
 1

Instruction Set
Architecture (I)

 2

Today’s Menu:

  ISA & Assembly Language
  Instruction Set Definition

  Registers and Memory
  Arithmetic Instructions
  Load/store Instructions
  Control Instructions
  Instruction Formats
  Example ISA: MIPS

  Summary

 3

Instruction Set Architecture (ISA)

Assembly Language
 |||

Instruction Set
Architecture

 |||
Machine Language

Application

Compiler

Operating System

 Microarchitecture I/O System

Digital Logic Design

Circuit Design

 4

The Big Picture

  Assembly Language
  Interface the architecture presents to

user, compiler, & operating system
  “Low-level” instructions that use the

datapath & memory to perform basic
types of operations

  arithmetic: add, sub, mul, div
  logical: and, or, shift
  data transfer: load, store
  (un)conditional branch: jump,

branch on condition

assembly language program

ALU

C ontr ol
 L o gic

Register File Program Counter

Instruction register

Memory Address Register

from memory

 5

Software Layers
  High-level languages such as C, C++, FORTRAN, JAVA are translated into

assembly code by a compiler
  Assembly language translated to machine language by assembler

for (j = 1; j < 10; j++){
 a = a + b

}

ALU

C ontr ol
 L o gic

Register File Program Counter

Instruction register

Memory Address Register

Memory Data Register

Executable
(binary)

Compiler

ADD R1, R2, R3
SUB R3, R2, R1

Assembler
0010100101
0101010101

 6

Basic ISA Classes

  Memory to Memory Machines
  Can access memory directly in instructions: e.g., Mem[0] = Mem[1] + 1
  But we need storage for temporaries
  Memory is slow (hard to optimize code)
  Memory is big (need lots of address bits in code  large code)

  Architectural Registers
  registers can hold temporary variables
  registers are (unbelievably) faster than memory
  memory traffic is reduced, so program is sped up

(since registers are faster than memory)
  code density improves  smaller code

(since register named with fewer bits than memory location)

 7

Basic ISA Classes (cont’d)
  Accumulator (1 register):

  1 address add A acc ← acc + mem[A]
  1+x address addx A acc ← acc + mem[A + x]

  General Purpose Register File (Load/Store):
  3 address add Ra Rb Rc Ra ← Rb + Rc
  load Ra Rb Ra ← mem[Rb]
  store Ra Rb mem[Rb] ← Ra

  General Purpose Register File (Register-Memory):
  2 address add A B EA(A) ← EA(A) + EA(B)
  3 address add A B C EA(A) ← EA(B) + EA(C)

  Stack (not a register file but an operand stack)
  0 address add tos ← tos + next (tos=top of stack)

  Comparison:
  Bytes per instruction? Number of Instructions? Cycles per instruction?

 8

Comparing Number of Instructions

  Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register
(register-memory) (load-store)

Load A
Add B
Store C

Load R1,A
Add R1,B
Store C, R1

Push A
Push B
Add
Pop C

Load R1,A
Load R2,B
Add R3,R1,R2
Store C,R3

MIPS is one of these: this is what we’ll be learning

 9

General Purpose Register Machines Dominate

  Literally all machines use general purpose registers

  Advantages of registers

  registers are faster than memory

  memory traffic is reduced, so program is sped up
(since registers are unbelievably faster than memory)

  registers can hold variables

  registers are easier for a compiler to use:
(A*B) – (C*D) – (E*F)  can do multiplies in any order vs. stack

  code density improves
(since register named with fewer bits than memory location)

 10

Example: MIPS Assembly Language Notation

  Generic
 op x, y, z # x <-- y op z

  Addition
 add a, b, c # a <-- b + c
 addi a, a, 10 # a <-- a + 10

  Subtraction
 sub a, b, c # a <-- b - c

  f = (g + h) - (i + j)

 add t0, g, h # t0 <-- g + h
 add t1, i, j # t1 <-- i + j
 sub f, t0, t1 # f <-- t0 - t1

Source Source Destination

 11

Instruction Set Definition (programming model)
  Objects = architected entities = machine state

  Registers
  General purpose
  Special purpose (e.g. program counter, condition code, stack pointer)

  Memory locations
  Linear address space: 0, 1, 2, … , 2

s
-1

  Operations = instruction types
  Data operation

  Arithmetic (add, multiply, subtract, divide, etc.)
  Logical (and, or, xor, not, etc.)

