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Today’s Menu: 

  ISA & Assembly Language 
  Instruction Set Definition  

  Registers and Memory 
  Arithmetic Instructions 
  Load/store Instructions 
  Control Instructions 
  Instruction Formats 
  Example ISA: MIPS  

  Summary 
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Instruction Set Architecture  (ISA) 

  

Assembly Language 
               ||| 

Instruction Set 
Architecture 

               ||| 
Machine Language 

Application 

Compiler 

Operating System 

          Microarchitecture I/O System 

Digital Logic Design 

Circuit Design 
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The Big Picture 

  Assembly Language 
  Interface the architecture presents to 

user, compiler, & operating system 
  “Low-level” instructions that use the 

datapath & memory to perform basic 
types of operations 

  arithmetic: add, sub, mul, div 
  logical: and, or, shift 
  data transfer: load, store 
  (un)conditional branch: jump, 

branch on condition 

assembly language program 
  

 
 

ALU 

   
  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Instruction register 

Memory Address Register 

from memory 
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Software Layers 
  High-level languages such as C, C++, FORTRAN, JAVA are translated into 

assembly code by a compiler 
  Assembly language translated to machine language by assembler 

for (j = 1; j < 10; j++){ 
 a = a + b 

} 
 
 

ALU 

   
  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Instruction register 

Memory Address Register 

Memory Data Register 

Executable 
(binary) 

Compiler 

ADD R1, R2, R3 
SUB R3, R2, R1 

Assembler 
0010100101 
0101010101 
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Basic ISA Classes 

  Memory to Memory Machines 
  Can access memory directly in instructions: e.g., Mem[0] = Mem[1] + 1 
  But we need storage for temporaries 
  Memory is slow (hard to optimize code) 
  Memory is big (need lots of address bits in code  large code) 

  Architectural Registers 
  registers can hold temporary variables 
  registers are (unbelievably) faster than memory 
  memory traffic is reduced, so program is sped up 

(since registers are faster than memory) 
  code density improves  smaller code 

(since register named with fewer bits than memory location) 
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Basic ISA Classes (cont’d) 
  Accumulator (1 register): 

  1 address       add A   acc ←  acc + mem[A] 
  1+x address   addx A   acc ←  acc + mem[A + x] 

  General Purpose Register File (Load/Store): 
  3 address  add Ra Rb Rc  Ra ←  Rb + Rc 
      load Ra Rb  Ra ←  mem[Rb] 
      store Ra Rb  mem[Rb] ←  Ra 

  General Purpose Register File (Register-Memory): 
  2 address  add A B        EA(A) ←  EA(A) + EA(B) 
  3 address  add A B C    EA(A) ←  EA(B) + EA(C) 

  Stack (not a register file but an operand stack) 
  0 address        add   tos ←  tos + next (tos=top of stack) 

  Comparison: 
  Bytes per instruction?  Number of Instructions?  Cycles per instruction? 
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Comparing Number of Instructions 

  Code sequence for C = A + B for four classes of instruction sets: 

Stack Accumulator Register  Register  
(register-memory) (load-store) 

Load  A 
Add   B 
Store C 

Load  R1,A 
Add   R1,B 
Store C, R1 

Push A 
Push B 
Add 
Pop  C 

Load  R1,A 
Load  R2,B 
Add   R3,R1,R2 
Store C,R3 

MIPS is one of these: this is what we’ll be learning 
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General Purpose Register Machines Dominate 

  Literally all machines use general purpose registers 

  Advantages of registers 

  registers are faster than memory 

  memory traffic is reduced, so program is sped up 
(since registers are unbelievably faster than memory) 

  registers can hold variables 

  registers are easier for a compiler to use: 
(A*B) – (C*D) – (E*F)  can do multiplies in any order vs. stack 

  code density improves 
(since register named with fewer bits than memory location) 
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Example: MIPS Assembly Language Notation 

