirst to insert the new item at the
beginning of the list and insertLast to insert the new item at the end of the list. Also,
to make the algorithms more efficient, we will use two pointers in the list: first, which
points to the first node in the list, and last, which points to the last node in the list.

Structure of Linked List Nodes

Recall that each node of a linked list must store the data as well as the address for the next
node in the list (except the last node of the list). Therefore, the node has two instance
variables. To simplify operations such as insert and delete, we define the class to implement
the node of a linked list as a struct. The definition of the struct nodeType is as follows:

//Definition of the node

template <class Type>
struct nodeType

{
Type info;
nodeType<Type> *1link;
};

The class to implement the node of a linked list is declared as a struct. Programming
Exercise 8, at the end of this chapter, asks you to redefine the class to implement the nodes
of a linked list so that the instance variables of the class nodeType are private.




280 | Chapter b: Linked Lists

Member Variables of the class linkedListType

To maintain a linked list, we use two pointers—first and last. The pointer first
points to the first node in the list, and last points to the last node in the list. We also
keep a count of the number of nodes in the list. Therefore, the class linkedListType
has three instance variables, as follows:

protected:
int count; //variable to store the number of elements in the list
nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

Linked List Iterators

One of the basic operations performed on a list is to process each node of the list. This
requires the list to be traversed starting at the first node. Moreover, a specific application
requires each node to be processed in a very specific way. A common technique to
accomplish this is to provide an iterator. So what is an iterator? An iterator is an object
that produces each element of a container, such as a linked list, one element at a time.
The two most common operations on iterators are ++ (the increment operator) and *
(the dereferencing operator). The increment operator advances the iterator to the next
node in the list while the dereferencing operator returns the info of the current node.

Note that an iterator is an object. So we need to define a class, which we will call
linkedListIterator, to create iterators to objects of the class linkedListType.
The iterator class would have one member variable pointing to (the current) node.

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement an iterator
// to a linked list.

//***********************************************************

template <class Type>
class linkedListIterator
{
public:
linkedListIterator();
//Default constructor
//Postcondition: current = NULL;

linkedListIterator (nodeType<Type> *ptr);
//Constructor with a parameter.
//Postcondition: current = ptr;

Type operator* ();
//Function to overload the dereferencing operator *.
//Postcondition: Returns the info contained in the node.

linkedListIterator<Type> operator++():;
//Overload the preincrement operator.
//Postcondition: The iterator is advanced to the next node.



Linked List as an ADT | 281

bool operator==(const linkedListIterator<Type>& right) const;
//Overload the equality operator.
//Postcondition: Returns true if this iterator is equal to
// the iterator specified by right, otherwise it returns
// false.

bool operator!=(const linkedListIterator<Type>& right) const;
//Overload the not equal to operator.
//Postcondition: Returns true if this iterator is not equal to
// the iterator specified by right, otherwise it returns
// false.

private:
nodeType<Type> *current; //pointer to point to the current
//node in the linked list
};

Figure 5-18 shows the UML class diagram of the class linkedListIterator.

linkedListIterator<Type>

- *current: nodeType<Type>

+linkedListIterator ()

+linkedListIterator (nodeType<Type>)

t+operator* () : Type

t+operator++ () : linkedListIterator<Type>
+operator==(const linkedListIterator<Type>&) const: bool
+operator!=(const linkedListIterator<Type>&) const: bool

FIGURE 5-18 UML class diagram of the class linkedListIterator

The definitions of the functions of the class linkedListIterator are as follows:

template <class Type>
linkedListIterator<Type>::linkedListIterator ()
{

current = NULL;
}

template <class Type>
linkedListIterator<Type>::
linkedListIterator (nodeType<Type> *ptr)
{
current = ptr;

}

template <class Type>
Type linkedListIterator<Type>::operator* ()
{

return current->info;

}



282 | Chapter b: Linked Lists

template <class Type>
linkedListIterator<Type> linkedListIterator<Type>::operator++()
{

current = current->1link;

return *this;

}

template <class Type>
bool linkedListIterator<Type>::operator==
(const linkedListIterator<Type>& right) const
{
return (current == right.current);

}

template <class Type>
bool linkedListIterator<Type>::operator!=
(const linkedListIterator<Type>& right) const
{
return (current != right.current);

}

From the definitions of the functions and constructors of the class linkedListIterator,
it follows that each function and the constructors are of O(1).

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next, we describe the class linkedListType to implement the
basic porperties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT:

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic
// properties of a linked list. This is an abstract class.

// We cannot instantiate an object of this class.
//**‘k‘k*‘k‘k**‘k‘k**‘k‘k**‘k***‘k***‘k***‘k*************************‘k***

template <class Type>
class linkedListType
{
public:
const linkedListType<Type>& operator=
(const linkedListType<Type>&);
//Overload the assignment operator.

void initializeList():
//Initialize the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;



Linked List as an ADT | 283

bool isEmptyList () const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty, otherwise
// it returns false.

void print () const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList():;
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front () const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the 1list,
// otherwise the value false is returned.

virtual void insertFirst (const Type& newItem) = 0;
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newltem is

// inserted at the beginning of the list, last points to
// the last node in the list, and count is incremented by
// 1.

virtual void insertlast (const Type& newItem) = 0;

//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newltem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

virtual void deleteNode (const Type& deleteltem) = 0;
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteltem is
// deleted from the list. first points to the first node,
// last points to the last node of the updated list, and
// count is decremented by 1.



284 | Chapter b: Linked Lists

linkedListIterator<Type> begin();
//Function to return an iterator at the beginning of the
//linked list.
//Postcondition: Returns an iterator such that current is set
// to first.

linkedListIterator<Type> end();
//Function to return an iterator one element past the
//last element of the linked list.
//Postcondition: Returns an iterator such that current is set
// to NULL.

linkedListType() ;
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType (const linkedListType<Type>& otherList);
//copy constructor

~linkedListType () ;
//destructor
//Deletes all the nodes from the list.
//Postcondition: The list object is destroyed.

protected:
int count; //variable to store the number of list elements
//
nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copylList (const linkedListType<Type>& otherlList):;
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.



Linked List as an ADT | 285

Figure 5-19 shows the UML class diagram of the class linkedListType.

linkedListType<Type>

-count: int
-*first: nodeType<Type>
-*last: nodeType<Type>

+operator=(const linkedListType<Type>&) :
const linkedListType<Type>&

+initializelList (): void
+isEmptyList () const: bool
+print () const: void
+length() const: int
+destroyList () : void

+front () const: Type
+back () const: Type

+search(const Typeé&) const = 0: bool
+insertFirst(const Type&) = 0: void
+insertLast(const Type&) = 0: void
+deleteNode (const Typeé&) = 0: void
+begin(): linkedListIterator<Type>

+end () : linkedListIterator<Type>
+linkedListType ()

+linkedListType (const linkedListType<Type>&)
+~linkedListType ()

-copyList (const linkedListType<Type>&): void

FIGURE 5-19 UML class diagram of the class linkedListType

Note that, typically, in the UML class diagram the names of an abstract class and abstract
function are shown in italic.

