

DATA STRUCTURES
USING C++

SECOND EDITION

D.S. MALIK

Australia � Brazil � Japan � Korea � Mexico � Singapore � Spain � United Kingdom � United States

Data Structures Using C++, Second Edition
D.S. Malik

Executive Editor: Marie Lee
Acquisitions Editor: Amy Jollymore
Senior Product Manager: Alyssa Pratt
Editorial Assistant: Zina Kresin
Marketing Manager: Bryant Chrzan
Content Project Manager: Heather Furrow
Art Director: Faith Brosnan
Image credit: ª Fancy Photography/Veer

(Royalty Free)
Cover Designer: Roycroft Design
Compositor: Integra

Printed in the United States of America

1 2 3 4 5 6 7 15 14 13 12 11 10 09

ª 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit

all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-78201-1

ISBN-10: 0-324-78201-2

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our
preferred online store www.ichapters.com

Some of the product names and company names used in this book
have been used for identification purposes only and may be
trademarks or registered trademarks of their respective
manufacturers and sellers.

Any fictional data related to persons or companies or URLs used
throughout this book is intended for instructional purposes only. At
the time this book was printed, any such data was fictional and not
belonging to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right
to revise this publication and make changes from time to time in its
content without notice.

The programs in this book are for instructional purposes only.

They have been tested with care, but are not guaranteed for any
particular intent beyond educational purposes. The author and the
publisher do not offer any warranties or representations, nor do they
accept any liabilities with respect to the programs.

www.cengage.com/coursetechnology
www.ichapters.com

TO

My Parents

This page intentionally left blank

PREFACE xxiii

1. Software Engineering Principles and C++ Classes 1

2. Object-Oriented Design (OOD) and C++ 59

3. Pointers and Array-Based Lists 131

4. Standard Template Library (STL) I 209

5. Linked Lists 265

6. Recursion 355

7. Stacks 395

8. Queues 451

9. Searching and Hashing Algorithms 497

10. Sorting Algorithms 533

11. Binary Trees and B-Trees 599

12. Graphs 685

13. Standard Template Library (STL) II 731

APPENDIX A Reserved Words 807

APPENDIX B Operator Precedence 809

APPENDIX C Character Sets 811

APPENDIX D Operator Overloading 815

APPENDIX E Header Files 817

BRIEF CONTENTS

APPENDIX F Additional C++ Topics 825

APPENDIX G C++ for Java Programmers 833

APPENDIX H References 857

APPENDIX I Answers to Odd-Numbered

Exercises 859

INDEX 879

vi | Data Structures Using C++, Second Edition

Preface xxiii

SOFTWARE ENGINEERING PRINCIPLES

AND C++ CLASSES 1

Software Life Cycle 2

Software Development Phase 3

Analysis 3

Design 3

Implementation 5

Testing and Debugging 7

Algorithm Analysis: The Big-O Notation 8

Classes 17

Constructors 21

Unified Modeling Language Diagrams 22

Variable (Object) Declaration 23

Accessing Class Members 24

Implementation of Member Functions 25

Reference Parameters and Class Objects (Variables) 30

Assignment Operator and Classes 31

Class Scope 32

Functions and Classes 32

Constructors and Default Parameters 32

Destructors 33

Structs 33

1

TABLE OF CONTENTS

Data Abstraction, Classes, and Abstract Data Types 33

Programming Example: Fruit Juice Machine 38

Identifying Classes, Objects, and Operations 48

Quick Review 49

Exercises 51

Programming Exercises 57

OBJECT-ORIENTED DESIGN (OOD) AND C++ 59

Inheritance 60

Redefining (Overriding) Member Functions of the Base Class 63

Constructors of Derived and Base Classes 69

Header File of a Derived Class 75

Multiple Inclusions of a Header File 76

Protected Members of a Class 78

Inheritance as public, protected, or private 78

Composition 79

Polymorphism: Operator and Function Overloading 84

Operator Overloading 85

Why Operator Overloading Is Needed 85

Operator Overloading 86

Syntax for Operator Functions 86

Overloading an Operator: Some Restrictions 87

The Pointer this 87

Friend Functions of Classes 91

Operator Functions as Member Functions and Nonmember

Functions 94

Overloading Binary Operators 95

Overloading the Stream Insertion (<<) and Extraction (>>)

Operators 98

Operator Overloading: Member Versus Nonmember 102

Programming Example: Complex Numbers 103

Function Overloading 108

2

viii | Data Structures Using C++, Second Edition

Templates 108

Function Templates 109

Class Templates 111

Header File and Implementation File of a Class Template 112

Quick Review 113

Exercises 115

Programming Exercises 124

POINTERS AND ARRAY-BASED LISTS 131

The Pointer Data Type and Pointer Variables 132

Declaring Pointer Variables 132

Address of Operator (&) 133

Dereferencing Operator (*) 133

Pointers and Classes 137

Initializing Pointer Variables 138

Dynamic Variables 138

Operator new 138

Operator delete 139

Operations on Pointer Variables 145

Dynamic Arrays 147

Array Name: A Constant Pointer 148

Functions and Pointers 149

Pointers and Function Return Values 150

Dynamic Two-Dimensional Arrays 150

Shallow Vs. Deep Copy and Pointers 153

Classes and Pointers: Some Peculiarities 155

Destructor 155

Assignment Operator 157

Copy Constructor 159

Inheritance, Pointers, and Virtual Functions 162

Classes and Virtual Destructors 168

Abstract Classes and Pure Virtual Functions 169

3

Table of Contents | ix

Array-Based Lists 170

Copy Constructor 180

Overloading the Assignment Operator 180

Search 181

Insert 182

Remove 183

Time Complexity of List Operations 183

Programming Example: Polynomial Operations 187

Quick Review 194

Exercises 197

Programming Exercises 204

STANDARD TEMPLATE LIBRARY (STL) I 209

Components of the STL 210

Container Types 211

Sequence Containers 211

Sequence Container: vector 211

Declaring an Iterator to a Vector Container 216

Containers and the Functions begin and end 217

Member Functions Common to All Containers 220

Member Functions Common to Sequence Containers 222

The copy Algorithm 223

ostream Iterator and Function copy 225

Sequence Container: deque 227

Iterators 231

Types of Iterators 232

Input Iterators 232

Output Iterators 232

Forward Iterators 233

Bidirectional Iterators 234

Random Access Iterators 234

Stream Iterators 237

Programming Example: Grade Report 238

4

x | Data Structures Using C++, Second Edition

Quick Review 254

Exercises 256

Programming Exercises 259

LINKED LISTS 265

Linked Lists 266

Linked Lists: Some Properties 267

Item Insertion and Deletion 270

Building a Linked List 274

Linked List as an ADT 278

Structure of Linked List Nodes 279

Member Variables of the class linkedListType 280

Linked List Iterators 280

Default Constructor 286

Destroy the List 286

Initialize the List 287

Print the List 287

Length of a List 287

Retrieve the Data of the First Node 288

Retrieve the Data of the Last Node 288

Begin and End 288

Copy the List 289

Destructor 290

Copy Constructor 290

Overloading the Assignment Operator 291

Unordered Linked Lists 292

Search the List 293

Insert the First Node 294

Insert the Last Node 294

Header File of the Unordered Linked List 298

Ordered Linked Lists 300

Search the List 301

Insert a Node 302

5

Table of Contents | xi

Insert First and Insert Last 305

Delete a Node 306

Header File of the Ordered Linked List 307

Doubly Linked Lists 310

Default Constructor 313

isEmptyList 313

Destroy the List 313

Initialize the List 314

Length of the List 314

Print the List 314

Reverse Print the List 315

Search the List 315

First and Last Elements 316

STL Sequence Container: list 321

Linked Lists with Header and Trailer Nodes 325

Circular Linked Lists 326

Programming Example: Video Store 327

Quick Review 343

Exercises 344

Programming Exercises 348

RECURSION 355

Recursive Definitions 356

Direct and Indirect Recursion 358

Infinite Recursion 359

Problem Solving Using Recursion 359

Largest Element in an Array 360

Print a Linked List in Reverse Order 363

Fibonacci Number 366

Tower of Hanoi 369

Converting a Number from Decimal to Binary 372

Recursion or Iteration? 375

6

xii | Data Structures Using C++, Second Edition

Recursion and Backtracking: 8-Queens Puzzle 376

Backtracking 377

n-Queens Puzzle 377

Backtracking and the 4-Queens Puzzle 378

8-Queens Puzzle 379

Recursion, Backtracking, and Sudoku 383

Quick Review 386

Exercises 387

Programming Exercises 390

STACKS 395

Stacks 396

Implementation of Stacks as Arrays 400

Initialize Stack 403

Empty Stack 404

Full Stack 404

Push 404

Return the Top Element 405

Pop 405

Copy Stack 406

Constructor and Destructor 407

Copy Constructor 407

Overloading the Assignment Operator (=) 408

Stack Header File 408

Programming Example: Highest GPA 411

Linked Implementation of Stacks 415

Default Constructor 418

Empty Stack and Full Stack 418

Initialize Stack 418

Push 419

Return the Top Element 420

Pop 421

Copy Stack 422

Constructors and Destructors 423

7

Table of Contents | xiii

Overloading the Assignment Operator (=) 423

Stack as Derived from the class unorderedLinkedList 426

Application of Stacks: Postfix Expressions Calculator 428

Removing Recursion: Nonrecursive Algorithm to Print a

Linked List Backward 438

STL class stack 440

Quick Review 442

Exercises 443

Programming Exercises 447

QUEUES 451

Queue Operations 452

Implementation of Queues as Arrays 454

Empty Queue and Full Queue 460

Initialize Queue 461

Front 461

Back 461

Add Queue 462

Delete Queue 462

Constructors and Destructors 462

Linked Implementation of Queues 463

Empty and Full Queue 465

Initialize Queue 466

addQueue, front, back, and deleteQueue Operations 466

Queue Derived from the class

unorderedLinkedListType 469

STL class queue (Queue Container Adapter) 469

Priority Queues 471

STL class priority_queue 472

Application of Queues: Simulation 472

Designing a Queuing System 473

Customer 474

Server 477

8

xiv | Data Structures Using C++, Second Edition

Server List 481

Waiting Customers Queue 484

Main Program 486

Quick Review 490

Exercises 491

Programming Exercises 495

SEARCHING AND HASHING ALGORITHMS 497

Search Algorithms 498

Sequential Search 499

Ordered Lists 501

Binary Search 502

Insertion into an Ordered List 506

Lower Bound on Comparison-Based Search Algorithms 508

Hashing 509

Hash Functions: Some Examples 512

Collision Resolution 512

Open Addressing 512

Deletion: Open Addressing 519

Hashing: Implementation Using Quadratic Probing 521

Chaining 523

Hashing Analysis 524

Quick Review 525

Exercises 527

Programming Exercises 530

SORTING ALGORITHMS 533

Sorting Algorithms 534

Selection Sort: Array-Based Lists 534

Analysis: Selection Sort 539

Insertion Sort: Array-Based Lists 540

Insertion Sort: Linked List-Based Lists 544

Analysis: Insertion Sort 548

9

10

Table of Contents | xv

Shellsort 549

Lower Bound on Comparison-Based Sort Algorithms 551

Quicksort: Array-Based Lists 552

Analysis: Quicksort 558

Mergesort: Linked List-Based Lists 558

Divide 560

Merge 562

Analysis: Mergesort 566

Heapsort: Array-Based Lists 567

Build Heap 569

Analysis: Heapsort 575

Priority Queues (Revisited) 575

Programming Example: Election Results 576

Quick Review 593

Exercises 594

Programming Exercises 596

BINARY TREES AND B-TREES 599

Binary Trees 600

Copy Tree 604

Binary Tree Traversal 605

Inorder Traversal 605

Preorder Traversal 605

Postorder Traversal 605

Implementing Binary Trees 609

Binary Search Trees 616

Search 618

Insert 620

Delete 621

Binary Search Tree: Analysis 627

11

xvi | Data Structures Using C++, Second Edition

Nonrecursive Binary Tree Traversal Algorithms 628

Nonrecursive Inorder Traversal 628

Nonrecursive Preorder Traversal 630

Nonrecursive Postorder Traversal 631

Binary Tree Traversal and Functions as Parameters 632

AVL (Height-Balanced) Trees 635

Insertion 637

AVL Tree Rotations 641

Deletion from AVL Trees 652

Analysis: AVL Trees 653

Programming Example: Video Store (Revisited) 654

B-Trees 662

Search 665

Traversing a B-Tree 666

Insertion into a B-Tree 667

Deletion from a B-Tree 672

Quick Review 676

Exercises 678

Programming Exercises 682

GRAPHS 685

Introduction 686

Graph Definitions and Notations 687

Graph Representation 689

Adjacency Matrices 689

Adjacency Lists 690

Operations on Graphs 691

Graphs as ADTs 692

Graph Traversals 695

Depth-First Traversal 696

Breadth-First Traversal 698

12

Table of Contents | xvii

Shortest Path Algorithm 700

Shortest Path 701

Minimum Spanning Tree 706

Topological Order 713

Breadth-First Topological Ordering 715

Euler Circuits 719

Quick Review 722

Exercises 724

Programming Exercises 727

STANDARD TEMPLATE LIBRARY (STL) II 731

Class pair 732

Comparing Objects of Type pair 734

Type pair and Function make_pair 734

Associative Containers 736

Associative Containers: set and multiset 737

Associative Containers: map and multimap 742

Containers, Associated Header Files, and Iterator Support 747

Algorithms 748

STL Algorithm Classification 748

Nonmodifying Algorithms 748

Modifying Algorithms 749

Numeric Algorithms 750

Heap Algorithms 750

Function Objects 751

Predicates 756

STL Algorithms 758

Functions fill and fill_n 758

Functions generate and generate_n 760

Functions find, find_if, find_end, and find_first_of 762

Functions remove, remove_if, remove_copy, and

remove_copy_if 764

13

xviii | Data Structures Using C++, Second Edition

Functions replace, replace_if, replace_copy, and

replace_copy_if 768

Functions swap, iter_swap, and swap_ranges 770

Functions search, search_n, sort, and binary_search 773

Functions adjacent_find, merge, and inplace_merge 777

Functions reverse, reverse_copy, rotate, and

rotate_copy 779

Functions count, count_if, max_element,

min_element, and random_shuffle 782

Functions for_each and transform 786

Functions includes, set_intersection, set_union,

set_difference, and set_symmetric_difference 788

Functions accumulate, adjacent_difference,

inner_product, and partial_sum 794

Quick Review 799

Exercises 803

Programming Exercises 804

APPENDIX A: RESERVED WORDS 807

APPENDIX B: OPERATOR PRECEDENCE 809

APPENDIX C: CHARACTER SETS 811

ASCII (American Standard Code for Information

Interchange) 811

EBCDIC (Extended Binary Coded Decimal

Interchange Code) 812

APPENDIX D: OPERATOR OVERLOADING 815

APPENDIX E: HEADER FILES 817

Header File cassert 817

Header File cctype 818

Table of Contents | xix

Header File cfloat 819

Header File climits 820

Header File cmath 820

Header File cstddef 822

Header File cstring 822

APPENDIX F: ADDITIONAL C++ TOPICS 825

Analysis: Insertion Sort 825

Analysis: Quicksort 826

Worst-Case Analysis 827

Average-Case Analysis 828

APPENDIX G: C++ FOR JAVA PROGRAMMERS 833
Data Types 833

Arithmetic Operators and Expressions 834

Named Constants, Variables, and Assignment Statements 834

C++ Library: Preprocessor Directives 835

C++ Program 836

Input and Output 837

Input 837

Input Failure 839

Output 840

setprecision 841

fixed 841

showpoint 842

setw 842

left and right Manipulators 843

File Input/Output 843

Control Structures 846

Namespaces 847

xx | Data Structures Using C++, Second Edition

Functions and Parameters 849

Value-Returning Functions 849

Void Functions 850

Reference Parameters and Value-Returning Functions 852

Functions with Default Parameters 852

Arrays 854

Accessing Array Components 854

Array Index Out of Bounds 854

Arrays as Parameters to Functions 855

APPENDIX H: REFERENCES 857

APPENDIX I: ANSWERS TO ODD-NUMBERED

EXERCISES 859

Chapter 1 859

Chapter 2 861

Chapter 3 862

Chapter 4 863

Chapter 5 863

Chapter 6 865

Chapter 7 866

Chapter 8 867

Chapter 9 868

Chapter 10 871

Chapter 11 872

Chapter 12 877

Chapter 13 878

INDEX 879

Table of Contents | xxi

This page intentionally left blank

Welcome to Data Structures Using C++, Second Edition. Designed for the CS2 C++ course,

this text will provide a breath of fresh air to you and your students. The CS2 course typically

completes the programming requirements of the Computer Science curriculum. This text is a

culmination and development of my classroom notes throughout more than 50 semesters of

teaching successful programming and data structures to computer science students.

This book is a continuation of the work started to write the CS1 book C++ Programming:

From Problem Analysis to Program Design, Fourth Edition. The approach taken in this book to

present the material is similar to the one used in the CS1 book and therefore driven by the

students’ demand for clarity and readability. The material was written and rewritten until

students felt comfortable with it. Most of the examples in this book resulted from student

interaction in the classroom.

This book assumes that you are familiar with the basic elements of C++ such as data types,

control structures, functions and parameters, and arrays. However, if you need to review these

concepts or you have taken Java as a first program language, you will find the relevant material

in Appendix G. If you need to quickly review CS1 topics in more details than given in

Appendix G, you are referred to the C++ programming book by the author listed in the

preceding paragraph and also to Appendix H. In addition, some adequate mathematics

background such as college algebra is required.

Changes in the Second Edition
In the second edition, the following changes have been implemented:

• In Chapter 1, the discussion of algorithm analysis is expanded with additional examples.

• In Chapter 3, a section on creating and manipulating dynamic two-dimensional

arrays, a section on virtual functions, and a section on abstract classes is included.

• To create generic code to process data in linked lists, Chapter 5 uses the concept of

abstract classes to capture the basic properties of linked lists and then derive two

separate classes to process unordered and ordered lists.

• In Chapter 6, a new section on how to use recursion and backtracking to solve

sudoku problems is added.

PREFACE TO SECOND
EDITION

• Chapters 7 and 8 use the concept of abstract classes to capture the basic properties of

stacks and queues and then discuss various implementations of stacks and queues.

• In Chapter 9, the discussion of hashing is expanded with additional examples illustrat-

ing how to resolve collisions.

• In Chapter 10, we have added the Shellsort algorithm.

• Chapter 11 contains a new section on B-trees.

• Chapter 12, on graphs, contains a new section on how to find Euler circuits in a graph.

• Appendix F provides a detailed discussion of the analysis of insertion sort and

quicksort algorithms.

• Throughout the book, new exercises and programming exercises have been added.

These changes were implemented based on comments from the reviewers of the second

proposal and readers of the first edition.

Approach
Intended as a second course in computer programming, this book focuses on the data

structure part as well as OOD. The programming examples given in this book effectively

use OOD techniques to solve and program a particular problem.

Chapter 1 introduces the software engineering principles. After describing the life cycle of a

software, this chapter discusses why algorithm analysis is important and introduces the Big-O

notation used in algorithm analysis. There are three basic principles of OOD—encapsulation,

inheritance, and polymorphism. Encapsulation in C++ is achieved via the use of classes. The

second half of this chapter discusses user-defined classes. If you are familiar with how to create

and use your own classes, you can skip this section. This chapter also discusses a basic OOD

technique to solve a particular problem.

Chapter 2 continues with the principles of OOD and discusses inheritance and two types of

polymorphism. If you are familiar with how inheritance, operator overloading, and templates

work in C++, then you can skip this chapter.

The three basic data types in C++ are simple, structured, and pointers. The book assumes that

you are familiar with the simple data types as well as arrays (a structured data type). The

structured data type class is introduced in Chapter 1. Chapter 3 discusses in detail how the

pointer data type works in C++. This chapter also discusses the relationship between pointers

and classes. Taking advantages of pointers and templates, this chapter explains and develops a

generic code to implement lists using dynamic arrays. Chapter 3 also discusses virtual func-

tions and abstract classes.

C++ is equipped with the Standard Template Library (STL). Among other things, the STL

provides code to process lists (contiguous or linked), stacks, and queues. Chapter 4 discusses

some of the STL’s important features and shows how to use certain tools provided by the

STL in a program. In particular, this chapter discusses the sequence containers vector and

xxiv | Data Structures Using C++, Second Edition

deque. The ensuing chapters explain how to develop your own code to implement and

manipulate data, as well as how to use professionally written code.

Chapter 5 discusses linked lists in detail, by first discussing the basic properties of linked lists

such as item insertion and deletion and how to construct a linked list. This chapter then

develops a generic code to process data in a single linked list. Doubly linked lists are also

discussed in some detail. Linked lists with header and trailer nodes and circular linked lists are

also introduced. This chapter also discusses the STL class list.

Chapter 6 introduces recursion and gives various examples to show how to use recursion to

solve a problem, as well as think in terms of recursion.

Chapters 7 and 8 discuss stacks and queues in detail. In addition to showing how to develop your

own generic codes to implement stacks and queues, these chapters also explain how the STL classes

stack and queue work. The programming code developed in these chapters is generic.

Chapter 9 is concerned with the searching algorithms. After analyzing the sequential search

algorithm, it discusses the binary search algorithm and provides a brief analysis of this

algorithm. After giving a lower bound on comparisons-based search algorithms, this chapter

discusses hashing in detail.

Sorting algorithms such as selection sort, insertion sort, Shellsort, quicksort, mergesort, and

heapsort are introduced and discussed in Chapter 10. Chapter 11 introduces and discusses binary

trees and B-trees. Chapter 12 introduces graphs and discusses graph algorithms such as shortest

path, minimum spanning tree, topological sorting, and how to find Euler circuits in a graph.

Chapter 13 continues with the discussion of STL started in Chapter 4. In particular, it

introduces the STL associative containers and algorithms.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and associa-

tivity of the C++ operators. Appendix C lists the ASCII (American Standard Code for

Information Interchange) and EBCDIC (Extended Binary Code Decimal Interchange) char-

acter sets. Appendix D lists the C++ operators that can be overloaded. Appendix E discusses

some of the most widely used library routines. Appendix F contains the detailed analysis of the

insertion sort and quicksort algorithms. Appendix G has two objectives. One of its objectives is

to provide a quick review of the basic elements of C++. The other objective of Appendix G is,

while giving a review of the basic elements of C++, to compare the basic concepts such as data

types, control structures, functions and parameters, and arrays of the languages C++ and Java.

Therefore, if you have taken Java as a first programming language, Appendix G helps familiarize

you with these basic elements of C++. Appendix H provides a list of references for further

study and to find additional C++ topics not reviewed in Appendix G. Appendix I gives the

answers to odd-numbered exercises in the text.

How to Use This Book
The main objective of this book is to teach data structure topics using C++ as well as to use

OOD to solve a particular problem. To do so, the book discusses data structures such as

linked lists, stacks, queues, and binary trees. C++’s Standard Template Library (STL) also

Preface to Second Edition | xxv

provides the necessary code to implement these data structures. However, our emphasis is to

teach you how to develop your own code. At the same time, we also want you to learn how

to use professionally written code. Chapter 4 of this book introduces STL. In the subsequent

chapters, after explaining how to develop your own code, we also illustrate how to use the

existing STL code. The book can, therefore, be used in various ways. If you are not interested

in STL, say in the first reading, then you can skip Chapter 4 and in the subsequent chapters,

whenever we discuss a particular STL component, you can skip that section.

Chapter 6 discusses recursion. However, Chapter 6 is not a prerequisite for Chapters 7 and 8.

If you read Chapter 6 after these chapters, then you can skip the section ‘‘Removing

Recursion’’ in Chapter 7, and read this section after reading Chapter 6. Even though Chapter

6 is not required to study Chapter 9, ideally, Chapters 9 and 10 should be studied in sequence.

Therefore, we recommend that you should study Chapter 6 before Chapter 9. The following

diagram illustrates the dependency of chapters.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

A dotted arrow means that the chapter is not essential to study the
following chapter.

Chapter 6

Chapter 7

Chapter 8 Chapter 9

Chapter 10

Chapter 11

Chapter 13 Chapter 12

FIGURE 1 Chapter dependency diagram

xxvi | Data Structures Using C++, Second Edition

The features of this book are conducive to independent learning. From beginning to end, the

concepts are introduced at an appropriate pace. The presentation enables students to learn the

material in comfort and with confidence. The writing style of this book is simple and

straightforward. It parallels the teaching style of a classroom. Here is a brief summary of the

various pedagogical features in each chapter:

• Learning objectives offer an outline of C++ programming concepts that will be

discussed in detail within the chapter.

• Notes highlight important facts regarding the concepts introduced in the chapter.

• Visual diagrams, both extensive and exhaustive, illustrate difficult concepts. The

book contains over 295 figures.

• Numbered Examples within each chapter illustrate the key concepts with relevant code.

• Programming Examples are programs featured at the end of each chapter. These

examples contain the accurate, concrete stages of Input, Output, Problem Analysis

and Algorithm Design, and a Program Listing. Moreover, the problems in these

programming examples are solved and programmed using OOD.

• Quick Review offers a summary of the concepts covered within the chapter.

• Exercises further reinforce learning and ensure that students have, in fact, learned the

material.

• Programming Exercises challenge students to write C++ programs with a specified

outcome.

The writing style of this book is simple and straightforward. Before introducing a key

concept, we explain why certain elements are necessary. The concepts introduced are then

explained using examples and small programs.

Each chapter contains two types of programs. First, small programs called out as numbered

Examples are used to explain key concepts. Each line of the programming code in these

examples is numbered. The program, illustrated through a sample run, is then explained line-

by-line. The rationale behind each line is discussed in detail.

As mentioned above, the book also features numerous case studies called Programming

Examples. These Programming Examples form the backbone of the book. The programs

FEATURES OF
THE BOOK

are designed to be methodical and user-friendly. Beginning with Problem Analysis, the

Programming Example is then followed by Algorithm Design. Every step of the algorithm

is then coded in C++. In addition to teaching problem-solving techniques, these detailed

programs show the user how to implement concepts in an actual C++ program. I strongly

recommend that students study the Programming Examples very carefully in order to learn

C++ effectively.

Quick Review sections at the end of each chapter reinforce learning. After reading the

chapter, readers can quickly walk through the highlights of the chapter and then test

themselves using the ensuing Exercises. Many readers refer to the Quick Review as a way

to quickly review the chapter before an exam.

All source code and solutions have been written, compiled, and quality assurance tested.

Programs can be compiled with various compilers such as Microsoft Visual C++ 2008.

xxviii | Data Structures Using C++, Second Edition

The following supplemental materials are available when this book is used in a classroom

setting. All of the teaching tools available with this book are provided to the instructor on a

single CD-ROM.

Electronic Instructor’s Manual
The Instructor’s Manual that accompanies this textbook includes:

• Additional instructional material to assist in class preparation, including suggestions

for lecture topics

• Solutions to all the end-of-chapter materials, including the Programming Exercises

ExamView�

This textbook is accompanied by ExamView, a powerful testing software package that allows

instructors to create and administer printed, computer (LAN-based), and Internet exams.

ExamView includes hundreds of questions that correspond to the topics covered in this text,

enabling students to generate detailed study guides that include page references for further

review. These computer-based and Internet testing components allow students to take exams

at their computers, and save the instructor time because each exam is graded automatically.

PowerPoint Presentations
This book comes with Microsoft PowerPoint slides for each chapter. These are included as a

teaching aid either to make available to students on the network for chapter review, or to be

used during classroom presentations. Instructors can modify slides or add their own slides to

tailor their presentations.

Distance Learning
Cengage Learning is proud to offer online courses in WebCT and Blackboard. For more

information on how to bring distance learning to your course, contact your local Cengage

Learning sales representative.

SUPPLEMENTAL
RESOURCES

Source Code
The source code is available at www.cengage.com/coursetechnology, and also is available on the

Instructor Resources CD-ROM. If an input file is needed to run a program, it is included

with the source code.

Solution Files
The solution files for all programming exercises are available at www.cengage.com/coursetechnology

and are available on the Instructor Resources CD-ROM. If an input file is needed to run a

programming exercise, it is included with the solution file.

xxx | Data Structures Using C++, Second Edition

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

I owe a great deal to the following reviewers who patiently read each page of every chapter of

the current version and made critical comments to improve on the book: Stefano Basagni,

Northeastern University and Roman Tankelevich, Colorado School of Mines. Additionally, I

express thanks to the reviewers of the proposal package: Ted Krovetz, California State

University; Kenneth Lambert, Washington and Lee University; Stephen Scott, University

of Nebraska; and Deborah Silver, Rutgers, The State University of New Jersey. The

reviewers will recognize that their criticisms have not been overlooked, adding meaningfully

to the quality of the finished book. Next, I express thanks to Amy Jollymore, Acquisitions

Editor, for recognizing the importance and uniqueness of this project. All this would not have

been possible without the careful planning of Product Manager Alyssa Pratt. I extend my

sincere thanks to Alyssa, as well as to Content Project Manager Heather Furrow. I also thank

Tintu Thomas of Integra Software Services for assisting us in keeping the project on schedule.

I would like to thank Chris Scriver and Serge Palladino of QA department of Cengage

Learning for patiently and carefully proofreading the text, testing the code, and discovering

typos and errors.

I am thankful to my parents, to whom this book is dedicated, for their blessings. Finally, I

would like to thank my wife Sadhana and my daughter Shelly. They cheered me up whenever

I was overwhelmed during the writing of this book.

I welcome any comments concerning the text. Comments may be forwarded to the following

e-mail address: malik@creighton.edu.

D.S. Malik

ACKNOWLEDGEMENTS

This page intentionally left blank

SOFTWARE ENGINEERING
PRINCIPLES AND C++
CLASSES

IN THIS CHAPTER , YOU WILL :

. Learn about software engineering principles

. Discover what an algorithm is and explore problem-solving techniques

. Become aware of structured design and object-oriented design programming methodologies

. Learn about classes

. Become aware of private, protected, and public members of a class

. Explore how classes are implemented

. Become aware of Unified Modeling Language (UML) notation

. Examine constructors and destructors

. Become aware of abstract data type (ADT)

. Explore how classes are used to implement ADT

1C H A P T E R

Most everyone working with computers is familiar with the term software. Software are
computer programs designed to accomplish a specific task. For example, word processing
software is a program that enables you to write term papers, create impressive-looking
résumés, and even write a book. This book, for example, was created with the help of a
word processor. Students no longer type their papers on typewriters or write them by
hand. Instead, they use word processing software to complete their term papers. Many
people maintain and balance their checkbooks on computers.