  Generic 
  op    x,  y,  z      # x <-- y op z 

 

  Addition 
  add   a, b,  c   # a <-- b + c 
  addi  a, a, 10     # a <-- a + 10 

 

  Subtraction 
  sub   a, b, c     # a <-- b - c 
   

 
  f = (g + h) - (i + j) 

  add  t0,  g,  h    #  t0 <-- g + h 
  add  t1,  i,  j     #  t1 <-- i + j 
  sub  f,  t0,  t1    #  f <-- t0 - t1 

Source Source Destination 
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Instruction Set Definition (programming model) 
  Objects  = architected entities = machine state 

  Registers 
  General purpose 
  Special purpose (e.g. program counter, condition code, stack pointer) 

  Memory locations 
  Linear address space: 0, 1, 2, … , 2

s
-1 

  Operations = instruction types 
  Data operation 

  Arithmetic (add, multiply, subtract, divide, etc.) 
  Logical (and, or, xor, not, etc.) 

  Data transfer 
  Move (register  register) 
  Load (memory  register) 
  Store (register  memory) 

  Instruction sequencing 
  Branch (conditional, e.g., less than, greater than, equal) 
  Jump (unconditional) 



   12 

Registers and Memory (MIPS) 

    32 registers provided 
  R0 .. R31 

  You’ll sometimes see $ instead of R 
(R6 and $6 both denote register 6) 

  Some special-use registers 
  Register R0 is hard-wired to zero 
  Register R29 is the stack pointer 
  Register R31 is used for procedure return address 

 
  Arithmetic instructions operands must be registers 

 This is a load/store machine! Must load all data to registers before using it. 

Registers 

0 

31 
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Memory Organization 

    Viewed as a large, single-dimension array, with an address. 
  A memory address is an index into the array 
  "Byte addressing" means that the index points to a byte of memory. 

  Bytes are nice, but most data items use larger "words" 
  For MIPS, a word is 32 bits or 4 bytes. 

 
 

0 
1 
2 
3 
4 
5 
6 
... 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

Byte-addressable 
view of memory 

0 
4 
8 
12 
16 
20 
24 
... 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

Word-aligned 
view of memory 
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  Bytes are nice, but most data items use larger "words" 
  For MIPS, a word is 32 bits or 4 bytes. 

 
 
 
 
 
 

  32-bit computer: 
  232 bytes with byte addresses from 0 to 232-1 
  230 words with byte addresses 0, 4, 8, ... 232-4 

  Words are aligned 
 what are the  least 2 significant bits of a word address? 

Memory Organization 

0 
4 
8 

12 
... 

32 bits of data 

32 bits of data 

32 bits of data 

32 bits of data 

Registers hold 32 bits of data 
Byte addresses 

 of words 
 in mem 
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Addressing Objects: Endianess 

  Big Endian: address of most significant  byte = word address  
(xx00 = Big End of word) 
  IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA 

  Little Endian: address of least significant  byte = word 
address (xx00 = Little End of word) 
  Intel 80x86, DEC Vax, DEC Alpha 

  Programmable: set a bit at boot time 
  IBM/Motorola PowerPC 

 

msb lsb 
3          2          1           0 

little endian byte 0 

0          1          2           3 
big endian byte 0 
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Addressing Objects: Alignment 

  Hardware may or may not support “unaligned” load/store 
  E.g., Load word from address 0x203 

  Possible alternatives: 
  Full hardware support, multiple “aligned” accesses by hardware 
  Hardware trap to OS, multiple “aligned” accesses by software 
  Compiler can guarantee/prevent “unaligned” accesses 

Alignment: require that objects fall on address  
 that is multiple of  their size. 