The instance variables first and last, as defined earlier, of the class linkedListType
are protected, not private, because as noted previously, we will derive the classes
unorderedLinkedList and orderedLinkedList from the class linkedListType.
Because each of the classes unorderedLinkedList and orderedLinkedList will
provide separate definitions of the functions search, insertFirst, insertLast, and
deleteNode, and because these functions would access the instance variable, to provide
direct access to the instance variables, the instance variables are declared as protected.

The definition of the class linkedListType includes a member function to overload
the assignment operator. For classes that include pointer data members, the assignment
operator must be explicitly overloaded (see Chapters 2 and 3). For the same reason, the
definition of the class also includes a copy constructor.

Notice that the definition of the class 1inkedListType contains the member function
copyList, which is declared as a private member. This is because this function is used
only to implement the copy constructor and overload the assignment operator.




286 | Chapter b: Linked Lists

Next, we write the definitions of the nonabstract functions of the class LinkedListClass.

The list is empty if first is NULL. Therefore, the definition of the function isEmptyList
to implement this operation is as follows:

template <class Type>
bool linkedListType<Type>::isEmptyList() const

{
return (first == NULL);

}

Default Constructor

The default constructor, linkedListType, is quite straightforward. It simply initializes
the list to an empty state. Recall that when an object of the linkedListType type is
declared and no value is passed, the default constructor is executed automatically.

template <class Type>
linkedListType<Type>::linkedListType() //default constructor
{

first = NULL;

last = NULL;

count = 0;

}

From the definitions of the functions isEmptyList and the default constructor, it
follows that each of these functions is of O(1).

Destroy the List

The function destroyList deallocates the memory occupied by each node. We traverse
the list starting from the first node and deallocate the memory by calling the operator
delete. We need a temporary pointer to deallocate the memory. Once the entire list is
destroyed, we must set the pointers first and last to NULL and count to 0.

template <class Type>
void linkedListType<Type>::destroyList ()
{
nodeType<Type> *temp; //pointer to deallocate the memory
//occupied by the node
while (first != NULL) //while there are nodes in the list
{
temp = first; //set temp to the current node
first = first->1link; //advance first to the next node
delete temp; //deallocate the memory occupied by temp
}

last = NULL; //initialize last to NULL; first has already
//been set to NULL by the while loop
count = 0;



Linked List as an ADT | 287

If the list has » items, the while loop executes n times. From this, it follows that the
function destroyList is of O(n).

Initialize the List

The function initializeList initializes the list to an empty state. Note that the default
constructor or the copy constructor has already initialized the list when the list object was
declared. This operation, in fact, reinitializes the list to an empty state, and so it must delete
the nodes (if any) from the list. This task can be accomplished by using the destroyList
operation, which also resets the pointers first and last to NULL and sets count to 0.

template <class Type>
void linkedListType<Type>::initializeList ()
{
destroyList(); //if the list has any nodes, delete them

}

The function initializeList uses the function destroyList, which is of O(n).
Therefore, the function initializeList is of O(n).

Print the List

The member function print prints the data contained in each node. To print the data
contained in each node, we must traverse the list starting at the first node. Because the
pointer first always points to the first node in the list, we need another pointer to
traverse the list. (If we use first to traverse the list, the entire list will be lost.)

template <class Type>
void linkedListType<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current point to the first node
while (current != NULL) //while more data to print
{
cout << current->info << " ";
current = current->1link;
}
}//end print

As in the case of the function destroyList, the function print is of O(n).

Length of a List

The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int linkedListType<Type>::length() const
{

return count;

}




288 | Chapter b: Linked Lists

Retrieve the Data of the First Node

The function front returns the info contained in the first node, and its definition is
straightforward.

template <class Type>
Type linkedListType<Type>::front () const

{
assert (first != NULL);

return first->info; //return the info of the first node
}//end front

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function check, you have to check to see whether the list is nonempty.

Retrieve the Data of the Last Node

The function back returns the info contained in the last node. Its definition is as follows:

template <class Type>
Type linkedListType<Type>::back() const

{
assert(last != NULL);

return last->info; //return the info of the last node
}//end back

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, you have to check to see whether the list is nonempty.

From the definitions of the functions length, front, and back, it follows easily that
each of these functions are of O(1).

Begin and End

The function begin returns an iterator to the first node in the linked list and the function
end returns an iterator to the last node in the linked list. Their definitions are as follows:

template <class Type>
linkedListIterator<Type> linkedListType<Type>::begin ()

{
linkedListIterator<Type> temp (first):

return temp;

}

template <class Type>
linkedListIterator<Type> linkedListType<Type>::end()

{
linkedListIterator<Type> temp (NULL) ;

return temp;



Linked List as an ADT | 289

From the definitions of the functions length, front, back, begin, and end, it follows
easily that each of these functions are of O(1).

Copy the List

The function copyList makes an identical copy of a linked list. Therefore, we traverse
the list to be copied starting at the first node. Corresponding to each node in the original
list, we do the following:

1. Create a node and call it newNode.

2. Copy the info of the node (in the original list) into newNode.

3. Insert newNode at the end of the list being created.

The definition of the function copyList is as follows:

template <class Type>
void linkedListType<Type>::copyList

(const linkedListType<Type>& otherList)
{

nodeType<Type> *newNode; //pointer to create a node
nodeType<Type> *current; //pointer to traverse the list

if (first != NULL) //if the list is nonempty, make it empty
destroyList () ;

if (otherList.first == NULL) //otherList is empty

{
first = NULL;
last = NULL;
count = 0;

}

else

{

current = otherList.first; //current points to the
//list to be copied
count = otherList.count;

//copy the first node
first = new nodeType<Type>; //create the node
first—>info = current->info; //copy the info
first->1ink = NULL; //set the link field of the node to NULL
last = first; //make last point to the first node
current = current->link; //make current point to the next
// node

//copy the remaining list

while (current != NULL)

{
newNode = new nodeType<Type>; //create a node
newNode->info = current->info; //copy the info
newNode->1link = NULL; //set the link of newNode to NULL



290 | Chapter b: Linked Lists

last->1link = newNode; //attach newNode after last
last = newNode; //make last point to the actual last
//node
current = current->link; //make current point to the
//next node
}//end while
}//end else
}//end copyList

The function copyList contains a while loop. The number of times the while loop
executes depends on the number of items in the list. If the list contains # items, the while
loop executes n times. Therefore, the function copyList is of O(n).