  Data transfer
  Move (register  register)
  Load (memory  register)
  Store (register  memory)

  Instruction sequencing
  Branch (conditional, e.g., less than, greater than, equal)
  Jump (unconditional)

 12

Registers and Memory (MIPS)

   32 registers provided
  R0 .. R31

  You’ll sometimes see $ instead of R
(R6 and $6 both denote register 6)

  Some special-use registers
  Register R0 is hard-wired to zero
  Register R29 is the stack pointer
  Register R31 is used for procedure return address

  Arithmetic instructions operands must be registers

 This is a load/store machine! Must load all data to registers before using it.

Registers

0

31

 13

Memory Organization

   Viewed as a large, single-dimension array, with an address.
  A memory address is an index into the array
  "Byte addressing" means that the index points to a byte of memory.

  Bytes are nice, but most data items use larger "words"
  For MIPS, a word is 32 bits or 4 bytes.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Byte-addressable
view of memory

0
4
8
12
16
20
24
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Word-aligned
view of memory

 14

  Bytes are nice, but most data items use larger "words"
  For MIPS, a word is 32 bits or 4 bytes.

  32-bit computer:
  232 bytes with byte addresses from 0 to 232-1
  230 words with byte addresses 0, 4, 8, ... 232-4

  Words are aligned
 what are the least 2 significant bits of a word address?

Memory Organization

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data
Byte addresses

 of words
 in mem

 15

Addressing Objects: Endianess

  Big Endian: address of most significant byte = word address
(xx00 = Big End of word)
  IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

  Little Endian: address of least significant byte = word
address (xx00 = Little End of word)
  Intel 80x86, DEC Vax, DEC Alpha

  Programmable: set a bit at boot time
  IBM/Motorola PowerPC

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

 16

Addressing Objects: Alignment

  Hardware may or may not support “unaligned” load/store
  E.g., Load word from address 0x203

  Possible alternatives:
  Full hardware support, multiple “aligned” accesses by hardware
  Hardware trap to OS, multiple “aligned” accesses by software
  Compiler can guarantee/prevent “unaligned” accesses

Alignment: require that objects fall on address
 that is multiple of their size.

0 1 2 3

Aligned

Not
Aligned

 17

Instruction Cycle (execution model)

  Sequential Execution Model
  Program is a sequence of

instructions
  Instructions are atomic and

executed sequentially

  Stored Program Concept
  Program and data both are

stored in memory
  Instructions are fetched from

memory for execution

Instruction Fetch

Operand Fetch

Instruction Decode

Result Store

Execute

Next Instruction

 18

Instruction Cycle (execution model)

Instruction Fetch

Instruction Decode

Operand Fetch

Execute

Result Store

Next Instruction

Instruction Format/Encoding

Addressing Modes

Op-codes and Data Types

Addressing Modes

Instruction Sequencing

Get instruction from memory

ISA Issues

 19

Memory

Executing an Assembly Instruction

  Program Counter holds the
instruction address

  Sequencer (FSM) fetches
instruction from memory and
puts it into the Instruction
Register

  Control logic decodes the
instruction and tells the
register file, alu and other
registers what to do

  If an ALU operation (e.g.
add) data flows from register
file, through ALU and back to
register file

C ol
 L o

ontr
gic

ALU

Register File Program Counter

Instruction register

Memory Address Register

Memory Data Register

 20

Register File Program Execution

0x00 add R4, R0, R0
0x04 sub R1, R3, R4
0x08

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

4 bytes wide

00000006
00000004

0x00000000

add R4,R0,R0
-------------- 0

0

 21

0x00 add R4, R0, R0
0x04 sub R1, R3, R4
0x08

Register File Program Execution

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

4 bytes wide

00000006
00000000

0x00000004

sub R1,R3,R4

00000006
0

 22

Try This

  f = (g + h) - (i + j)
  R16 == f, R17 == g, R18 == h, R19 == i, R20 == j

 0x00 add R8, R17, R18

0x04 add R9, R19, R20
0x08 sub R16, R8, R9

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 8
reg 9
reg 16 f
reg 17 g = 0x00000002
reg 18 h = 0x00000003
reg 19 i = 0x00000001
reg 20 j = 0x00000004