0      1      2      3 

Aligned 

Not 
Aligned 
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Instruction Cycle (execution model) 

  Sequential Execution Model 
  Program is a sequence of 

instructions  
  Instructions are atomic and 

executed sequentially 

  Stored Program Concept 
  Program and data both are 

stored in memory 
  Instructions are fetched from 

memory for execution 

Instruction Fetch 

Operand Fetch 

Instruction Decode 

Result  Store 

Execute 

Next   Instruction 
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Instruction Cycle (execution model) 

  
Instruction Fetch 

Instruction Decode 

Operand Fetch 

Execute 

Result  Store 

Next   Instruction 

Instruction Format/Encoding 

Addressing Modes 

Op-codes and Data Types 

Addressing Modes 

Instruction Sequencing 

Get instruction from memory 

ISA Issues 
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Memory 

Executing an Assembly Instruction 

  Program Counter holds the 
instruction address 

  Sequencer (FSM) fetches 
instruction from memory and 
puts it into the Instruction 
Register 

  Control logic decodes the 
instruction and tells the 
register file, alu and other 
registers what to do 

  If an ALU operation (e.g. 
add) data flows from register 
file, through ALU and back to 
register file 

 
 

   
  
 

C ol  
 L o 

ontr 
gic 

ALU 

Register File Program Counter 

Instruction register 

Memory Address Register 

Memory Data Register 
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Register File Program Execution 

 
 

   

0x00 add R4, R0, R0   
0x04 sub R1, R3, R4   
0x08 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

4 bytes wide 

00000006 
00000004 

0x00000000 

add R4,R0,R0 
--------------   0 

0 
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0x00 add R4, R0, R0   
0x04 sub R1, R3, R4   
0x08 

Register File Program Execution 

 
 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

4 bytes wide 

00000006 
00000000 

0x00000004 

sub R1,R3,R4 

00000006 
0 
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Try This 

  f = (g + h) - (i + j) 
  R16 == f, R17 == g,  R18 == h, R19 == i, R20 == j 

 
 0x00 add R8, R17, R18  

0x04 add R9, R19, R20  
0x08 sub R16, R8, R9  

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 8     
reg 9    
reg 16   f 
reg 17   g = 0x00000002 
reg 18   h = 0x00000003 
reg 19   i  = 0x00000001 
reg 20   j  = 0x00000004 
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Try This 

  f = (g + h) - (i + j) 
  R16 == f, R17 == g,  R18 == h, R19 == i, R20 == j 

 
 0x00 add R8, R17, R18  

0x04 add R9, R19, R20  
0x08 sub R16, R8, R9  

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 8     
reg 9    
reg 16   f 
reg 17   g = 0x00000002 
reg 18   h = 0x00000003 
reg 19   i  = 0x00000001 
reg 20   j  = 0x00000004 
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Accessing Data 

  ALU generated address 
  Address goes to Memory 

Address Register 
  When memory is accessed, 

results are returned to 
Memory Data Register 

  Notice that data and 
instruction addresses can 
be the same - both just 
address memory 

   

0x00  00101101 
0x01  00100001 
0x02  00110000 
0x03  00001111 
0x04  11010101 
0x05  01010101 
0x06  00101010 
0x07  01010101 
0x08  11110011 
0x09  00111100 
0x0A  00001100 
0x0B  00000000 
0x0C  00011000 
0x0D  11111111 

ALU 

  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Memory Address Register 

Memory Data Register 
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0x14 

Memory Operations - Loads 

  Loading data from memory 
R6 <-- mem[0x14] 
Assume &A = 0x14 

 
 0x00 addi R5,R0,0x14 

0x04 lw R6,R5  
0x08  
0x0C 
0x10 
0x14 0x12345678 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000000 

addi R5, R0,0x14 

0x00000014 

addi:  adds 16-bit constant to  
 source register  
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Memory Operations - Loads 

 
 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000004 

    lw  R6,R5 

0x00000014 

0x12345678 

0x12345678 
0x00000014 

  Loading data from memory 
R6 <-- mem[0x14] 
Assume &A = 0x14 

0x00 addi R5,R0,0x14 
0x04 lw R6,R5  
0x08  
0x0C 
0x10 
0x14 0x12345678 
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0x00 