Destructor

The destructor deallocates the memory occupied by the nodes of a list when the class
object goes out of scope. Because memory is allocated dynamically, resetting the pointers
first and last does not deallocate the memory occupied by the nodes in the list. We
must traverse the list, starting at the first node, and delete each node in the list. The list
can be destroyed by calling the function destroyList. Therefore, the definition of the
destructor is as follows:

template <class Type>
linkedListType<Type>::~linkedListType () //destructor

{
destroyList();

}

Copy Constructor

Because the class linkedListType contains pointer data members, the definition of
this class contains the copy constructor. Recall that, if a formal parameter is a value
parameter, the copy constructor provides the formal parameter with its own copy of the
data. The copy constructor also executes when an object is declared and initialized using
another object.

The copy constructor makes an identical copy of the linked list. This can be done by
calling the function copyList. Because the function copyList checks whether the
original 1s empty by checking the value of first, we must first initialize the pointer
first to NULL before calling the function copyList.

The definition of the copy constructor is as follows:

template <class Type>
linkedListType<Type>::linkedListType
(const linkedListType<Type>& otherList)
{
first = NULL;
copyList (otherList) ;
}//end copy constructor



Linked List as an ADT | 291

Overloading the Assignment Operator

The definition of the function to overload the assignment operator for the class
linkedListType is similar to the definition of the copy constructor. We give its defini-
tion for the sake of completeness.

//overload the assignment operator
template <class Type>
const linkedListType<Type>& linkedListType<Type>::operator=
(const linkedListType<Type>& otherList)

{
if (this != gotherList) //avoid self-copy
{
copylList (otherlist) ;
}//end else
return *this;
}

The destructor uses the function destroyList, which is of O(n). The copy constructor
and the function to overload the assignment operator use the function copyList, which
is of O(n). Therefore, each of these functions are of O(n).

TABLE 5-6 Time-complexity of the operations of the class linkedListType

isEmptyList o(1)
default constructor 0o(1)
destroyList O(n)
front o(1)
end o(1)
initializelist Oo(n)
print O(n)
length 0(1)
front 0(1)
back 0(1)

copyList o(n)



292 | Chapter b: Linked Lists

TABLE 5-6 Time-complexity of the operations of the class 1inkedListType (continued)

destructor 0(n)
copy constructor o(n)
Overloading the assignment operator o(n)

Unordered Linked Lists

As described in the previous section, we derive the class unorderedLinkedList from the
abstract class linkedListType and implement the operations search, insertFirst,
insertLast, and deleteNode

The following class defines an unordered linked list as an ADT:

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic
// properties of an unordered linked list. This class is

riv r i i .
// de ed from the class linkedListType
//***********************************************************

template <class Type>

class unorderedLinkedList: public linkedListType<Type>

{

public:

bool search (const Type& searchItem) const;

//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

vold insertFirst (const Typeé& newltem);
//Function to insert newltem at the beginning of the list.
//Postcondition: first points to the new list, newlItem is

// inserted at the beginning of the list, last points to
// the last node, and count is incremented by 1.
//

voild insertlLast (const Type& newltem);
//Function to insert newlItem at the end of the list.
//Postcondition: first points to the new list, newltem is
// inserted at the end of the list, last points to the
// last node, and count is incremented by 1.

void deleteNode (const Type& deleteltem);
//Function to delete deletelItem from the list.
//Postcondition: If found, the node containing deleteItem



Unordered Linked Lists | 293

// is deleted from the list. first points to the first
// node, last points to the last node of the updated
// list, and count is decremented by 1.

}i

Figure 5-20 shows a UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy.

unorderedLinkedList<Type>
| linkedListType |
+search (const Type&) const: bool
+insertFirst (const Type&): void
+insertlLast (const Type&): void
+deleteNode (const Type&): void |unorderedLinkedList|

FIGURE 5-20 UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy

Next we give the definitions of the member functions of the class unorderedLinkedList.

Search the List

The member function search searches the list for a given item. If the item is found, it
returns true; otherwise, it returns false. Because a linked list is not a random access
data structure, we must sequentially search the list starting from the first node.

This function has the following steps:

1. Compare the search item with the current node in the list. If the info of
the current node is the same as the search item, stop the search; otherwise,
make the next node the current node.

2. Repeat Step 1 until either the item is found or no more data is left in the
list to compare with the search item.

template <class Type>
bool unorderedLinkedList<Type>::
search (const Type& searchItem) const
{
nodeType<Type> *current; //pointer to traverse the list
bool found = false;

current = first; //set current to point to the first
//node in the list

while (current != NULL && !found) //search the list
if (current->info == searchlItem) //searchItem is found
found = true;



294 | Chapter b: Linked Lists

else
current = current->link; //make current point to
//the next node
return found;
}//end search

The number of times the while loop executes, in the function search, depends on where
in the list the search item is located. Suppose the list has n items. If the search item is not in
the list, the while loop executes n times. On the other hand, if the search item is the first
item, the while loop executes 1 time. Similarly, if the search item is the ith item in the list,
the while loop executes i times. From these observations, we can show that the function
search is of O(n). We will explicitly analyze the sequential search algorithm in Chapter 9.

Insert the First Node

The function insertFirst inserts the new item at the beginning of the list—that is, before

the node pointed to by first. The steps needed to implement this function are as follows:
1. Create a new node.

If unable to create the node, terminate the program.

Store the new item in the new node.

Insert the node before first.

ook

Increment count by 1.

template <class Type>
void unorderedlLinkedList<Type>::insertFirst (const Type& newlItem)

{
nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the new node
newNode->info = newlItem; //store the new item in the node
newNode->1ink first; //insert newNode before first
first = newNode; //make first point to the actual first node
count++; //increment count

if (last == NULL) //if the list was empty, newNode is also
//the last node in the list
last = newNode;
}//end insertFirst

Insert the Last Node

The definition of the member function insertLast is similar to the definition of the
member function insertFirst. Here, we insert the new node after last. Essentially,
the function insertLast is as follows:

template <class Type>
void unorderedLinkedList<Type>::insertlLast (const Type& newltem)

{

nodeType<Type> *newNode; //pointer to create the new node



Unordered Linked Lists | 295

newNode = new nodeType<Type>; //create the new node
newNode->info = newltem; //store the new item in the node
newNode->1link = NULL; //set the link field of newNode to NULL

if (first == NULL) //if the list is empty, newNode is
//both the first and last node

{
first = newNode;
last = newNode;
count++; //increment count
}
else //the list is not empty, insert newNode after last
{
last—>1ink = newNode; //insert newNode after last
last = newNode; //make last point to the actual
//last node in the list
count++; //increment count
}

}//end insertlLast

From the definitions of the functions insertFirst and insertLast, it follows that
each of these functions is of O(1).