 23

Try This

  f = (g + h) - (i + j)
  R16 == f, R17 == g, R18 == h, R19 == i, R20 == j

 0x00 add R8, R17, R18

0x04 add R9, R19, R20
0x08 sub R16, R8, R9

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 8
reg 9
reg 16 f
reg 17 g = 0x00000002
reg 18 h = 0x00000003
reg 19 i = 0x00000001
reg 20 j = 0x00000004

 24

Accessing Data

  ALU generated address
  Address goes to Memory

Address Register
  When memory is accessed,

results are returned to
Memory Data Register

  Notice that data and
instruction addresses can
be the same - both just
address memory

0x00 00101101
0x01 00100001
0x02 00110000
0x03 00001111
0x04 11010101
0x05 01010101
0x06 00101010
0x07 01010101
0x08 11110011
0x09 00111100
0x0A 00001100
0x0B 00000000
0x0C 00011000
0x0D 11111111

ALU

C ontr ol
 L o gic

Register File Program Counter

Memory Address Register

Memory Data Register

 25

0x14

Memory Operations - Loads

  Loading data from memory
R6 <-- mem[0x14]
Assume &A = 0x14

 0x00 addi R5,R0,0x14

0x04 lw R6,R5
0x08
0x0C
0x10
0x14 0x12345678

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

0x00000000

addi R5, R0,0x14

0x00000014

addi: adds 16-bit constant to
 source register

 26

Memory Operations - Loads

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

0x00000004

 lw R6,R5

0x00000014

0x12345678

0x12345678
0x00000014

  Loading data from memory
R6 <-- mem[0x14]
Assume &A = 0x14

0x00 addi R5,R0,0x14
0x04 lw R6,R5
0x08
0x0C
0x10
0x14 0x12345678

 27

0x00

Memory Operations - Loads (con’t)

  Address can also be computed by adding an offset to register
LW R6, 0(R5)
R6 <-- memory[0 + R5]

 0x00 addi R5,R0,0x14

0x04 lw R6, 0(R5)
0x08
0x0C
0x10

0x14 0x12345678

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

0x00000004

 lw R6,0(R5)

0x00000014

0x00000014

0x12345678

0x12345678

 28

Try This: Memory Operations - Stores

  Storing data to memory works essentially the same way
A = 200; let’s assume &A = 0x18
mem[0x18] <-- 200

 0x00 addi R5,R0,0x18

0x04 addi R6,R0,200
0x08 sw R6,0(R5)
0x0C
0x10
0x14 0x12345678 .
0x18 we store A here
0x20

4 bytes wide

Program Counter

Instruction register

Memory Address Register

to memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

 29

Try This: Memory Operations - Stores

  Storing data to memory works essentially the same way
A = 200; let’s assume &A = 0x18
mem[0x18] <-- 200

 0x00 addi R5,R0,0x18

0x04 addi R6,R0,200
0x08 sw R6,0(R5)
0x0C
0x10
0x14 0x12345678 .
0x18 we store A here
0x20

4 bytes wide

Program Counter

Instruction register

Memory Address Register

to memory

control
logic

reg 0
reg 1
reg 2
reg 3
reg 4
reg 5
reg 6

 30

  add R8, R17, R18
  is stored in binary format as

00000010 00110010 01000000 00100000
  MIPS lays out instructions into “fields”

  op operation of the instruction
  rs first register source operand
  rt second register source operand
  rd register destination operand
  shamt shift amount
  funct function (select type of operation)

  add = 3210
  sub = 3410

31 26 25 21 20 16 15 11 10 6 5 0
000000 10001 10010 01000 00000 100000
 op rs rt rd shamt funct

Instruction Format (Machine Language)

Why are there
5 bits in the

register field?