Powerful, yet easy-to-use software has drastically changed the way we live and commu-
nicate. Terms such as the Internet, which was unfamiliar just a decade ago, are very
common today. With the help of computers and the software running on them, you
can send letters to, and receive letters from, loved ones within seconds. You no longer
need to send a résumé by mail to apply for a job; in many cases, you can simply submit
your job application via the Internet. You can watch how stocks perform in real time,
and instantly buy and sell them.

Without software a computer is of no use. It is the software that enables you to do things
that were, perhaps, fiction a few years ago. However, software is not created overnight.
From the time a software program is conceived until it is delivered, it goes through
several phases. There is a branch of computer science, called software engineering, which
specializes in this area. Most colleges and universities offer a course in software engineer-
ing. This book is not concerned with the teaching of software engineering principles.
However, this chapter briefly describes some of the basic software engineering principles
that can simplify program design.

Software Life Cycle
A program goes through many phases from the time it is first conceived until the time it is
retired, called the life cycle of the program. The three fundamental stages through which a
program goes are development, use, and maintenance. Usually a program is initially conceived
by a software developer because a customer has some problem that needs to be solved and
the customer is willing to pay money to have it solved. The new program is created in the
software development stage. The next section describes this stage in some detail.

Once the program is considered complete, it is released for the user to use. Once users
start using the program, they most certainly discover problems or have suggestions to
improve it. The problems and/or ideas for improvements are conveyed to the software
developer, and the program goes through the maintenance phase.

In the software maintenance process, the program is modified to fix the (identified)
problems and/or to enhance it. If there are serious/numerous changes, typically, a new
version of the program is created and released for use.

When a program is considered too expensive to maintain, the developer might decide to
retire the program and no new version of the program will be released.

2 | Chapter 1: Software Engineering Principles and C++ Classes

1
The software development phase is the first and perhaps most important phase of the
software life cycle. A program that is well developed will be easy and less expensive to
maintain. The next section describes this phase.

Software Development Phase
Software engineers typically break the software development process into the following
four phases:

• Analysis

• Design

• Implementation

• Testing and debugging

The next few sections describe these four phases in some detail.

Analysis
Analyzing the problem is the first and most important step. This step requires you to do
the following:

• Thoroughly understand the problem.

• Understand the problem requirements. Requirements can include whether
the program requires interaction with the user, whether it manipulates
data, whether it produces output, and what the output looks like.

Suppose that you need to develop a program to make an automated teller
machine (ATM) operational. In the analysis phase, you determine the
functionality of the machine. Here, you determine the necessary opera-
tions performed by the machine, such as withdraw money, deposit
money, transfer money, check account balance, and so on. During this
phase, you also talk to potential customers who would use the machine.
To make it user-friendly, you must understand their requirements and
add any necessary operations.

If the program manipulates data, the programmer must know what the
data is and how it is represented. That is, you need to look at sample data.
If the program produces output, you should know how the results should
be generated and formatted.

• If the problem is complex, divide the problem into subproblems, analyze
each subproblem, and understand each subproblem’s requirements.

Design
After you carefully analyze the problem, the next step is to design an algorithm to solve
the problem. If you broke the problem into subproblems, you need to design an
algorithm for each subproblem.

Software Development Phase | 3

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a
finite amount of time.

STRUCTURED DESIGN

Dividing a problem into smaller subproblems is called structured design. The structured
design approach is also known as top-down design, stepwise refinement, and mod-

ular programming. In structured design, the problem is divided into smaller problems.
Each subproblem is then analyzed, and a solution is obtained to solve the subproblem.
The solutions of all the subproblems are then combined to solve the overall problem.
This process of implementing a structured design is called structured programming.

OBJECT-ORIENTED DESIGN

In object-oriented design (OOD), the first step in the problem-solving process is to
identify the components called objects, which form the basis of the solution, and
determine how these objects interact with one another. For example, suppose you want
to write a program that automates the video rental process for a local video store. The
two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include the movie name, starring actors, producer, production company,
number of copies in stock, and so on. Some of the operations on a video object might
include checking the name of the movie, reducing the number of copies in stock by one
after a copy is rented, and incrementing the number of copies in stock by one after a
customer returns a particular video.

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

OOD has the following three basic principles:

• Encapsulation—The ability to combine data and operations in a single
unit

• Inheritance—The ability to create new (data) types from existing (data)
types

• Polymorphism—The ability to use the same expression to denote
different operations

In C++, encapsulation is accomplished via the use of data types called classes. How classes
are implemented in C++ is described later in this chapter. Chapter 2 discusses inheritance
and polymorphism.

In object-oriented design, you decide what classes you need and their relevant data
members and member functions. You then describe how classes interact with each other.

4 | Chapter 1: Software Engineering Principles and C++ Classes

Implementation
In the implementation phase, you write and compile programming code to implement the
classes and functions that were discovered in the design phase.

This book uses the OOD technique (in conjunction with structured programming)
to solve a particular problem. It contains many case studies—called Programming
Examples—to solve real-world problems.

The final program consists of several functions, each accomplishing a specific goal. Some
functions are part of the main program; others are used to implement various operations
on objects. Clearly, functions interact with each other, taking advantage of each other’s
capabilities. To use a function, the user needs to know only how to use the function and
what the function does. The user should not be concerned with the details of the
function, that is, how the function is written. Let us illustrate this with the help of the
following example.

Suppose that you want to write a function that converts a measurement given in inches
into equivalent centimeters. The conversion formula is 1 inch ¼ 2.54 centimeters. The
following function accomplishes the job:

double inchesToCentimeters(double inches)
{

if (inches < 0)
{

cerr << "The given measurement must be nonnegative." << endl;
return -1.0;

}
else

return 2.54 * inches;
}

The object cerr corresponds to the unbuffered standard error stream. Unlike the

object cout (whose output first goes to the buffer), the output of cerr is immediately

sent to the standard error stream, which is usually the screen.

If you look at the body of the function, you can recognize that if the value of inches
is less than 0, that is, negative, the function returns –1.0; otherwise, the function
returns the equivalent length in centimeters. The user of this function does not need
to know the specific details of how the algorithm that finds the equivalent length in
centimeters is implemented. However, the user must know that in order to get the
valid answer, the input must be a nonnegative number. If the input to this function is
a negative number, the program returns –1.0. This information can be provided as
part of the documentation of this function using specific statements, called precondi-
tions and postconditions.

Precondition: A statement specifying the condition(s) that must be true before the
function is called.

1

Software Development Phase | 5

Postcondition: A statement specifying what is true after the function call is completed.

The precondition and postcondition for the function inchesToCentimeters can be
specified as follows:

//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function
// returns -1.0; otherwise, the function returns the
// equivalent length in centimeters.

double inchesToCentimeters(double inches)
{

if (inches < 0)
{

cerr << "The given measurement must be nonnegative." << endl;
return -1.0;

}
else

return 2.54 * inches;
}

In certain situations, you could use C++’s assert statement to validate the input. For
example, the preceding function can be written as follows:

//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function
// terminates; otherwise, the function returns the
// equivalent length in centimeters.

double inchesToCentimeters(double inches)
{

assert(inches >= 0);
return 2.54 * inches;

}

However, if the assert statement fails, the entire program will terminate, which
might be appropriate if the remainder of the program depends on the execution of
the function. On the other hand, the user can check the value returned by the
function, determine if the returned value is appropriate, and proceed accordingly.
To use the assert function, you need to include the header file cassert in your
program.

To turn off the assert statements in a program, use the preprocessor directive

#define NDEBUG. This directive must be placed before the statement #include

<cassert>.

As you can see, the same function can be implemented differently by different program-
mers. Because the user of a function need not be concerned with the details of the
function, the preconditions and postconditions are specified with the function prototype.
That is, the user is given the following information:

6 | Chapter 1: Software Engineering Principles and C++ Classes

double inchesToCentimeters(double inches);
//Precondition: The value of inches must be nonnegative.
//Postcondition: If the value of inches is < 0, the function
// returns -1.0; otherwise, the function returns the
// equivalent length in centimeters.

As another example, to use a function that searches a list for a specific item, the list must
exist before the function is called. After the search is complete, the function returns true
or false depending on whether the search was successful.

bool search(int list[], int listLength, int searchItem);
//Precondition: The list must exist.
//Postcondition: The function returns true if searchItem is in
// list; otherwise, the function return false.

Testing and Debugging
The term testing refers to testing the correctness of the program; that is, making sure that
the program does what it is supposed to do. The term debugging refers to finding and
fixing the errors, if they exist.

Once a function and/or an algorithm is written, the next step is to verify that it works
properly. However, in a large and complex program, errors almost certainly exist.
Therefore, to increase the reliability of the program, errors must be discovered and fixed
before the program is released to the user.

You can certainly prove this by using some (perhaps mathematical) analysis of the
correctness of a program. However, for large and complex programs, this technique
alone might not be enough because errors can be made in the proof. Therefore, we also
rely on testing to determine the quality of the program. The program is run through a
series of specific tests, called test cases, in an attempt to find problems.

A test case consists of a set of inputs, user actions, or other initial conditions, and the
expected output. Because a test case can be repeated several times, it must be properly
documented. Typically a program manipulates a large set of data. It is, therefore,
impractical (although possible) to create test cases for all possible inputs. For example,
suppose that a program manipulates integers. Clearly, it is not possible to create a test case
for each integer. You can categorize test cases into separate categories, called equivalence
categories. An equivalence category is a set of input values that are likely to produce the
same output. For example, suppose that you have a function that takes an integer as input
and returns true if the integer is nonnegative, and false otherwise. In this case, you can
form two equivalence categories—one consisting of negative numbers and the other
consisting of nonnegative numbers.

There are two types of testing—black-box testing and white-box testing. In black-box
testing, you do not know the internal working of the algorithm or function. You
know only what the function does. Black-box testing is based on inputs and outputs.
The test cases for black-box testing are usually selected by creating equivalence

1

Software Development Phase | 7

categories. If a function works for one input in the equivalence category, it is
expected to work for other inputs in the same category.

Suppose that the function isWithInRange returns a value true if an integer is greater
than or equal to 0 and less than or equal to 100. In black-box testing, the function is
tested on values that surround and fall on the boundaries, called boundary values, as
well as general values from the equivalence categories. For the function isWithInRange,
in black-box testing, the boundary values might be: -1, 0, 1, 99, 100, and 101; and so the
test values might be -500, -1, 0, 1, 50, 99, 100, 101, and 500.

White-box testing relies on the internal structure and implementation of a function or
algorithm. The objective is to ensure that every part of the function or algorithm is
executed at least once. Suppose that you want to ensure whether an if statement works
properly. The test cases must consist of at least one input for which the if statement
evaluates to true and at least one case for which it evaluates to false. Loops and other
structures can be tested similarly.

Algorithm Analysis: The Big-O Notation
Just as a problem is analyzed before writing the algorithm and the computer program,
after an algorithm is designed it should also be analyzed. Usually, there are various ways to
design a particular algorithm. Certain algorithms take very little computer time to
execute, whereas others take a considerable amount of time.

Let us consider the following problem. The holiday season is approaching and a gift
shop is expecting sales to be double or even triple the regular amount. They have hired
extra delivery people to deliver the packages on time. The company calculates the
shortest distance from the shop to a particular destination and hands the route to the
driver. Suppose that 50 packages are to be delivered to 50 different houses. The shop,
while making the route, finds that the 50 houses are one mile apart and are in the same
area. (See Figure 1-1, in which each dot represents a house and the distance between
houses is 1 mile.)

To deliver 50 packages to their destinations, one of the drivers picks up all 50 packages,
drives one mile to the first house and delivers the first package. Then he drives another
mile and delivers the second package, drives another mile and delivers the third package,
and so on. Figure 1-2 illustrates this delivery scheme.

Gift
Shop

...

FIGURE 1-1 Gift shop and each dot representing a house

8 | Chapter 1: Software Engineering Principles and C++ Classes

1

It now follows that using this scheme, the distance driven by the driver to deliver the
packages is:

1þ 1þ 1þ :::þ 1 ¼ 50 miles

Therefore, the total distance traveled by the driver to deliver the packages and then
getting back to the shop is:

50þ 50 ¼ 100 miles

Another driver has a similar route to deliver another set of 50 packages. The driver looks at
the route and delivers the packages as follows: The driver picks up the first package, drives
one mile to the first house, delivers the package, and then comes back to the shop. Next,
the driver picks up the second package, drives 2 miles, delivers the second package, and
then returns to the shop. The driver then picks up the third package, drives 3 miles, delivers
the package, and comes back to the shop. Figure 1-3 illustrates this delivery scheme.

The driver delivers only one package at a time. After delivering a package, the driver comes
back to the shop to pick up and deliver the second package. Using this scheme, the total
distance traveled by this driver to deliver the packages and then getting back to the store is:

2 � ð1þ 2þ 3þ . . .þ 50Þ ¼ 2550 miles

Now suppose that there are n packages to be delivered to n houses, and each house is one
mile apart from each other, as shown in Figure 1-1. If the packages are delivered using the
first scheme, the following equation gives the total distance traveled:

1þ 1þ . . .þ 1þ n ¼ 2n ð1-1Þ
If the packages are delivered using the second method, the distance traveled is:

2 � ð1þ 2þ 3þ . . .þ nÞ ¼ 2 � ðnðnþ 1Þ=2Þ ¼ n2 þ n ð1-2Þ

Gift
Shop

...

FIGURE 1-3 Another package delivery scheme

Gift
Shop

...

FIGURE 1-2 Package delivering scheme

Algorithm Analysis: The Big-O Notation | 9

In Equation (1-1), we say that the distance traveled is a function of n. Let us consider
Equation (1-2). In this equation, for large values of n, we will find that the term consisting
of n2 will become the dominant term and the term containing n will be negligible. In this
case, we say that the distance traveled is a function of n2. Table 1-1 evaluates Equations
(1-1) and (1-2) for certain values of n. (The table also shows the value of n2.)

While analyzing a particular algorithm, we usually count the number of operations
performed by the algorithm. We focus on the number of operations, not on the actual
computer time to execute the algorithm. This is because a particular algorithm can be
implemented on a variety of computers and the speed of the computer can affect the
execution time. However, the number of operations performed by the algorithm would
be the same on each computer. Let us consider the following examples.

EXAMPLE 1-1

Consider the following algorithm. (Assume that all variables are properly declared.)

cout << "Enter two numbers"; //Line 1

cin >> num1 >> num2; //Line 2

if (num1 >= num2) //Line 3
max = num1; //Line 4

else //Line 5
max = num2; //Line 6

cout << "The maximum number is: " << max << endl; //Line 7

Line 1 has one operation, <<; Line 2 has two operations; Line 3 has one operation, >=; Line 4
has one operation, =; Line 6 has one operation; and Line 7 has three operations. Either Line 4
or Line 6 executes. Therefore, the total number of operations executed in the preceding code
is 1 + 2 + 1 + 1 + 3 ¼ 8. In this algorithm, the number of operations executed is fixed.

TABLE 1-1 Various values of n, 2n, n2, and n2 + n

n 2n n2 n2 + n

1 2 1 2

10 20 100 110

100 200 10,000 10,100

1000 2000 1,000,000 1,001,000

10,000 20,000 100,000,000 100,010,000

10 | Chapter 1: Software Engineering Principles and C++ Classes

1EXAMPLE 1-2

Consider the following algorithm:

cout << "Enter positive integers ending with -1" << endl; //Line 1

count = 0; //Line 2
sum = 0; //Line 3

cin >> num; //Line 4

while (num != -1) //Line 5
{

sum = sum + num; //Line 6
count++; //Line 7
cin >> num; //Line 8

}

cout << "The sum of the numbers is: " << sum << endl; //Line 9

if (count != 0) //Line 10
average = sum / count; //Line 11

else //Line 12
average = 0; //Line 13

cout << "The average is: " << average << endl; //Line 14

This algorithm has five operations (Lines 1 through 4) before the while loop. Similarly,
there are nine or eight operations after the while loop, depending on whether Line 11 or
Line 13 executes.

Line 5 has one operation, and four operations within the while loop (Lines 6 through 8).
Thus, Lines 5 through 8 have five operations. If the while loop executes 10 times, these
five operations execute 10 times. One extra operation is also executed at Line 5 to
terminate the loop. Therefore, the number of operations executed is 51 from Lines 5
through 8.

If the while loop executes 10 times, the total number of operations executed is:

10 � 5þ 1þ 5þ 9 or 10 � 5þ 1þ 5þ 8

that is,

10 � 5þ 15 or 10 � 5þ 14

We can generalize it to the case when the while loop executes n times. If the while loop
executes n times, the number of operations executed is:

5nþ 15 or 5nþ 14

In these expressions, for very large values of n, the term 5n becomes the dominating term
and the terms 15 and 14 become negligible.

Algorithm Analysis: The Big-O Notation | 11

Usually, in an algorithm, certain operations are dominant. For example, in the preceding
algorithm, to add numbers, the dominant operation is in Line 6. Similarly, in a search
algorithm, because the search item is compared with the items in the list, the dominant
operations would be comparison, that is, the relational operation. Therefore, in the case
of a search algorithm, we count the number of comparisons. For another example, suppose
that we write a program to multiply matrices. The multiplication of matrices involves
addition and multiplication. Because multiplication takes more computer time to execute,
to analyze a matrix multiplication algorithm, we count the number of multiplications.

In addition to developing algorithms, we also provide a reasonable analysis of each
algorithm. If there are various algorithms to accomplish a particular task, the algorithm
analysis allows the programmer to choose between various options.

Suppose that an algorithm performs f(n) basic operations to accomplish a task, where n is
the size of the problem. Suppose that you want to determine whether an item is in a list.
Moreover, suppose that the size of the list is n. To determine whether the item is in the
list, there are various algorithms, as you will see in Chapter 9. However, the basic method
is to compare the item with the items in the list. Therefore, the performance of the
algorithm depends on the number of comparisons.

Thus, in the case of a search, n is the size of the list and f(n) becomes the count function,
that is, f(n) gives the number of comparisons done by the search algorithm. Suppose that,
on a particular computer, it takes c units of computer time to execute one operation.
Thus, the computer time it would take to execute f(n) operations is cf(n). Clearly, the
constant c depends on the speed of the computer and, therefore, varies from computer to
computer. However, f(n), the number of basic operations, is the same on each computer.
If we know how the function f(n) grows as the size of the problem grows, we can
determine the efficiency of the algorithm. Consider Table 1-2.

TABLE 1-2 Growth rates of various functions

n log2n n log2n n2 2n

1 0 0 1 2

2 1 2 2 4

4 2 8 16 16

8 3 24 64 256

16 4 64 256 65,536

32 5 160 1024 4,294,967,296

12 | Chapter 1: Software Engineering Principles and C++ Classes

Table 1-2 shows how certain functions grow as the parameter n, that is, the problem size,
grows. Suppose that the problem size is doubled. From Table 1-2, it follows that if the
number of basic operations is a function of f(n) ¼ n2, the number of basic operations is
quadrupled. If the number of basic operations is a function of f(n) ¼ 2n, the number of
basic operations is squared. However, if the number of operations is a function of f(n) ¼
log2n, the change in the number of basic operations is insignificant.

Suppose that a computer can execute 1 billion basic operations per second. Table 1-3
shows the time that the computer takes to execute f(n) basic operations.

In Table 1-3, 1ms ¼ 10-6 seconds and 1ms ¼ 10-3 seconds.

1

TABLE 1-3 Time for f(n) instructions on a computer that executes 1 billion instructions
per second

n f (n) ¼ n f (n) ¼ log2n f (n) ¼ nlog2n f (n) ¼ n 2 f (n) ¼ 2n

10 0.01ms 0.003ms 0.033ms 0.1ms 1ms

20 0.02ms 0.004ms 0.086ms 0.4ms 1ms

30 0.03ms 0.005ms 0.147ms 0.9ms 1s

40 0.04ms 0.005ms 0.213ms 1.6ms 18.3min

50 0.05ms 0.006ms 0.282ms 2.5ms 13 days

100 0.10ms 0.007ms 0.664ms 10ms 4�1013 years

1000 1.00ms 0.010ms 9.966ms 1ms

10,000 10ms 0.013ms 130ms 100ms

100,000 0.10ms 0.017ms 1.67ms 10s

1,000,000 1 ms 0.020ms 19.93ms 16.7m

10,000,000 0.01s 0.023ms 0.23s 1.16 days

100,000,000 0.10s 0.027ms 2.66s 115.7 days

Algorithm Analysis: The Big-O Notation | 13

Figure 1-4 shows the growth rate of functions in Table 1-3.

The remainder of this section develops a notation that shows how a function f(n) grows as
n increases without bound. That is, we develop a notation that is useful in describing the
behavior of the algorithm, which gives us the most useful information about the algo-
rithm. First, we define the term asymptotic.

Let f be a function of n. By the term asymptotic, we mean the study of the function f as
n becomes larger and larger without bound.

Consider the functions g(n) ¼ n2 and f(n) ¼ n2 + 4n + 20. Clearly, the function g does not
contain any linear term, that is, the coefficient of n in g is zero. Consider Table 1-4.

0
0

2

4

6

8

10

2 4
n

f (n)

f (n) = n2

f (n) = 2n

f (n) = nlog2n

f (n) = log2n

f (n) = n

6 8 10

FIGURE 1-4 Growth rate of various functions

TABLE 1-4 Growth rate of n2 and n2 + 4n + 20

n g (n) ¼ n 2 f (n) ¼ n 2 + 4n + 20

10 100 160

50 2500 2720

100 10,000 10,420

1000 1,000,000 1,004,020

10,000 100,000,000 100,040,020

14 | Chapter 1: Software Engineering Principles and C++ Classes

Clearly, as n becomes larger and larger the term 4n + 20 in f(n) becomes insignificant, and
the term n2 becomes the dominant term. For large values of n, we can predict the
behavior of f(n) by looking at the behavior of g(n). In algorithm analysis, if the complexity
of a function can be described by the complexity of a quadratic function without the
linear term, we say that the function is of O(n2), called Big-O of n2.

Let f and g be real-valued functions. Assume that f and g are nonnegative, that is, for all
real numbers n, f(n) � 0 and g(n) � 0.

Definition: We say that f(n) is Big-O of g(n), written f(n) ¼ O(g(n)), if there exists
positive constants c and n0 such that f(n) � cg(n) for all n � n0.

EXAMPLE 1-3

Let f(n) ¼ a, where a is a nonnegative real number and n � 0. Note that f is a constant
function. Now

f(n) ¼ a � a � 1 for all n � a.

Let c ¼ a, n0 ¼ a, and g(n) ¼ 1. Then f(n) � cg(n) for all n � n0. It now follows that f(n) ¼
O(g(n)) ¼ O(1).

From Example 1-3, it follows that if f is a nonnegative constant function, then f is O(1).

EXAMPLE 1-4

Let f(n) ¼ 2n + 5, n � 0. Note that

f(n) ¼ 2n + 5 � 2n + n ¼ 3n for all n � 5.

Let c ¼ 3, n0 ¼ 5, and g(n) ¼ n. Then f(n) � cg(n) for all n � 5. It now follows that f(n) ¼
O(g(n)) ¼ O(n).

EXAMPLE 1-5

Let f(n) ¼ n2+ 3n + 2, g(n) ¼ n2, n � 0. Note that 3n + 2 � n2 for all n � 4. This implies
that

f(n) ¼ n2+ 3n + 2 � n2+ n2 � 2n2¼ 2g(n) for all n � 4.

Let c¼ 2 and n0¼ 4. Then f(n)� cg(n) for all n� 4. It now follows that f(n)¼O(g(n))¼O(n2).

1

Algorithm Analysis: The Big-O Notation | 15

In general, we can prove the following theorem. Here we state the theorem without proof.

Theorem: Let f(n) be a nonnegative real-valued function such that

f(n) ¼ amn
m + am�1n

m�1 + � � � +a1n + a0,

where ai’s are real numbers, am 6¼ 0, n � 0, and m is a nonnegative integer. Then f(n) ¼
O(nm).

In Example 1-6, we use the preceding theorem to establish the Big-O of certain functions.

EXAMPLE 1-6

In the following, f(n) is a nonnegative real-valued function.

Function Big-O

f (n) ¼ an + b, where a and b are real numbers and a is nonzero. f (n) ¼ O (n)

f (n) ¼ n2 + 5n + 1 f (n) ¼ O (n2)

f (n) ¼ 4n6 + 3n3 + 1 f (n) ¼ O (n6)

f (n) ¼ 10n7 + 23 f (n) ¼ O (n7)

f (n) ¼ 6n15 f (n) ¼ O (n15)

EXAMPLE 1-7

Suppose that f(n) ¼ 2log2n + a, where a is a real number. It can be shown that f(n) ¼
O(log2n).

EXAMPLE 1-8

Consider the following code, where m and n are int variables and their values are
nonnegative:

for (int i = 0; i < m; i++) //Line 1
for (int j = 0; j < n; j++) //Line 2

cout << i * j << endl; //Line 3

This code contains nested for loops. The outer for loop, at Line 1, executes m times.
For each iteration of the outer loop, the inner loop, at Line 2, executes n times. For each
iteration of the inner loop, the output statement in Line 3 executes. It follows that the
total number of iterations of the nested for loop is mn. So the number of times the
statement in Line 3 executes is mn. Therefore, this algorithm is O(mn). Note that if m ¼
n, then this algorithm is O(n2).

16 | Chapter 1: Software Engineering Principles and C++ Classes

1
Table 1-5 shows some common Big-O functions that appear in the algorithm analysis.
Let f(n) ¼ O(g(n)) where n is the problem size.

It can be shown that

O (1) � O (log2n) � O (n) � O (nlog2n) � O (n2) � O (2n).

Classes
In this section, we review C++ classes. If you are familiar with how classes are imple-
mented in C++, you can skip this section.

Recall that in OOD, the first step is to identify the components called objects; an object
combines data and the operations on that data in a single unit, called encapsulation. In
C++, the mechanism that allows you to combine data and the operations on that data in a
single unit is called a class. A class is a collection of a fixed number of components. The
components of a class are called the members of the class.

The general syntax for defining a class is

class classIdentifier
{

class members list
};

TABLE 1-5 Some Big-O functions that appear in algorithm analysis

Function g (n) Growth rate of f (n)

g (n) ¼ 1
The growth rate is constant and so does not depend on n, the size of the
problem.

g (n) ¼ log2n
The growth rate is a function of log2n. Because a logarithm function grows
slowly, the growth rate of the function f is also slow.

g (n) ¼ n
The growth rate is linear. The growth rate of f is directly proportional to the
size of the problem.

g (n) ¼ nlog2n The growth rate is faster than the linear algorithm.

g (n) ¼ n2
The growth rate of such functions increases rapidly with the size of the
problem. The growth rate is quadrupled when the problem size is doubled.

g (n) ¼ 2n The growth rate is exponential. The growth rate is squared when the problem
size is doubled.

Classes | 17

where class members list consists of variable declarations and/or functions. That is, a
member of a class can be either a variable (to store data) or a function.

• If a member of a class is a variable, you declare it just like any other
variable. Furthermore, in the definition of the class, you cannot initialize
a variable when you declare it.

• If a member of a class is a function, you typically use the function
prototype to define that member.

• If a member of a class is a function, it can (directly) access any member of
the class—data members and function members. That is, when you write
the definition of the member function, you can directly access any data
member of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

In C++, class is a reserved word, and it defines only a data type; no memory is allocated. It
announces the declaration of a class.Moreover, note the semicolon (;) after the right brace. The
semicolon is part of the syntax. A missing semicolon, therefore, will result in a syntax error.

The members of a class are classified into three categories: private, public, and
protected, called member access specifiers. This chapter mainly discusses the first two
types—that is, private and public.

Following are some facts about private and public members of a class:

• By default, all members of a class are private.

• If a member of a class is private, you cannot access it outside the class.

• A public member is accessible outside the class.

• To make a member of a class public, you use the member access
specifier public with a colon.

In C++, private, protected, and public are reserved words.

EXAMPLE 1-9

Suppose that we want to define a class, clockType, to implement the time of day in a
program. Furthermore, suppose that the time is represented as a set of three integers: one
to represent the hours, one to represent the minutes, and one to represent the seconds.
We also want to perform the following operations on the time:

1. Set the time.

2. Return the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare two times for equality.

18 | Chapter 1: Software Engineering Principles and C++ Classes

From this discussion, it is clear that the class clockType has 10 members: three data
members and seven function members.

Some members of the class clockType will be private; others will be public.
Deciding which member to make private and which to make public depends on
the nature of the member. The general rule is that any member that needs to be accessed
outside the class is declared public; any member that should not be accessed directly by
the user should be declared private. For example, the user should be able to set the time
and print the time. Therefore, the members that set the time and print the time should be
declared public.

Similarly, the members to increment the time and compare the time for equality should
be declared public. On the other hand, to control the direct manipulation of the data
members hr, min, and sec, we will declare these data members private. Furthermore,
note that if the user has direct access to the data members, member functions such as
setTime are not needed.

The following statements define the class clockType:

class clockType
{
public:

void setTime(int hours, int minutes, int seconds);
//Function to set the time
//The time is set according to the parameters
//Postcondition: hr = hours; min = minutes; sec = seconds
// The function checks whether the values of hours,
// minutes, and seconds are valid. If a value is invalid,
// the default value 0 is assigned.

void getTime(int& hours, int& minutes, int& seconds) const;
//Function to return the time
//Postcondition: hours = hr; minutes = min; seconds = sec

void printTime() const;
//Function to print the time
//Postcondition: Time is printed in the form hh:mm:ss.

void incrementSeconds();
//Function to increment the time by one second
//Postcondition: The time is incremented by one second.
// If the before-increment time is 23:59:59, the time
// is reset to 00:00:00.

void incrementMinutes();
//Function to increment the time by one minute
//Postcondition: The time is incremented by one minute.
// If the before-increment time is 23:59:53, the time
// is reset to 00:00:53.

1

Classes | 19

void incrementHours();
//Function to increment the time by one hour
//Postcondition: The time is incremented by one hour.
// If the before-increment time is 23:45:53, the time
// is reset to 00:45:53.

bool equalTime(const clockType& otherClock) const;
//Function to compare the two times
//Postcondition: Returns true if this time is equal to
// otherClock; otherwise, returns false

private:
int hr; //stores the hours
int min; //store the minutes
int sec; //store the seconds

};

We note the following in the definition of the class clockType:

• The class clockType has seven function members: setTime, getTime,
printTime, incrementSeconds, incrementMinutes, incrementHours,
and equalTime. It has three data members: hr, min, and sec.

• The three data members—hr, min, and sec—are private to the class and
cannot be accessed outside the class.

• The seven function members—setTime, getTime, printTime,
incrementSeconds, incrementMinutes, incrementHours, and
equalTime—can directly access the data members (hr, min, and sec). In
otherwords, we do not pass datamembers as parameters tomember functions.