DELETE A NODE

Next, we discuss the implementation of the member function deleteNode, which
deletes a node from the list with a given info. We need to consider the following cases:

e The list is empty.

e The node is nonempty and the node to be deleted is the first node.

® The node is nonempty and the node to be deleted is not the first node, it
is somewhere in the list.

e The node to be deleted is not in the list.

If 1ist is empty, we can simply print a message indicating that the list is empty. If 1ist is
not empty, we search the list for the node with the given info and, if such a node is
found, we delete this node. After deleting the node, count is decremented by 1. In
pseudocode, the algorithm is as follows:

if list is empty
Output (cannot delete from an empty list):;
else
{
if the first node is the node with the given info
adjust the head pointer, that is, first, and deallocate
the memory;
else
{
search the list for the node with the given info
if such a node is found, delete it and adjust the
values of last (if necessary) and count.



296 | Chapter b: Linked Lists

Case 1: The list is empty. If the list is empty, output an error message as shown in the
pseudocode.

Case 2: The list is not empty and the node to be deleted is the first node. This case has
two scenarios: 1ist has only one node, and 1ist has more than one node. If list
has only one node, then after deletion, the list becomes empty. Therefore, after
deletion, both first and last are set to NULL and count is set to 0.

Suppose that the node to be deleted is the first node and 1ist has more than one node.
Then after deleting this node, the second node becomes the first node. Therefore, after
deleting the node the value of the pointer first changes and it contains the address of
the second node.

Case 3: The node to be deleted is not the first node, but is somewhere in the list.

This case has two subcases: (a) the node to be deleted is not the last node, and (b) the
node to be deleted is the last node. Let us illustrate the first cases.

Case 3a: The node to be deleted is not the last node.

Consider the list shown in Figure 5-21.

list

= plip sl Bl R EIR
last [
count

FIGURE 5-21 1ist before deleting 37

Suppose that the node to be deleted is 37. After deleting this node, the resulting list
is as shown in Figure 5-22. (Notice that the deletion of 37 does not require us to
change the values of first and last. The link field of the previous node—that is,
17—changes. After deletion, the node with info 17 contains the address of the node
with 24.)

list

first E|-—»|28H—-|17H—-|24H—’_:‘54H—1
last [
count [4]

FIGURE 5-22 1ist after deleting 37



Unordered Linked Lists | 297

Case 3b: The node to be deleted is the last node. In this case, after deleting the node, the
value of the pointer last changes. It contains the address of the node just
before the node to be deleted. For example, consider the list given in Figure 5-
21 and the node to be deleted is 54. After deleting 54, last contains the
address of the node with info 24. Also, count is decremented by 1.

Case 4: The node to be deleted is not in the list. In this case, the list requires no adjustment. We
simply output an error message, indicating that the item to be deleted is not in the list.

From cases 2, 3, and 4, it follows that the deletion of a node requires us to traverse the
list. Because a linked list is not a random access data structure, we must sequentially search
the list. We handle case 1 separately because it does not require us to traverse the list. We
sequentially search the list starting at the second node. If the node to be deleted is in
the middle of the list, we need to adjust the link field of the node just before the node to
be deleted. Thus, we need a pointer to the previous node. When we search the list for
the given info, we use two pointers: one to check the info of the current node, and one
to keep track of the node just before the current node. If the node to be deleted is the last
node, we must adjust the pointer last.

The definition of the function deleteNode is as follows:

template <class Type>

vold unorderedLinkedList<Type>::deleteNode (const Typeé& deleteIltem)

{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1; the list is empty.
cout << "Cannot delete from an empty list."
<< endl;
else
{
if (first->info == deletelItem) //Case 2
{

current = first;
first = first->link;
count--;

if (first == NULL) //the list has only one node
last = NULL;

delete current;
}
else //search the list for the node with the given info
{
found = false;
trailCurrent = first; //set trailCurrent to point
//to the first node
current = first->1link; //set current to point to
//the second node




298 | Chapter 5: Linked Lists

while (current != NULL && !found)
{
if (current->info != deleteltem)
{
trailCurrent = current;
current = current-> link;
}
else
found = true;
}//end while

if (found) //Case 3; if found, delete the node

{
trailCurrent->1ink = current->link;
count--;
if (last == current) //node to be deleted was the
//last node
last = trailCurrent; //update the value of last
delete current; //delete the node from the list
}
else

cout << "The item to be deleted is not in

<< "the list." << endl;
}//end else
}//end else
}//end deleteNode

From the definition of the function deleteNode, it can be shown that this function is of O(n).

Table 5-7 gives the time-complexity of the operations of the class unorderedLinkedList.

TABLE 5-7 Time-complexity of the operations of the class unorderedLinkedList

search O(n)
insertFirst 0(1)
insertlast 0(1)
deleteNode 0o(n)

Header File of the Unordered Linked List

For the sake of completeness, we show how to create the header file that defines the
class unorderedListType and the operations on such lists. (We assume that the
definition of the class linkedListType and the definitions of the functions to imple-

ment the operations are in the header file 1inkedList.h.)



Unordered Linked Lists | 299

#ifndef H_UnorderedLinkedList
#define H UnorderedLinkedList

//***********************************************************

// Author: D.S. Malik

!/

// This class specifies the members to implement the basic
// properties of an unordered linked list. This class is

// derived from the class linkedListType.
//***********************************************************

#include "linkedList.h"
using namespace std;

template <class Type>

class unorderedLinkedList: public linkedListType<Type>

{

public:

bool search (const Type& searchItem) const;

//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insertFirst (const Type& newlItem);
//Function to insert newltem at the beginning of the list.
//Postcondition: first points to the new list, newlItem is
// inserted at the beginning of the list, last points to
// the last node, and count is incremented by 1.

void insertlast (const Type& newltem);
//Function to insert newltem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node, and count is incremented by 1.

void deleteNode (const Type& deleteltem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteltem

// is deleted from the list. first points to the first
// node, last points to the last node of the updated list,
// and count is decremented by 1.

}i

//Place the definitions of the functions search, insertNode,
//insertFirst, insertLast, and deleteNode here.

#endif

The Web site accompanying this book contains several programs illustrating how to use
the class unorderedLinkedList.