 31

MIPS Instruction Formats

  More than more than one format for instructions, usually
  Different kinds of instructions need different kinds of fields, data
  Example: 3 MIPS instruction formats

N a me F iel d s C o m m e nt s
F i e l d Si ze 6 bi ts 5 bi ts 5 bi ts 5 bi ts 5 bi ts 6 b i t s A l l MIPS instructions 32 bits
R -f or m at o p rs rt rd s h mt f un c t Arithmetic instruction format

I -f or m at o p rs rt a d dr e ss / i m m ed iat e Transfer (load/store), branch,
immediate format

J- f o r m at o p tar ge t a d dr e ss J ump instruction format

Questions:
 I-format: How big an immediate can you have?
 Is that big enough? (What’s the maximum value?)
 J-format: How far can you jump in instructions?

 32

Constants

   Small constants are used quite frequently (50% of operands)
 e.g., A = A + 5;
 B = B + 1;
 C = C - 18;

  Solutions? Why not….
  …just put 'typical constants' in memory and load them.
  …just create hard-wired registers (like $zero) for constants like one.

  MIPS Instructions:
 addi $29, $29, 4

 slti $8, $18, 10
 andi $29, $29, 6
 ori $29, $29, 4

  How do we make this work?

How do we get these
constants in a efficient way?

 33

Loading Immediate Values

  How do we put a constant (immediate) value into a register?
  Put the value 100 into register R6: R6 <- R0 + 100 = 0+100 = 100

 0x00 addi R6,R0,100

0x04

4 bytes wide

Program Counter

Instruction register

Memory Address Register

from memory

control
logic

reg 5
reg 6
reg 7
reg 8
reg 9
reg 10
reg 11

 34

MIPS Machine Language

  From back cover of Patterson and Hennessy
N am e F orm at E x a mp le C o mm en t s

6b it s 5 b i ts 5 b i ts 5 b i ts 5 b i ts 6b it s
a d d R 0 2 3 1 0 3 2 a d d $ 1, $ 2, $3
s u b R 0 2 3 1 0 3 4 s u b $ 1, $ 2, $3
a d d i I 8 2 1 1 0 0 a d d i $ 1, $ 2, 1 0 0
a d du R 0 2 3 1 0 3 5 a d d u $ 1, $ 2, $ 3
a n d R 0 2 3 1 0 3 6 a n d $ 1, $ 2, $ 3
o r R 0 2 3 1 0 3 7 o r $ 1 , $ 2, $ 3
l w I 3 5 2 1 1 0 0 l w $ 1, 1 0 0 ($ 2)
s w I 4 3 2 1 1 0 0 s w $1 , 10 0 ($ 2)
beq I 4 1 2 25 beq $1 , $2 , 10 0
j J 2 25 0 0 j 1 0 0 0 0

 35

Loading Immediate Values

  What’s the largest immediate value that can be
loaded into a register?

  But, then, how do we load larger numbers?

N a me F iel d s C o m m e nt s
F i e l d Si ze 6 bi ts 5 bi ts 5 bi ts 5 bi ts 5 bi ts 6 b i t s A l l M I P S i n s t r u c t i o n s 3 2 bi ts
R -f or m at o p rs rt rd s h mt f un c t Ar i th me ti c instru c ti o n f or m at

I -f or m at o p rs rt a d dr e ss / i m m ed iat e T rans fe r, b ra n c h , i mme diat e
f or m at

J- f o r m at o p tar ge t a d dr e ss J u mp instr u cti o n f or m at

 36

  Example: lui R8, 255

Transfers the immediate field into the register’s top (upper) 16
bits and fills the register’s lower 16 bits with zeros
R8[31:16] <-- IR[15:0] ; top 16 bits of R8 <-- bottom 16 bits of the IR
R8[15:0] <-- 0 ; bottom 16 bits of R8 are zeroed

Load Upper Immediate

31 26 25 21 20 16 15 11 10 6 5 0
001111 00000 01000 0000 0000 1111 1111
op rs rt immediate

31 16 15 0

 0000 0000 1111 1111 0000 0000 0000 0000 Reg. 8

 37

  We'd like to be able to load a 32 bit constant into a register
  Must use 2 instructions: first, new "load upper immediate" instruction

 lui $t0, 1010101010101010

Larger Constants?