• In the function equalTime, the parameter otherClock is a constant
reference parameter. That is, in a call to the function equalTime, the
parameter otherClock receives the address of the actual parameter, but
otherClock cannot modify the value of the actual parameter. You could
have declared otherClock as a value parameter, but that would require
otherClock to copy the value of the actual parameter, which could result
in poor performance. (For an explanation, see the section, ‘‘Reference
Parameters and Class Objects (Variables)’’ located later in this chapter.)

• The word const at the end of the member functions getTime,
printTime, and equalTime specifies that these functions cannot modify
the data members of a variable of type clockType.

(Order of public and private members of a class) C++ has no fixed order in which you

declare public and privatemembers; you can declare them in any order. The only thing

you need to remember is that, by default, all members of a class areprivate. Youmust use

the public label to make a member available for public access. If you decide to declare

the privatemembers after the publicmembers (as is done in the case of clockType),

you must use the private label to begin the declaration of the private members.

20 | Chapter 1: Software Engineering Principles and C++ Classes

In the definition of the class clockType, all data members are private and all

function members are public. However, a function member can also be private.
For example, if a member function is used only to implement other member functions

of the class, and the user does not need to access this function, you make it private.

Similarly, a data member of a class can also be public.

Note that we have not yet written the definitions of the function members of the class

clockType. You will learn how to write them shortly.

The function setTime sets the three data members—hr, min, and sec—to a given value. The
given values are passed as parameters to the function setTime. The function printTime prints
the time, that is, the values of hr, min, and sec. The function incrementSeconds increments
the time by one second, the function incrementMinutes increments the time by one
minute, the function incrementHours increments the time by one hour, and the function
equalTime compares the two times for equality.

Constructors
C++ does not automatically initialize variables when they are declared. Therefore, when
an object is instantiated, there is no guarantee that the data members of the object will be
initialized. To guarantee that the instance variables of a class are initialized, you use
constructors. There are two types of constructors: with parameters and without para-
meters. The constructor without parameters is called the default constructor.

Constructors have the following properties:

• The name of a constructor is the same as the name of the class.

• A constructor, even though it is a function, has no type. That is, it is
neither a value-returning function nor a void function.

• A class can have more than one constructor. However, all constructors of
a class have the same name.

• If a class has more than one constructor, the constructors must have
different formal parameter lists. That is, either they have a different
number of formal parameters or, if the number of formal parameters is
the same, the data type of the formal parameters, in the order you list,
must differ in at least one position.

• Constructors execute automatically when a class object enters its scope.
Because they have no types, they cannot be called like other functions.

• Which constructor executes depends on the types of values passed to the
class object when the class object is declared.

1

Classes | 21

Let us extend the definition of the class clockType by including two constructors:

class clockType
{
public:

//Place the function prototypes of the functions setTime,
//getTime, printTime, incrementSeconds, incrementMinutes,
//incrementHours, and equalTime as described earlier, here.

clockType(int hours, int minutes, int seconds);
//Constructor with parameters
//The time is set according to the parameters.
//Postconditions: hr = hours; min = minutes; sec = seconds
// The constructor checks whether the values of hours,
// minutes, and seconds are valid. If a value is invalid,
// the default value 0 is assigned.

clockType();
//Default constructor with parameters
//The time is set to 00:00:00.
//Postcondition: hr = 0; min = 0; sec = 0

private:
int hr; //stores the hours
int min; //store the minutes
int sec; //store the seconds

};

Unified Modeling Language Diagrams
A class and its members can be described graphically using a notation known as Unified

Modeling Language (UML) notation. For example, Figure 1-5 shows the UML class
diagram of the class clockType.

clockType

–hr: int
–min: int
–sec: int

+setTime(int, int, int): void
+getTime(int&, int&, int&) const: void
+printTime() const: void
+incrementSeconds(): int
+incrementMinutes(): int
+incrementHours(): int
+equalTime(clockType) const: bool
+clockType(int, int, int)
+clockType()

FIGURE 1-5 UML class diagram of the class clockType

22 | Chapter 1: Software Engineering Principles and C++ Classes

1
The top box contains the name of the class. The middle box contains the data members and
their data types. The last box contains the member function name, parameter list, and the
return type of the function. A + (plus) sign in front of a member indicates that this member is
a public member; a – (minus) sign indicates that this is a private member. The symbol #
before the member name indicates that the member is a protected member.

Variable (Object) Declaration
Once a class is defined, you can declare variables of that type. In C++ terminology, a class
variable is called a class object or class instance. To help you become familiar with this
terminology, fromnowonwewill use the term class object, or simplyobject, for a class variable.

A class can have both types of constructors—default constructor and constructors with
parameters. Therefore, when you declare a class object, either the default constructor
executes or the constructor with parameters executes. The general syntax for declaring a
class object that invokes the default constructor is:

className classObjectName;

For example, the statement

clockType myClock;

declares myClock to be an object of type clockType. In this case, the default constructor
executes and the instance variables of myClock are initialized to 0.

If you declare an object and want the default constructor to be executed, the empty

parentheses after the object name are not required in the object declaration statement. In

fact, if you accidentally include the empty parentheses, the compiler generates a syntax error

message. For example, the following statement to declare the object myClock is illegal:

clockType myClock(); //illegal object declaration

The general syntax for declaring a class object that invokes a constructor with a parameter is

className classObjectName(argument1, argument2, ...);

where each of argument1, argument2, and so on is either a variable or an expression.
Note the following:

• The number of arguments and their type should match the formal
parameters (in the order given) of one of the constructors.

• If the type of the arguments does not match the formal parameters of any
constructor (in the order given), C++ uses type conversion and looks for
the best match. For example, an integer value might be converted to a
floating-point value with a zero decimal part. Any ambiguity will result
in a compile-time error.

Classes | 23

Consider the following statement:

clockType myClock(5, 12, 40);

This statement declares the object myClock of type clockType. Here, we are passing
three values of type int, which matches the type of the formal parameters of the
constructor with a parameter. Therefore, the constructor with parameters of the class

clockType executes and the three instance variables of the object myClock are set to 5,
12, and 40.

Consider the following statements that declare two objects of type clockType:

clockType myClock(8, 12, 30);
clockType yourClock(12, 35, 45);

Each object has 10 members: seven member functions and three instance variables. Each
object has separate memory allocated for hr, min, and sec.

In actuality, memory is allocated only for the instance variables of each class object. The
C++ compiler generates only one physical copy of a member function of a class, and each
class object executes the same copy of the member function.

Accessing Class Members
Once an object of a class is declared, it can access the members of the class. The general
syntax for an object to access a member of a class is:

classObjectName.memberName

In C++, the dot, . (period), is an operator called the member access operator.

The class members that a class object can access depend on where the object is declared.

• If the object is declared in the definition of a member function of the
class, the object can access both the public and private members. (We
will elaborate on this when we write the definition of the member
function equalTime of the class clockType in the section ‘‘Imple-
mentation of Member Functions,’’ later in this chapter.)

• If the object is declared elsewhere (for example, in a user’s program), the
object can access only the public members of the class.

Example 1-10 illustrates how to access the members of a class.

EXAMPLE 1-10

Suppose we have the following declaration (say, in a user’s program):

clockType myClock;
clockType yourClock;

24 | Chapter 1: Software Engineering Principles and C++ Classes

Consider the following statements:

myClock.setTime(5, 2, 30);
myClock.printTime();

if (myClock.equalTime(yourClock))
.
.
.

These statements are legal; that is, they are syntactically correct.

In the first statement, myClock.setTime(5, 2, 30);, the member function setTime is
executed. The values 5, 2, and 30 are passed as parameters to the function setTime, and
the function uses these values to set the values of the three instance variables hr, min, and
sec of myClock to 5, 2, and 30, respectively. Similarly, the second statement executes
the member function printTime and outputs the contents of the three instance variables
of myClock.

In the third statement, the member function equalTime executes and compares the three
instance variables of myClock to the corresponding instance variables of yourClock.
Because in this statement equalTime is a member of the object myClock, it has direct
access to the three instance variables of myClock. So it needs one more object, which in
this case is yourClock, to compare. This explains why the function equalTime has only
one parameter.

The objects myClock and yourClock can access only public members of the class.
Thus, the following statements are illegal because hr and min are declared as private
members of the class clockType and, therefore, cannot be accessed by the objects
myClock and yourClock:

myClock.hr = 10; //illegal
myClock.min = yourClock.min; //illegal

Implementation of Member Functions
When we defined the class clockType, we included only the function prototype for
the member functions. For these functions to work properly, we must write the related
algorithms. One way to implement these functions is to provide the function definition
rather than the function prototype in the class itself. Unfortunately, the class definition
would then be long and difficult to comprehend. Another reason for providing function
prototypes instead of function definitions relates to information hiding; that is, we want
to hide the details of the operations on the data.

Next, let us write the definitions of the member functions of the class clockType. That
is, we will write the definitions of the functions setTime, getTime, printTime,
incrementSeconds, equalTime, and so on. Because the identifiers setTime, printTime,

1

Classes | 25

and so forth are local to the class, we cannot reference them (directly) outside the class.
To reference these identifiers, we use the scope resolution operator, :: (double colon).
In the function definition’s heading, the name of the function is the name of the class, followed
by the scope resolution operator, followed by the function name. For example, the definition
of the function setTime is as follows:

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

Note that the definition of the function setTime checks for the valid values of hours,
minutes, and seconds. If these values are out of range, the instance variables hr, min,
and sec are initialized to 0.

Suppose that myClock is an object of type clockType (as declared previously). The
object myClock has three instance variables. Consider the following statement:

myClock.setTime(3, 48, 52);

In the statement myClock.setTime(3, 48, 52);, setTime is accessed by the object
myClock. Therefore, the three variables—hr, min, and sec—to which the body of the
function setTime refers, are the three instance variables of myClock. Thus, the values 3,
48, and 52, which are passed as parameters in the preceding statement, are assigned to the
three instance variables of myClock by the function setTime (see the body of the
function setTime). After the previous statement executes, the object myClock is as
shown in Figure 1-6.

hr 3

min 48

sec 52

myClock

FIGURE 1-6 Object myClock after the statement myClock.setTime(3, 48, 52); executes

26 | Chapter 1: Software Engineering Principles and C++ Classes

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow.

void clockType::getTime(int& hours, int& minutes, int& seconds) const
{

hours = hr;
minutes = min;
seconds = sec;

}

void clockType::printTime() const
{

if (hr < 10)
cout << "0";

cout << hr << ":";

if (min < 10)
cout << "0";

cout << min << ":";

if (sec < 10)
cout << "0";

cout << sec;
}

void clockType::incrementHours()
{

hr++;
if (hr > 23)

hr = 0;
}

void clockType::incrementMinutes()
{

min++;
if (min > 59)
{

min = 0;
incrementHours(); //increment hours

}
}

void clockType::incrementSeconds()
{

sec++;

if (sec > 59)
{

sec = 0;
incrementMinutes(); //increment minutes

}
}

1

Classes | 27

From the definitions of the functions incrementMinutes and incrementSeconds, it is
clear that a member function of a class can call other member functions of the class.

The function equalTime has the following definition:

bool clockType::equalTime(const clockType& otherClock) const
{

return (hr == otherClock.hr
&& min == otherClock.min
&& sec == otherClock.sec);

}

Let us see how the member function equalTime works.

Suppose that myClock and yourClock are objects of type clockType, as declared pre-
viously. Further suppose that we have myClock and yourClock, as shown in Figure 1-7.

Consider the following statement:

if (myClock.equalTime(yourClock))
.
.
.

In the expression

myClock.equalTime(yourClock)

the object myClock accesses the member function equalTime. Because otherClock is a
reference parameter, the address of the actual parameter yourClock is passed to the
formal parameter otherClock, as shown in Figure 1-8.

hr 14

min 25

sec 54

yourClockhr 14

min 8

sec 25

myClock

FIGURE 1-7 Objects myClock and yourClock

hr 14

min 25

sec 54

yourClockhr 14

min 8

sec 25

myClock

otherClock

equalTime

FIGURE 1-8 Object myClock and parameter otherClock

28 | Chapter 1: Software Engineering Principles and C++ Classes

1
The instance variables hr, min, and sec of otherClock have the values 14, 25, and 54,
respectively. In other words, when the body of the function equalTime executes, the
value of otherClock.hr is 14, the value of otherClock.min is 25, and the value of
otherClock.sec is 54. The function equalTime is a member of myClock. When the
function equalTime executes, the variables hr, min, and sec in the body of the function
equalTime are the instance variables of the variable myClock. Therefore, the member hr
of myClock is compared with otherClock.hr, the member min of myClock is com-
pared with otherClock.min, and the member sec of myClock is compared with
otherClock.sec.

Once again, from the definition of the function equalTime, it is clear why this function
has only one parameter.

Let us again look at the definition of the function equalTime. Notice that within the
definition of this function, the object otherClock accesses the instance variables hr, min,
and sec. However, these instance variables are private. So is there any violation? The
answer is no. The function equalTime is a member of the class clockType and hr,
min, and sec are the instance variables. Moreover, otherClock is an object of type
clockType. Therefore, the object otherClock can access its private instance variables
within the definition of the function equalTime.

The same is true for any member function of a class. In general, when you write the
definition of a member function, say dummyFunction, of a class, say dummyClass, and
the function uses an object, dummyObject of the class dummyClass, then within the
definition of dummyFunction, the object dummyObject can access its private instance
variables (in fact, any private member of the class).

This definition of the class clockType includes two constructors: one with three
parameters and one without any parameters. Let us now write the definitions of these
constructors.

clockType::clockType() //default constructor
{

hr = 0;
min = 0;
sec = 0;

}

clockType::clockType(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

Classes | 29

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

From the definitions of these constructors, it follows that the default constructor sets the
three instance variables—hr, min, and sec—to 0. Also, the constructor with parameters
sets the instance variables to whatever values are assigned to the formal parameters.
Moreover, we can write the definition of the constructor with parameters by calling
the function setTime, as follows:

clockType::clockType(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

Once a class is properly defined and implemented, it can be used in a program. A
program or software that uses and manipulates the objects of a class is called a client

of that class.

When you declare objects of the class clockType, every object has its own copy of the
instance variables hr, min, and sec. In object-oriented terminology, variables such as hr,
min, and sec are called instance variables of the class because every object has its own
instance of the data.

Reference Parameters and Class Objects (Variables)
Recall that when a variable is passed by value, the formal parameter copies the value
of the actual parameter. That is, memory to copy the value of the actual parameter
is allocated for the formal parameter. As a parameter, a class object can be passed
by value.

Suppose that a class has several instance variables requiring a large amount of memory to
store data, and you need to pass a variable by value. The corresponding formal parameter
then receives a copy of the data of the variable. That is, the compiler must allocate
memory for the formal parameter, so as to copy the value of the instance variables of the
actual parameter. This operation might require, in addition to a large amount of storage
space, a considerable amount of computer time to copy the value of the actual parameter
into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only
the address of the actual parameter. Therefore, an efficient way to pass a variable as a
parameter is by reference. If a variable is passed by reference, then when the formal
parameter changes, the actual parameter also changes. Sometimes, however, you do not
want the function to be able to change the values of the instance variables. In C++, you
can pass a variable by reference and still prevent the function from changing its value by
using the keyword const in the formal parameter declaration. As an example, consider
the following function definition:

30 | Chapter 1: Software Engineering Principles and C++ Classes

1
void testTime(const clockType& otherClock)
{

clockType dClock;
.
.
.

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For
example, after the following statement executes, the value of myClock will not be altered:

testTime(myClock);

Generally, if you want to declare a class object as a value parameter, you declare it as a
reference parameter using the keyword const, as described previously.

Recall that if a formal parameter is a value parameter, within the function definition you
can change the value of the formal parameter. That is, you can use an assignment
statement to change the value of the formal parameter (which, of course, would have
no effect on the actual parameter). However, if a formal parameter is a constant reference
parameter, you cannot use an assignment statement to change its value within the
function, nor can you use any other function to change its value. Therefore, within
the definition of the function testTime, you cannot alter the value of otherClock. For
example, the following would be illegal in the definition of the function testTime:

otherClock.setTime(5, 34, 56); //illegal
otherClock = dClock; //illegal

BUILT-IN OPERATIONS ON CLASSES

The two built-in operations that are defined for class objects are member access (.) and
assignment (=). You have seen how to access an individual member of a class by using the
name of the class object, then a dot, and then the member name.

We now show how an assignment statement works with the help of an example.

Assignment Operator and Classes
Suppose that myClock and yourClock are variables of type clockType as defined
previously. The statement

myClock = yourClock; //Line 1

copies the value of yourClock into myClock. That is, the value of yourClock.hr is copied
into myClock.hr; the value of yourClock.min is copied into myClock.min; and the value
of yourClock.sec is copied into myClock.sec. In other words, the values of the three
instance variables of yourClock are copied into the corresponding instance variables of
myClock. Therefore, an assignment statement performs a memberwise copy.

Classes | 31

Class Scope
A class object can be either automatic (that is, created each time the control reaches its
declaration, and destroyed when the control exits the surrounding block) or static (that is,
created once, when the control reaches its declaration, and destroyed when the program
terminates). Also, you can declare an array of class objects. A class object has the same
scope as other variables. A member of a class is local to the class. You access a
(public) class member outside the class by using the class object name and the
member access operator (.).

Functions and Classes
The following rules describe the relationship between functions and classes:

• Class objects can be passed as parameters to functions and returned as
function values.

• As parameters to functions, class objects can be passed either by value or
by reference.

• If a class object is passed by value, the contents of the instance variables of
the actual parameter are copied into the corresponding instance variables
of the formal parameter.

Constructors and Default Parameters
A constructor can also have default parameters. In such a case, the rules for declaring
formal parameters are the same as those for declaring default formal parameters in a
function. Moreover, actual parameters to a constructor with default parameters are passed
according to the rules for functions with default parameters. Using the rules for defining
default parameters, in the definition of the class clockType, you can replace both
constructors using the following statement. (Notice that in the function prototype, the
name of a formal parameter is optional.)

clockType clockType(int = 0, int = 0, int = 0); //Line 1

In the implementation file, the definition of this constructor is the same as the definition
of the constructor with parameters.

If you replace the constructors of the class clockType with the constructor in Line 1,
(the constructor with the default parameters), you can declare clockType objects with 0,
1, 2, or 3 arguments as follows:

clockType clock1; //Line 2
clockType clock2(5); //Line 3
clockType clock3(12, 30); //Line 4
clockType clock4(7, 34, 18); //Line 5

The data members of clock1 are initialized to 0. The data member hr of clock2 is
initialized to 5, and the data members min and sec of clock2 are initialized to 0. The

32 | Chapter 1: Software Engineering Principles and C++ Classes

data member hr of clock3 is initialized to 12, the data member min of clock3 is
initialized to 30, and the data member sec of clock3 is initialized to 0. The data
member hr of clock4 is initialized to 7, the data member min of clock4 is initialized
to 34, and the data member sec of clock4 is initialized to 18.

Using these conventions, we can say that a constructor that has no parameters, or has all
default parameters, is called the default constructor.

Destructors
Like constructors, destructors are also functions. Moreover, like constructors, a destructor
does not have a type. That is, it is neither a value-returning function nor a void function.
However, a class can have only one destructor, and the destructor has no parameters. The
name of a destructor is the tilde character (�), followed by the name of the class. For
example, the name of the destructor for the class clockType is:

~clockType();

The destructor automatically executes when the class object goes out of scope.

Structs
Structs are a special type of classes. By default, all members of a class are private,
whereas by default all members of a struct are public. In C++, you define structs by
using the reserved word struct. If all members of a class are public, C++ programmers
prefer to use a struct to group the members, as we will do in this book. A struct is
defined just like a class.

Data Abstraction, Classes, and Abstract
Data Types
For the car that we drive, most of us want to know how to start the car and drive it.
Most people are not concerned with the complexity of how the engine works. By
separating the design details of a car’s engine from its use, the manufacturer helps the
driver focus on how to drive the car. Our daily life has other similar examples. For the
most part, we are concerned only with how to use certain items, rather than with how
they work.

Separating the design details (that is, how the car’s engine works) from its use is called
abstraction. In other words, abstraction focuses on what the engine does and not on
how it works. Thus, abstraction is the process of separating the logical properties from
the implementation details. Driving the car is a logical property; the construction of the
engine constitutes the implementation details. We have an abstract view of what the
engine does, but are not interested in the engine’s actual implementation.

1

Data Abstraction, Classes, and Abstract Data Types | 33

Abstraction can also be applied to data. Earlier sections of this chapter defined a data type
clockType. The data type clockType has three instance variables and the following
basic operations:

1. Set the time.

2. Return the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare two times to see whether they are equal.

The actual implementation of the operations, that is, the definitions of the member
functions of the class, clockType was postponed.

Data abstraction is defined as a process of separating the logical properties of the data from
its implementation. The definition of clockType and its basic operations are the logical
properties; storing clockType objects in the computer, and the algorithms to perform
these operations, are the implementation details of clockType.

Abstract data type (ADT): A data type that separates the logical properties from the
implementation details.

Like any other data type, an ADT has three things associated with it: the name of the
ADT, called the type name; the set of values belonging to the ADT, called the domain;
and the set of operations on the data. Following these conventions, we can define the
clockType ADT as follows:

dataTypeName
clockType

domain
Each clockType value is a time of day in the form of hours,
minutes, and seconds.

operations
Set the time.
Return the time.
Print the time.
Increment the time by one second.
Increment the time by one minute.
Increment the time by one hour.
Compare the two times to see whether they are equal.

To implement an ADT, you must represent the data and write algorithms to perform the
operations.

The previous section used classes to group data and functions together. Furthermore, our
definition of a class consisted only of the specifications of the operations; functions to

34 | Chapter 1: Software Engineering Principles and C++ Classes

implement the operations were written separately. Thus, we see that classes are a
convenient way to implement an ADT. In fact, in C++, classes were specifically designed
to handle ADTs.

EXAMPLE 1-11

A list is defined as a set of values of the same type. Because all values in a list are of the
same type, a convenient way to represent and process a list is to use an array. You can
define a list as an ADT as follows:

typeName
listType

domain
Every element of listType is a set of, say at most 1000 numbers.

operations
Check to see whether the list is empty.
Check to see whether the list is full.
Search the list for a given item.
Delete an item from the list.
Insert an item in the list.
Sort the list.
Print the list.

The following class implements the ADT list. To be specific, suppose that the list is a set
of elements of the type int.

class intListType
{
public:

bool isEmpty();
//Function to determine whether the list is empty.
//Precondition: The list must exist.
//Postcondition: Returns true if the list is empty,
// false otherwise.

bool isFull();
//Function to determine whether the list is full.
//Precondition: The list must exist.
//Postcondition: Returns true if the list is full,
// false otherwise.

int search(int searchItem);
//Function to determine whether searchItem is in the list.
//Postcondition: If searchItem is in the list, returns its
// index, that is, its position in the list;
// otherwise, it returns -1.

void insert(int newItem);
//Function to insert newItem in the list.
//Precondition: The list must exist and must not be full.
//Postcondition: newItem is inserted in the list and
// length is incremented by one.

1

Data Abstraction, Classes, and Abstract Data Types | 35

void remove(int removeItem);
//Function to delete removeItem from the list.
//Precondition: The list must exist and must not be empty
//Postcondition: If found, removeItem is deleted from the
// list and the length is decremented by one;
// otherwise, an appropriate message is printed.

void printList();
//Function to output the elements of the list.
//Precondition: The list must exist.
//Postcondition: The elements of the list are
// printed on the standard output device.

intListType();
//Default constructor
//Postcondition: length = 0

private:
int list[1000];
int length;

};

The class personType that is designed in Example 1-12 is quite useful; we will use this
class in subsequent chapters.

EXAMPLE 1-12

The most common attributes of a person are the person’s first name and last name.
The typical operations on a person’s name are to set the name and print the name. The
following statements define a class with these properties.

//**
// Author: D.S. Malik
//
// class personType
// This class specifies the members to implement a name.
//**

#include <string>

using namespace std;

class personType
{
public:

void print() const;
//Function to output the first name and last name
//in the form firstName lastName.

void setName(string first, string last);
//Function to set firstName and lastName according to the
//parameters.
//Postcondition: firstName = first; lastName = last

36 | Chapter 1: Software Engineering Principles and C++ Classes

1
string getFirstName() const;

//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType();
//Default constructor
//Sets firstName and lastName to null strings.
//Postcondition: firstName = ""; lastName = "";

personType(string first, string last);
//Constructor with parameters.
//Sets firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last;

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Figure 1-9 shows the UML class diagram of the class personType.

We now give the definitions of the member functions of the class personType.

void personType::print() const
{

cout << firstName << " " << lastName;
}

void personType::setName(string first, string last)
{

firstName = first;
lastName = last;

}

personType

–firstName: string
–lastName: string

+print(): void
+setName(string, string): void
+getFirstName() const: string
+getLastName() const: string
+personType()
+personType(string, string)

FIGURE 1-9 UML class diagram of the class personType

Data Abstraction, Classes, and Abstract Data Types | 37

string personType::getFirstName() const
{

return firstName;
}

string personType::getLastName() const
{

return lastName;
}

//Default constructor
personType::personType()
{

firstName = "";
lastName = "";

}

//Constructor with parameters
personType::personType(string first, string last)
{

firstName = first;
lastName = last;

}

PROGRAMMING EXAMPLE: Fruit Juice Machine
A new fruit juice machine has been purchased for the cafeteria, and a program is needed
to make the machine function properly. The machine dispenses apple juice, orange
juice, mango lassi, and fruit punch in recyclable containers. In this programming
example, we write a program for the fruit juice machine so that it can be put into
operation.

The program should do the following:

1. Show the customer the different products sold by the juice machine.

2. Let the customer make the selection.

3. Show the customer the cost of the item selected.

4. Accept money from the customer.

5. Release the item.

Input The item selection and the cost of the item.

Output The selected item.

38 | Chapter 1: Software Engineering Principles and C++ Classes

1PROBLEM

ANALYSIS AND

ALGORITHM

DESIGN

A juice machine has two main components: a built-in cash register and several
dispensers to hold and release the products.

Cash

Register

Let us first discuss the properties of a cash register. The cash register has some cash on
hand, it accepts the amount from the customer, and if the amount deposited is more
than the cost of the item, then—if possible—the cash register returns the change.
For simplicity, we assume that the user deposits at least the amount of money for the
product. The cash register should also be able to show the juice machine’s owner
the amount of money in the register at any given time. The following class defines the
properties of a cash register.

//**
// Author: D.S. Malik
//
// class cashRegister
// This class specifies the members to implement a cash register.
//**

class cashRegister
{
public:

int getCurrentBalance() const;
//Function to show the current amount in the cash register.
//Postcondition: The value of cashOnHand is returned.

void acceptAmount(int amountIn);
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;

cashRegister();
//Default constructor
//Sets the cash in the register to 500 cents.
//Postcondition: cashOnHand = 500.

cashRegister(int cashIn);
//Constructor with a parameter.
//Sets the cash in the register to a specific amount.
//Postcondition: cashOnHand = cashIn;

private:
int cashOnHand; //variable to store the cash in the register

};

Programming Example: Fruit Juice Machine | 39

Figure 1-10 shows the UML class diagram of the class cashRegister.

Next, we give the definitions of the functions to implement the operations of the
class cashRegister. The definitions of these functions are simple and easy to
follow.

The function getCurrentBalance shows the current amount in the cash register. It
returns the value of the instance variable cashOnHand. So, its definition is the
following:

int cashRegister::getCurrentBalance() const
{

return cashOnHand;
}

The definitions of the remaining function(s) and constructors are as follows:

void cashRegister::acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

cashRegister::cashRegister()
{

cashOnHand = 500;
}

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

cashRegister

–cashOnHand: int

+getCurrentBalance const(): int
+acceptAmount(int): void
+cashRegister()
+cashRegister(int)

FIGURE 1-10 UML class diagram of the class cashRegister

40 | Chapter 1: Software Engineering Principles and C++ Classes

1Dispenser The dispenser releases the selected item if it is not empty. The dispenser should show
the number of items in the dispenser and the cost of the item. The following class
defines the properties of a dispenser. Let us call this class dispenserType.

//**
// Author: D.S. Malik
//
// class dispenserType
// This class specifies the members to implement a dispenser.
//**

class dispenserType
{
public:

int getNoOfItems() const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

dispenserType();
//Default constructor
//Sets the cost and number of items in the dispenser to 50.
//Postcondition: numberOfItems = 50; cost = 50;

dispenserType(int setNoOfItems, int setCost);
//Constructor with parameters
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

Programming Example: Fruit Juice Machine | 41

Figure 1-11 shows the UML class diagram of the class dispenserType.

Because the juice machine sells four types of items, we shall declare four objects of
type dispenserType. For example, the statement

dispenserType appleJuice(100, 50);

declares appleJuice to be an object of type dispenserType, and sets the number of
apple juice cans in the dispenser to 100 and the cost of each can to 50 cents.

Following the definitions of the class dispenserType, the definitions of the
member functions and constructors are as follows:

int dispenserType::getNoOfItems() const
{

return numberOfItems;
}

int dispenserType::getCost() const
{

return cost;
}

void dispenserType::makeSale()
{

numberOfItems--;
}

dispenserType::dispenserType()
{

numberOfItems = 50;
cost = 50;

}

dispenserType
–numberOfItems: int
–cost: int

+getNoOfItems() const: int
+getCost() const: int
+makeSale(): void
+dispenserType()
+dispenserType(int, int)

FIGURE 1-11 UML class diagram of the class dispenserType

42 | Chapter 1: Software Engineering Principles and C++ Classes

1dispenserType::dispenserType(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

MAIN

PROGRAM

When the program executes, it must do the following:

1. Show the different products sold by the juice machine.

2. Show how to select a particular product.

3. Show how to terminate the program.

Furthermore, these instructions must be displayed after processing each selection
(except exiting the program), so that the user need not remember what to do if he
or she wants to buy two or more items. Once the user has made the appropriate
selection, the juice machine must act accordingly. If the user has opted to buy a product
and if that product is available, the juice machine should show the cost of the product
and ask the user to deposit the money. If the amount deposited is at least the cost of the
item, the juice machine should sell the item and display an appropriate message.

This discussion translates into the following algorithm:

1. Show the selection to the customer.

2. Get the selection.

3. If the selection is valid and the dispenser corresponding to the
selection is not empty, sell the product.

We divide this program into three functions—showSelection, sellProduct, and main.

showSelectionThis function displays the information necessary to help the user select
and buy a product. The definition of this function is:

void showSelection()
{

cout << "*** Welcome to Shelly's Fruit Juice Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for apple juice" << endl;
cout << "2 for orange juice" << endl;
cout << "3 for mango lassi" << endl;
cout << "4 for fruit punch" << endl;
cout << "9 to exit" << endl;

}//end showSelection

Programming Example: Fruit Juice Machine | 43

sellProduct This function attempts to sell the product selected by the customer. Therefore, it must
have access to the dispenser holding the product. The first thing that this function
does is check whether the dispenser holding the product is empty. If the dispenser is
empty, the function informs the customer that this product is sold out. If the dispenser
is not empty, it tells the user to deposit the necessary amount to buy the product.