300 | Chapter 5: Linked Lists

Ordered Linked Lists

The preceding section described the operations on an unordered linked list. This section
deals with ordered linked lists. As noted earlier, we derive the class orderedLinkedList
from the class linkedListType and provide the definitions of the abstract functions
insertFirst, insertlast, search, and deleteNode to take advantage of the fact that
the elements of an ordered linked list are arranged using some ordering criteria. For
simplicity, we assume that elements of an ordered linked list are arranged in ascending order.

Because the elements of an ordered linked list are in order, we include the function
insert to insert an element in an ordered list at the proper place.

The following class defines an ordered linked list as an ADT:

//***********************************************************

// Author: D.S. Malik

//

// This class specifies the members to implement the basic
// properties of an ordered linked list. This class is

// derived from the class linkedListType.
//***********************************************************

template <class Type>

class orderedLinkedList: public linkedListType<Type>

{

public:

bool search(const Type& searchItem) const;

//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert (const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the list, and
// count is incremented by 1.

void insertFirst (const Type& newlItem);
//Function to insert newltem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to the
// last node in the list, and count is incremented by 1.

void insertLlast (const Type& newltem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newltem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

void deleteNode (const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deletelItem is



Ordered Linked Lists | 301

// deleted from the list; first points to the first node

// of the new list, and count is decremented by 1. If
// deleteItem is not in the list, an appropriate message
// is printed.

}i

Figure 5-23 shows a UML class diagram of the class orderedLinkedList and the
inheritance hierarchy.

orderedLinkedList<Type>

linkedListType

+search (const Type&) const: bool
+insert (const Typeé&) : void
+insertFirst (const Typeé&) : void
+insertLast (const Typeé&) : void
+deleteNode (const Typeé&) : void

orderedLinkedList

FIGURE 5-23 UML class diagram of the class orderedLinkedList and the
inheritance hierarchy

Next we give the definitions of the member functions of the class orderedLinkedList.

Search the List

First, we discuss the search operation. The algorithm to implement the search operation is
similar to the search algorithm for general lists discussed earlier. Here, because the list is
sorted, we can improve the search algorithm somewhat. As before, we start the search at
the first node in the list. We stop the search as soon as we find a node in the list with info
greater than or equal to the search item, or we have searched the entire list.

The following steps describe this algorithm:

1. Compare the search item with the current node in the list. If the info of
the current node is greater than or equal to the search item, stop the
search; otherwise, make the next node the current node.

2. Repeat Step 1 until either an item in the list that is greater than or equal
to the search item is found, or no more data is left in the list to compare
with the search item.

Note that the loop does not explicitly check whether the search item is equal to an item
in the list. Thus, after the loop executes, we must check whether the search item is equal
to the item in the list.

template <class Type>
bool orderedLinkedList<Type>::
search (const Type& searchItem) const



302 | Chapter b: Linked Lists

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first; //start the search at the first node

while (current != NULL && !found)
if (current->info >= searchItem)
found = true;
else
current = current->1link;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search

As in the case of the search function of the class unorderedLinkedList, the search
function of the class orderedLinkedList is also of O(n).

Insert a Node

To insert an item in an ordered linked list, we first find the place where the new item is
supposed to go, then we insert the item in the list. To find the place for the new item in the
list, as before, we search the list. Here we use two pointers, current and trailCurrent, to
search the list. The pointer current points to the node whose info is being compared with
the item to be inserted, and trailCurrent points to the node just before current. Because
the list is in order, the search algorithm is the same as before. The following cases arise:

Case 1: The list is initially empty. The node containing the new item is the only node
and, thus, the first node in the list.

Case 2: The new item is smaller than the smallest item in the list. The new item goes at
the beginning of the list. In this case, we need to adjust the list’s head pointer—
that is, first. Also, count is incremented by 1.

Case 3: The item is to be inserted somewhere in the list.

Case 3a: The new item is larger than all the items in the list. In this case, the new
item is inserted at the end of the list. Thus, the value of current is NULL
and the new item is inserted after trailCurrent. Also, count is incre-
mented by 1.

Case 3b: The new item is to be inserted somewhere in the middle of the list. In this

case, the new item is inserted between trailCurrent and current.
Also, count is incremented by 1.

The following statements can accomplish both cases 3a and 3b. Assume newNode points
to the new node.

trailCurrent->1link = newNode;
newNode->1link = current;



Ordered Linked Lists | 303

Let us next illustrate Case 3.

Case 3: The list is not empty, and the item to be inserted is larger than the first item in
the list. As indicated previously, this case has two scenarios.

Case 3a: The item to be inserted is larger than the largest item in the list; that is, it goes at
the end of the list. Consider the list shown in Figure 5-24.

list

first E|-—»| 17H—-|27H—-|38H—’_:‘54H—1
last [
count [4]

FIGURE 5-24 1ist before inserting 65

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as
shown in Figure 5-25.

list

first [H—17 [1+—{27 |38 [+ 54|+ 65 -

last [
count

FIGURE 5-25 1ist after inserting 65

Case 3b: The item to be inserted goes somewhere in the middle of the list. Again
consider the list shown in Figure 5-24. Suppose that we want to insert 25
in this list. Clearly, 25 goes between 17 and 27, which would require the
link of the node with info 17 to be changed. After inserting 25, the
resulting list is as shown in Figure 5-26.

list

first [ 17|+ 25|+ 27 |+ 38|+ 54|+

last [
count

FIGURE 5-26 1ist after inserting 25 in the list in Figure 5-24



304 | Chapter b: Linked Lists

From case 3, it follows that we must first traverse the list to find the place where the new
item is to be inserted. It also follows that we should traverse the list with two pointers—
say, current and trailCurrent. The pointer current is used to traverse the list and
compare the info of the node in the list with the item to be inserted. The pointer
trailCurrent points to the node just before current. For example, in case 3b, when
the search stops, trailCurrent points to node 17 and current points to node 27. The
item is inserted after trailCurrent. In case 3a, after searching the list to find the place
for 65, trailCurrent points to node 54 and current is NULL.

The definition of the function insert is as follows:

template <class Type>

vold orderedLinkedList<Type>::insert (const Typeé& newItem)

{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node

bool found;

newNode = new nodeType<Type>; //create the node

newNode->info = newltem; //store newItem in the node
newNode->1link = NULL; //set the link field of the node
//to NULL

if (first == NULL) //Case 1

{
first = newNode;
last = newNode;
count++;

}

else

{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= newItem)
found = true;
else
{
trailCurrent = current;
current = current->1link;

}

if (current == first) //Case 2
{

newNode—>1link = first;

first = newNode;

count++;



Ordered Linked Lists | 305

else //Case 3
{

trailCurrent->1link = newNode;
newNode->1link = current;

if (current == NULL)
last = newNode;

count++;

}
}//end else
}//end insert

The function insert uses a while loop to find the place where the new item is to be
inserted and this loop is similar to the while loop used in the search function. It can be
shown that the function insert is of O(n).