Memory Operations - Loads (con’t) 

  Address can also be computed by adding an offset to register  
LW  R6, 0(R5) 
R6 <-- memory[0 + R5] 

 
 0x00 addi R5,R0,0x14  

0x04 lw   R6, 0( R5)  
0x08 
0x0C 
0x10  

0x14  0x12345678              
                 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000004 

     lw  R6,0(R5) 

0x00000014 

0x00000014 

0x12345678 

0x12345678 
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Try This: Memory Operations - Stores 

  Storing data to memory works essentially the same way 
A = 200;   let’s assume &A = 0x18 
mem[0x18] <-- 200 

 
 0x00 addi R5,R0,0x18 

0x04 addi R6,R0,200 
0x08 sw   R6,0( R5)  
0x0C 
0x10 
0x14 0x12345678     .  
0x18 we store A here 
0x20 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

to memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 
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Try This: Memory Operations - Stores 

  Storing data to memory works essentially the same way 
A = 200;   let’s assume &A = 0x18 
mem[0x18] <-- 200 

 
 0x00 addi R5,R0,0x18 

0x04 addi R6,R0,200 
0x08 sw   R6,0( R5)  
0x0C 
0x10 
0x14 0x12345678     .  
0x18 we store A here 
0x20 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

to memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 
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  add  R8, R17, R18 
  is stored in binary format as 

00000010    00110010    01000000   00100000 
  MIPS lays out instructions into “fields” 
 

 
 
 
  

  op  operation of the instruction 
  rs  first register source operand 
  rt  second register source operand 
  rd  register destination operand 
  shamt  shift amount 
  funct  function (select type of operation) 

  add = 3210 
  sub = 3410 

31         26  25         21  20          16  15           11  10            6  5           0  
000000     10001       10010       01000       00000   100000 
    op              rs                 rt                rd            shamt          funct 

Instruction Format (Machine Language) 

Why are there 
5 bits in the 

register field? 
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MIPS Instruction Formats 

  More than more than one format for instructions, usually 
  Different kinds of instructions need different kinds of fields, data 
  Example:  3 MIPS instruction formats 

 
 
 
 

N a me F iel d s C o m m e nt s 
F i e l d   Si ze 6 bi ts 5   bi ts 5   bi ts 5   bi ts 5   bi ts 6  b i t s A l l MIPS instructions 32 bits 
R -f or m at o p rs rt rd s h mt f un c t Arithmetic instruction format 

I -f or m at o p rs rt a d dr e ss / i m m ed iat e Transfer (load/store), branch, 
immediate format 

    

J- f o r m at o p tar ge t a d dr e ss J ump instruction  format 

Questions: 
 I-format:  How big an immediate can you have? 
   Is that big enough? (What’s the maximum value?) 
 J-format:  How far can you jump in instructions? 
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Constants 

    Small constants are used quite frequently (50% of operands)  
 e.g.,  A = A + 5; 
  B = B + 1; 
  C = C - 18; 

  Solutions?  Why not…. 
  …just put 'typical constants' in memory and load them.   
  …just create hard-wired registers (like $zero) for constants like one. 

 
  MIPS Instructions: 
  addi $29, $29, 4   

 slti $8,  $18, 10  
 andi $29, $29, 6 
 ori  $29, $29, 4 

 
  How do we make this work? 