If the user does not deposit enough money to buy the product, sellProduct tells the
user how much additional money must be deposited. If the user fails to deposit
enough money, in two tries, to buy the product, the function simply returns
the money. (Programming Exercise 5, at the end of this chapter, asks you to revise
the definition of the function sellProduct so that it keeps asking the user to enter
the additional amount as long as the user has not entered enough money to buy the
product.) If the amount deposited by the user is sufficient, it accepts the money and sells
the product. Selling the product means to decrement the number of items in the
dispenser by 1, and to update the money in the cash register by adding the cost of the
product. (We also assume that this program does not return the extra money deposited by
the customer. So the cash register is updated by adding the money entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as the cash register (to update the cash).
Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In pseudocode, the algorithm for this function is:

1. If the dispenser is not empty

a. Show and prompt the customer to enter the cost of the item.

b. Get the amount entered by the customer.

c. If the amount entered by the customer is less than the cost of the
product,

i. Show and prompt the customer to enter the additional amount.

ii. Calculate the total amount entered by the customer.

d. If the amount entered by the customer is at least the cost of the
product,

i. Update the amount in the cash register.

ii. Sell the product—that is, decrement the number of items in
the dispenser by 1.

iii. Display an appropriate message.

e. If the amount entered by the user is less than the cost of the item,
return the amount.

44 | Chapter 1: Software Engineering Principles and C++ Classes

12. If the dispenser is empty, tell the user that this product is sold out.

The definition of the function sellProduct is:

void sellProduct(dispenserType& product, cashRegister& pCounter)
{

int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not empty
{

cout << "Please deposit " << product.getCost()
<< " cents" << endl;

cin >> amount;

if (amount < product.getCost())
{

cout << "Please deposit another "
<< product.getCost()- amount << " cents" << endl;

cin >> amount2;
amount = amount + amount2;

}

if (amount >= product.getCost())
{

pCounter.acceptAmount(amount);
product.makeSale();
cout << "Collect your item at the bottom and enjoy."

<< endl;
}
else

cout << "The amount is not enough. "
<< "Collect what you deposited." << endl;

cout << "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< endl << endl;

}
else

cout << "Sorry, this item is sold out." << endl;
}//end sellProduct

main The algorithm for the function main is as follows:

1. Create the cash register—that is, declare a variable of type
cashRegister.

2. Create four dispensers—that is, declare four objects of type
dispenserType and initialize these objects. For example, the statement

dispenserType mangoLassi(75, 45);

creates a dispenser object, mangoLassi, to hold the juice cans. The
number of items in the dispenser is 75, and the cost of an item is 45 cents.

Programming Example: Fruit Juice Machine | 45

3. Declare additional variables as necessary.

4. Show the selection; call the function showSelection.

5. Get the selection.

6. While not done (a selection of 9 exits the program),

a. Sell the product; call the function sellProduct.

b. Show the selection; call the function showSelection.

c. Get the selection.

The definition of the function main is as follows:

int main()
{

cashRegister counter;
dispenserType appleJuice(100, 50);
dispenserType orangeJuice(100, 65);
dispenserType mangoLassi(75, 45);
dispenserType fruitPunch(100, 85);

int choice; //variable to hold the selection

showSelection();
cin >> choice;

while (choice != 9)
{

switch (choice)
{
case 1:

sellProduct(appleJuice, counter);
break;

case 2:
sellProduct(orangeJuice, counter);
break;

case 3:
sellProduct(mangoLassi, counter);
break;

case 4:
sellProduct(fruitPunch, counter);
break;

default:
cout << "Invalid selection." << endl;

}//end switch

46 | Chapter 1: Software Engineering Principles and C++ Classes

1showSelection();
cin >> choice;

}//end while

return 0;
}//end main

PROGRAM LISTING

//**
// Author: D.S. Malik
//
// This program uses the classes cashRegister and dispenserType
// to implement a fruit juice machine.
// ***

#include <iostream>
#include "cashRegister.h"
#include "dispenserType.h"

using namespace std;

void showSelection();
void sellProduct(dispenserType& product, cashRegister& pCounter);

//Place the definitions of the functions main, showSelection, and
//sellProduct here.

Sample Run: In this sample run, the user input is shaded.

*** Welcome to Shelly's Fruit Juice Shop ***
To select an item, enter
1 for apple juice
2 for orange juice
3 for mango lassi
4 for fruit punch
9 to exit
1
Please deposit 50 cents
50
Collect your item at the bottom and enjoy.
--*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

Programming Example: Fruit Juice Machine | 47

Identifying Classes, Objects, and Operations
The hardest part of OOD is to identify the classes and objects. This section describes a
common and simple technique to identify classes and objects.

We begin with a description of the problem and then identify all of the nouns and verbs.
From the list of nouns we choose our classes, and from the list of verbs we choose our
operations.

For example, suppose that we want to write a program that calculates and prints the
volume and surface area of a cylinder. We can state this problem as follows:

Write a program to input the dimensions of a cylinder and calculate and print its surface
area and volume.

In this statement, the nouns are bold and the verbs are italic. From the list of nouns—
program, dimensions, cylinder, surface area, and volume—we can easily visualize
cylinder to be a class—say, cylinderType—from which we can create many cylinder
objects of various dimensions. The nouns—dimensions, surface area, and volume—
are characteristics of a cylinder and, thus, can hardly be considered classes.

After we identify a class, the next step is to determine three pieces of information:

• Operations that an object of that class type can perform

• Operations that can be performed on an object of that class type

• Information that an object of that class type must maintain

From the list of verbs identified in the problem description, we choose a list of possible
operations that an object of that class can perform, or has performed, on itself. For
example, from the list of verbs for the cylinder problem description—write, input, calculate,
and print—the possible operations for a cylinder object are input, calculate, and print.

For the cylinderType class, the dimensions represent the data. The center of the base,
radius of the base, and height of the cylinder are the characteristics of the dimensions.
You can input data to the object either by a constructor or by a function.

*** Welcome to Shelly's Fruit Juice Shop ***
To select an item, enter
1 for apple juice
2 for orange juice
3 for mango lassi
4 for fruit punch
9 to exit
9

The complete definitions of the classes cashRegister, dispenserType, the imple-
mentation files, and the main program is available at the Web site accompanying
this book.

48 | Chapter 1: Software Engineering Principles and C++ Classes

The verb calculate applies to determining the volume and the surface area. From this, you
can deduce the operations: cylinderVolume and cylinderSurfaceArea. Similarly, the
verb print applies to the display of the volume and the surface area on an output device.

Identifying classes via the nouns and verbs from the descriptions to the problem is not the
only technique possible. There are several other OOD techniques in the literature.
However, this technique is sufficient for the programming exercises in this book.

QUICK REVIEW

1. Software are programs run by the computer.

2. A program goes through many phases from the time it is first conceived
until the time it is retired, called the life cycle of the program.

3. The three fundamental stages through which a program goes are develop-
ment, use, and maintenance.

4. The new program is created in the software development stage.

5. In the software maintenance process, the program is modified to fix the
(identified) problems and/or to enhance it.

6. A program is retired if no new version of the program will be released.

7. The software development phases are analysis, design, implementation, and
testing and debugging.

8. During the design phase, algorithms are designed to solve the problem.

9. An algorithm is a step-by-step problem-solving process in which a solution
is arrived at in a finite amount of time.

10. Two well-known design techniques are structured-design and object-
oriented design.

11. In structured design, a problem is divided into smaller subproblems. Each
subproblem is solved, and the solutions of all the subproblems are then
combined to solve the problem.

12. In object-oriented design (OOD), a program is a collection of interacting
objects.

13. An object consists of data and operations on those data.

14. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

15. In the implementation phase, you write and compile programming code to
implement the classes and functions that were discovered in the design phase.

16. A precondition is a statement specifying the condition(s) that must be true
before the function is called.

17. A postcondition is a statement specifying what is true after the function call
is completed.

1

Quick Review | 49

18. During the testing phase, the program is tested for its correctness; that is, for
making sure that the program does what it is supposed to do.

19. Debugging refers to finding and fixing the errors, if they exist.

20. To find problems in a program, it is run through a series of test cases.

21. A test case consists of a set of inputs, user actions, or other initial conditions,
and the expected output.

22. There are two types of testing—black-box testing and white-box testing.

23. While analyzing a particular algorithm, we usually count the number of
operations performed by the algorithm.

24. Let f be a function of n. The term asymptotic refers to the study of the
function f as n becomes larger and larger without bound.

25. A class is a collection of a fixed number of components.

26. Components of a class are called the members of the class.

27. Members of a class are accessed by name.

28. In C++, class is a reserved word.

29. Members of a class are classified into one of three categories: private,
protected, and public.

30. The private members of a class are not accessible outside the class.

31. The public members of a class are accessible outside the class.

32. By default, all members of a class are private.

33. The public members are declared using the member access specifier
public.

34. The private members are declared using the member access specifier
private.

35. A member of a class can be a function or a variable (that is, data).

36. If any member of a class is a function, you usually use the function
prototype to declare it.

37. If any member of a class is a variable, it is declared like any other
variable.

38. In the definition of the class, you cannot initialize a variable when you
declare it.

39. In the Unified Modeling language (UML) diagram of a class, the top
box contains the name of the class. The middle box contains the data
members and their data types. The last box contains the member
function name, parameter list, and the return type of the function.
A + (plus) sign in front of a member indicates that this member is a
public member; a – (minus) sign indicates that this is a private
member. The symbol # before the member name indicates that the
member is a protected member.

50 | Chapter 1: Software Engineering Principles and C++ Classes

40. In C++, a class is a definition. No memory is allocated; memory is
allocated for the class variables when you declare them.

41. In C++, class variables are called class objects or simply objects.

42. A class member is accessed using the class variable name, followed by the
dot operator (.), followed by the member name.

43. The only built-in operations on classes are the assignment and member
selection.

44. Class objects can be passed as parameters to functions and returned as
function values.

45. As parameters to functions, classes can be passed either by value or by
reference.

46. Constructors guarantee that the data members are initialized when an
object is declared.

47. The name of a constructor is the same as the name of the class.

48. A class can have more than one constructor.

49. A constructor without parameters is called the default constructor.

50. Constructors automatically execute when a class object enters its scope.

51. Destructors automatically execute when a class object goes out of scope.

52. A class can have only one destructor with no parameters.

53. The name of a destructor is the tilde (�), followed by the class name (no
spaces in between).

54. Constructors and destructors are functions without any type; that is, they
are neither value-returning nor void. As a result, they cannot be called like
other functions.

55. A data type that specifies the logical properties without the implementation
details is called an abstract data type (ADT).

56. An easy way to identify classes, objects, and operations is to describe the
problem in English and then identify all of the nouns and verbs. Choose
your classes (objects) from the list of nouns and operations from the list of
verbs.

EXERCISES

1. Mark the following statements as true or false.

a. The life cycle of software refers to the phases from the point the
software was conceived until it is retired.

b. The three fundamental stages of software are development, use, and
discard.

c. The expression 4n + 2n2 + 5 is O(n).

1

Exercises | 51

d. The instance variables of a class must be of the same type.

e. The function members of a class must be public.

f. A class can have more than one constructor.

g. A class can have more than one destructor.

h. Both constructors and destructors can have parameters.

2. What is black-box testing?

3. What is white-box testing?

4. Consider the following function prototype, which returns the square root
of a real number:

double sqrt(double x);

What should be the pre- and postconditions for this function?

5. Each of the following expressions represents the number of operations for
certain algorithms. What is the order of each of these expressions?

a. n2 + 6n + 4

b. 5n3 + 2n + 8

c. (n2 + 1) (3n + 5)

d. 5(6n + 4)

e. n + 2log2n – 6

f. 4n log2n + 3n + 8

6. Consider the following function:

void funcExercise6(int x, int y)
{

int z;

z = x + y;
x = y;
y = z;
z = x;
cout << "x = " << x << ", y = " << y << ", z = " << z << endl;

}

Find the exact number of operations executed by the function
funcExercise6.

7. Consider the following function:

int funcExercise7(int list[], int size)
{

int sum = 0;

for (int index = 0; index < size; index++)
sum = sum + list[index];

return sum;
}

52 | Chapter 1: Software Engineering Principles and C++ Classes

1
a. Find the number of operations executed by the function

funcExercise7 if the value of size is 10.

b. Find the number of operations executed by the function
funcExercise7 if the value of size is n.

c. What is the order of the function funcExercise7?

8. Consider the following function prototype:

int funcExercise8(int x);

The function funcExercise8 returns the value as follows: If 0<¼ x<¼ 50,
it returns 2x; if –50 <¼ x < 0, it returns x2; otherwise it returns –999. What are
the reasonable boundary values for the function funcExercise8?

9. Write a function that uses a loop to find the sum of the squares of all
integers between 1 and n. What is the order of your function?

10. Characterize the following algorithm in terms of Big-O notation. Also find
the exact number of additions executed by the loop. (Assume that all
variables are properly declared.)

for (int i = 1; i <= n; i++)
sum = sum + i * (i + 1);

11. Characterize the following algorithm in terms of Big-O notation. Also find
the exact number of additions, subtractions, and multiplications executed by
the loop. (Assume that all variables are properly declared.)

for (int i = 5; i <= 2 * n; i++)
cout << 2 * n + i - 1 << endl;

12. Characterize the following algorithm in terms of Big-O notation.

for (int i = 1; i <= 2 * n; i++)
for (int j = 1; j <= n; j++)

cout << 2 * i + j;
cout << endl;

13. Characterize the following algorithm in terms of Big-O notation.

for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)

for (int k = 1; k <= n; k++)
cout << i + j + k;

14. Find the syntax errors in the definitions of the following classes:

a. class AA
{
public:

void print();
int sum();
AA();
int AA(int, int);

private:
int x;
int y;

};

Exercises | 53

b. class BB
{

int one ;
int two;

public:
bool equal();
print();
BB(int, int);

}

c. class CC
{
public;

void set(int, int);
void print();
CC();
CC(int, int);
bool CC(int, int);

private:
int u;
int v;

};

15. Consider the following declarations:

class xClass
{
public:

void func();
void print() const;
xClass ();
xClass (int, double);

private:
int u;
double w;

};

xClass x;

a. How many members does class xClass have?

b. How many private members does class xClass have?

c. How many constructors does class xClass have?

d. Write the definition of the member function func so that u is set to 10

and w is set to 15.3.

e. Write the definition of the member function print that prints the
contents of u and w.

f. Write the definition of the default constructor of the class xClass so
that the private data members are initialized to 0.

54 | Chapter 1: Software Engineering Principles and C++ Classes

1
g. Write a C++ statement that prints the values of the data members of

the object x.

h. Write a C++ statement that declares an object t of the type xClass,
and initializes the data members of t to 20 and 35.0, respectively.

16. Consider the definition of the following class:

class CC
{
public:

CC(); //Line 1
CC(int); //Line 2
CC(int, int); //Line 3
CC(double, int); //Line 4

.

.

.
private:

int u;
double v;

};

a. Give the line number containing the constructor that is executed in
each of the following declarations:

i. CC one;

ii. CC two(5, 6);

iii. CC three(3.5, 8);

b. Write the definition of the constructor in Line 1 so that the private
data members are initialized to 0.

c. Write the definition of the constructor in Line 2 so that the private
data member u is initialized according to the value of the parameter,
and the private data member v is initialized to 0.

d. Write the definition of the constructors in Lines 3 and 4 so that the
private data members are initialized according to the values of the
parameters.

17. Given the definition of the class clockType with constructors (as
described in this chapter), what is the output of the following C++ code?

clockType clock1;
clockType clock2(23, 13, 75);

clock1.printTime();
cout << endl;
clock2.printTime();
cout << endl;

clock1.setTime(6, 59, 39);
clock1.printTime();
cout << endl;

Exercises | 55

clock1.incrementMinutes();
clock1.printTime();
cout << endl;

clock1.setTime(0, 13, 0);

if (clock1.equalTime(clock2))
cout << "Clock1 time is the same as clock2 time." << endl;

else
cout << "The two times are different." << endl;

18. Write the definition of a class that has the following properties:

a. The name of the class is secretType.

b. The class secretType has four instance variables: name of type
string, age and weight of type int, and height of type double.

c. The class secretType has the following member functions:

print—Outputs the data stored in the instance variables with the
appropriate titles

setName—Function to set the name

setAge—Function to set the age

setWeight—Function to set the weight

setHeight—Function to set the height

getName—Value-returning function to return the name

getAge—Value-returning function to return the age

getWeight—Value-returning function to return the weight

getHeight—Value-returning function to return the height

Default constructor—Sets name to the empty string and age, weight,
and height to 0

Constructor with parameter—Sets the values of the instance variables
to the values specified by the user

d. Write the definition of the member functions of the class

secretType as described in Part c.

19. Assume the definition of the class personType as given in this chapter.

a. Write a C++ statement that declares student to be a personType

object, and initialize its first name to "Buddy" and last name to "Arora".

b. Write a C++ statement that outputs the data stored in the object
student.

c. Write C++ statements that change the first name of student to
"Susan" and the last name to "Miller".

56 | Chapter 1: Software Engineering Principles and C++ Classes

1
PROGRAMMING EXERCISES

1. Write a program that converts a number entered in Roman numerals to
decimal form. Your program should consist of a class, say romanType. An
object of romanType should do the following:

a. Store the number as a Roman numeral.

b. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested by
the user. (Write two separate functions—one to print the number as a
Roman numeral and the other to print the number as a decimal number.)

The decimal values of the Roman numerals are:

M 1000
D 500
C 100
L 50
X 10
V 5
I 1

Remember, a larger numeral preceding a smaller numeral means addition,
so LX is 60. A smaller numeral preceding a larger numeral means subtrac-
tion, so XL is 40. Any place in a decimal number, such as the 1s place, the
10s place, and so on, requires from zero to four Roman numerals.

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, and MDCLXVI.

2. Write the definition of the class dayType that implements the day of the
week in a program. The class dayType should store the day, such as
Sunday for Sunday. The program should be able to perform the following
operations on an object of type dayType:

a. Set the day.

b. Print the day.

c. Return the day.

d. Return the next day.

e. Return the previous day.

f. Calculate and return the day by adding certain days to the current day.
For example, if the current day is Monday and we add 4 days, the day to
be returned is Friday. Similarly, if today is Tuesday and we add 13 days,
the day to be returned is Monday.

g. Add the appropriate constructors.

3. Write the definitions of the functions to implement the operations for the
class dayType as defined in Programming Exercise 2. Also, write a pro-
gram to test various operations on this class.

Programming Exercises | 57

4. Example 1-12 defined a class personType to store the name of a person.
The member functions that we included merely print the name and set the
name of a person. Redefine the class personType so that, in addition to
what the existing class does, you also can do the following:

a. Set the first name only.

b. Set the last name only.

c. Store and set the middle name.

d. Check whether a given first name is the same as the first name of this person.

e. Check whether a given last name is the same as the last name of this person.

Write the definitions of the member functions to implement the operations
for this class. Also, write a program to test various operations on this class.

5. The function sellProduct of the Fruit Juice Machine programming example
gives the user only two chances to enter enough money to buy the product.
Rewrite the definition of the function sellProduct so that it keeps prompting
the user to enter more money as long as the user has not entered enoughmoney
to buy the product. Also, write a program to test your function.

6. The equation of a line in standard form is ax + by ¼ c, where a and b both
cannot be zero, and a, b, and c are real numbers. If b 6¼ 0, then –a / b is the
slope of the line. If a ¼ 0, then it is a horizontal line, and if b ¼ 0, then it is a
vertical line. The slope of a vertical line is undefined. Two lines are parallel if
they have the same slope or both are vertical lines. Two lines are perpendi-
cular if either one of the lines is horizontal and another is vertical, or if the
product of their slopes is –1. Design the class lineType to store a line. To
store a line, you need to store the values of a (coefficient of x), b (coefficient
of y), and c. Your class must contain the following operations:

a. If a line is nonvertical, then determine its slope.

b. Determine if two lines are equal. (Two lines a1x + b1y¼ c1 and a2x + b2y¼
c2 are equal if either a1¼ a2, b1¼ b2, and c1¼ c2 or a1¼ ka2, b1¼ kb2, and c1
¼ kc2 for some real number k.)

c. Determine if two lines are parallel.

d. Determine if two lines are perpendicular.

e. If two lines are not parallel, then find the point of intersection.

Add appropriate constructors to initialize variables of lineType. Also
write a program to test your class.

7. (Tic-Tac-Toe) Write a program that allows two players to play the tic-tac-
toe game. Your program must contain the class ticTacToe to implement
a ticTacToe object. Include a 3 by 3 two-dimensional array, as a private
instance variable, to create the board. If needed, include additional member
variables. Some of the operations on a ticTacToe object are printing the
current board, getting a move, checking if a move is valid, and determining
the winner after each move. Add additional operations as needed.

58 | Chapter 1: Software Engineering Principles and C++ Classes

OBJECT-ORIENTED DESIGN

(OOD) AND C++
IN THIS CHAPTER , YOU WILL :

. Learn about inheritance

. Learn about derived and base classes

. Explore how to redefine the member functions of a base class

. Examine how the constructors of base and derived classes work

. Learn how to construct the header file of a derived class

. Explore three types of inheritance: public, protected, and private

. Learn about composition

. Become familiar with the three basic principles
of object-oriented design

. Learn about overloading

. Become aware of the restrictions on operator overloading

. Examine the pointer this

. Learn about friend functions

. Explore the members and nonmembers of a class

. Discover how to overload various operators

. Learn about templates

. Explore how to construct function templates and class templates

2C H A P T E R

Chapter 1 introduced classes, abstract data types (ADT), and ways to implement ADT in
C++. By using classes, you can combine data and operations in a single unit. An object,
therefore, becomes a self-contained entity. Operations can directly access the data, but the
internal state of an object cannot be manipulated directly.

In addition to implementing ADT, classes have other features. For instance, you can
create new classes from existing classes. This important feature encourages code reuse.

Inheritance
Suppose that you want to design a class, partTimeEmployee, to implement and process
the characteristics of a part-time employee. The main features associated with a part-time
employee are the name, pay rate, and number of hours worked. In Example 1-12 (in
Chapter 1), we designed a class to implement a person’s name. Every part-time employee
is a person. Therefore, rather than design the class partTimeEmployee from scratch, we
want to be able to extend the definition of the class personType (from Example 1-12)
by adding additional members (data and/or functions).

Of course, we do not want to make the necessary changes directly to the class
personType—that is, edit the class personType, and add and/or delete members.
In fact, we want to create the class partTimeEmployee without making any physical
changes to the class personType, by adding only the members that are necessary. For
example, because the class personType already has data members to store the first
name and last name, we will not include any such members in the class

partTimeEmployee. In fact, these data members will be inherited from the class
personType. (We will design such a class in Example 2-2.)

In Chapter 1, we extensively studied and designed the class clockType to implement the
time of day in a program. The class clockType has three data members to store hours,
minutes, and seconds. Certain applications—in addition to hours, minutes, and seconds—
might also require us to store the time zone. In this case, we would likely extend the
definition of the class clockType and create a class, extClockType, to accommodate
this new information. That is, we want to derive the class extClockType by adding a
data member—say, timeZone—and the necessary function members to manipulate the
time (see Programming Exercise 1 at the end of this chapter). In C++, the mechanism that
allows us to accomplish this task is the principle of inheritance. Inheritance is an ‘‘is-a’’
relationship; for instance, ‘‘every employee is a person.’’

Inheritance lets us create new classes from existing classes. The existing classes are called
the base classes; the new class that we create from the existing classes is called the
derived class. The derived class inherits the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either a single inheritance or a multiple inheritance. In a single inheritance,

60 | Chapter 2: Object-Oriented Design (OOD) and C++

the derived class is derived from a single base class; in a multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a treelike, or hierarchical, structure wherein a base class is
shown with its derived classes. Consider the tree diagram shown in Figure 2-1.

In this diagram, shape is the base class. The classes circle and rectangle are derived
from shape, and the class square is derived from rectangle. Every circle and
every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName
{

member list
};

where memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance. (We
discuss protected inheritance later in this chapter.)

EXAMPLE 2-1

Suppose that we have defined a class called shape. The following statements specify that
the class circle is derived from shape, and it is a public inheritance:

class circle: public shape
{

.

.

.
};

2

shape

circle rectangle

square

FIGURE 2-1 Inheritance hierarchy

Inheritance | 61

On the other hand, consider the following definition of the class circle:

class circle: private shape
{

.

.

.
};

This is a private inheritance. In this definition, the public members of shape become
private members of the class circle. So any object of type circle cannot directly
access these members. The previous definition of circle is equivalent to the following:

class circle: shape
{

.

.

.
};

That is, if we do not use either the memberAccessSpecifier public or private, the
public members of a base class are inherited as private members.

The following facts about the base and the derived classes should be kept in mind.

1. The private members of a base class are private to the base class;
hence, the members of the derived class cannot directly access them.
In other words, when you write the definitions of the member functions
of the derived class, you cannot directly access the private members
of the base class.

2. The public members of a base class can be inherited either as public
members or as private members by the derived class. That is, the
public members of the base class can become either public or
private members of the derived class.

3. The derived class can include additional members—data and/or functions.

4. The derived class can redefine the public member functions of the base
class. That is, in the derived class, you can have a member function with
the same name, number, and types of parameters as a function in the
base class. However, this redefinition applies only to the objects of the
derived class, not to the objects of the base class.

5. All member variables of the base class are also member variables of the
derived class. Similarly, the member functions of the base class (unless
redefined) are also member functions of the derived class. (Remember
Rule 1 when accessing a member of the base class in the derived class.)

The next sections describe two important issues related to inheritance. The first issue is the
redefinition of the member functions of the base class in the derived class. While discussing

62 | Chapter 2: Object-Oriented Design (OOD) and C++

2

this issue, we also address how to access the private (data) members of the base class in the
derived class. The second key inheritance issue is related to the constructor. The con-
structor of a derived class cannot directly access the privatemember variables of the base
class. Thus, we need to ensure that the private member variables that are inherited
from the base class are initialized when a constructor of the derived class executes.

Redefining (Overriding) Member Functions of the Base Class
Suppose that a class derivedClass is derived from the class baseClass. Further
assume that both derivedClass and baseClass have some member variables. It then
follows that the member variables of the class derivedClass are its own member
variables, together with the member variables of baseClass. Suppose that baseClass
contains a function, print, that prints the values of the member variables of baseClass.
Now derivedClass contains member variables in addition to the member variables
inherited from baseClass. Suppose that you want to include a function that prints the
member variables of derivedClass. You can give any name to this function. However,
in the class derivedClass, you can also name this function as print (the same name
used by baseClass). This is called redefining (or overriding) the member function of the
base class. Next, we illustrate how to redefine the member functions of a base class with
the help of an example.

To redefine a public member function of a base class in the derived class, the

corresponding function in the derived class must have the same name, number, and types

of parameters. In other words, the name of the function being redefined in the derived

class must have the same name and the same set of parameters. If the corresponding

functions in the base class and the derived class have the same name but different sets

of parameters, this is function overloading in the derived class, which is also allowed.

Consider the definition of the following class:

//***
// Author: D.S. Malik
//
// class rectangleType
// This class specifies the members to implement the properties
// of a rectangle.
//***

class rectangleType
{
public:

void setDimension(double l, double w);
//Function to set the length and width of the rectangle.
//Postcondition: length = l; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.

Inheritance | 63

double getWidth() const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is calculated
// and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of the rectangle.

rectangleType();
//default constructor
//Postcondition: length = 0; width = 0;

rectangleType(double l, double w);
//constructor with parameters
//Postcondition: length = l; width = w;

private:
double length;
double width;

};

Figure 2-2 shows the UML class diagram of the class rectangleType.

rectangleType

–length: double
–width: double

+setDimension(double, double): void
+getLength() const: double
+getWidth() const: double
+area() const: double
+perimeter() const: double
+print() const: void
+rectangleType()
+rectangleType(double, double)

FIGURE 2-2 UML class diagram of the class rectangleType

64 | Chapter 2: Object-Oriented Design (OOD) and C++

Suppose that the definitions of the member functions of the class rectangleType are
as follows:

void rectangleType::setDimension(double l, double w)
{

if (l >= 0)
length = l;

else
length = 0;

if (w >= 0)
width = w;

else
width = 0;

}

double rectangleType::getLength() const
{

return length;
}

double rectangleType::getWidth() const
{

return width;
}

double rectangleType::area() const
{

return length * width;
}

double rectangleType::perimeter() const
{

return 2 * (length + width);
}

void rectangleType::print() const
{

cout << "Length = " << length
<< "; Width = " << width;

}

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

rectangleType::rectangleType()
{

length = 0;
width = 0;

}

2

Inheritance | 65

Now consider the definition of the following class boxType, derived from the
class rectangleType:

//***
// Author: D.S. Malik
//
// class boxType
// This class is derived from the class rectangleType and it
// specifies the members to implement the properties of a box.
//***

class boxType: public rectangleType
{
public:

void setDimension(double l, double w, double h);
//Function to set the length, width, and height of the box.
//Postcondition: length = l; width = w; height = h;

double getHeight() const;
//Function to return the height of the box.
//Postcondition: The value of height is returned.

double area() const;
//Function to return the surface area of the box.
//Postcondition: The surface area of the box is
// calculated and returned.

double volume() const;
//Function to return the volume of the box.
//Postcondition: The volume of the box is calculated and
// returned.

void print() const;
//Function to output the length, width, and height of a box.

boxType();
//Default constructor
//Postcondition: length = 0; width = 0; height = 0;

boxType(double l, double w, double h);
//Constructor with parameters
//Postcondition: length = l; width = w; height = h;

private:
double height;

};

66 | Chapter 2: Object-Oriented Design (OOD) and C++

Figure 2-3 shows the UML class diagram of the class boxType and the inheritance
hierarchy.

From the definition of the class boxType, it is clear that the class boxType is
derived from the class rectangleType, and that it is a public inheritance. There-
fore, all public members of the class rectangleType are public members of the
class boxType. The class boxType also overrides (redefines) the functions print

and area.

In general, while writing the definitions of the member functions of a derived class to
specify a call to a public member function of the base class, we do the following:

• If the derived class overrides a public member function of the base class,
then to specify a call to that publicmember function of the base class, you
use the name of the base class, followed by the scope resolution operator,
::, followed by the function name with the appropriate parameter list.