The function insert does not check if the item to be inserted is already in the list, that
is, it does not check for duplicates. In Programming Exercise 7 at the end of this chapter
you are asked to revise the definition of the function insert so that before inserting the
item it checks whether the item to be inserted is already in the list. If the item to be
inserted is already in the list, the function outputs an appropriate error message. In other
words, duplicates are not allowed.

Insert First and Insert Last

The function insertFirst inserts the new item at the beginning of the list. However,
because the resulting list must be sorted, the new item must be inserted at the proper
place. Similarly, the function insertLast must insert the new item at the proper place.
We, therefore, use the function insert to insert the new item at its proper place. The
definitions of these functions are as follows:

template <class Type>
void orderedLinkedList<Type>::insertFirst (const Type& newlItem)

{
insert (newltem) ;
}//end insertFirst

template <class Type>
void orderedLinkedList<Type>::insertlLast (const Type& newltem)
{

insert (newltem) ;
}//end insertlast

Note that in reality, the functions insertFirst and insertLast do not apply to an ordered
linked list because the new item must be inserted at the proper place in the list. However, you
must provide its definition as these functions are declared as abstract in the parent class.

The functions insertFirst and insertlLast use the function insert, which is of
O(n). It follows that these functions are of O(n).



306 | Chapter 5: Linked Lists

Delete a Node

To delete a given item from an ordered linked list, first we search the list to see whether
the item to be deleted is in the list. The function to implement this operation is the same
as the delete operation on general linked lists. Here, because the list is sorted, we can
somewhat improve the algorithm for ordered linked lists.

As in the case of insertNode, we search the list with two pointers, current and
trailCurrent. Similar to the operation insertNode, several cases arise:

Case 1: The list is initially empty. We have an error. We cannot delete from an empty list.

Case 2: The item to be deleted is contained in the first node of the list. We must adjust
the head pointer of the list—that is, first.

Case 3: The item to be deleted is somewhere in the list. In this case, current points to
the node containing the item to be deleted, and trailCurrent points to the
node just before the node pointed to by current.

Case 4: The list is not empty, but the item to be deleted is not in the list.

After deleting a node, count is decremented by 1. The definition of the function
deleteNode is as follows:

template <class Type>

void orderedLinkedList<Type>::deleteNode (const Type& deletelItem)

{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1

cout << "Cannot delete from an empty list." << endl;
else
{

current = first;

found = false;

while (current != NULL && !found) //search the list
if (current->info >= deleteltem)
found = true;
else
{
trailCurrent = current;
current = current->1link;

}
if (current == NULL) //Case 4
cout << "The item to be deleted is not in the list."
<< endl;
else
if (current->info == deletelItem) //the item to be

//deleted is in the list



Ordered Linked Lists | 307

{
if (first == current) //Case 2
{
first = first->1link;
if (first == NULL)
last = NULL;
delete current;
}
else //Case 3
{
trailCurrent->1link = current->1link;
if (current == last)
last = trailCurrent;
delete current;
}
count--;
}
else //Case 4

cout << "The item to be deleted is not in the "
<< "list." << endl;

}
}//end deleteNode

From the definition of the function deleteNode, it can be shown that this function is of O(n).

Table 5-8 gives the time-complexity of the operations of the class orderedLinkedList.

TABLE 5-8 Time-complexity of the operations of the class orderedLinkedList

search O(n)
insert O(n)
insertFirst O(n)
insertlast O(n)
deleteNode O(n)

Header File of the Ordered Linked List

For the sake of completeness, we show how to create the header file that defines the
class orderedListType and the operations on such lists. (We assume that the defini-



308 | Chapter 5: Linked Lists

tion of the class linkedListType and the definitions of the functions to implement
the operations are in the header file linkedList.h.)

#ifndef H_ orderedListType
#define H orderedListType

//***********************************************************
// BAuthor: D.S. Malik

//

// This class specifies the members to implement the basic

// properties of an ordered linked list. This class is

// derived from the class linkedListType.

//***********************************************************

#include "linkedList.h"
using namespace std;

template <class Type>

class orderedLinkedList: public linkedListType<Type>

{

public:

bool search (const Type& searchItem) const;

//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

voild insert (const Type& newltem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newlItem is
// inserted at the proper place in the list, and count
// is incremented by 1.

void insertFirst (const Type& newlItem);
//Function to insert newlItem at the beginning of the list.
//Postcondition: first points to the new list, newlItem is

// inserted at the beginning of the list, last points to the
// last node in the list, and count is incremented by 1.
//

void insertLast (const Type& newltem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newltem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

void deleteNode (const Type& deleteltem);
//Function to delete deletelItem from the list.
//Postcondition: If found, the node containing deleteltem is

// deleted from the list; first points to the first node of
// the new list, and count is decremented by 1. If
// deleteItem is not in the list, an appropriate message

// is printed.
}:



Ordered Linked Lists | 309

//Place the definitions of the functions search, insert,
//insertfirst, insertlast, and deleteNode here.

#endif
The following program tests various operations on an ordered linked list:

//**********************************************************

// Author: D.S. Malik

//

// This program tests the various operations on an ordered
// linked list.

//**********************************************************

#include <iostream> //Line 1
#include "orderedLinkedList.h" //Line 2
using namespace std; //Line 3
int main () //Line 4
{
orderedLinkedList<int> listl, list2; //Line 5
int num; //Line 6

cout << "Line 7: Enter numbers ending "

<< "with -999." << endl; //Line 7
cin >> num; //Line 8
while (num != -999) //Line 9
{ //Line 10

listl.insert (num) ; //Line 11

cin >> num; //Line 12
} //Line 13
cout << endl; //Line 14
cout << "Line 15: listl: "; //Line 15
listl.print(); //Line 16
cout << endl; //Line 17

list2 = listl; //test the assignment operator Line 18

cout << "Line 19: list2: "; //Line 19
list2.print(); //Line 20
cout << endl; //Line 21

cout << "Line 22: Enter the number to be "

<< "deleted: "; //Line 22
cin >> num; //Line 23
cout << endl; //Line 24



310 | Chapter 5: Linked Lists

list2.deleteNode (num) ;

cout << "Line 26: After deleting "
<< num << ", 1list2: " << endl;

list2.print();

cout << endl;

return 0;

Sample Run: In this sample run, the user input is shaded:

Line 7: Enter numbers ending with -999.