How do we get these 
constants in a efficient way? 
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Loading Immediate Values 

  How do we put a constant (immediate) value into a register? 
  Put the value 100 into register R6:    R6 <- R0 + 100 = 0+100 = 100 

 
 0x00 addi R6,R0,100  

0x04 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 5     
reg 6 
reg 7 
reg 8 
reg 9 
reg 10 
reg 11 
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MIPS Machine Language  

  From back cover of Patterson and Hennessy 
N am e F orm at E x a mp le C o mm en t s 

6b it s 5 b i ts 5  b i ts 5  b i ts 5 b i ts 6b it s 
a d d R 0 2 3 1 0 3 2 a d d $ 1, $ 2, $3 
s u b R 0 2 3 1 0 3 4 s u b  $ 1, $ 2, $3 
a d d i I 8 2 1 1 0 0 a d d i  $ 1, $ 2, 1 0 0 
a d du R 0 2 3 1 0 3 5 a d d u $ 1,  $ 2,  $ 3 
a n d R 0 2 3 1 0 3 6 a n d $ 1,  $ 2,  $ 3 
o r R 0 2 3 1 0 3 7 o r  $ 1 ,  $ 2,  $ 3 
l w I 3 5 2 1 1 0 0 l w  $ 1,  1 0 0 ( $ 2 ) 
s w I 4 3 2 1 1 0 0 s w $1 ,   10 0 ( $ 2 ) 
beq I 4 1 2 25 beq  $1 , $2 ,   10 0 
j J 2 25 0 0 j  1 0 0 0 0 
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Loading Immediate Values 

  What’s the largest immediate value that can be  
loaded into a register? 
 
 
 
 
 
 
 
 

  But, then, how do we load larger numbers? 

N a me F iel d s C o m m e nt s 
F i e l d   Si ze 6 bi ts 5   bi ts 5   bi ts 5   bi ts 5   bi ts 6  b i t s A l l M I P S   i n s t r u c t i o n s   3 2   bi ts 
R -f or m at o p rs rt rd s h mt f un c t Ar i th me ti c  instru c ti o n  f or m at 

I -f or m at o p rs rt a d dr e ss / i m m ed iat e T rans fe r,  b ra n c h , i mme diat e 
f or m at 

J- f o r m at o p tar ge t a d dr e ss J u mp  instr u cti o n  f or m at 
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  Example:  lui    R8, 255 
 
 
 
 
 
Transfers the immediate field into the register’s top (upper) 16 
bits and fills the register’s lower 16 bits with zeros 
R8[31:16] <--  IR[15:0]  ; top 16 bits of R8 <-- bottom 16 bits of the IR 
R8[15:0]   <-- 0  ; bottom 16 bits of R8 are zeroed 

Load Upper Immediate 

31         26  25         21  20          16  15           11   10            6  5           0  
001111     00000      01000        0000 0000   1111    1111 
op              rs             rt              immediate 

31                                                16  15                                                   0  

 0000  0000   1111   1111  0000  0000   0000  0000 Reg. 8 
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  We'd like to be able to load a 32 bit constant into a register 
  Must use 2 instructions: first, new "load upper immediate" instruction 

 lui $t0, 1010101010101010 

Larger Constants? 

1010101010101010 0000000000000000 

ori 0000000000000000 1010101010101010 

1010101010101010 1010101010101010 

1010101010101010 0000000000000000 

filled with zeros 

  Second,  must then get the lower order bits right, i.e., 
         ori $t0, $t0, 1010101010101010 
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Branch here if 
$s0 != $s1 

Control (Instruction Sequencing) 

    Decision making instructions 
  These instructions alter the “control flow” 
  Means they  change the "next" instruction to be executed 

 
  MIPS conditional branch instructions: 

 
 bne $t0, $t1, Label  
 beq $t0, $t1, Label  

 
  Example:   if (i==j) h = i + j;  

  
  bne $s0, $s1, Label 
  add $s3, $s0, $s1 
 Label:  .... 
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Go here  
always 

Go here if  
$s4 != $s5 

Control (Instruction Sequencing) 

  MIPS unconditional branch instructions: 
 j  label 

  Example: 
 

 if (i!=j)   beq $s4, $s5, Lab1 
     h=i+j;   add $s3, $s4, $s5 
 else    j Lab2 
     h=i-j;   Lab1: sub $s3, $s4, $s5 
    Lab2: ... 