• If the derived class does not override a public member function of
the base class, you may specify a call to that public member function
by using the name of the function and the appropriate parameter list.
(See the following note for member functions of the base class that are
overloaded in the derived class.)

If a derived class overloads a public member function of the base class, then while

writing the definition of a member function of the derived class, to specify a call to that

(overloaded) member function of the base class, you might need (depending on the

compiler) to use the name of the base class followed by the scope resolution operator, ::,

followed by the function name with the appropriate parameter list. For example, the

class boxType overloads the member function setDimension of the class
rectangleType. (See the definition of the function setDimension of the class

boxType given later in this section.)

2
boxType

–height: double

+setDimension(double, double, double): void
+getHeight() const: double
+area() const: double
+volume() const: double
+print() const: void
+boxType()
+boxType(double, double, double) boxType

rectangleType

FIGURE 2-3 UML class diagram of the class boxType and the inheritance hierarchy

Inheritance | 67

Next, let us write the definition of the member function print of the class boxType.
The class boxType has three member variables: length, width, and height. The
member function print of the class boxType prints the values of these member
variables. To write the definition of the function print of the class boxType, keep
in mind the following:

• The member variables length and width are private members of the
class rectangleType, and so cannot be directly accessed in the class

boxType. Therefore, when writing the definition of the function print
of the class boxType, we cannot access length and width directly.

• The member variables length and width of the class rectangleType
are accessible in the class boxType through the public member func-
tions of the class rectangleType. Therefore, when writing the defi-
nition of the member function print of the class boxType, we first
call the member function print of the class rectangleType to print
the values of length and width. After printing the values of length and
width, we output the values of height.

To call the member function print of rectangleType in the definition of the member
function print of boxType, we must use the following statement:

rectangleType::print();

This statement ensures that we call the member function print of the base class

rectangleType, not of the class boxType.

The definition of the member function print of the class boxType is:

void boxType::print() const
{

rectangleType::print();
cout << "; Height = " << height;

}

Let us write the definitions of the remaining member functions of the class boxType.

The definition of the function setDimension is as follows:

void boxType::setDimension(double l, double w, double h)
{

rectangleType::setDimension(l, w);

if (h >= 0)
height = h;

else
height = 0;

}

Notice that in the preceding definition of the function setDimension, a call to the
member function setDimension of the class rectangleType is preceded by the
name of the class and the scope resolution operator, even though the class boxType
overloads—not overrides—the function setDimension.

68 | Chapter 2: Object-Oriented Design (OOD) and C++

2

The definition of the function getHeight is as follows:

double boxType::getHeight() const
{

return height;
}

The member function area of the class boxType determines the surface area of a box.
To determine the surface area of a box, we need to access the length and width of the
box, which are declared as private members of the class rectangleType. Therefore,
we use the member functions getLength and getWidth of the class rectangleType
to retrieve the length and width, respectively. Because the class boxType does not
contain any member functions that have the names getLength or getWidth, we call
these member functions of the class rectangleType without using the name of the
base class.

double boxType::area() const
{

return 2 * (getLength() * getWidth()
+ getLength() * height
+ getWidth() * height);

}

The member function volume of the class boxType determines the volume of a box.
To determine the volume of a box, you multiply the length, width, and height of the
box, or multiply the area of the base of the box by its height. Let us write the definition of
the member function volume by using the second alternative. To do this, you can use the
member function area of the class rectangleType to determine the area of the base.
Because the class boxType overrides the member function area, to specify a call to the
member function area of the class rectangleType, we use the name of the base class
and the scope resolution operator, as shown in the following definition:

double boxType::volume() const
{

return rectangleType::area() * height;
}

In the next section, we discuss how to specify a call to the constructor of the base class
when writing the definition of a constructor of the derived class.

Constructors of Derived and Base Classes
A derived class can have its own private member variables, and so a derived class can
explicitly include its own constructors. A constructor typically serves to initialize
the member variables. When we declare a derived class object, this object inherits the
members of the base class, but the derived class object cannot directly access the private

(data) members of the base class. The same is true for the member functions of a derived
class. That is, the member functions of a derived class cannot directly access the private

members of the base class.

Inheritance | 69

As a consequence, the constructors of a derived class can (directly) initialize only the
(public data) members inherited from the base class of the derived class. Thus, when a
derived class object is declared, it must also automatically execute one of the constructors
of the base class. Because constructors cannot be called like other functions, the execution
of a derived class constructor must trigger the execution of one of the base class
constructors. This is, in fact, what happens. To make this explicit, a call to the base class
constructor is specified in the heading of the definition of a derived class constructor.

In the preceding section, we defined the class rectangleType and derived the class

boxType from it. Moreover, we illustrated how to override a member function of the
class rectangleType. Let us now discuss how to write the definitions of the con-
structors of the class boxType.

The class rectangleType has two constructors and two member variables. The class

boxType has three member variables: length, width, and height. The member vari-
ables length and width are inherited from the class rectangleType.

First, let us write the definition of the default constructor of the class boxType.
Recall that, if a class contains the default constructor and no values are specified when
the object is declared, the default constructor executes and initializes the object.
Because the class rectangleType contains the default constructor, when writing
the definition of the default constructor of the class boxType, we do not specify any
constructor of the base class.

boxType::boxType()
{

height = 0.0;
}

Next, we discuss how to write the definitions of constructors with parameters. To trigger
the execution of a constructor (with parameters) of the base class, you specify the name of
a constructor of the base class with the parameters in the heading of the definition of the
constructor of the derived class.

Consider the following definition of the constructor with parameters of the class
boxType:

boxType::boxType(double l, double w, double h)
: rectangleType(l, w)

{
if (h >= 0)

height = h;
else

height = 0;
}

In this definition, we specify the constructor of rectangleType with two parameters.
When this constructor of boxType executes, it triggers the execution of the constructor
with two parameters of type double of the class rectangleType.

70 | Chapter 2: Object-Oriented Design (OOD) and C++

Consider the following statements:

rectangleType myRectangle(5.0, 3.0); //Line 1
boxType myBox(6.0, 5.0, 4.0); //Line 2

The statement in Line 1 creates the rectangleType object myRectangle. Thus, the
object myRectangle has two member variables: length and width. The statement in
Line 2 creates the boxType object myBox. Thus, the object myBox has three member
variables: length, width, and height. See Figure 2-4.

Consider the following statements:

myRectangle.print(); //Line 3
cout << endl; //Line 4
myBox.print(); //Line 5
cout << endl; //Line 6

In the statement in Line 3, the member function print of the class rectangleType is
executed. In the statement in Line 5, the function print associated with the class

boxType is executed. Recall that, if a derived class overrides a member function of the
base class, the redefinition applies only to the objects of the derived class. Thus, the
output of the statement in Line 3 is:

Length = 5.0; Width = 3.0

The output of the statement in Line 5 is:

Length = 6.0; Width = 5.0; Height = 4.0

(Constructors with default parameters and the inheritance hierarchy) Recall that a class can

have a constructor with default parameters. Therefore, a derived class can also have a

constructor with default parameters. For example, suppose that the definition of the

class rectangleType is as given next. (To save space, these definitions have no

documentation.)

2

3.0

5.0
myRectangle

myBox

length

width
5.0

6.0length

width

4.0height

FIGURE 2-4 Objects myRectangle and myBox

Inheritance | 71

class rectangleType
{
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter()const;
void print() const;
rectangleType(double l = 0, double w = 0);

//Constructor with default parameters

private:
double length;
double width;

};

Suppose the definition of the constructor is:

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

Now suppose that the definition of the class boxType is as follows:

class boxType: public rectangleType
{
public:

void setDimension(double l, double w, double h);
double getHeight()const;
double area() const;
double volume() const;
void print() const;
boxType(double l = 0, double w = 0, double h = 0);

//Constructor with default parameters

private:
double height;

};

You can write the definition of the constructor of the class boxType as follows:

boxType::boxType(double l, double w, double h)
: rectangleType(l, w)

{
if (h >= 0)

height = h;
else

height = 0;
}

Notice that this definition also takes care of the default constructor of the class boxType.

72 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Suppose that a base class, baseClass, has private member variables and

constructors. Further suppose that the class derivedClass is derived from

baseClass, and derivedClass has no member variables. Therefore, the member

variables of derivedClass are the ones inherited from baseClass. A constructor

cannot be called like other functions, and the member variables of baseClass
cannot be directly accessed by the member functions of derivedClass. To guarantee

the initialization of the inherited member variables of an object of type

derivedClass, even though derivedClass has no member variables, it must

have the appropriate constructors. A constructor (with parameters) of derivedClass

merely issues a call to a constructor (with parameters) of baseClass. Therefore,

when you write the definition of the constructor (with parameters) of derivedClass,
the heading of the definition of the constructor contains a call to an appropriate

constructor (with parameters) of baseClass, and the body of the constructor is

empty—that is, it contains only the opening and closing braces.

EXAMPLE 2-2

Suppose that you want to define a class to group the attributes of an employee. There
are both full-time employees and part-time employees. Part-time employees are paid
based on the number of hours worked and an hourly rate. Suppose that you want to
define a class to keep track of a part-time employee’s information such as name, pay
rate, and hours worked. You can then print the employee’s name together with his
or her wages. Because every employee is a person, and Example 1-12 (Chapter 1)
defined the class personType to store the first name and the last name together with
the necessary operations on name, we can define a class partTimeEmployee based on
the class personType. You can also redefine the print function to print the
appropriate information.

//***
// Author: D.S. Malik
//
// class partTimeEmployee
// This class is derived from the class personType and it
// specifies the members to implement the properties of a
// part-time employee.
//***

class partTimeEmployee: public personType
{
public:

void print() const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs: firstName lastName wages are $$$$.$$

Inheritance | 73

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

Figure 2-5 shows the UML class diagram of the class partTimeEmployee and the
inheritance hierarchy.

The definitions of the member functions of the class partTimeEmployee are as
follows:

void partTimeEmployee::print() const
{

personType::print(); //print the name of the employee
cout << "'s wages are: $" << calculatePay() << endl;

}

partTimeEmployee

–payRate: double
–hoursWorked: double

+print() const: void
+calculatePay() const: double
+setNameRateHours(string, string,
 double, double): void
+partTimeEmployee(string = "", string = "",
 double 0, double = 0)

partTimeEmployee

personType

FIGURE 2-5 UML class diagram of the class partTimeEmployee and inheritance hierarchy

74 | Chapter 2: Object-Oriented Design (OOD) and C++

2

double partTimeEmployee::calculatePay() const
{

return (payRate * hoursWorked);
}

void partTimeEmployee::setNameRateHours(string first,
string last, double rate, double hours)

{
personType::setName(first, last);
payRate = rate;
hoursWorked = hours;

}

//Constructor
partTimeEmployee::partTimeEmployee(string first, string last,

double rate, double hours)
: personType(first, last)

{
payRate = rate;
hoursWorked = hours;

}

Header File of a Derived Class
The previous section explained how to derive new classes from previously defined classes.
To define new classes, you create new header files. The base classes are already defined,
and header files contain their definitions. Thus, to create new classes based on the
previously defined classes, the header files of the new classes contain commands that tell
the computer where to look for the definitions of the base classes.

Suppose that the definition of the class personType is placed in the header file
personType.h. To create the definition of the class partTimeEmployee, the header
file—say, partTimeEmployee.h—must contain the preprocessor directive:

#include "personType.h"

before the definition of the class partTimeEmployee. To be specific, the header file
partTimeEmployee.h is as follows:

//Header file partTimeEmployee

#include "personType.h"

//***
// Author: D.S. Malik
//
// class partTimeEmployee
// This class is derived from the class personType and it
// specifies the members to implement the properties of a
// part-time employee.
//***

Inheritance | 75

class partTimeEmployee: public personType
{
public:

void print() const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs: firstName lastName wages are $$$$.$$

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

The definitions of the member functions can be placed in a separate file (whose extension
is .cpp). Recall that to include a system-provided header file, such as iostream, in a user
program, you enclose the header file between angular brackets; to include a user-defined
header file in a program, you enclose the header file between double quotation marks.

Multiple Inclusions of a Header File
The previous section discussed how to create the header file of a derived class. To include
a header file in a program, you use the preprocessor command include. Recall that
before a program is compiled, the preprocessor first processes the program. Consider the
following header file:

//Header file test.h

const int ONE = 1;
const int TWO = 2;

76 | Chapter 2: Object-Oriented Design (OOD) and C++

Suppose that the header file testA.h includes the file test.h to use the identifiers ONE
and TWO. To be specific, suppose that the header file testA.h looks like:

//Header file testA.h

#include "test.h"
.
.
.

Now consider the following program code:

//Program headerTest.cpp

#include "test.h"
#include "testA.h"
.
.
.

When the program headerTest.cpp is compiled, it is first processed by the preproces-
sor. The preprocessor includes first the header file test.h and then the header file
testA.h. When the header file testA.h is included, because it contains the preprocessor
directive #include "test.h", the header file test.h is included twice in the program.
The second inclusion of the header file test.h results in compile-time errors, such as the
identifier ONE already being declared. This problem occurs because the first inclusion of
the header file test.h has already defined the variables ONE and TWO. To avoid multiple
inclusion of a file in a program, we use certain preprocessor commands in the header file.
Let us first rewrite the header file test.h using these preprocessor commands, and then
explain the meaning of these commands.

//Header file test.h

#ifndef H_test
#define H_test
const int ONE = 1;
const int TWO = 2;
#endif

a. #ifndef H_test means ‘‘if not defined H_test’’

b. #define H_test means ‘‘define H_test’’

c. #endif means ‘‘end if’’

Here H_test is a preprocessor identifier.

The effect of these commands is as follows: If the identifier H_test is not defined, we
must define the identifier H_test and let the remaining statements between #define and
#endif pass through the compiler. If the header file test.h is included the second time
in the program, the statement #ifndef fails and all the statements until #endif are
skipped. In fact, all header files are written using similar preprocessor commands.

2

Inheritance | 77

Protected Members of a Class
The private members of a class are private to the class and cannot be directly accessed
outside the class. Only member functions of that class can access the private members.
As discussed previously, the derived class cannot access private members of a class.
However, it is sometimes necessary for a derived class to access a private member of a
base class. If you make a private member become public, anyone can access that
member. Recall that the members of a class are classified into three categories: public,
private, and protected. So, for a base class to give access to a member to its derived
class and still prevent its direct access outside the class, you must declare that member
under the member access specifier protected. Thus, the accessibility of a protected
member of a class is in between public and private. A derived class can directly access
the protected member of a base class.

To summarize, if a derived class needs to access a member of a base class, that member of
the base class should be declared under the member access specifier protected.

Inheritance as public, protected, or private
Suppose class B is derived from class A. Then B cannot directly access the private
members of A. That is, the private members of A are hidden to B. What about the
public and protected members of A? This section gives the rules that generally apply
when accessing the members of a base class.

Consider the following statement:

class B: memberAccessSpecifier A
{

.

.

.
};

In this statement, memberAccessSpecifier is either public, protected, or private.

1. If memberAccessSpecifier is public—that is, the inheritance is
public—then

a. The public members of A are public members of B. They can be
directly accessed in class B.

b. The protected members of A are protected members of B. They
can be directly accessed by the member functions (and friend

functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.

78 | Chapter 2: Object-Oriented Design (OOD) and C++

2. If memberAccessSpecifier is protected—that is, the inheritance is
protected—then

a. The public members of A are protected members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are protected members of B. They
can be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.

3. If memberAccessSpecifier is private—that is, the inheritance is
private—then

a. The public members of A are private members of B. They can be
accessed by the member functions (and friend functions) of B.

b. The protected members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden to B. They can be accessed
by the member functions (and friend functions) of B through the
public or protected members of A.

The section, ‘‘friend Functions of Classes’’ (located later in this chapter) describes the

friend functions.

Composition
Composition is another way to relate two classes. In composition, one or more members
of a class are objects of another class type. Composition is a ‘‘has-a’’ relationship; for
example, ‘‘every person has a date of birth.’’

Example 1-12, in Chapter 1, defined a class called personType. The class personType
stores a person’s first name and last name. Suppose we want to keep track of additional
information for a person, such as a personal ID (for example, a Social Security number)
and a date of birth. Because every person has a personal ID and a date of birth, we can
define a new class, called personalInfoType, in which one of the members is an object
of type personType. We can declare additional members to store the personal ID and
date of birth for the class personalInfoType.

First, we define another class, dateType, to store only a person’s date of birth, and then
construct the class personalInfoType from the classes personType and dateType.
This way, we can demonstrate how to define a new class using two classes.

2

Composition | 79

To define the class dateType, we need three data members to store the month, day
number, and year. Some of the operations that need to be performed on a date are to set
the date and to print the date. The following statements define the class dateType:

//**
// Author: D.S. Malik
//
// class dateType
// This class specifies the members to implement a date.
//**

class dateType
{
public:

void setDate(int month, int day, int year);
//Function to set the date.
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year

int getDay() const;
//Function to return the day.
//Postcondition: The value of dDay is returned.

int getMonth() const;
//Function to return the month.
//Postcondition: The value of dMonth is returned.

int getYear() const;
//Function to return the year.
//Postcondition: The value of dYear is returned.

void printDate() const;
//Function to output the date in the form mm-dd-yyyy.

dateType(int month = 1, int day = 1, int year = 1900);
//Constructor to set the date
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year. If
// no values are specified, the default values are used to
// initialize the member variables.

private:
int dMonth; //variable to store the month
int dDay; //variable to store the day
int dYear; //variable to store the year

};

80 | Chapter 2: Object-Oriented Design (OOD) and C++

Figure 2-6 shows the UML class diagram of the class dateType.

The definitions of the member functions of the class dateType are as follows:

void dateType::setDate(int month, int day, int year)
{

dMonth = month;
dDay = day;
dYear = year;

}

The definition of the function setDate, before storing the date into the data members,
does not check whether the date is valid. That is, it does not confirm whether month is
between 1 and 12, year is greater than 0, and day is valid (for example, for January, day
should be between 1 and 31). In Programming Exercise 2 at the end of this chapter, you
are asked to rewrite the definition of the function setDate so that the date is validated
before storing it in the data members.

The definitions of the remaining member functions are as follows:

int dateType::getDay() const
{

return dDay;
}

int dateType::getMonth() const
{

return dMonth;
}

int dateType::getYear() const
{

return dYear;
}

2dateType

–dMonth: int
–dDay: int
–dYear: int

+setDate(int, int, int): void
+getDay() const: int
+getMonth() const: int
+getYear() const: int
+printDate() const: void
+dateType(int = 1, int = 1, int = 1900)

FIGURE 2-6 UML class diagram of the class dateType

Composition | 81

void dateType::printDate() const
{

cout << dMonth << "-" << dDay << "-" << dYear;
}

//Constructor with parameters
dateType::dateType(int month, int day, int year)
{

setDate(month, day, year);
}

Because the constructor uses the function setDate before storing the date into the data
members, the constructor also does not check whether the date is valid. In Programming
Exercise 2 at the end of this chapter, when you rewrite the definition of the function
setDate to validate the date, and the constructor uses the function setDate, the date set
by the constructor will also be validated.

Next, we give the definition of the class personalInfoType:

//**
// Author: D.S. Malik
//
// class personalInfo
// This class specifies the members to implement a person's
// personal information.
//**

class personalInfoType
{
public:

void setPersonalInfo(string first, string last, int month,
int day, int year, int ID);

//Function to set the personal information.
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day; dYear = year;
// personID = ID;

void printPersonalInfo () const;
//Function to print the personal information.

personalInfoType(string first = "", string last = "",
int month = 1, int day = 1, int year = 1900,
int ID = 0);

//Constructor
//The member variables are set according to the parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day; dYear = year;
// personID = ID;
// If no values are specified, the default values are
// used to initialize the member variables.

82 | Chapter 2: Object-Oriented Design (OOD) and C++

private:
personType name;
dateType bDay;
int personID;

};

Figure 2-7 shows the UML class diagram of the class personalInfoType and com-
position (aggregation).

Before we give the definition of the member functions of the class personalInfoType,
let us discuss how the constructors of the objects bDay and name are invoked.

Recall that a class constructor is automatically executed when a class object enters its
scope. Suppose that we have the following statement:

personalInfoType student;

When the object student enters its scope, the objects bDay and name, which are
members of student, also enter their scopes; as a result, one of their constructors is
executed. We therefore need to know how to pass arguments to the constructors of the
member objects (that is, bDay and name). Recall that constructors do not have a type and
so cannot be called like other functions. The arguments to the constructor of a member
object (such as bDay) are specified in the heading part of the definition of the constructor
of the class. The following statements illustrate how to pass arguments to the constructors
of the member objects:

personalInfoType::personalInfoType(string first, string last, int month,
int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

.

.

.
}

2

personalInfoType

–name: personType
–bDay: dateType
–personID: int

setPersonalInfo(string, string, int, int,
 int, int): void
printPersonalInfo() const: void
personalInfoType(string = "", string = "",
 int = 1, int = 1,
 int = 1900, int = 0)

personalInfoType

personType dateType

FIGURE 2-7 UML class diagram of the class personalInfoType and composition (aggregation)

Composition | 83

Member objects of a class are constructed (that is, initialized) in the order they are
declared (not in the order they are listed in the constructor’s member initialization list)
and before the enclosing class objects are constructed. Thus, in our case, the object name
is initialized first, then bDay, and, finally, student.

The definitions of the member functions of the class personalInfoType are as follows:

void personalInfoType::setPersonalInfo(string first, string last,
int month, int day, int year, int ID)

{
name.setName(first,last);
bDay.setDate(month,day,year);
personID = ID;

}

void personalInfoType::printPersonalInfo() const
{

name.print();
cout << "'s date of birth is ";
bDay.printDate();
cout << endl;
cout << "and personal ID is " << personID;

}

personalInfoType::personalInfoType(string first, string last,
int month, int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

personID = ID;
}

In the case of inheritance, use the class name to invoke the base class’s constructor. In the
case of composition, use the member object name to invoke its own constructor.

Polymorphism: Operator and Function Overloading
In Chapter 1, you learned how classes in C++ are used to combine data and operations
on that data in a single entity. The ability to combine data and operations is called
encapsulation. It is the first principle of object-oriented design (OOD). Chapter 1
defined the abstract data type (ADT) and described how classes in C++ implement
ADTs. The first section of this chapter discussed how new classes can be derived from
existing classes through the mechanism of inheritance. Inheritance, the second principle
of OOD, encourages code reuse.

The remainder of this chapter discusses the third principle of OOD—polymorphism.
First we discuss polymorphism via operator overloading, and then via templates.
Templates enable the programmer to write generic codes for related functions and classes.
We will simplify function overloading through the use of templates, called function

templates.

84 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Operator Overloading
This section describes how operators are loaded in C++. But first let us see why you
would want to overload operators.

Why Operator Overloading Is Needed
Chapter 1 defined and implemented the class clockType. It also showed how you can
use the class clockType to represent the time of day in a program. Let us review some
of the characteristics of the class clockType.

Consider the following statements:

clockType myClock(8,23,34);
clockType yourClock(4,5,30);

The first statement declares myClock to be an object of type clockType and initializes
the data members hr, min, and sec of myClock to 8, 23, and 34, respectively. The
second statement declares yourClock to be an object of type clockType and initializes
the data members hr, min, and sec of yourClock to 4, 5, and 30, respectively.

Now consider the following statements:

myClock.printTime();
myClock.incrementSeconds();
if (myClock.equalTime(yourClock))
.
.
.

The first statement prints the value of myClock in the form hr:min:sec. The second
statement increments the value of myClock by one second. The third statement checks
whether the value of myClock is the same as the value of yourClock.

These statements do their job. However, if we can use the insertion operator << to
output the value of myClock, the increment operator ++ to increment the value of
myClock by one second, and relational operators for comparison, we can enhance the
flexibility of C++ considerably and can improve code readability. More specifically, we
prefer to use the following statements instead of the previous ones:

cout << myClock;
myClock++;
if (myClock == yourClock)
.
.
.

Recall that the only built-in operations on classes are the assignment operator and the
member selection operator. Therefore, other operators cannot be directly applied to class
objects. However, C++ allows the programmer to extend the definitions of most of the
operators so that operators such as relational operators, arithmetic operators, insertion

Operator Overloading | 85

operators for data output, and extraction operators for data input can be applied to classes.
In C++ terminology, this is called operator overloading. In addition to operator
overloading, this chapter discusses function overloading.

Operator Overloading
Recall how the arithmetic operator / works. If both operands of / are integers, the result
is an integer; otherwise, the result is a floating-point number. Similarly, the stream
insertion operator, <<, and the stream extraction operator, >>, are overloaded. The
operator << is used as both a stream insertion operator and a left shift operator. The
operator >> is used as both a stream extraction operator and a right shift operator. These
are examples of operator overloading.

Other examples of overloaded operators are + and -. The results of + and – are different
for integer arithmetic, floating-point arithmetic, and pointer arithmetic.

C++ allows the user to overload most of the operators so that the operators can work
effectively in a specific application. It does not allow the user to create new operators.
Most of the existing operators can be overloaded to manipulate class objects.

To overload an operator, you must write functions (that is, the header and body). The
name of the function that overloads an operator is the reserved word operator followed
by the operator to be overloaded. For example, the name of the function to overload the
operator >= is

operator>=

Operator function: The function that overloads an operator.

Syntax for Operator Functions
The result of an operation is a value; therefore, the operator function is a value-returning
function.

The syntax of the heading for an operator function is as follows:

returnType operator operatorSymbol(arguments)

In C++, operator is a reserved word.

Operator overloading provides the same concise expressions for user-defined data types as
it does for built-in data types. To overload an operator for a class, you do the following:

1. Include the statement to declare the function to overload the operator
(that is, the operator function) in the definition of the class.

2. Write the definition of the operator function.

Certain rules must be followed when you include an operator function in a class
definition. These rules are described in the section ‘‘Operator Functions as Member
Functions and Nonmember Functions,’’ later in this chapter.

86 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Overloading an Operator: Some Restrictions
When overloading an operator, keep the following in mind:

• You cannot change the precedence of an operator.

• The associativity cannot be changed. (For example, the associativity of
the arithmetic operator + is from left to right and it cannot be changed.)

• You cannot use default arguments with an overloaded operator.

• You cannot change the number of arguments that an operator takes.

• You cannot create new operators. Only existing operators can be over-
loaded. The operators that cannot be overloaded are

. .* :: ?: sizeof

• The meaning of how an operator works with built-in types, such as int,
remains the same.

• Operators can be overloaded either for objects of the user-defined type,
or for a combination of objects of the user-defined type and objects of
the built-in type.

The Pointer this
A member function of a class can (directly) access the data members of that class for a
given object. Sometimes it is necessary for a function member to refer to the object as a
whole, rather than the object’s individual data members. How do you refer to the object
as a whole (that is, as a single unit) in the definition of the member function, especially
when the object is not passed as a parameter? Every object of a class maintains a (hidden)
pointer to itself, and the name of this pointer is this. In C++, this is a reserved word.
The pointer this is available for you to use. When an object invokes a member function,
the member function references the pointer this of the object. For example, suppose
that test is a class and has a member function called funcOne. Further suppose that the
definition of funcOne looks like the following:

test test::funcOne()
{

.

.

.
return *this;

}

If x and y are objects of type test, the statement

y = x.funcOne();

copies the value of the object x into the object y; that is, the data members of x are copied
into the corresponding data members of y. When the object x invokes the function
funcOne, the pointer this in the definition of the member function funcOne refers to
the object x, and so this means the address of x and *this means the value of x.

Operator Overloading | 87

The following example illustrates how the pointer this works.

EXAMPLE 2-3

In Example 1-12 (in Chapter 1), we designed a class to implement a person’s name in a
program. Here we extend the definition of the class personType to individually set a
person’s first name and last name, and then return the entire object. The extended
definition of the class personType is as follows:

//**
// Author: D.S. Malik
//
// class personType
// This class specifies the members to implement a name.
//**

class personType
{
public:

void print() const;
//Function to output the first name and last name in
//the form firstName lastName

void setName(string first, string last);
//Function to set firstName and lastName according to the
//parameters.
//Postcondition: firstName = first; lastName = last

personType& setFirstName(string first);
//Function to set the first name.
//Postcondition: firstName = first
// After setting the first name, a reference to the
// object, that is, the address of the object, is
// returned.

personType& setLastName(string last);
//Function to set the last name.
//Postcondition: lastName = last
// After setting the last name, a reference to the object,
// that is, the address of the object, is returned.

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last

88 | Chapter 2: Object-Oriented Design (OOD) and C++

2

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Notice that in this definition of the class personType, we replace the default con-
structor and the constructor with parameters by one constructor with default parameters.

The definitions of the functions print, setTime, getFirstName, getLastName, and
the constructor is the same as before (see Example 1-12). The definitions of the functions
setFirstName and setLastName are as follows:

personType& personType::setLastName(string last)
{

lastName = last;

return *this;
}

personType& personType::setFirstName(string first)
{

firstName = first;

return *this;
}

The following program shows how to use the class personType. (We assume that the
definition of the class personType is in the file personType.h.)

//**
// Author: D.S. Malik
// Test Program: class personType
//**

#include <iostream> //Line 1
#include <string> //Line 2
#include "personType.h" //Line 3

using namespace std; //Line 4

int main() //Line 5
{ //Line 6

personType student1("Lisa", "Smith"); //Line 7
personType student2; //Line 8
personType student3; //Line 9

cout << "Line 10 -- Student 1: "; //Line 10
student1.print(); //Line 11
cout << endl; //Line 12

student2.setFirstName("Shelly").setLastName("Malik"); //Line 13

cout << "Line 14 -- Student 2: "; //Line 14
student2.print(); //Line 15
cout << endl; //Line 16

Operator Overloading | 89

student3.setFirstName("Cindy"); //Line 17

cout << "Line 18 -- Student 3: "; //Line 18
student3.print(); //Line 19
cout << endl; //Line 20

student3.setLastName("Tomek"); //Line 21

cout << "Line 22 -- Student 3: "; //Line 22
student3.print(); //Line 23
cout << endl; //Line 24

return 0; //Line 25
} //Line 26

Sample Run:

Line 10 -- Student 1: Lisa Smith
Line 14 -- Student 2: Shelly Malik
Line 18 -- Student 3: Cindy
Line 22 -- Student 3: Cindy Tomek

The statements in Lines 7, 8, and 9 declare and initialize the objects student1,
student2, and student3, respectively. The objects student2 and student3 are
initialized to empty strings. The statement in Line 11 outputs the value of student1
(see Line 10 in the sample run, which contains the output of Lines 10, 11, and 12). The
statement in Line 13 works as follows. In the statement

student2.setFirstName("Shelly").setLastName("Malik");

first the expression

student2.setFirstName("Shelly")

is executed because the associativity of the dot operator is from left to right. This
expression sets the first name to "Shelly" and returns a reference to the object, which
is student2. Thus, the next expression executed is

student2.setLastName("Malik")

which sets the last name of student2 to "Malik". The statement in Line 15 outputs the
value of student2. The statement in Line 17 sets the first name of the object student3
to "Cindy", and ignores the value returned. The statement in Line 19 outputs the value
of student3. Notice the output in Line 18. The output shows only the first name, not
the last name, because we have not yet set the last name of student3. The last name of
student3 is still empty, which was set by the statement in Line 9 when student3 was
declared. Next, the statement in Line 21 sets the last name of student3, and the
statement in Line 23 outputs the value of student3.