23 65 34 72 12 82 36 55 29 -999

Line 15: listl: 12 23 29 34 36 55 65 72 82
Line 19: 1list2: 12 23 29 34 36 55 65 72 82
Line 22: Enter the number to be deleted: 34

Line 26: After deleting 34, list2:
12 23 29 36 55 65 72 82

The preceding output is self~explanatory. The details are left as an exercise for you.

Notice that the function insert does not check whether the item to be inserted is
already in the list, that is, it does not check for duplicates. Programming Exercise 7 at
the end of this chapter asks you to revise the definition of the function insert so that
before inserting the item it checks whether it is already in the list. If the item to be
inserted is already in the list, the function outputs an appropriate error message. In

other words, duplicates are not allowed.

Doubly Linked Lists

A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node).

(See Figure 5-27.)

//Line

//Line
//Line
//Line

//Line
//Line

25

26
27
28

29
30

s [ ] ] Q_%I | T

FIGURE 5-27 Doubly linked list



Doubly Linked Lists | 311

A doubly linked list can be traversed in either direction. That is, we can traverse the list
starting at the first node or, if a pointer to the last node is given, we can traverse the list
starting at the last node.

As before, the typical operations on a doubly linked list are as follows: Initialize the list,
destroy the list, determine whether the list is empty, search the list for a given item, insert
an item, delete an item, and so on. The following class defines a doubly linked list as an
ADT and specifies the basic operations on a doubly linked list:

//***********************************************************

// Author: D.S. Malik
!/
// This class specifies the members to implement the basic

// properties of an ordered doubly linked list.
//***********************************************************

//Definition of the node
template <class Type>
struct nodeType

{
Type info;
nodeType<Type> *next;
nodeType<Type> *back;
};

template <class Type>
class doublylLinkedList
{
public:
const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);
//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList () const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy():
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint () const;
//Function to output the info contained in each node
//in reverse order.



312

| Chapter 5: Linked Lists

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front () const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the last element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in the
// list, otherwise returns false.

void insert (const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in order.
//Postcondition: insertItem is inserted at the proper place

// in the list, first points to the first node, last points
// to the last node of the new list, and count is
// incremented by 1.

void deleteNode (const Type& deleteltem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is

// deleted from the list; first points to the first node of
// the new list, last points to the last node of the new

// list, and count is decremented by 1; otherwise an

// appropriate message is printed.

doublyLinkedList () ;
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

doublyLinkedList (const doublyLinkedList<Type>& otherList);
//copy constructor

~doublyLinkedList () ;
//destructor
//Postcondition: The list object is destroyed.

protected:

int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node



Doubly Linked Lists | 313

private:
void copylist (const doublylLinkedList<Type>& otherList);
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.
}:

We leave the UML class diagram of the class doublyLinkedList as an exercise for
you, see Exercise 11 at the end of this chapter.

The functions to implement the operations of a doubly linked list are similar to the ones
discussed earlier. Here, because every node has two pointers, back and next, some of the
operations require the adjustment of two pointers in each node. For the insert and delete
operations, because we can traverse the list in either direction, we use only one pointer to
traverse the list. Let us call this pointer current. We can set the value of trailCurrent
by using both the current pointer and the back pointer of the node pointed to by
current. We give the definition of each function here, with four exceptions. Definitions
of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 10 at the end
of this chapter.) Furthermore, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor

The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>: :doublyLinkedList ()

{
first= NULL;
last = NULL;
count = 0;

}

isEmptyList

This operation returns true if the list is empty; otherwise, it returns false. The list is
empty if the pointer first is NULL.

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const

{
return (first == NULL);

}

Destroy the List

This operation deletes all the nodes in the list, leaving the list in an empty state. We traverse
the list starting at the first node and then delete each node. Furthermore, count is set to 0.



314 | Chapter 5: Linked Lists

template <class Type>
void doublyLinkedList<Type>::destroy()

{
nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{

temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

Initialize the List

This operation reinitializes the doubly linked list to an empty state. This task can be done by
using the operation destroy. The definition of the function initializeList is as follows

template <class Type>
void doublyLinkedList<Type>::initializelist ()

{
destroy ()

}

Length of the List

The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int doublyLinkedList<Type>::length() const
{

return count;

}

Print the List

The function print outputs the info contained in each node. We traverse the list
starting from the first node.

template <class Type>
void doublyLinkedList<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first node

while (current != NULL)



Doubly Linked Lists | 315

cout << current->info << " "; //output info
current = current->next;
}//end while
}//end print

Reverse Print the List

This function outputs the info contained in each node in reverse order. We traverse the
list in reverse order starting from the last node. Its definition is as follows:

template <class Type>
void doublyLinkedList<Type>::reversePrint () const

{
nodeType<Type> *current; //pointer to traverse the list

current = last; //set current to point to the last node

while (current != NULL)
{

cout << current->info << " ";
current = current->back;
}//end while

}//end reversePrint

Search the List

The function search returns true if searchItem is found in the list; otherwise, it returns
false. The search algorithm is exactly the same as the search algorithm for an ordered linked list.

template <class Type>
bool doublylLinkedList<Type>::search(const Type& searchItem) const
{

bool found = false;

nodeType<Type> *current; //pointer to traverse the list

current = first;

while (current != NULL && !found)
if (current->info >= searchItem)
found = true;
else
current = current->next;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search



316 | Chapter 5: Linked Lists

First and Last Elements

The function front returns the first element of the list and the function back returns the
last element of the list. If the list is empty, both functions terminate the program. Their

definitions are as follows:

template <class Type>
Type doublyLinkedList<Type>

{
assert (first != NULL);

return first->info;

}
template <class Type>
Type doublyLinkedList<Type>
{
assert(last != NULL);

return last->info;

INSERT A NODE

Because we are inserting an item in a doubly linked list, the insertion of a node in the
list requires the adjustment of two pointers in certain nodes. As before, we find the
place where the new item is supposed to be inserted, create the node, store the new
item, and adjust the link fields of the new node and other particular nodes in the list.

There are four cases:

Case 1: Insertion in an empty list

::front () const

:tback ()

const

Case 2: Insertion at the beginning of a nonempty list

Case 3: Insertion at the end of a nonempty list

Case 4: Insertion somewhere in a nonempty list

Both cases 1 and 2 require us to change the value of the pointer first. Cases 3 and 4 are
similar. After inserting an item, count is incremented by 1. Next, we show case 4.