1010101010101010 0000000000000000

ori 0000000000000000 1010101010101010

1010101010101010 1010101010101010

1010101010101010 0000000000000000

filled with zeros

  Second, must then get the lower order bits right, i.e.,
 ori $t0, $t0, 1010101010101010

 38

Branch here if
$s0 != $s1

Control (Instruction Sequencing)

   Decision making instructions
  These instructions alter the “control flow”
  Means they change the "next" instruction to be executed

  MIPS conditional branch instructions:

 bne $t0, $t1, Label
 beq $t0, $t1, Label

  Example: if (i==j) h = i + j;

 bne $s0, $s1, Label
 add $s3, $s0, $s1
 Label:

 39

Go here
always

Go here if
$s4 != $s5

Control (Instruction Sequencing)

  MIPS unconditional branch instructions:
 j label

  Example:

 if (i!=j) beq $s4, $s5, Lab1
 h=i+j; add $s3, $s4, $s5
 else j Lab2
 h=i-j; Lab1: sub $s3, $s4, $s5
 Lab2: ...

  OK, so with these--Can you build a simple for(…) {…}
loop?

 40

Branch Instructions

  They exist because we need to change the program counter
 if (a == b) c = 1;
 else c = 2;

  bne (branch not equal) compares regs and branches if regs “!=“
  j (jump) goto address, unconditional branch

Assume R5 == a; R6 == b; R7 == c

Add Mnemonic Description (comment)
0x00 bne R5, R6, 0x0C ; if (R5 != R6) goto 0x0C
0x04 addi R7, R0, 1 ; R7 <-- 1 + 0
0x08 j 0x10 ; goto 0x10
0x0C addi R7, R0, 2 ; R7 <-- 2 + 0
0x10

 41

Branch Instructions

  Branch instructions are used to implement C-style loops
 for (j = 0; j < 10; j++){
 b = b + j;
 }

assume R5 == j; R6 == b;

Add Mnemonic Description (comment)
0x00 addi R5, R0, 0 ; R5  0 + 0
0x04 addi R1, R0, 10 ; R1  0 + 10
0x08 beq R5, R1, 0x18 ; if (R5 == 10) goto 0x18
0x0C add R6, R6, R5 ; R6  R6 + R5
0x10 addi R5, R5, 1 ; R5  R5 + 1
0x14 j 0x08 ; goto 0x08
0x18 … ; pop out of loop, continue

 42

Addresses in Branches and Jumps

   Instructions:
 bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
 beq $t4,$t5,Label Next instruction is at Label if $t4 == $t5
 j Label Next instruction is at Label

  Formats:

  Hey, the addresses in these fields are not 32 bits !
 — How do we handle this?

 op rs rt 16 bit address

 op 26 bit address

I

J

 43

  Instructions:
 bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
 beq $t4,$t5,Label Next instruction is at Label if $t4 == $t5
 j Label Next instruction is at Label

  Formats:

  Could specify a register and add it to this 16b address
  Use the PC + (16-bit relative word address to find the address to jump to)
  Note: most branches are local (“principle of locality”)

  Jump instructions just use the high order bits of PC
  32-bit jump address = 4 (most significant) bits of PC concatenated with 26-bit word

address (or 28-bit byte address)
  Address boundaries of 256 MB

Addresses in Branches

 op rs rt 16 bit address

I

J op 26 bit address

 44

Branch Instructions

  Example
 for (j = 0; j < 10; j++){
 b = b + j;
 }

assume R5 == j; R6 == b;
Add Mnemonic Description (comment)
0x00 addi R5, R0, 0 ; R5 <-- 0 + 0
0x04 addi R1, R0, 10 ; R1 <-- 0 + 10
0x08 beq R5, R1, 0x18 ; if (R5 == 10) goto 0x18
0x0C add R6, R6, R5 ; R6 <-- R6 + R5
0x10 addi R5, R5, 1 ; R5  R5 + 1
0x14 j 0x08 ; goto 0x08
0x18 … ; pop out of loop, continue

0x08 PC = PC + 4 + (3<<2)

0x14 PC=[PC(31:28):2]<<2

5 1 3 4

2 2

 45

Conditional Branch Distance

Bits of Branch Displacement

0%
10%
20%
30%
40%

0 1 2 3 4 5 6 7 8 9
10

11

12

13

14

15

Int. Avg. FP Avg.