90 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Friend Functions of Classes
A friend function of a class is a nonmember function of the class, but has access to all
the members (public or non-public) of the class. To make a function as a friend of a
class, the reserved word friend precedes the function prototype (in the class definition).
The word friend appears only in the function prototype in the class definition, not in
the definition of the friend function.

Consider the following statements:

class classIllusFriend
{

friend void two(/*parameters*/);
.
.
.

};

In the definition of the class classIllusFriend, two is declared as a friend of the
class classIllusFriend. That is, it is a nonmember function of the class

classIllusFriend. When you write the definition of the function two, any object of
type classIllusFriend—which is either a local variable of two or a formal parameter of
two—can access its private members within the definition of the function two. (Example
2-4 illustrates this concept.) Moreover, because a friend function is not a member of a
class, its declaration can be placed within the private, protected, or public part of the
class. However, they are typically placed before any member function declaration.

DEFINITION OF A friend FUNCTION

When writing the definition of a friend function, the name of the class and the scope
resolution operator do not precede the name of the friend function in the function
heading. Also, recall that the word friend does not appear in the heading of the friend

function’s definition. Thus, the definition of the function two in the previous class

classIllusFriend is as follows:

void friendFunc(/*parameters*/)
{

.

.

.
}

Of course, we will place the definition of the friend function in the implementation file.

The next section illustrates the difference between a member function and a nonmember
function (friend function), when we overload some of the operators for a specific class.

The following example shows how a friend function accesses the private members of
a class.

Operator Overloading | 91

EXAMPLE 2-4

Consider the following class:

class classIllusFriend
{

friend void friendFunc(classIllusFriend cIFObject);

public:
void print();
void setx(int a);

private:
int x;

};

In the definition of the class classIllusFriend, friendFunc is declared as a
friend function. Suppose that the definitions of the member functions of the class

classIllusFriend are as follows:

void classIllusFriend::print()
{

cout << "In class classIllusFriend: x = " << x << endl;
}

void classIllusFriend::setx(int a)
{

x = a;
}

Consider the following definition of the function friendFunc:

void friendFunc(classIllusFriend cIFObject) //Line 1
{ //Line 2

classIllusFriend localTwoObject; //Line 3

localTwoObject.x = 45; //Line 4

localTwoObject.print(); //Line 5

cout << "Line 6: In friendFunc accessing "
<< "private member variable " << "x = "
<< localTwoObject.x
<< endl; //Line 6

cIFObject.x = 88; //Line 7

cIFObject.print(); //Line 8

cout << "Line 9: In friendFunc accessing "
<< "private member variable " << "x = "
<< cIFObject.x << endl; //Line 9

} //Line 10

92 | Chapter 2: Object-Oriented Design (OOD) and C++

The function friendFunc contains a formal parameter cIFObject and a local variable
localTwoObject, both of type classIllusFriend. In the statement in Line 4, the
object localTwoObject accesses its private member variable x and sets its value to 45.
If friendFunc is not declared as a friend function of the class classIllusFriend,
this statement would result in a syntax error because an object cannot directly access its
private members. Similarly, in the statement in Line 7, the formal parameter
cIFObject accesses its private member variable x and sets its value to 88. Once again,
this statement would result in a syntax error if friendFunc is not declared a friend

function of the class classIllusFriend. The statement in Line 6 outputs the value of
the private member variable x of localTwoObject by directly accessing x. Similarly,
the statement in Line 9 outputs the value of x of cIFObject by directly accessing it. The
function friendFunc also prints the value of x by using the function print (see the
statements in Lines 6 and 9).

Now consider the definition of the following function main:

int main() //Line 11
{ //Line 12

classIllusFriend aObject; //Line 13

aObject.setx(32); //Line 14

cout << "Line 15: aObject.x: "; //Line 15
aObject.print(); //Line 16
cout << endl; //Line 17

cout << "*~*~*~* Testing friendFunc *~*~*~*"
<< endl << endl; //Line 18

friendFunc(aObject); //Line 19

return 0; //Line 20
} //Line 21

Sample Run:

Line 15: aObject.x: In class classIllusFriend: x = 32

~~*~* Testing friendFunc *~*~*~*

In class classIllusFriend: x = 45
Line 6: In friendFunc accessing private member variable x = 45
In class classIllusFriend: x = 88
Line 9: In friendFunc accessing private member variable x = 88

For the most part, the output is self-explanatory. The statement in Line 19 calls the
function friendFunc (a friend function of the class classIllusFriend) and passes
the object aObject as an actual parameter. Notice that the function friendFunc
generates the four lines of output.

2

Operator Overloading | 93

Operator Functions as Member Functions and Nonmember
Functions
Earlier in this chapter we stated that certain rules must be followed when you include an
operator function in the definition of a class. This section describes these rules.

Most operator functions can be either member functions or nonmember functions—that
is, friend functions of a class. To make an operator function be a member or non-
member function of a class, keep the following in mind:

1. The function that overloads any of the operators (), [], ->, or = for a
class must be declared as a member of the class.

2. Suppose that an operator op is overloaded for a class—say, opOverClass.
(Here, op stands for an operator that can be overloaded, such as + or >>.)

a. If the leftmost operand of op is an object of a different type (that is,
not of type opOverClass), the function that overloads the operator
op for opOverClass must be a nonmember—that is, a friend of the
class opOverClass.

b. If the operator function that overloads the operator op for the
class opOverClass is a member of the class opOverClass,
then when applying op on objects of type opOverClass, the left-
most operand of op must be of type opOverClass.

You must follow these rules when including an operator function in a class definition.

You will see later in this chapter that functions that overload the insertion operator, <<,
and the extraction operator, >>, for a class must be nonmembers—that is, they must be
friend functions of the class.

Except for certain operators noted previously, operators can be overloaded either as
member functions or as nonmember functions. The following discussion shows the
difference between these two types of functions.

To facilitate our discussion of operator overloading, we will use the class
rectangleType, defined earlier in this chapter. Also, suppose that you have the follow-
ing statements:

rectangleType myRectangle;
rectangleType yourRectangle;
rectangleType tempRect;

That is, myRectangle, yourRectangle, and tempRect are objects of type rectangleType.

C++ consists of both binary and unary operators. It also has a ternary operator, which
cannot be overloaded. The next few sections discuss how to overload various binary and
unary operators.

94 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Overloading Binary Operators
Suppose that # represents a binary operator (arithmetic, such as +; or relational, such as ==)
that is to be overloaded for the class rectangleType. This operator can be overloaded as
either a member function of the class or as a friend function. We describe both ways to
overload this operator.

OVERLOADING THE BINARY OPERATORS AS MEMBER FUNCTIONS

Suppose that # is overloaded as a member function of the class rectangleType. The
name of the function to overload # for the class rectangleType is

operator#

Because myRectangle and yourRectangle are objects of type rectangleType, you
can perform the following operation:

myRectangle # yourRectangle

The compiler translates this expression into the following expression:

myRectangle.operator#(yourRectangle)

This expression clearly shows that the function operator# has only one parameter,
which is yourRectangle.

Because operator# is a member of the class rectangleType and myRectangle is an
object of type rectangleType, in the previous statement, operator# has direct access
to the private members of the object myRectangle. Thus, the first parameter of
operator# is the object that is invoking the function operator#, and the second
parameter is passed as a parameter to this function.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL) OPERATORS AS
MEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as member functions of a class.

Function Prototype (to be included in the definition of the class):

returnType operator#(const className&) const;

where # stands for the binary operator, arithmetic or relational, to be overloaded;
returnType is the type of value returned by the function; and className is the name
of the class for which the operator is being overloaded.

Function Definition:

returnType className::operator#
(const className& otherObject) const

{
//algorithm to perform the operation

return value;
}

Operator Overloading | 95

The return type of the function that overloads a relational operator is bool.

EXAMPLE 2-5

Let us overload +, *, ==, and != for the class rectangleType. These operators are
overloaded as member functions.

class rectangleType
{
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

The definition of the function operator+ is as follows:

rectangleType rectangleType::operator+
(const rectangleType& rectangle) const

{
rectangleType tempRect;

tempRect.length = length + rectangle.length;
tempRect.width = width + rectangle.width;

return tempRect;
}

96 | Chapter 2: Object-Oriented Design (OOD) and C++

Notice that operator+ adds the corresponding lengths and widths of the two rectangles.
The definition of the function operator* is as follows:

rectangleType rectangleType::operator*
(const rectangleType& rectangle) const

{
rectangleType tempRect;

tempRect.length = length * rectangle.length;
tempRect.width = width * rectangle.width;

return tempRect;
}

Notice that operator* multiplies the corresponding lengths and widths of the two
rectangles.

Two rectangles are equal if their lengths and widths are equal. Therefore, the definition
of the function to overload the operator == is as follows:

bool rectangleType::operator==
(const rectangleType& rectangle) const

{
return (length == rectangle.length &&

width == rectangle.width);
}

Two rectangles are not equal if either their lengths are not equal or their widths are not
equal. Therefore, the definition of the function to overload the operator != is as follows:

bool rectangleType::operator!=
(const rectangleType& rectangle) const

{
return (length != rectangle.length ||

width != rectangle.width);
}

OVERLOADING THE BINARY OPERATORS (ARITHMETIC OR RELATIONAL) AS NONMEMBER
FUNCTIONS

Suppose that # represents the binary operator (arithmetic or relational) that is to be
overloaded as a nonmember function of the class rectangleType.

Further suppose that the following operation is to be performed:

myRectangle # yourRectangle

In this case, the expression is compiled as follows:

operator#(myRectangle, yourRectangle)

2

Operator Overloading | 97

Here, we see that the function operator# has two parameters. This expression also clearly
shows that the function operator# is neither a member of the object myRectangle nor
a member of the object yourRectangle. Both the objects, myRectangle and
yourRectangle, are passed as parameters to the function operator#.

To include the operator function operator# as a nonmember function of the class in the
definition of the class, the reserved word friend must appear before the function
heading. Also, the function operator# must have two parameters.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL) OPERATORS AS
NONMEMBER FUNCTIONS

This section describes the general form of the functions that overload binary operators as
nonmember functions of a class.

Function Prototype (to be included in the definition of the class):

friend returnType operator#(const className&, const className&);

where # stands for the binary operator to be overloaded, returnType is the type of value
returned by the function, and className is the name of the class for which the operator
is being overloaded.

Function Definition:

returnType operator#(const className& firstObject,
const className& secondObject)

{
//algorithm to perform the operation

return value;
}

Overloading the Stream Insertion (<<) and Extraction (>>)
Operators
The operator function that overloads the insertion operator, <<, or the extraction operator,
>>, for a class must be a nonmember function of that class for the following reason.

Consider the following expression:

cout << myRectangle;

In this expression, the leftmost operand of << (that is, cout) is an ostream object, not an
object of type rectangleType. Because the leftmost operand of << is not an object of
type rectangleType, the operator function that overloads the insertion operator for
rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for
rectangleType must be a nonmember function of the class rectangleType.

98 | Chapter 2: Object-Oriented Design (OOD) and C++

2

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend ostream& operator<<(ostream&, const className&);

Function Definition:

ostream& operator<<(ostream& osObject, const className& cObject)
{

//local declaration, if any
//Output the members of cObject.
//osObject << . . .

//Return the stream object.
return osObject;

}

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, osObject—is a reference to an ostream

object.

• The second parameter is a const reference to a particular class.

• The function return type is a reference to an ostream object.

OVERLOADING THE STREAM EXTRACTION OPERATOR (>>)

The general syntax to overload the stream extraction operator, >>, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend istream& operator>>(istream&, className&);

Function Definition:

istream& operator>>(istream& isObject, className& cObject)
{

//local declaration, if any
//Read the data into cObject.
//isObject >> . . .

//Return the stream object.
return isObject;

}

We note the following in this function definition.

• Both parameters are reference parameters.

• The first parameter—that is, isObject—is a reference to an istream object.

Operator Overloading | 99

• The second parameter is usually a reference to a particular class. The data
read will be stored in the object.

• The function return type is a reference to an istream object.

Example 2-6 shows how the stream insertion and extraction operators are overloaded for
the class rectangleType. We also show how to overload arithmetic and relational
operators as member functions of the class.

EXAMPLE 2-6

The definition of the class rectangleType and the definitions of the operator func-
tions are as follows:

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<< (ostream&, const rectangleType &);
friend istream& operator>> (istream&, rectangleType &);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

//The definitions of the functions operator+, operator*, operator==,
//operator!=, and the constructor are the same as in Example 2-5.

100 | Chapter 2: Object-Oriented Design (OOD) and C++

2

ostream& operator<< (ostream& osObject,
const rectangleType& rectangle)

{
osObject << "Length = " << rectangle.length

<< "; Width = " << rectangle.width;

return osObject;
}

istream& operator>> (istream& isObject,
rectangleType& rectangle)

{
isObject >> rectangle.length >> rectangle.width;

return isObject;
}

Consider the following program. (We assume that the definition of the class

rectangleType is in the header file rectangleType.h.)

//**
// Author: D.S. Malik
//
// This program shows how to use the modified class rectangleType.
//**

#include <iostream> //Line 1

#include "rectangleType.h" //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

rectangleType myRectangle(23, 45); //Line 6
rectangleType yourRectangle; //Line 7

cout << "Line 8: myRectangle: " << myRectangle
<< endl; //Line 8

cout << "Line 9: Enter the length and width "
<< "of a rectangle: "; //Line 9

cin >> yourRectangle; //Line 10
cout << endl; //Line 11

cout << "Line 12: yourRectangle: "
<< yourRectangle << endl; //Line 12

cout << "Line 13: myRectangle + yourRectangle: "
<< myRectangle + yourRectangle << endl; //Line 13

cout << "Line 14: myRectangle * yourRectangle: "
<< myRectangle * yourRectangle << endl; //Line 14

return 0; //Line 15
} //Line 16

Operator Overloading | 101

Sample Run: In this sample run, the user input is shaded.

Line 8: myRectangle: Length = 23; Width = 45
Line 9: Enter the length and width of a rectangle: 32 15

Line 12: yourRectangle: Length = 32; Width = 15
Line 13: myRectangle + yourRectangle: Length = 55; Width = 60
Line 14: myRectangle * yourRectangle: Length = 736; Width = 675

The statements in Lines 6 and 7 declare and initialize myRectangle and yourRectangle
to be objects of type rectangleType. The statement in Line 8 outputs the value of
myRectangle using cout and the insertion operator. The statement in Line 10 inputs the
data into yourRectangle using cin and the extraction operator. The statement in Line 12
outputs the value of yourRectangle using cout and the insertion operator. The cout

statement in Line 13 adds the lengths and widths of myRectangle and yourRectangle

and outputs the result. Similarly, the cout statement in Line 14 multiplies the lengths and
widths of myRectangle and yourRectangle and outputs the result. The output shows
that both the stream insertion and stream extraction operators were overloaded successfully.

OVERLOADING UNARY OPERATORS

The process of overloading unary operators is similar to the process of overloading binary
operators. The only difference is that in the case of unary operators, the operator has only
one argument; in the case of binary operators, the operator has two operands. Therefore,
to overload a unary operator for a class we do the following.

• If the operator function is a member of the class, it has no parameters.

• If the operator function is a nonmember—that is, a friend function of
the class—it has one parameter.

Operator Overloading: Member Versus
Nonmember
The preceding sections discussed and illustrated how to overload operators. Certain
operators must be overloaded as member functions of the class, and some must be
overloaded as nonmember (friend) functions. What about the ones that can be over-
loaded as either member functions or nonmember functions? For example, the binary
arithmetic operator + can be overloaded as a member function or a nonmember function.
If you overload + as a member function, the operator + has direct access to the data
members of one of the objects, and you need to pass only one object as a parameter. On
the other hand, if you overload + as a nonmember function, you must pass both objects as
parameters. Therefore, overloading + as a nonmember could require additional memory
and computer time to make a local copy of the data. Thus, for efficiency purposes,
wherever possible, you should overload operators as member functions.

102 | Chapter 2: Object-Oriented Design (OOD) and C++

2
PROGRAMMING EXAMPLE: Complex Numbers

A number of the form a + ib, where i2 ¼ -1, and a and b are real numbers, is called a
complex number. We call a the real part and b the imaginary part of a + ib. Complex
numbers can also be represented as ordered pairs (a, b). The addition and multi-
plication of complex numbers is defined by the following rules:

(a + ib) + (c + id) ¼ (a + c) + i(b + d)

(a + ib) * (c + id) ¼ (ac - bd) + i(ad + bc)

Using the ordered pair notation, these rules are written as follows:

(a, b) + (c, d) ¼ ((a + c), (b + d))

(a, b) * (c, d) ¼ ((ac - bd), (ad + bc))

C++ has no built-in data type that allows us to manipulate complex numbers. In this
example, we will construct a data type, complexType, that can be used to process
complex numbers. We will overload the stream insertion and stream extraction
operators for easy input and output. We will also overload the operators + and * to
perform addition and multiplication of complex numbers. If x and y are complex
numbers, we can evaluate expressions such as x + y and x * y.

#ifndef H_complexNumber
#define H_complexNumber

//***
// Author: D.S. Malik
// class complexType.h
// This class specifies the members to implement a complex number.
//***

#include <iostream>
using namespace std;

class complexType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const complexType&);
friend istream& operator>>(istream&, complexType&);

public:
void setComplex(const double& real, const double& imag);

//Function to set the complex numbers according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

void getComplex(double& real, double& imag) const;
//Function to retrieve the complex number.
//Postcondition: real = realPart; imag = imaginaryPart;

Programming Example: Complex Numbers | 103

complexType(double real = 0, double imag = 0);
//Constructor
//Initializes the complex number according to the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

complexType operator+
(const complexType& otherComplex) const;

//Overload the operator +

complexType operator*
(const complexType& otherComplex) const;

//Overload the operator *

bool operator== (const complexType& otherComplex) const;
//Overload the operator ==

private:
double realPart; //variable to store the real part
double imaginaryPart; //variable to store the imaginary part

};

#endif

Next, we write the definitions of the functions to implement various operations of
the class complexType.

The definitions of most of these functions are straightforward. We discuss only the
definitions of the functions to overload the stream insertion operator, <<, and the
stream extraction operator, >>.

To output a complex number in the form:

(a, b)

where a is the real part and b is the imaginary part, clearly the algorithm is as follows:

a. Output the left parenthesis, (.

b. Output the real part.

c. Output the comma.

d. Output the imaginary part.

e. Output the right parenthesis,).

Therefore, the definition of the function operator<< is as follows:

104 | Chapter 2: Object-Oriented Design (OOD) and C++

2

ostream& operator<<(ostream& osObject, const complexType& complex)
{

osObject << "("; //Step a
osObject << complex.realPart; //Step b
osObject << ", "; //Step c
osObject << complex.imaginaryPart; //Step d
osObject << ")"; //Step e

return osObject; //return the ostream object
}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:

(3, 5)

In this input, the real part of the complex number is 3 and the imaginary part is 5.
Clearly, the algorithm to read this complex number is as follows:

a. Read and discard the left parenthesis.

b. Read and store the real part.

c. Read and discard the comma.

d. Read and store the imaginary part.

e. Read and discard the right parenthesis.

Following these steps, the definition of the function operator>> is as follows:

istream& operator>>(istream& isObject, complexType& complex)
{

char ch;

isObject >> ch; //Step a
isObject >> complex.realPart; //Step b
isObject >> ch; //Step c
isObject >> complex.imaginaryPart; //Step d
isObject >> ch; //Step e

return isObject; //return the istream object
}

The definitions of the other functions are as follows:

bool complexType::operator==
(const complexType& otherComplex) const

{
return (realPart == otherComplex.realPart &&

imaginaryPart == otherComplex.imaginaryPart);
}

Programming Example: Complex Numbers | 105

//Constructor
complexType::complexType(double real, double imag)
{

realPart = real;
imaginaryPart = imag;

}

//Function to set the complex number after the object
//has been declared.

void complexType::setComplex(const double& real,
const double& imag)

{
realPart = real;
imaginaryPart = imag;

}

void complexType::getComplex(double& real, double& imag) const
{

real = realPart;
imag = imaginaryPart;

}

//overload the operator +
complexType complexType::operator+

(const complexType& otherComplex) const
{

complexType temp;

temp.realPart = realPart + otherComplex.realPart;
temp.imaginaryPart = imaginaryPart

+ otherComplex.imaginaryPart;

return temp;
}

//overload the operator *
complexType complexType::operator*

(const complexType& otherComplex) const
{

complexType temp;

temp.realPart = (realPart * otherComplex.realPart) -
(imaginaryPart * otherComplex.imaginaryPart);

temp.imaginaryPart = (realPart * otherComplex.imaginaryPart)
+ (imaginaryPart * otherComplex.realPart);

return temp;
}

106 | Chapter 2: Object-Oriented Design (OOD) and C++

2

The following program illustrates the use of the class complexType:

//**
// Author: D.S. Malik
//
// This program shows how to use the class complexType.
//**

#include <iostream> //Line 1
#include "complexType.h" //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

complexType num1(23, 34); //Line 6
complexType num2; //Line 7
complexType num3; //Line 8

cout << "Line 9: Num1 = " << num1 << endl; //Line 9
cout << "Line 10: Num2 = " << num2 << endl; //Line 10

cout << "Line 11: Enter the complex number "
<< "in the form (a, b): "; //Line 11

cin >> num2; //Line 12
cout << endl; //Line 13

cout << "Line 14: New value of num2 = "
<< num2 << endl; //Line 14

num3 = num1 + num2; //Line 15

cout << "Line 16: Num3 = " << num3 << endl; //Line 16

cout << "Line 17: " << num1 << " + " << num2
<< " = " << num1 + num2 << endl; //Line 17

cout << "Line 18: " << num1 << " * " << num2
<< " = " << num1 * num2 << endl; //Line 18

return 0; //Line 19
} //Line 20

Sample Run: In this sample run, the user input is shaded.

Line 9: Num1 = (23, 34)
Line 10: Num2 = (0, 0)
Line 11: Enter the complex number in the form (a, b): (3, 4)

Line 14: New value of num2 = (3, 4)
Line 16: Num3 = (26, 38)
Line 17: (23, 34) + (3, 4) = (26, 38)
Line 18: (23, 34) * (3, 4) = (-67, 194)

Programming Example: Complex Numbers | 107

Function Overloading
The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator has
with built-in types. The types of arguments used with an operator determine the action to take.

Similar to operator overloading, C++ allows the programmer to overload a function name.
Recall that a class can have more than one constructor, but all constructors of a class have the
same name, which is the name of the class. This case is an example of overloading a function.

Overloading a function refers to the creation of several functions with the same name.
However, if several functions have the same name, every function must have a different
set of parameters. The types of parameters determine which function to execute.

Suppose you need to write a function that determines the larger of two items. Both items
can be integers, floating-point numbers, characters, or strings. You could write several
functions as follows:

int largerInt(int x, int y);
char largerChar(char first, char second);
double largerDouble(double u, double v);
string largerString(string first, string second);

The function largerInt determines the larger of the two integers, the function
largerChar determines the larger of the two characters, and so on. These functions all
perform similar operations. Instead of giving different names to these functions, you can
use the same name—say, larger—for each function; that is, you can overload the
function larger. Thus, you can write the previous function prototypes simply as

int larger(int x, int y);
char larger(char first, char second);
double larger(double u, double v);
string larger(string first, string second);

If the call is larger(5,3), for example, the first function executes. If the call is
larger('A', '9'), the second function executes, and so on.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions to the compiler.

Templates
Templates are very powerful features of C++. By using templates, you can write a single
code segment for a set of related functions, called a function template, and for related
classes, called a class template. The syntax we use for templates is as follows:

template <class Type>
declaration;

108 | Chapter 2: Object-Oriented Design (OOD) and C++

2

where Type is the type of data, and declaration is either a function declaration or a
class declaration. In C++, template is a reserved word. The word class in the heading
refers to any user-defined type or built-in type. Type is referred to as a formal parameter
to the template.

Just as variables are parameters to functions, types (that is, data types) are parameters to
templates.

Function Templates
In the section, ‘‘Function Overloading’’ (located earlier in this chapter), when we intro-
duced function overloading, the function larger was overloaded to find the larger of two
integers, characters, floating-point numbers, or strings. To implement the function larger,
we need to write four function definitions for the data type: one for int, one for char, one
for double, and one for string. However, the body of each function is similar. C++
simplifies the process of overloading functions by providing function templates.

The syntax of the function template is as follows:

template <class Type>
function definition;

where Type is referred to as a formal parameter of the template. It is used to specify the
type of parameters to the function and the return type of the function, and to declare
variables within the function.

The statements

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)
return x;

else
return y;

}

define a function template larger, which returns the larger of two items. In the function
heading, the type of the formal parameters x and y is Type, which will be specified by the
type of the actual parameters when the function is called. The statement

cout << larger(5, 6) << endl;

is a call to the function template larger. Because 5 and 6 are of type int, the data type
int is substituted for Type and the compiler generates the appropriate code.

If we omit the body of the function in the function template definition, the function
template, as usual, is the prototype.

Templates | 109

The following example illustrates the use of function templates.

EXAMPLE 2-7

This example uses the function template larger to determine the larger of the two
items.

//**
// Author: D.S. Malik
//
// This program illustrates how to write and use a template in a
// program.
//**

#include <iostream> //Line 1
#include <string> //Line 2

using namespace std; //Line 3

template <class Type> //Line 4
Type larger(Type x, Type y); //Line 5

int main() //Line 6
{ //Line 7

cout << "Line 8: Larger of 5 and 6 = "
<< larger(5, 6) << endl; //Line 8

cout << "Line 9: Larger of A and B = "
<< larger('A','B') << endl; //Line 9

cout << "Line 10: Larger of 5.6 and 3.2 = "
<< larger(5.6, 3.2) << endl; //Line 10

string str1 = "Hello"; //Line 11
string str2 = "Happy"; //Line 12

cout << "Line 13: Larger of " << str1 << " and "
<< str2 << " = " << larger(str1, str2) << endl; //Line 13

return 0; //Line 14
} //Line 15

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)
return x;

else
return y;

}

110 | Chapter 2: Object-Oriented Design (OOD) and C++

2

Output

Line 8: Larger of 5 and 6 = 6
Line 9: Larger of A and B = B
Line 10: Larger of 5.6 and 3.2 = 5.6
Line 13: Larger of Hello and Happy = Hello

Class Templates
Like function templates, class templates are used to write a single code segment for a set of
related classes. For example, in Chapter 1, we defined a list as an ADT; our list element
type there was int. If the list element type changes from int to, say, char, double, or
string, we need to write separate classes for each element type. For the most part, the
operations on the list and the algorithms to implement those operations remain the same.
Using class templates, we can create a generic class listType, and the compiler can
generate the appropriate source code for a specific implementation.

The syntax we use for a class template is as follows:

template <class Type>
class declaration

Class templates are called parameterized types because, based on the parameter type, a
specific class is generated. For example, if the template parameter type is int, we can
generate a list to process integers; if the parameter type is string, we can generate a list
to process strings.

A class template for the ADT listType is defined as follows:

template <class elemType>
class listType
{
public:

bool isEmpty();
bool isFull();
void search(const elemType& searchItem, bool& found);
void insert(const elemType& newElement);
void remove(const elemType& removeElement);
void destroyList();
void printList();

listType();

private:
elemType list[100]; //array to hold the list elements
int length; //variable to store the number

//of elements in the list
};

Templates | 111

This definition of the class template listType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement

listType<int> intList; //Line 1

declares intList to be a list of 100 components, with each component being of type
int. Similarly, the statement

listType<string> stringList; //Line 2

declares stringList to be a list of 100 components, with each component being of
type string.

In the statements in Lines 1 and 2, listType<int> and listType<string> are referred to
as template instantiations or instantiations of the class template listType<elemType>,
where elemType is the class parameter in the template header. A template instantiation can
be created with either a built-in or user-defined type.

The function members of a class template are considered function templates. Thus, when
giving the definitions of function members of a class template, we must follow the
definition of the function template. For example, the definition of the member insert
of the class listType is as follows:

template<class elemType>
void listType<elemType>::insert(const elemType& newElement)
{

.

.

.
}

In the heading of the member function’s definition, elemType specifies the data type of
the list elements.

Header File and Implementation File of a Class Template
Until now, we have placed the definition of the class (in the specification file) and the
definition of the member functions (in the implementation file) in separate files. The
object code was generated from the implementation file (independently of any client
code) and linked with the client code. This strategy does not work with class templates.
Passing parameters to a function has an effect at run time, whereas passing a parameter to
a class template has an effect at compile time. Because the actual parameter to a class is
specified in the client code, and because the compiler cannot instantiate a function
template without the actual parameter to the template, we can no longer compile the
implementation file independently of the client code.

112 | Chapter 2: Object-Oriented Design (OOD) and C++

This problem has several possible solutions. We could put the class definition and the
definitions of the function templates directly in the client code, or we could put the class
definition and the definitions of the function templates together in the same header file.
Another alternative is to put the class definition and the definitions of the functions in
separate files (as usual), but include a directive to the implementation file at the end of the
header file (that is, the specification file). In either case, the function definitions and the
client code are compiled together. For illustrative purposes, we will put the class defini-
tion and the function definitions in the same header file.

QUICK REVIEW

1. Inheritance and composition are meaningful ways to relate two or more
classes.

2. Inheritance is an ‘‘is a’’ relationship.

3. Composition is a ‘‘has a’’ relationship.

4. In single inheritance, the derived class is derived from only one existing
class, called the base class.

5. In multiple inheritance, a derived class is derived from more than one base
class.

6. The private members of a base class are private to the base class. The
derived class cannot directly access them.

7. The public members of a base class can be inherited either as public,
protected, or private by the derived class.

8. A derived class can redefine the function members of a base class, but this
redefinition applies only to the objects of the derived class.

9. A call to a base class’s constructor is specified in the heading of the
definition of the derived class’s constructor.

10. When initializing the object of a derived class, the constructor of the base
class is executed first.

11. Review the inheritance rules given in this chapter.

12. In composition, a member of a class is an object of another class.

13. In composition, a call to the constructor of the member objects is specified
in the heading of the definition of the class’s constructor.

14. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

15. An operator that has different meanings with different data types is said to
be overloaded.

16. In C++, << is used as a stream insertion operator and as a left shift operator.
Similarly, >> is used as a stream extraction operator and as a right shift
operator. Both are examples of operator overloading.

2

Quick Review | 113

17. The function that overloads an operator is called an operator function.

18. The syntax of the heading of the operator function is

returnType operator operatorSymbol(parameters)

19. In C++, operator is a reserved word.

20. Operator functions are value-returning functions.

21. Except for the assignment operator and the member selection operator, to
use an operator on class objects, that operator must be overloaded.

22. Operator overloading provides the same concise notation for user-defined
data types as is available with built-in data types.

23. When an operator is overloaded, its precedence cannot be changed, its
associativity cannot be changed, default arguments cannot be used, the
number of arguments that the operator takes cannot be changed, and
the meaning of how an operator works with built-in data types remains
the same.

24. It is not possible to create new operators. Only existing operators can be
overloaded.

25. Most C++ operators can be overloaded.

26. The operators that cannot be overloaded are ., .*, ::, ?:, and sizeof.

27. The pointer this refers to the object as a whole.

28. The operator function that overloads the operators (), [], ->, or = must be
a member of a class.

29. A friend function is a nonmember of a class.

30. The heading of a friend function is preceded by the word friend.

31. In C++, friend is a reserved word.

32. If an operator function is a member of a class, the leftmost operand of the
operator must be a class object (or a reference to a class object) of that
operator’s class.

33. The binary operator function as a member of a class has only one para-
meter; as a nonmember of a class, it has two parameters.

34. The operator functions that overload the stream insertion operator, <<, and
the stream extraction operator, >>, for a class must be friend functions of
that class.

35. In C++, a function name can be overloaded.

36. Every instance of an overloaded function has different sets of parameters.

37. In C++, template is a reserved word.

38. Using templates, you can write a single code segment for a set of related
functions—called the function template.

39. Using templates, you can write a single code segment for a set of related
classes—called the class template.

114 | Chapter 2: Object-Oriented Design (OOD) and C++

40. A syntax of a template is

template <class elemType>
declaration;

where elemType is a user-defined identifier, which is used to pass types
(that is, data types) as parameters, and declaration is either a function or a
class. The word class in the heading refers to any user-defined data type
or built-in data type.

41. Class templates are called parameterized types.

42. In a class template, the parameter elemType specifies how a generic class
template is to be customized to form a specific class.

43. Suppose cType is a class template and func is a member function of cType.
The heading of the function definition of func is

template <class elemType >
funcType cType<elemType>::func(formal parameters)

where funcType is the type of the function, such as void.

44. Suppose cType is a class template, which can take int as a parameter. The
statement

cType<int> x;

declares x to be an object of type cType, and the type passed to the class

cType is int.

EXERCISES

1. Mark the following statements as true or false.

a. The constructor of a derived class specifies a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class specifies a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the data members of x is an
object of type y, and both classes have constructors. The constructor of
x specifies a call to the constructor of y by using the object name of
type y.

d. A derived class must have a constructor.

e. In C++, all operators can be overloaded for user-defined data types.

f. In C++, operators cannot be redefined for built-in types.

g. The function that overloads an operator is called the operator function.

h. C++ allows users to create their own operators.

i. The precedence of an operator cannot be changed, but its associativity
can be changed.

2

Exercises | 115

j. Every instance of an overloaded function has the same number of
parameters.

k. It is not necessary to overload relational operators for classes that have
only int data members.

l. The member function of a class template is a function template.

m. When writing the definition of a friend function, the keyword
friend must appear in the function heading.

n. The function heading of the operator function to overload the pre-
increment operator (++) and the postincrement operator (++) is the
same because both operators have the same symbols.

2. Draw a class hierarchy in which several classes are derived from a single base class.

3. Suppose that a class employeeType is derived from the class
personType (see Example 1-12, in Chapter 1). Give examples of data
and function members that can be added to the class employeeType.

4. Explain the difference between the private and protected members of
a class.

5. Consider the following class definition:

class aClass
{
public:

void print() const;
void set(int, int);
aClass();
aClass(int, int);

private:
int u;
int v;

};

What is wrong with the following class definitions?

a. class bClass public aClass
{
public:

void print();
void set(int, int, int);

private:
int z;

};

b. class cClass: public aClass
{
public:

void print();
int sum();
cClass();
cClass(int);

}

116 | Chapter 2: Object-Oriented Design (OOD) and C++

6. Consider the following statements:

class yClass
{
public:

void one();
void two(int, int);
yClass();

private:
int a;
int b;

};

class xClass: public yClass
{
public:

void one();
xClass();

private:
int z;

};

yClass y;
xClass x;

a. The private members of yClass are public members of xClass.
True or False?

b. Mark the following statements as valid or invalid. If a statement is
invalid, explain why.

i. void yClass::one()
{

cout << a + b << endl;
}

ii. y.a = 15;
x.b = 30;

iii. void xClass::one()
{

a = 10;
b = 15;
z = 30;
cout << a + b + z << endl;

}

iv. cout << y.a << " " << y.b << " " << x.z << endl;

7. Assume the declaration of Exercise 6.

a. Write the definition of the default constructor of yClass so that the
private data members of yClass are initialized to 0.

b. Write the definition of the default constructor of xClass so that the
private data members of xClass are initialized to 0.

2

Exercises | 117

c. Write the definition of the member function two of yClass so that the
private data member a is initialized to the value of the first parameter
of two, and the private data member b is initialized to the value of the
second parameter of two.

8. What is wrong with the following code?

class classA
{
protected:

void setX(int a); //Line 1
//Postcondition: x = a; //Line 2

private: //Line 3
int x; //Line 4

};
.
.
.
int main()
{

classA aObject; //Line 5

aObject.setX(4); //Line 6
return 0; //Line 7

}

9. Consider the following code:

class one
{
public:

void print() const;
//Outputs the values of x and y

protected:
void setData(int u, int v);

//Postcondition: x = u; y = v;
private:

int x;
int y;

};

class two: public one
{
public:

void setData(int a, int b, int c);
//Postcondition: x = a; y = b; z = c;

void print() const;
//Outputs the values of x, y, and z

private:
int z;

};

a. Write the definition of the function setData of the class two.

b. Write the definition of the function print of the class two.

118 | Chapter 2: Object-Oriented Design (OOD) and C++

2

10. What is the output of the following C++ program?

#include <iostream>
#include <string>

using namespace std;

class baseClass
{
public:

void print() const;

baseClass(string s = " ", int a = 0);
//Postcondition: str = s; x = a

protected:
int x;

private:
string str;

};

class derivedClass: public baseClass
{
public:

void print() const;

derivedClass(string s = "", int a = 0, int b = 0);
//Postcondition: str = s; x = a; y = b

private:
int y;

};

int main()
{

baseClass baseObject("This is base class", 2);
derivedClass derivedObject("DDDDDD", 3, 7);

baseObject.print();
derivedObject.print();

return 0;
}

void baseClass::print() const
{

cout << x << " " << str << endl;
}

baseClass::baseClass(string s, int a)
{

str = s;
x = a;

}

Exercises | 119

void derivedClass::print() const
{

cout << "Derived class: " << y << endl;
baseClass::print();

}

derivedClass::derivedClass(string s, int a, int b)
:baseClass("Hello Base", a + b)

{
y = b;

}

11. What is the output of the following program?

#include <iostream>

using namespace std;

class baseClass
{
public:

void print()const;

int getX();

baseClass(int a = 0);

protected:
int x;

};

class derivedClass: public baseClass
{
public:

void print()const;

int getResult();

derivedClass(int a = 0, int b = 0);

private:
int y;

};

int main()
{

baseClass baseObject(7);
derivedClass derivedObject(3,8);

baseObject.print();
derivedObject.print();

120 | Chapter 2: Object-Oriented Design (OOD) and C++

cout << "**** " << baseObject.getX() << endl;
cout << "#### " << derivedObject.getResult() << endl;

return 0;
}

void baseClass::print() const
{

cout << "In base: x = " << x << endl;
}

baseClass::baseClass(int a)
{

x = a;
}

int baseClass::getX()
{

return x;
}

void derivedClass::print() const
{

cout << "In derived: x = " << x << ", y = " << y
<< ", x + y = " << x + y << endl;

}

int derivedClass::getResult()
{

return x + y;
}

derivedClass::derivedClass(int a, int b)
:baseClass(a)

{
y = b;

}

12. What is a friend function?

13. Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a friend function?

14. Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

15. Consider the following declaration:

class strange
{
.
.
.
};

2

Exercises | 121

a. Write a statement that shows the declaration in the class strange to
overload the operator >>.

b. Write a statement that shows the declaration in the class strange

to overload the binary operator + as a member function.

c. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

d. Write a statement that shows the declaration in the class strange
to overload the postincrement operator ++ as a member function.

16. Assume the declaration of Exercise 15.

a. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a friend function.

b. Write a statement that shows the declaration in the class strange

to overload the operator == as a friend function.

c. Write a statement that shows the declaration in the class strange to
overload the postincrement operator ++ as a friend function.

17. Find the error(s) in the following code:

class mystery //Line 1
{

...
bool operator <= (mystery); //Line 2
...

};

bool mystery::<=(mystery rightObj) //Line 3
{

...
}

18. Find the error(s) in the following code:

class mystery //Line 1
{

...
bool operator <= (mystery, mystery); //Line 2
...

};

19. Find the error(s) in the following code:

class mystery //Line 1
{
...
friend operator+ (mystery); //Line 2

//Overload the binary operator +
...
};

20. How many parameters are required to overload the preincrement operator
for a class as a member function?

122 | Chapter 2: Object-Oriented Design (OOD) and C++

21. How many parameters are required to overload the preincrement operator
for a class as a friend function?

22. How many parameters are required to overload the postincrement operator
for a class as a member function?

23. How many parameters are required to overload the postincrement operator
for a class as a friend function?

24. Find the error(s) in the following code:

template <class type> //Line 1
class strange //Line 2
{

...
};

strange<int> s1; //Line 3
strange<type> s2; //Line 4

25. Consider the following declaration:

template <class type>
class strange
{

...
private:

Type a;
Type b;

};

a. Write a statement that declares sObj to be an object of type strange
such that the private data members a and b are of type int.

b. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

c. Assume that two objects of type strange are equal if their correspond-
ing data members are equal. Write the definition of the function
operator== for the class strange, which is overloaded as a member
function.

26. Consider the definition of the following function template:

template <class Type>
Type surprise(Type x, Type y)
{

return x + y ;
}

What is the output of the following statements?

a. cout << surprise(5, 7) << endl;

b. string str1 = "Sunny";
string str2 = " Day";
cout << surprise(str1, str2) << endl;

2

Exercises | 123

27. Consider the definition of the following function template:

Template <class Type>
Type funcExp(Type list[], int size)
{

Type x = list[0];
Type y = list[size - 1];

for (int j = 1; j < (size - 1)/2; j++)
{

if (x < list[j])
x = list[j];

if (y > list[size - 1 -j])
y = list[size - 1 -j];

}

return x + y;
}

Further suppose that you have the following declarations:

int list[10] = {5,3,2,10,4,19,45,13,61,11};
string strList[] = {"One", "Hello", "Four", "Three", "How", "Six"};

What is the output of the following statements?

a. cout << funcExp(list, 10) << endl;

b. cout << funcExp(strList, 6) << endl;

28. Write the definition of the function template that swaps the contents of two
variables.

PROGRAMMING EXERCISES

1. In Chapter 1, the class clockType was designed to implement the time
of day in a program. Certain applications, in addition to hours, minutes,
and seconds, might require you to store the time zone. Derive the class
extClockType from the class clockType by adding a data member
to store the time zone. Add the necessary member functions and con-
structors to make the class functional. Also, write the definitions of the
member functions and the constructors. Finally, write a test program to test
your class.

2. In this chapter, the class dateType was designed to implement the date
in a program, but the member function setDate and the constructor do
not check whether the date is valid before storing the date in the data
members. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the data members. Add a function member,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.

124 | Chapter 2: Object-Oriented Design (OOD) and C++

3. A point in the x-y plane is represented by its x-coordinate and y-coordinate.
Design a class, pointType, that can store and process a point in the x-y
plane. You should then perform operations on the point, such as showing
the point, setting the coordinates of the point, printing the coordinates of the
point, returning the x-coordinate, and returning the y-coordinate. Also,
write a test program to test the various operations on the point.

4. Every circle has a center and a radius. Given the radius, we can determine
the circle’s area and circumference. Given the center, we can determine its
position in the x-y plane. The center of a circle is a point in the x-y plane.
Design a class, circleType, that can store the radius and center of the
circle. Because the center is a point in the x-y plane and you designed the
class to capture the properties of a point in Programming Exercise 3, you
must derive the class circleType from the class pointType. You
should be able to perform the usual operations on a circle, such as setting
the radius, printing the radius, calculating and printing the area and circum-
ference, and carrying out the usual operations on the center.

5. Every cylinder has a base and height, where the base is a circle. Design a
class, cylinderType, that can capture the properties of a cylinder and
perform the usual operations on a cylinder. Derive this class from the
class circleType designed in Programming Exercise 4. Some of the
operations that can be performed on a cylinder are as follows: Calculate
and print the volume, calculate and print the surface area, set the height, set
the radius of the base, and set the center of the base.

6. In Programming Exercise 2, the class dateType was designed and imple-
mented to keep track of a date, but it has very limited operations. Redefine
the class dateType so that it can perform the following operations on a
date in addition to the operations already defined:

a. Set the month.

b. Set the day.

c. Set the year.

d. Return the month.

e. Return the day.

f. Return the year.

g. Test whether the year is a leap year.

h. Return the number of days in the month. For example, if the date is
3-12-2011, the number of days to be returned is 31 because there are
31 days in March.

i. Return the number of days passed in the year. For example, if the date is
3-18-2011, the number of days passed in the year is 77. Note that the
number of days returned also includes the current day.

2

Programming Exercises | 125

j. Return the number of days remaining in the year. For example, if the
date is 3-18-2011, the number of days remaining in the year is 288.

k. Calculate the new date by adding a fixed number of days to the date. For
example, if the date is 3-18-2011 and the days to be added are 25, the
new date is 4-12-2011.

7. Write the definitions of the functions to implement the operations defined
for the class dateType in Programming Exercise 6.

8. The class dateType defined in Programming Exercise 6 prints the date in
numerical form. Some applications might require the date to be printed in
another form, such as March 24, 2003. Derive the class extDateType so
that the date can be printed in either form.

Add a data member to the class extDateType so that the month can also
be stored in string form. Add a function member to output the month in the
string format followed by the year—for example, in the form March 2003.

Write the definitions of the functions to implement the operations for the
class extDateType.

9. Using the classes extDateType (Programming Exercise 8) and dayType

(Chapter 1, Programming Exercise 2), design the class calendarType so that,
given the month and the year, we can print the calendar for that month. To print
a monthly calendar, youmust know the first day of the month and the number of
days in that month. Thus, you must store the first day of the month, which is of
the form dayType, and the month and the year of the calendar. Clearly, the
month and the year can be stored in an object of the form extDateType by
setting the day component of the date to 1, and the month and year as specified
by the user. Thus, the class calendarType has two data members: an object
of type dayType and an object of type extDateType.

Design the class calendarType so that the program can print a calendar
for any month starting January 1, 1500. Note that the day for January 1 of
the year 1500 is a Monday. To calculate the first day of a month, you can add
the appropriate days to Monday of January 1, 1500.

For the class calendarType, include the following operations:

a. Determine the first day of the month for which the calendar will be
printed. Call this operation firstDayOfMonth.

b. Set the month.

c. Set the year.

d. Return the month.

e. Return the year.

f. Print the calendar for the particular month.

g. Add the appropriate constructors to initialize the data members.

126 | Chapter 2: Object-Oriented Design (OOD) and C++

10. a. Write the definitions of the member functions of the class

calendarType (designed in Programming Exercise 8) to implement
the operations of the class calendarType.

b. Write a test program to print the calendar for either a particular month
or a particular year. For example, the calendar for September 2011 is as
follows:

September 2011
Sun Mon Tue Wed Thu Fri Sat

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

11. In Chapter 1, the class clockType was designed and implemented to
implement the time of day in a program. This chapter discussed how to
overload various operators. Redesign the class clockType by overloading
the following operators: the stream insertion << and stream extraction >>

operators for input and output, the pre- and postincrement increment
operators to increment the time by one second, and the relational operators
to compare the two times. Also write a test program to test various
operations of the class clockType.

12. a. Extend the definition of the class complexType so that it performs
the subtraction and division operations. Overload the operators sub-
traction and division for this class as member functions.

If (a, b) and (c, d) are complex numbers,

(a, b) � (c, d) ¼ (a � c, b � d),

If (c, d) is nonzero,

(a, b) / (c, d) ¼ ((ac + bd) / (c2 + d2), (�ad + bc) / (c2 + d2))

b. Write the definitions of the functions to overload the operators – and /
as defined in part a.

c. Write a test program that tests the various operations on the class

complexType. Format your answer with two decimal places.

13. a. Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

b. Write the definitions of the member functions of the class

complexType as designed in part a.

c. Write a test program that tests the various operations on the class

complexType as designed in parts a and b. Format your answer with
two decimal places.

2

Programming Exercises | 127

14. Let a + ib be a complex number. The conjugate of a + ib is a – ib and the
absolute value of a + ib is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

.Extend the definition of the class

complexType of the Programming Example, Complex Numbers by over-
loading the operators � and ! as member functions so that � returns the
conjugate of a complex number and ! returns the absolute value. Write the
definitions of these operator functions.

15. Redo Programming Exercise 13 so that the operators � and ! are over-
loaded as nonmember functions.

16. In C++, the largest int value is 2147483647. So an integer larger than this
cannot be stored and processed as an integer. Similarly, if the sum or product of
two positive integers is greater than 2147483647, the result will be incorrect.
One way to store and manipulate large integers is to store each individual digit
of the number in an array. Design the class largeIntegers so that an
object of this class can store an integer up to 100 digits long. Overload the
operators + and – to add and subtract, respectively, the values of two objects
of this class. (In the Programming Exercises in Chapter 3, we will overload
the multiplication operator.) Overload the assignment operator to copy the
value of a large integer into another large integer. Overload the stream
extraction and insertion operators for easy input and output. Your program
must contain appropriate constructors to initialize objects of the class

largeIntegers. (Hint: Read numbers as strings and store the digits of the
number in the reverse order. Add instance variables to store the number of
digits and the sign of the number.)

17. The roots of the quadratic equation ax2 + bx + c ¼ 0, a 6¼ 0 are given by the
following formula:

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
In this formula, the term b2 � 4ac is called the discriminant. If b2 � 4ac ¼ 0,
the equation has a single (repeated) root. If b2 � 4ac > 0, the equation
has two real roots. If b2 � 4ac < 0, the equation has two complex roots.
Design and implement the class quadraticEq so that an object of this
class can store the coefficients of a quadratic equation. Overload the opera-
tors + and – to add and subtract, respectively, the corresponding coefficients
of two quadratic equations. Overload the relational operators == and != to
determine if two quadratic equations are the same. Add appropriate con-
structors to initialize objects. Overload the stream extraction and insertion
operator for easy input and output. Also, include function members to
determine and output the type and the roots of the equation. Write a
program to test your class.

18. Programming Exercise 6 in Chapter 1 describes how to design the class
lineType to implement a line. Redo this programming exercise so that the
class lineType:

128 | Chapter 2: Object-Oriented Design (OOD) and C++

a. Overloads the stream insertion operator, <<, for easy output.

b. Overloads the stream extraction operator, >>, for easy input. (The line
ax + by ¼ c is input as (a, b, c).

c. Overloads the assignment operator to copy a line into another line.

d. Overloads the unary operator + as a member function, so that it returns
true if a line is vertical; false otherwise.

e. Overloads the unary operator - as a member function, so that it returns
true if a line is horizontal; false otherwise.

f. Overloads the operator == as a member function, so that it returns true
if two lines are equal; false otherwise.

g. Overloads the operator || as a member function, so that it returns
true if two lines are parallel; false otherwise.

h. Overloads the operator && as a member function, so that it returns
true if two lines are perpendicular; false otherwise.

Write a program to test your class.

19. Rational fractions are of the form a / b, where a and b are integers and b 6¼ 0.
In this exercise, by ‘‘fractions’’ we mean rational fractions. Suppose a / b
and c / d are fractions. Arithmetic operations on fractions are defined by the
following rules:

a / b + c / d ¼ (ad + bc) / bd

a / b � c / d ¼ (ad � bc)/bd

a / b � c / d ¼ ac / bd

(a / b) / (c / d) ¼ ad / bc, where c / d 6¼ 0.

Fractions are compared as follows: a / b op c / d if ad op bc, where op is any of
the relational operations. For example, a / b < c / d if ad < bc.

Design a class—say, fractionType—that performs the arithmetic and
relational operations on fractions. Overload the arithmetic and relational
operators so that the appropriate symbols can be used to perform the
operation. Also, overload the stream insertion and stream extraction opera-
tors for easy input and output.

a. Write a C++ program that, using the class fractionType, performs
operations on fractions.

b. Among other things, test the following: Suppose x, y, and z are objects
of type fractionType. If the input is 2/3, the statement

cin >> x;

should store 2/3 in x. The statement

cout << x + y << endl;

2

Programming Exercises | 129

should output the value of x + y in fraction form. The statement

z = x + y;

should store the sum of x and y in z in fraction form. Your answer
need not be in the lowest terms.

20. a. In Programming Exercise 1 in Chapter 1, we defined a class

romanType to implement Roman numerals in a program. In that
exercise, we also implemented a function, romanToDecimal, to con-
vert a Roman numeral into its equivalent decimal number.

Modify the definition of the class romanType so that the data mem-
bers are declared as protected. Use the class string to manipulate
the strings. Furthermore, overload the stream insertion and stream
extraction operators for easy input and output. The stream insertion
operator outputs the Roman numeral in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman numeral format. Write the definition of the member
function decimalToRoman.

For simplicity, we assume that only the letter I can appear in front of
another letter and that it appears only in front of the letters V and X. For
example, 4 is represented as IV, 9 is represented as IX, 39 is represented
as XXXIX, and 49 is represented as XXXXIX. Also, 40 will be represented
as XXXX, 190 will be represented as CLXXXX, and so on.

b. Derive a class extRomanType from the class romanType to do the
following. In the class extRomanType, overload the arithmetic
operators +, -, *, and / so that arithmetic operations can be performed
on Roman numerals. Also, overload the pre- and postincrement and
decrement operators as member functions of the class
extRomanType.

To add (subtract, multiply, or divide) Roman numerals, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman numeral format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, ‘‘Because the first number is smaller than the second,
the numbers cannot be subtracted’’. Similarly, for division, the
numerator must be larger than the denominator. Use similar conven-
tions for the increment and decrement operators.

c. Write the definitions of the functions to overload the operators
described in part b.

d. Write a program to test your class extRomanType.

130 | Chapter 2: Object-Oriented Design (OOD) and C++

POINTERS AND

ARRAY-BASED LISTS
IN THIS CHAPTER , YOU WILL :

. Learn about the pointer data type and pointer variables

. Explore how to declare and manipulate pointer variables

. Learn about the address of operator and dereferencing operator

. Discover dynamic variables

. Examine how to use the new and delete operators to manipulate dynamic variables

. Learn about pointer arithmetic

. Discover dynamic arrays

. Become aware of the shallow and deep copies of data

. Discover the peculiarities of classes with pointer data members

. Explore how dynamic arrays are used to process lists

. Learn about virtual functions

. Become aware of abstract classes

3C H A P T E R

The data types in C++ are classified into three categories: simple, structured, and pointers.
Until now, you have worked with only the first two data types. This chapter discusses
the third data type: the pointer data type. You first learn how to declare pointer variables
(or pointers, for short) and manipulate the data to which they point. Later, you use
these concepts when you study dynamic arrays and linked lists. Linked lists are discussed
in Chapter 5.

The Pointer Data Type and Pointer Variables
The values belonging to pointer data types are the memory addresses of your computer.
However, there is no name associated with the pointer data type in C++. Because the
domain, (that is, the values of a pointer data type), consists of addresses (memory
locations), a pointer variable is a variable whose content is an address, that is, a memory
location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables
The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location to which the pointer variable points.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the
data type and the variable name. The general syntax to declare a pointer variable is as
follows:

dataType *identifier;

As an example, consider the following statements:

int *p;
char *ch;

In these statements, both p and ch are pointer variables. The content of p (when properly
assigned) points to a memory location of type int, and the content of ch points to a
memory location of type char. Usually p is called a pointer variable of type int, and ch
is called a pointer variable of type char.

Before discussing how pointers work, let us make the following observations. The
following statements that declare p to be a pointer variable of type int are
equivalent:

int *p;
int* p;
int * p;

132 | Chapter 3: Pointers and Array-Based Lists

Thus, the character * can appear anywhere between the data type name and the variable
name.

Now consider the following statement:

int* p, q;

In this statement, only p is a pointer variable, not q. Here q is an int variable. To avoid
confusion, we prefer to attach the character * to the variable name. So the preceding
statement is written as follows:

int *p, q;

Of course, the statement

int *p, *q;

declares both p and q to be pointer variables of type int.

Now that you know how to declare pointers, next we discuss how to make a pointer
point to a memory space and how to manipulate the data stored in these memory
locations.

Because the value of a pointer is a memory address, a pointer can store the address of a
memory space of the designated type. For example, if p is a pointer of type int, p can
store the address of any memory space of type int. C++ provides two operators—the
address of operator (&) and the dereferencing operator (*)—to work with pointers. The
next two sections describe these operators.

Address of Operator (&)
In C++, the ampersand, &, called the address of operator, is a unary operator that
returns the address of its operand. For example, given the statements

int x;
int *p;

the statement

p = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)
The previous chapters used the asterisk character, *, as the binary multiplication operator.
C++ also uses * as a unary operator. When *, commonly referred to as the dereferen-

cing operator or indirection operator, is used as a unary operator, * refers to the

3

The Pointer Data Type and Pointer Variables | 133

object to which the operand of the * (that is, the pointer) points. For example, given the
statements

int x = 25;
int *p;
p = &x; //store the address of x in p

the statement

cout << *p << endl;

prints the value stored in the memory space to which p points, which is the value of x.
Also, the statement

*p = 55;

stores 55 in the memory location to which p points—that is, 55 is stored in x.

Example 3-1 shows how a pointer variable works.

EXAMPLE 3-1

Let us consider the following statements:

int *p;
int num;

In these statements, p is a pointer variable of type int and num is a variable of type int.
Let us assume that memory location 1200 is allocated for p and memory location 1800 is
allocated for num. (See Figure 3-1.)

Consider the following statements:

1. num = 78;

2. p = #

3. *p = 24;

1200
p

1800
num

.

FIGURE 3-1 Variables p and num

134 | Chapter 3: Pointers and Array-Based Lists

3

The following shows the values of the variables after the execution of each
statement.

After

statement Values of the variables Explanation

1
The statement num = 78; stores 78 into
num.

2
The statement p = # stores the
address of num, which is 1800, into p.

3

The statement *p = 24; stores 24 into the
memory location to which p points. Because
the value of p is 1800, statement 3 stores
24 into memory location 1800. Note that
the value of num is also changed.

Let us summarize the preceding discussion.

1. A declaration such as int *p; allocates memory for p only, not for *p.
Later, you learn how to allocate memory for *p.

2. The content of p points only to a memory location of type int.

3. &p, p, and *p all have different meanings.

4. &p means the address of p—that is, 1200 (as shown in Figure 3-1).

5. p means the content of p, which is 1800, after the statement p = #

executes.

6. *p means the content of the memory location to which p points. Note
that the value of *p is 78 after the statement p = # executes; the
value of *p is 24 after the statement *p = 24; executes.

The program in Example 3-2 further illustrates how a pointer variable works.

EXAMPLE 3-2

//***
// Author: D.S. Malik
//
// This program illustrates how a pointer variable works.
//***

#include <iostream> //Line 1

using namespace std; //Line 2

1200
p

1800
num

1800 24.

1200
p

1800
num

78.

1200
p

1800
num

1800 78.

The Pointer Data Type and Pointer Variables | 135

int main() //Line 3
{ //Line 4

int *p; //Line 5
int num1 = 5; //Line 6
int num2 = 8; //Line 7

p = &num1; //store the address of num1 into p; Line 8

cout << "Line 9: &num1 = " << &num1
<< ", p = " << p << endl; //Line 9

cout << "Line 10: num1 = " << num1
<< ", *p = " << *p << endl; //Line 10

*p = 10; //Line 11
cout << "Line 12: num1 = " << num1

<< ", *p = " << *p << endl << endl; //Line 12

p = &num2; //store the address of num2 into p; Line 13

cout << "Line 14: &num2 = " << &num2
<< ", p = " << p << endl; //Line 14

cout << "Line 15: num2 = " << num2
<< ", *p = " << *p << endl; //Line 15

*p = 2 * (*p); //Line 16
cout << "Line 17: num2 = " << num2

<< ", *p = " << *p << endl; //Line 17

return 0; //Line 18
} //Line 19

Sample Run:

Line 9: &num1 = 0012FF54, p = 0012FF54
Line 10: num1 = 5, *p = 5
Line 12: num1 = 10, *p = 10

Line 14: &num2 = 0012FF48, p = 0012FF48
Line 15: num2 = 8, *p = 8
Line 17: num2 = 16, *p = 16

For the most part, the preceding output is straightforward. Let us look at some of these
statements. The statement in Line 8 stores the address of num1 into p. The statement in
Line 9 outputs the value of &num1, the address of num1, and the value of p. (Note that the
values output by Line 9 are machine dependent. When you execute this program on your
computer, you are likely to get different values of &num1 and p.) The statement in Line
10 outputs the value of num1 and *p. Because p points to the memory location of num1,
*p outputs the value of this memory location, that is, of num1. The statement in Line 11
changes the value of *p to 10. Because p points to the memory location num1, the value
of num1 is also changed. The statement in Line 12 outputs the value of num1 and *p.

The statement in Line 13 stores the address of num2 into p. So after the execution of this
statement, p points to num2. So, any change that *p makes immediately changes the value

136 | Chapter 3: Pointers and Array-Based Lists

of num2. The statement in Line 14 outputs the address of num2 and the value of p. This
statement in Line 16 multiplies the value of *p, which is the value of num2, by 2 and
stores the new value into *p. This statement also changes the value of num2. The
statement in Line 17 outputs the value of num2 and *p.