 

  OK, so with these--Can you build a simple  for(…) {…}   
loop? 
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Branch Instructions 

  They exist because we need to change the program counter 
 if ( a == b)  c = 1; 
 else  c = 2; 

  bne  (branch not equal) compares regs and branches if regs “!=“ 
       j  (jump) goto address, unconditional branch 

 
 

Assume  R5 == a;  R6 == b;  R7 == c 
 
Add   Mnemonic  Description (comment) 
0x00  bne   R5, R6, 0x0C  ; if ( R5 != R6) goto 0x0C    
0x04  addi  R7, R0, 1  ; R7 <-- 1 + 0     
0x08  j     0x10  ; goto 0x10                   
0x0C  addi  R7, R0, 2  ; R7 <-- 2 + 0 
0x10                                                                                          
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Branch Instructions 

  Branch instructions are used to implement C-style loops 
 for ( j = 0; j < 10; j++){ 
        b = b +  j; 
 } 

 
 

assume R5 == j;  R6 == b;  
 
Add  Mnemonic  Description (comment) 
0x00  addi R5, R0, 0  ; R5  0 + 0 
0x04  addi R1, R0, 10  ; R1  0 + 10 
0x08  beq  R5, R1, 0x18  ; if ( R5 == 10) goto 0x18 
0x0C  add  R6, R6, R5  ; R6  R6 + R5 
0x10  addi R5, R5, 1  ; R5  R5 + 1 
0x14  j    0x08  ; goto 0x08 
0x18  …  ; pop out of loop, continue 
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Addresses in Branches and Jumps 

    Instructions: 
 bne $t4,$t5,Label  Next instruction is at Label if $t4 != $t5 
 beq $t4,$t5,Label  Next instruction is at Label if  $t4 == $t5 
 j Label    Next instruction is at Label  
 

  Formats: 
 
 
 
 

  Hey, the addresses in these fields are not 32 bits ! 
 — How do we handle this? 

   op    rs    rt    16 bit address 

    op       26 bit address 

I 

J 
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  Instructions: 
 bne $t4,$t5,Label  Next instruction is at Label if $t4 != $t5 
 beq $t4,$t5,Label  Next instruction is at Label if  $t4 == $t5 
 j Label    Next instruction is at Label  
 

  Formats: 
 
 

  Could specify a register and add it to this 16b address 
  Use the PC + (16-bit relative word address to find the address to jump to) 
  Note:  most branches are local (“principle of locality”) 

  Jump instructions just use the high order bits of PC  
  32-bit jump address = 4 (most significant) bits of PC concatenated with 26-bit word 

address (or 28-bit byte address) 
  Address boundaries of 256 MB 

 

Addresses in Branches 

   op    rs    rt    16 bit address 

 
I 

J    op       26 bit address 
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Branch Instructions 

  Example 
 for ( j = 0; j < 10; j++){ 
        b = b +  j; 
 } 

assume R5 == j;  R6 == b;  
Add  Mnemonic  Description (comment) 
0x00  addi R5, R0, 0  ; R5 <-- 0 + 0 
0x04  addi R1, R0, 10  ; R1 <-- 0 + 10 
0x08  beq  R5, R1, 0x18  ; if ( R5 == 10) goto 0x18 
0x0C  add  R6, R6, R5  ; R6 <-- R6 + R5 
0x10  addi R5, R5, 1  ; R5  R5 + 1 
0x14  j    0x08  ; goto 0x08 
0x18  …  ; pop out of loop, continue 
 
0x08    PC = PC + 4 + (3<<2) 
 
0x14                                  PC=[PC(31:28):2]<<2 

5 1 3 4 

2 2 
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Conditional Branch Distance 

Bits of Branch Displacement 

0% 
10% 
20% 
30% 
40% 

0 1 2 3 4 5 6 7 8 9 
10

 
11

 
12

 
13

 
14

 
15

 