Consider the doubly linked list shown in Figure 5-28.

first [F

15

24

40

last D

—3 1

count

FIGURE 5-28 Doubly linked list before inserting 20




Doubly Linked Lists | 317

Suppose that 20 is to be inserted in the list. After inserting 20, the resulting list is as shown
in Figure 5-29.

lastD
count

FIGURE 5-29 Doubly linked list after inserting 20

From Figure 5-29, it follows that the next pointer of node 15, the back pointer of node 24,
and both the next and back pointers of node 20 need to be adjusted.

The definition of the function insert is as follows:

template <class Type>
void doublyLinkedList<Type>::insert (const Typeé& insertItem)

{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node

bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node

newNode->next = NULL;
newNode->back = NULL;
if (first == NULL) //if list is empty, newNode is the only node
{
first = newNode;
last = newNode;
count++;
}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= insertItem)
found = true;
else
{
trailCurrent = current;
current = current->next;



318 | Chapter 5: Linked Lists

if (current == first) //insert newNode before first
{
first->back = newNode;
newNode->next = first;
first = newNode;
count++;
}
else
{
//insert newNode between trailCurrent and current
if (current != NULL)

{
trailCurrent->next = newNode;
newNode—>back = trailCurrent;
newNode—->next = current;
current—>back = newNode;

}

else

{
trailCurrent->next = newNode;
newNode—>back = trailCurrent;
last = newNode;

}

count++;

}//end else
}//end else
}//end insert

DELETE A NODE

This operation deletes a given item (if found) from the doubly linked list. As before, we
first search the list to see whether the item to be deleted is in the list. The search
algorithm is the same as before. Similar to the insert operation, this operation (if the
item to be deleted is in the list) requires the adjustment of two pointers in certain nodes.
The delete operation has several cases:

Case 1: The list is empty.

Case 2: The item to be deleted is in the first node of the list, which would require us to
change the value of the pointer first.

Case 3: The item to be deleted is somewhere in the list.

Case 4: The item to be deleted is not in the list.



Doubly Linked Lists | 319

After deleting a node, count is decremented by 1. Let us demonstrate case 3. Consider
the list shown in Figure 5-30.

first[d 5 |21 17 | 2L 44 (T 52 |7

last [
count

FIGURE 5-30 Doubly linked list before deleting 17

Suppose that the item to be deleted is 17. First, we search the list with two pointers and find the
node with info 17, and then adjust the link field of the affected nodes. (See Figure 5-31.)

e =1l Rli=Eig

trailCurrent

last D
countm

FIGURE 5-31 List after adjusting the links of the nodes before and after the node with info 17

Next, we delete the node pointed to by current. (See Figure 5-32.)

seee s [ e i = [
lastD
count

FIGURE 5-32 List after deleting the node with info 17

The definition of the function deleteNode is as follows:

template <class Type>
void doublyLinkedList<Type>::deleteNode (const Type& deleteltem)
{
nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current



320 | Chapter b: Linked Lists

bool found;

if (first == NULL)
cout << "Cannot delete from an empty list." << endl;
else if (first->info == deleteltem) //node to be deleted is
//the first node

{
current = first;
first = first->next;
if (first != NULL)
first->back = NULL;
else
last = NULL;
count--;
delete current;
}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= deleteltem)
found = true;
else
current = current->next;

if (current == NULL)
cout << "The item to be deleted is not in "
<< "the list." << endl;
else if (current->info == deleteltem) //check for equality
{
trailCurrent = current->back;
trailCurrent->next = current->next;

if (current->next != NULL)
current—->next->back = trailCurrent;

if (current == last)
last = trailCurrent;

count--;
delete current;
}
else
cout << "The item to be deleted is not in list."™ endl;
}//end else
}//end deleteNode



STL Sequence Container: 1ist | 321

STL Sequence Container: 1ist

Chapter 4 listed three types of sequence containers—vector, deque, and list. The
sequence containers vector and deque are described in Chapter 4. This section describes
the STL sequence container 1ist. List containers are implemented as doubly linked lists.
Thus, every element in a list points to its immediate predecessor and to its immediate
successor (except the first and last elements). Recall that a linked list is not a random
access data structure such as an array. Therefore, to access, for example, the fifth element
in the list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is list. The
definition of the class list, and the definitions of the functions to implement the
various operations on a list, are contained in the header file 1ist. Therefore, to use 1ist
in a program, the program must include the following statement:

#include <list>

Like other container classes, the class list contains several constructors. Thus, a
list object can be initialized in several ways when it is declared, as described in
Table 5-9.

TABLE 5-9 Various ways to declare a 1ist object

Creates the empty 1ist container
list<elemType> listCont; listCont. (The default constructor is
invoked.)

Creates the 1ist container 1istCont
and initializes it to the elements of
otherlList. 1istCont and
otherList are of the same type.

list<elemType> listCont (otherList) ;

Creates the 1ist container 1istCont
list<elemType> listCont (size); of size size. 1istCont is initialized
using the default constructor.

Creates the 1ist container 1istCont
list<elemType> listCont(n, elem); of size n. 1istCont is initialized using
n copies of the element elem.

Creates the 1ist container 1istCont.
listCont is initialized to the elements in

list<elemType> listCont (beg, end); the range [beg, end), thatis, all the
elements in the range beg. . .end-1.
Both beg and end are iterators.




322 | Chapter 5: Linked Lists

Table 4-5 describes the operations that are common to all containers, and Table 4-6
describes the operations that are common to all sequence containers. In addition to these
common operations, Table 5-10 describes the operations that are specific to a list
container. The name of the function implementing the operation is shown in bold.
(Suppose that 1istCont is a container of type list.)

TABLE 5-10 Operations specific to a 1ist container

listCont.assign(n, elem) Assigns n copies of elem.

Assigns all the elements in the range

listCont.assign (beg, end) beg...end-1. Both beg and end are
iterators.

listCont.push_front (elem) Inserts elem at the beginning of ListCont.

listCont.pop_front () Removes the first element from 1istCont.

listCont.£ront () Returns the first e]emgnt. (Does not check
whether the container is empty.)

listCont.back () Returns the last el.eme.nt. (Does not check
whether the container is empty.)

. Removes all the elements that are equal

listCont.remove (elem)

to elem.

listCont.remove if (oper) Removes all the elements for which oper

- IS true.

If the consecutive elements in 1istCont

listCont.unique () have the same value, removes the
duplicates.

If the consecutive elements in 1istCont
listCont.unique (oper) have the same value, removes the
duplicates, for which oper is true.

All the elements of 1istCont2 are
moved to 1istContl before the position
specified by the iterator pos. After this
operation, 1istCont2 is empty.

listContl.splice(pos, listCont2)



STL Sequence Container: 1ist | 323

TABLE 5-10 Operations specific to a 1ist container (continued)

All the elements starting at pos2 of
listContl.