 46

Conditional Branch Addressing

  PC-relative since most branches are relatively close to the
current PC address

  At least 8 bits suggested (± 128 instructions)
  Compare Equal/Not Equal most important for integer programs

(86%)

Frequency of comparison
types in branches

0% 50% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.

 47

Full MIPS Instruction Set

add add $1, $2, $3 $1 = $2+$3
sub sub $1,$2, $3 $1 = $2 - $3
add immediate addi $1, $2, 100 $1 = $2 + 100
add unsigned addu $1, $2, $3 $1 = $2 + $3
subtract unsigned subu $1, $2, $3 $1 = $2 - $3
add imm. unsigned addiu $1, $2, 100 $1 = $2 + 100
multiply mult $2, $3 hi, lo = $2 * $3
multiply unsigned multu $2, $3 hi, lo = $2 * $3
divide div $2, $3 lo = $2/$3, hi = $2 mod $3
divide unsigned divu $2, $3 lo = $2/$3, hi = $2 mod $3
move from hi mfhi $1 $1 = hi
move from low mflo $1 $1 = lo
and and $1, $2, $3 $1 = $2 & $3
or or $1, $2, $3 $1 = $2 | $3
and immediate andi $1, $2, 100 $1 = $2 & 100
or immediate ori $1, $2, 100 $1 = $2 | 100
shift left logical sll $1, $2, 10 $1 = $2 << 10
shift right logical srl $1, $2, 10 $1 = $2 >> 10
load word lw $1, 100($2) $1 = memory[$2+100]
store word sw $1, 100($2) memory[$2 + 100] = $1
load upper immediate lui $1, 100 $1 = 100 * 2^16
branch on equal beq $1, $2, 100 if ($1 == $2) go to PC + 4 + 100*4
branch on not equal bne $1, $2, 100 if ($1 != $2) go to PC + 4 + 100*4
set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
set less than unsigned sltui $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate unsigned sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
jump j 10000 goto 10000
jump register jr $31 goto $31
jump and link jal 100000 $31 = PC + 4; goto 10000

 48

Generic Examples of Instruction Format Widths

Variable:
…

…

Better for generating compact code

Easier to use for generating assembly code

Fixed:

 49

Summary of Instruction Formats

  If code size is most important, use variable length instructions

  If performance is most important, use fixed length instructions

  Recent embedded machines (ARM, MIPS) have an optional mode to
execute subset of 16-bit wide instructions (Thumb, MIPS16); per
procedure, decide which one of performance or density is more
important

 50

Observation

  “Simple” computations, movements of data, etc., are not always
“simple” in terms of a single, obvious assembly instruction
  Often requires a sequence of even more primitive instructions
  One options is to try to “anticipate” every such computation, and try to

provide an assembly instruction for it
(Complex Instruction Set Computing = CISC)

  PRO: assembly programs are easier to write by hand
  CON: hardware gets really, really complicated by instructions

 used very rarely. Compilers might be harder to write
  Other option is to provide a small set of essential primitive instructions

(Reduced Instruction Set Computing = RISC)
  CON: anything in a high level language turns into LOTS of

 instructions in assembly language
  PRO: hardware and compiler become easier to design, cleaner,

 easier to optimize for speed, performance

 51

Summary

  Architecture = what’s visible to the program about the machine
  Not everything in the deep implementation is “visible”

  Microarchitecture = what’s invisible in the deep implementation

A big piece of the ISA = assembly language structure
  Primitive instructions, execute sequentially, atomically
  Issues are formats, computations, addressing modes, etc

  We do one example in some detail: MIPS (from P&H Chap 3)
  A RISC machine, its virtue is that it is pretty simple
  Can pick up the assembly language without too much memorization

  Next lecture
  Addressing modes