Int. Avg. FP Avg. 
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Conditional Branch Addressing 

  PC-relative since most branches  are relatively close  to the 
current PC address 

  At least 8 bits suggested  (± 128 instructions) 
  Compare Equal/Not Equal most important for integer programs 

(86%) 

Frequency of comparison   
types in branches  

0% 50% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.
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Full MIPS Instruction Set 
 

add add $1, $2, $3 $1 = $2+$3
sub sub $1,$2, $3 $1 = $2 - $3
add immediate addi $1, $2, 100 $1 = $2 + 100
add unsigned addu $1, $2, $3 $1 = $2 + $3
subtract unsigned subu $1, $2, $3 $1 = $2 - $3
add imm. unsigned addiu $1, $2, 100 $1 = $2 + 100
multiply mult $2, $3 hi, lo = $2 * $3
multiply unsigned multu $2, $3 hi, lo = $2 * $3
divide div $2, $3 lo = $2/$3, hi  = $2 mod $3
divide unsigned divu $2, $3 lo = $2/$3, hi  = $2 mod $3
move from hi mfhi $1 $1 = hi
move from low mflo $1 $1 = lo
and and $1, $2, $3 $1 = $2 & $3
or or $1, $2, $3 $1 = $2 | $3
and immediate andi $1, $2, 100 $1 = $2 & 100
or immediate ori $1, $2, 100 $1 = $2 | 100
shift left logical sll $1, $2, 10 $1 = $2 << 10
shift right logical srl $1, $2, 10 $1 = $2 >> 10
load word lw $1, 100($2) $1 = memory[$2+100]
store word sw $1, 100($2) memory[$2 + 100] = $1
load upper immediate lui $1, 100 $1 = 100 * 2^16
branch on equal beq $1, $2, 100 if ($1 == $2) go to PC + 4 + 100*4
branch on not equal bne $1, $2, 100 if ($1 != $2) go to PC + 4 + 100*4
set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
set less than unsigned sltui $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate unsigned sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
jump j 10000 goto 10000
jump register jr $31 goto $31
jump and link jal 100000 $31 = PC + 4; goto 10000
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Generic Examples of Instruction Format Widths 

Variable: 
… 

… 

Better for generating compact code 

Easier to use for generating assembly code 

Fixed: 



   49 

Summary of Instruction Formats 

  If code size is most important, use variable length instructions 

  If performance is most important, use fixed length instructions 

  Recent embedded machines (ARM, MIPS) have  an optional mode to 
execute subset of 16-bit wide instructions (Thumb, MIPS16); per 
procedure, decide which one of performance or density is more 
important 
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Observation 

  “Simple” computations, movements of data, etc., are not always 
“simple” in terms of a single, obvious assembly instruction 
  Often requires a sequence of even more primitive instructions 
  One options is to try to “anticipate” every such computation, and try to 

provide an assembly instruction for it 
(Complex Instruction Set Computing = CISC) 

  PRO:  assembly programs are easier to write by hand 
  CON:  hardware gets really, really complicated by instructions 

           used very rarely.  Compilers might be harder to write 
  Other option is to provide a small set of essential primitive instructions 

(Reduced Instruction Set Computing = RISC) 
  CON:  anything in a high level language turns into LOTS of 

           instructions in assembly language 
  PRO:  hardware and compiler become easier to design, cleaner,  

           easier to optimize for speed, performance 
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Summary 

  Architecture = what’s visible to the program about the machine 
  Not everything in the deep implementation is “visible” 

  Microarchitecture = what’s invisible in the deep implementation 

A big piece of the ISA = assembly language structure 
  Primitive instructions, execute sequentially, atomically 
  Issues are formats, computations, addressing modes, etc 

  We do one example in some detail:  MIPS  (from P&H Chap 3) 
  A RISC machine, its virtue is that it is pretty simple 
  Can pick up the assembly language without too much memorization 

  Next lecture 
  Addressing modes 
 