Pointers and Classes
Consider the following statements:

string *str;
str = new string;
*str = "Sunny Day";

The first statement declares str to be a pointer variable of type string. The second
statement allocates memory of type string and stores the address of the allocated memory
in str. The third statement stores the string "Sunny Day" in the memory to which str
points. Now suppose that you want to use the string function length to find the length of
the string "Sunny Day". The statement (*str).length() returns the length of the string.
Note the parentheses around *str. The expression (*str).length() is a mixture of
pointer dereferencing and the class component selection. In C++, the dot operator, ., has a
higher precedence than the dereferencing operator, *. Let us elaborate on this a little more.
In the expression (*str).length(), the operator * evaluates first, so the expression *str
evaluates first. Because str is a pointer variable of type string, *str refers to a memory
space of type string. Therefore, in the expression (*str).length(), the function
length of the class string executes. Now consider the expression *str.length().
Let us see how this expression gets evaluated. Because . has a higher precedence than *, the
expression str.length() evaluates first. The expression str.length() would result in a
syntax error because str is not a string object, so it cannot use the function length of
the class string.

As you can see, in the expression (*str).length(), the parentheses around *str are
important. However, typos are unavoidable. Therefore, to simplify the accessing of
class or struct components via a pointer, C++ provides another operator, called
the member access operator arrow, ->. The operator -> consists of two consecutive
symbols: a hyphen and the ‘‘greater than’’ symbol.

The syntax for accessing a class (struct) member using the operator -> is as follows:

pointerVariableName->classMemberName

Thus, the expression

(*str).length()

is equivalent to the expression

str->length()

3

The Pointer Data Type and Pointer Variables | 137

Accessing class (struct) components via pointers using the operator -> thus eliminates
the use both of the parentheses and of the dereferencing operator. Because typos are
unavoidable and missing parentheses can result in either an abnormal program termination
or erroneous results, when accessing class (struct) components via pointers, this book
uses the arrow notation.

Initializing Pointer Variables
Because C++ does not automatically initialize variables, pointer variables must be
initialized if you do not want them to point to anything. Pointer variables are initialized
using the constant value 0, called the null pointer. Thus, the statement p = 0; stores the
null pointer in p; that is, p points to nothing. Some programmers use the named constant
NULL to initialize pointer variables. The following two statements are equivalent:

p = NULL;
p = 0;

The number 0 is the only number that can be directly assigned to a pointer variable.

Dynamic Variables
In the previous sections, you learned how to declare pointer variables, how to store the
address of a variable into a pointer variable of the same type as the variable, and how to
manipulate data using pointers. However, you learned how to use pointers to manipulate
data only into memory spaces that were created using other variables. In other words, the
pointers manipulated data into existing memory spaces. So what is the benefit to using
pointers? You can access these memory spaces by working with the variables that were
used to create them. In this section, you learn about the power behind pointers. In
particular, you learn how to allocate and deallocate memory during program execution
using pointers.

Variables that are created during program execution are called dynamic variables. With
the help of pointers, C++ creates dynamic variables. C++ provides two operators, new
and delete, to create and destroy dynamic variables, respectively. When a program
requires a new variable, the operator new is used. When a program no longer needs a
dynamic variable, the operator delete is used.

In C++, new and delete are reserved words.

Operator new
The operator new has two forms: one to allocate a single variable, and another to allocate
an array of variables. The syntax to use the operator new is as follows:

new dataType; //to allocate a single variable
new dataType[intExp]; //to allocate an array of variables

where intExp is any expression evaluating to a positive integer.

138 | Chapter 3: Pointers and Array-Based Lists

3

The operator new allocates memory (a variable) of the designated type and returns a
pointer to it—that is, the address of this allocated memory. Moreover, the allocated
memory is uninitialized.

Consider the following declaration:

int *p;
char *q;
int x;

The statement

p = &x;

stores the address of x in p. However, no new memory is allocated. On the other hand,
consider the following statement:

p = new int;

This statement creates a variable during program execution somewhere in memory, and
stores the address of the allocated memory in p. The allocated memory is accessed via
pointer dereferencing—namely, *p. Similarly, the statement

q = new char[16];

creates an array of 16 components of type char and stores the base address of the array in q.

Because a dynamic variable is unnamed, it cannot be accessed directly. It is accessed
indirectly by the pointer returned by new. The following statements illustrate this concept:

int *p; //p is a pointer of type int

p = new int; //allocates memory of type int and stores the address
//of the allocated memory in p

*p = 28; //stores 28 in the allocated memory

The operator new allocates memory space of a specific type and returns the (starting)

address of the allocated memory space. However, if the operator new is unable to allocate

the required memory space (for example, there is not enough memory space), the program

might terminate with an error message.

Operator delete
Suppose you have the following declaration:

int *p;

This statement declares p to be a pointer variable of type int. Next, consider the
following statements:

p = new int; //Line 1
*p = 54; //Line 2
p = new int; //Line 3
*p = 73; //Line 4

The Pointer Data Type and Pointer Variables | 139

Let us see the effect of these statements. The statement in Line 1 allocates memory space
of type int and stores the address of the allocated memory space into p. Suppose that the
address of allocated memory space is 1500. Then, the value of p after the execution of
this statement is 1500. (See Figure 3-2.)

In Figure 3-2, the number 1500 on top of the box indicates the address of the memory
space. The statement in Line 2 stores 54 into the memory space to which p points, which
is 1500. In other words, after execution of the statement in Line 2, the value stored into
memory space at location 1500 is 54. (See Figure 3-3.)

Next, the statement in Line 3 executes, which allocates a memory space of type int and
stores the address of the allocated memory space into p. Suppose the address of
this allocated memory space is 1800. It follows that the value of p is now 1800. (See
Figure 3-4.)

The statement in Line 4 stores 73 into the memory space to which p points, which is
1800. In other words, after execution of the statement in Line 4, the value stored into the
memory space at location 1800 is 73. (See Figure 3-5.)

p 1500
1500

FIGURE 3-2 p after the execution of p = new int;

54p 1500
1500

FIGURE 3-3 p and *p after the execution of *p = 54;

54
1500

p 1800
1800

FIGURE 3-4 p after the execution of p = new int;

140 | Chapter 3: Pointers and Array-Based Lists

3

Now the obvious question is, what happened to the memory space 1500, to which p was
pointing, before the execution of the statement in Line 3? After execution of the
statement in Line 3, p points to the new memory space at location 1800. The previous
memory space at location 1500 is now inaccessible. In addition, the memory space 1500
remains marked as allocated. In other words, it cannot be reallocated. This is called
memory leak. That is, there is an unused memory space that cannot be allocated.

Imagine what would happen if you execute statements such as Line 1 a few thousand
times, or a few million times. There will be a good amount of memory leak. The
program might then run out of memory space for data manipulation, and eventually
result in an abnormal termination of the program.

The question at hand is how to avoidmemory leak. When a dynamic variable is no longer
needed, it can be destroyed; that is, its memory can be deallocated. The C++ operator
delete is used to destroy dynamic variables, so that its memory space can be allocated
again when needed. The syntax to use the operator delete has the following two forms:

delete pointerVariable; //to deallocate a single dynamic variable
delete [] pointerVariable; //to deallocate a dynamic array

Thus, given the declarations of the previous section, the statements

delete p;
delete str;

deallocate the memory spaces to which the pointers p and str point.

Suppose p is a pointer variable, as declared previously. Note that an expression such as

delete p;

only marks as deallocated the memory spaces to which these pointer variables point. Depending
on a particular system, after these statements execute, these pointer variables might still contain
the addresses of the deallocated memory spaces. In this case, we say that these pointers are
dangling. Therefore, if you later access the memory spaces via these pointers without properly
initializing them, depending on a particular system, either the program will access a wrong
memory space,whichmight result in corruptingdata, or theprogramwill terminatewith an error
message.Oneway to avoid this pitfall is to set these pointers to NULL after the delete operation.

The program in the following example illustrates how to allocate dynamic memory and
how to manipulate data into that dynamic memory.

54

1500

73p 1800

1800

FIGURE 3-5 p after the execution of *p = 73;

The Pointer Data Type and Pointer Variables | 141

EXAMPLE 3-3

//***
// Author: D.S. Malik
//
// This program illustrates how to allocate dynamic memory
// using a pointer variable and how to manipulate data into
// that memory location.
//***

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int *p; //Line 5
int *q; //Line 6

p = new int; //Line 7
*p = 34; //Line 8
cout << "Line 9: p = " << p

<< ", *p = " << *p << endl; //Line 9

q = p; //Line 10
cout << "Line 11: q = " << q

<< ", *q = " << *q << endl; //Line 11

*q = 45; //Line 12
cout << "Line 13: p = " << p

<< ", *p = " << *p << endl; //Line 13
cout << "Line 14: q = " << q

<< ", *q = " << *q << endl; //Line 14

p = new int; //Line 15
*p = 18; //Line 16
cout << "Line 17: p = " << p

<< ", *p = " << *p << endl; //Line 17
cout << "Line 18: q = " << q

<< ", *q = " << *q << endl; //Line 18

delete q; //Line 19
q = NULL; //Line 20
q = new int; //Line 21
*q = 62; //Line 22
cout << "Line 23: p = " << p

<< ", *p = " << *p << endl; //Line 23
cout << "Line 24: q = " << q

<< ", *q = " << *q << endl; //Line 24

return 0; //Line 25
} //Line 26

142 | Chapter 3: Pointers and Array-Based Lists

Sample Run:

Line 9: p = 00355620, *p = 34
Line 11: q = 00355620, *q = 34
Line 13: p = 00355620, *p = 45
Line 14: q = 00355620, *q = 45
Line 17: p = 003556C8, *p = 18
Line 18: q = 00355620, *q = 45
Line 23: p = 003556C8, *p = 18
Line 24: q = 00355620, *q = 62

The statements in Lines 5 and 6 declare p and q to be pointer variables of type int. The
statement in Line 7 allocates memory of type int and stores the address of the allocated
memory into p. (See Figure 3-6.)

The box indicates the allocated memory (in this case, of type int), and p together with
the arrow indicates that p points to the allocated memory. The statement in Line 8 stores
34 into the memory location to which p points. (See Figure 3-7.)

The statement in Line 9 outputs the value of p and *p. (Note that the values of p and q
shown in the sample run are machine dependent. When you execute this program, you
are likely to get different values of p and q.)

The statement in Line 10 copies the value of p into q. (See Figure 3-8.)

3

p

FIGURE 3-6 Pointer p and the memory space to which it points

34p

FIGURE 3-7 Pointer p and the value of the memory location to which p points

34

p

q

FIGURE 3-8 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 10

The Pointer Data Type and Pointer Variables | 143

After the execution of the statement in Line 10, p and q both point to the same memory
location. So any changes made into that memory location by q immediately change the
value of *p. The statement in Line 11 outputs the value of q and *q. The statement in
Line 12 stores 45 into the memory location to which q points. (See Figure 3-9.)

The statements in Lines 13 and 14 output the values of p, *p, q, and *q.

The statement in Line 15 allocates memory space of type int and stores the address of
that memory into p. (See Figure 3-10.)

The statement in Line 16 stores 18 into the memory location to which p points.
(See Figure 3-11.)

The statements in Lines 17 and 18 output the values of p, *p, q, and *q.

The statement in Line 19 deallocates the memory space to which q points and the
statement in Line 20 sets the value of q to NULL. After the execution of the statement
in Line 20, q does not point to any memory location. (See Figure 3-12.)

45

p

q

FIGURE 3-9 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 12

p

45q

FIGURE 3-10 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 15

18p

45q

FIGURE 3-11 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 16

144 | Chapter 3: Pointers and Array-Based Lists

The statement in Line 21 allocates a memory space of type int and stores the address of
that memory space into q. The statement in Line 22 stores 62 in the memory space to
which q points. (See Figure 3-13.)

The statements in Lines 23 and 24 output the values of p, *p, q, and *q.

In the preceding program, omit statements in Lines 19 and 20, rerun the program, and
note how the last output statements change.

Operations on Pointer Variables
The operations that are allowed on pointer variables are the assignment and relational
operations and some limited arithmetic operations. The value of one pointer variable can
be assigned to another pointer variable of the same type. Two pointer variables of the
same type can be compared for equality, and so on. Integer values can be added and
subtracted from a pointer variable. The value of one pointer variable can be subtracted
from another pointer variable.

For example, suppose that we have the following statements:

int *p, *q;

The statement

p = q;

copies the value of q into p. After this statement executes, both p and q point to the same
memory location. Any changesmade to *p automatically change the value of *q, and vice versa.

3

18p

62q

FIGURE 3-13 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 22

18p

q

FIGURE 3-12 Pointers p and q and the memory space to which they point after the execution
of the statement in Line 20

The Pointer Data Type and Pointer Variables | 145

The expression

p == q

evaluates to true if p and q have the same value—that is, if they point to the same
memory location. Similarly, the expression

p != q

evaluates to true if p and q point to different memory locations.

The arithmetic operations that are allowed differ from the arithmetic operations on
numbers. First, let us use the following statements to explain the increment and decre-
ment operations on pointer variables:

int *p;
double *q;
char *chPtr;

Suppose that the size of the memory allocated for an int variable is 4 bytes, a double

variable is 8 bytes, and a char variable is 1 byte.

The statement

p++; or p = p + 1;

increments the value of p by 4 bytes because p is a pointer of type int. Similarly, the statements

q++;
chPtr++;

increment the value of q by 8 bytes and the value of chPtr by 1 byte, respectively.

The increment operator increments the value of a pointer variable by the size of the
memory to which it is pointing. Similarly, the decrement operator decrements the value
of a pointer variable by the size of the memory to which it is pointing.

Moreover, the statement

p = p + 2;

increments the value of p by 8 bytes.

Thus, when an integer is added to a pointer variable, the value of the pointer variable is
incremented by the integer times the size of the memory to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer variable, the value of the pointer variable
is decremented by the integer times the size of the memory to which the pointer is pointing.

Pointer arithmetic can be quite dangerous. Using pointer arithmetic, the program can

accidentally access the memory locations of other variables and change their content

without warning. The programmer is then left to try to find out what went wrong. If a

pointer variable tries to access either the memory spaces of other variables or an illegal

memory space, some systems might terminate the program with an appropriate error

message. Always exercise extra care when doing pointer arithmetic.

146 | Chapter 3: Pointers and Array-Based Lists

3

Dynamic Arrays
The arrays used earlier are called static arrays because their size was fixed at compile time. One
of the limitations of a static array is that every time you execute the program, the size of
the array is fixed, so it might not be possible to use the same array to process different data sets of
the same type. One way to handle this limitation is to declare an array that is large enough to
process a variety of data sets. However, if the array is big and the data set is small, such a
declaration would result in memory waste. On the other hand, it would be helpful if, during
program execution, you could prompt the user to enter the size of the array and then create an
array of the appropriate size. This approach is especially helpful if you cannot even guess the
array size. In this section, you learn how to create arrays during program execution and how to
process such arrays.

An array created during the execution of a program is called a dynamic array. To create
a dynamic array, we use the second form of the new operator.

The statement

int *p;

declares p to be a pointer variable of type int. The statement

p = new int[10];

allocates 10 contiguous memory locations, each of type int, and stores the address of the
first memory location into p. In other words, the operator new creates an array of 10
components of type int, it returns the base address of the array, and the assignment
operator stores the base address of the array into p. Thus, the statement

*p = 25;

stores 25 into the first memory location, and the statements

p++; //p points to the next array component
*p = 35;

store 35 into the second memory location. Thus, by using the increment and decrement
operations, you can access the components of the array. Of course, after performing a few
increment operations, it is possible to lose track of the first array component. C++ allows
us to use array notation to access these memory locations. For example, the statements

p[0] = 25;
p[1] = 35;

store 25 and 35 into the first and second array components, respectively. That is, p[0]
refers to the first array component, p[1] refers to the second array component, and so on.
In general, p[i] refers to the (i + 1)th array component. After the preceding statements
execute, p still points to the first array component.

The following for loop initializes each array component to 0:

for (int j = 0; j < 10; j++)
p[j] = 0;

The Pointer Data Type and Pointer Variables | 147

When the array notation is used to process the array to which p points, p stays fixed at
the first memory location. Note that p is a dynamic array, created during program
execution.

EXAMPLE 3-4

The following program segment illustrates how to obtain a user’s response to get the array size
and create a dynamic array during program execution. Consider the following statements:

int *intList; //Line 1
int arraySize; //Line 2

cout << "Enter array size: "; //Line 3
cin >> arraySize; //Line 4
cout << endl; //Line 5

intList = new int[arraySize]; //Line 6

The statement in Line 1 declares intList to be a pointer of type int, and the statement
in Line 2 declares arraySize to be an int variable. The statement in Line 3 prompts the
user to enter the size of the array, and the statement in Line 4 inputs the array size into the
variable arraySize. The statement in Line 6 creates an array of the size specified by
arraySize, and the base address of the array is stored in intList. From this point on,
you can treat intList just like any other array. For example, you can use the array
notation to process the elements of intList and pass intList as a parameter to the
function.

Array Name: A Constant Pointer
The statement

int list[5];

declares list to be an array of five components. Recall that list itself is a variable
and the value stored in list is the base address of the array—that is, it is the address of
the first array component. Suppose the address of the first array component is 1000.
Figure 3-14 shows list and the array list.

list 1000

1000 1004 1008 1012 1016
list[0] list[1] list[2] list[3] list[4]

FIGURE 3-14 list and array list

148 | Chapter 3: Pointers and Array-Based Lists

3

Because the value of list, which is 1000, is a memory address, list is a pointer variable.
However, the value stored in list, which is 1000, cannot be altered during program execution.
That is, the value of list is constant. Therefore, the increment and decrement operations
cannot be applied to list. In fact, any attempt to use the increment or decrement operations
on list results in a compile-time error.

Notice that here we are only saying that the value of list cannot be changed. However,
the data in the array list can be manipulated as usual. For example, the statement
list[0] = 25; stores 25 into the first array component. Similarly, the statement
list[2] = 78; stores 78 into the third component of list. (See Figure 3-15.)

If p is a pointer variable of type int, then the statement

p = list;

copies the value of list, which is 1000, the base address of the array, into p. We are
allowed to perform increment and decrement operations on p.

An array name is a constant pointer.

Functions and Pointers
A pointer variable can be passed as a parameter to a function either by value or by
reference. To declare a pointer as a value parameter in a function heading, you use the
same mechanism as you use to declare a variable. To make a formal parameter be a
reference parameter, you use & when you declare the formal parameter in the function
heading. Therefore, to declare a formal parameter as a reference parameter, you must
use &. Between the data type name and the identifier name, you must include * to make
the identifier a pointer and & to make it a reference parameter. The obvious question is:
In what order should & and * appear between the data type name and the identifier to
declare a pointer as a reference parameter? In C++, to make a pointer a reference
parameter in a function heading, * appears before the & between the data type name
and the identifier. The following example illustrates this concept:

void example(int* &p, double *q)
{

.

.

.
}

list 1000

1000

25

1004 1008 1012 1016
list[0] list[1] list[2] list[3] list[4]

78

FIGURE 3-15 Array list after the execution of the statements list[0] = 25; and list[2] = 78;

The Pointer Data Type and Pointer Variables | 149

In this example, both p and q are pointers. The parameter p is a reference parameter; the
parameter q is a value parameter.

Pointers and Function Return Values
In C++, the return type of a function can be a pointer. For example, the return type of
the function

int* testExp(...)
{

.

.

.
}

is a pointer of type int.

Dynamic Two-Dimensional Arrays
The beginning of this section discussed how to create dynamic one-dimensional arrays. You
can also create dynamic multidimensional arrays. In this section, we discuss how to create
dynamic two-dimensional arrays. Dynamic multidimensional arrays are created similarly.

There are various ways you can create dynamic two-dimensional arrays. One way is as
follows. Consider the statement:

int *board[4];

This statement declares board to be an array of four pointers wherein each pointer is of
type int. Because board[0], board[1], board[2], and board[3] are pointers, you
can now use these pointers to create the rows of board. Suppose that each row of board
has six columns. Then the following for loop creates the rows of board.

for (int row = 0; row < 4; row++)
board[row] = new int[6];

Note that the expression new int[6] creates an array of six components of type int and
returns the base address of the array. The assignment statement then stores the returned
address into board[row]. It follows that after the execution of the previous for loop,
board is a two-dimensional array of 4 rows and 6 columns.

In the previous for loop, if you replace the number 6 with the number 10, the loop will
create a two-dimensional array of 4 rows and 10 columns. In other words, the number of
columns of board can be specified during execution. However, the way board is declared,
the number of rows is fixed. So in reality, board is not a true dynamic two-dimensional array.

Next, consider the following statement:

int **board;

This statement declares board to be a pointer to a pointer. In other words, board and
*board are pointers. Now board can store the address of a pointer or an array of pointers of
type int, and *board can store the address of an intmemory space or an array of int values.

150 | Chapter 3: Pointers and Array-Based Lists

Suppose that you want board to be an array of 10 rows and 15 columns. To accomplish
this, first we create an array of 10 pointers of type int and assign the address of that array
to board. The following statement accomplishes this:

board = new int* [10];

Next we create the columns of board. The following for loop accomplishes this:

for (int row = 0; row < 10; row++)
board[row] = new int[15];

To access the components of board, you can use the array subscripting notation. For
example, see the next example. Note that the number of rows and the number of columns
of board can be specified during program execution. The program in Example 3-5 further
explains how to create two-dimensional arrays.

EXAMPLE 3-5

//***
// Author: D.S. Malik
//
// This program illustrates how to use two-dimensional dynamic
// arrays.
//***

#include <iostream> //Line 1
#include <iomanip> //Line 2

using namespace std; //Line 3

void fill(int **p, int rowSize, int columnSize); //Line 4
void print(int **p, int rowSize, int columnSize); //Line 5

int main() //Line 6
{ //Line 7

int **board; //Line 8

int rows; //Line 9
int columns; //Line 10

cout << "Line 11: Enter the number of rows "
<<"and columns: "; //Line 11

cin >> rows >> columns; //Line 12
cout << endl; //Line 13

//Create the rows of board
board = new int* [rows]; //Line 14

//Create the columns of board
for (int row = 0; row < rows; row++) //Line 15

board[row] = new int[columns]; //Line 16

3

The Pointer Data Type and Pointer Variables | 151

//Insert elements into board
fill(board, rows, columns); //Line 17

cout << "Line 18: Board:" << endl; //Line 18

//Output the elements of board
print(board, rows, columns); //Line 19

return 0; //Line 20
} //Line 21

void fill(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

cout << "Enter " << columnSize << " number(s) for row "
<< "number " << row << ": ";

for (int col = 0; col < columnSize; col++)
cin >> p[row][col];

cout << endl;
}

}

void print(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

for (int col = 0; col < columnSize; col++)
cout << setw(5) << p[row][col];

cout << endl;
}

}

Sample Run: In this sample run, the user input is shaded.

Line 11: Enter the number of rows and columns: 3 4

Enter 4 number(s) for row number 0: 1 2 3 4

Enter 4 number(s) for row number 1: 5 6 7 8

Enter 4 number(s) for row number 2: 9 10 11 12

Line 18: Board:
1 2 3 4
5 6 7 8
9 10 11 12

The preceding program contains the functions fill and print. The function fill
prompts the user to enter the elements of a two-dimensional array of type int. The
function print outputs the elements of a two-dimensional array of type int.

152 | Chapter 3: Pointers and Array-Based Lists

For the most part, the preceding output is self-explanatory. Let us look at the statements
in the function main. The statement in Line 8 declares board to be a pointer to a pointer
of type int. The statements in Lines 9 and 10 declare int variables rows and columns.
The statement in Line 11 prompts the user to input the number of rows and number of
columns. The statement in Line 12 stores the number of rows in the variable rows and
the number of columns in the variable columns. The statement in Line 14 creates the
rows of board and the for loop in Lines 15 and 16 creates the columns of board. The
statement in Line 17 used the function fill to fill the array board and the statement in
Line 19 uses the function print to output the elements of board.

Shallow Vs. Deep Copy and Pointers
In an earlier section, we discussed pointer arithmetic and explained that if we are not
careful, one pointer might access the data of another (completely unrelated) pointer. This
event might result in unsuspected or erroneous results. Here, we discuss another pecu-
liarity of pointers. To facilitate the discussion, we will use diagrams to show pointers and
their related memory.

Suppose that you have the following declarations:

int *first;
int *second;

Further suppose that first points to an int array, as shown in Figure 3-16.

Next, consider the following statement:

second = first; //Line A

This statement copies the value of first into second. After this statement executes,
both first and second point to the same array, as shown in Figure 3-17.

3

10 36 89 29 47 64 28 92 37 73first

FIGURE 3-16 Pointer first and its array

10 36 89 29 47 64 28 92 37 73first

second

FIGURE 3-17 first and second after the statement second = first; executes

The Pointer Data Type and Pointer Variables | 153

The statement first[4] = 10; not only changes the value of first[4], it also changes
the value of second[4] because they point to the same array.

Let us execute the following statement:

delete [] second;

After this statement executes, the array to which second points is deleted. This action
results in Figure 3-18.

Because first and second pointed to the same array, after the statement

delete [] second;

executes, first becomes invalid, that is, first (as well as second) are now dangling
pointers. Therefore, if the program later tries to access the memory to which first

pointed, either the program will access the wrong memory or it will terminate in an
error. This case is an example of a shallow copy. More formally, in a shallow copy, two
or more pointers of the same type point to the same memory; that is, they point to the
same data.

On the other hand, suppose that instead of the earlier statement, second = first; (in
Line A), we have the following statements:

second = new int[10];

for (int j = 0; j < 10; j++)
second[j] = first[j];

The first statement creates an array of 10 components of type int, and the base address of
the array is stored in second. The second statement copies the array to which first

points into the array to which second points. (See Figure 3-19.)

first

second

FIGURE 3-18 first and second after the statement delete [] second; executes

10 36 89 29 47 64 28 92 37 73first

second 10 36 89 29 47 64 28 92 37 73

FIGURE 3-19 first and second both pointing to their own data

154 | Chapter 3: Pointers and Array-Based Lists

Both first and second now point to their own data. If second deletes its memory,
there is no effect on first. This case is an example of a deep copy. More formally, in a
deep copy, two or more pointers have their own data.

From the preceding discussion, it follows that you must know when to use a shallow
copy and when to use a deep copy.

Classes and Pointers: Some Peculiarities
Because a class can have pointer member variables, this section discusses some peculia-
rities of such classes. To facilitate the discussion, we use the following class:

class pointerDataClass
{
public:

.

.

.

private:
int x;
int lenP;
int *p;

};

Also consider the following statements. (See Figure 3-20.)

pointerDataClass objectOne;
pointerDataClass objectTwo;

Destructor
The object objectOne has a pointer member variable p. Suppose that during program
execution the pointer p creates a dynamic array. When objectOne goes out of scope, all
the member variables of objectOne are destroyed. However, p created a dynamic array,
and dynamic memory must be deallocated using the operator delete. Thus, if the
pointer p does not use the delete operator to deallocate the dynamic array, the memory
space of the dynamic array would stay marked as allocated, even though it cannot be

3

objectOne objectTwox

p

lenP

x

p

lenP

FIGURE 3-20 Objects objectOne and objectTwo

Classes and Pointers: Some Peculiarities | 155

accessed. How do we ensure that when p is destroyed, the dynamic memory created by p

is also destroyed? Suppose that objectOne is as shown in Figure 3-21.

Recall that if a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope (see Chapter 1). Therefore, we can put the necessary code
in the destructor to ensure that when objectOne goes out of scope, the memory created
by the pointer p is deallocated. For example, the definition of the destructor for the
class pointerDataClass is as follows:

pointerDataClass::~pointerDataClass()
{

delete [] p;
}

Of course, you must include the destructor as a member of the class in its definition. Let
us extend the definition of the class pointerDataClass by including the destructor.
Moreover, the remainder of this section assumes that the definition of the destructor is as
given previously—that is, the destructor deallocates the memory space pointed to by p.

class pointerDataClass
{
public:

~pointerDataClass();
.
.
.

private:
int x;
int lenP;
int *p;

};

For the destructor to work properly, the pointer p must have a valid value. If p is not

properly initialized (that is, if the value of p is garbage) and the destructor executes,

either the program terminates with an error message or the destructor deallocates an

unrelated memory space. For this reason, you should exercise extra caution while working

with pointers.

objectOne x

p

8

lenP 50

5 36 24 15 ...

FIGURE 3-21 Object objectOne and its data

156 | Chapter 3: Pointers and Array-Based Lists

3

Assignment Operator
This section describes the limitations of the built-in assignment operators for classes with pointer
member variables. Suppose that objectOne and objectTwo are as shown in Figure 3-22.

Recall that one of the built-in operations on classes is the assignment operator. For
example, the statement:

objectTwo = objectOne;

copies the member variables of objectOne into objectTwo. That is, the value of
objectOne.x is copied into objectTwo.x, and the value of objectOne.p is copied
into objectTwo.p. Because p is a pointer, this memberwise copying of the data would
lead to a shallow copying of the data. That is, both objectTwo.p and objectOne.p

would point to the same memory space, as shown in Figure 3-23.

Now, if objectTwo.p deallocates the memory space to which it points, objectOne.pwould
become invalid. This situation could very well happen, if the class pointerDataClass

has a destructor that deallocates the memory space pointed to by p when an object of
type pointerDataClass goes out of scope. It suggests that there must be a way to avoid
this pitfall. To avoid this shallow copying of data for classes with a pointer member
variable, C++ allows the programmer to extend the definition of the assignment
operator. This process is called overloading the assignment operator. In the next section,
we explain how to accomplish this task by using operator overloading. Once the
assignment operator is properly overloaded, both objectOne and objectTwo have their
own data, as shown in Figure 3-24.

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

8

lenP 50

objectTwo

FIGURE 3-23 Objects objectOne and objectTwo after the statement objectTwo =
objectOne; executes

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

lenP

objectTwo

FIGURE 3-22 Objects objectOne and objectTwo

Classes and Pointers: Some Peculiarities | 157

OVERLOADING THE ASSIGNMENT OPERATOR

Next we describe how to overload the assignment operator.
General Syntax to Overload the Assignment Operator = for a Class

Function Prototype (to be included in the definition of the class):

const className& operator=(const className&);

Function Definition:

const className& className::operator=(const className& rightObject)
{

//local declaration, if any

if (this != &rightObject) //avoids self-assignment
{

//algorithm to copy rightObject into this object
}

//returns the object assigned
return *this;

}

In the definition of the function operator=:

• There is only one formal parameter.

• The formal parameter is generally a const reference to a particular class.

• The return type of the function is a reference to a particular class.

Consider the statement

x = x;

Here, we are trying to copy the value of x into x; that is, this statement is a self-
assignment. We must prevent such statements because they waste computer time.

The body of the function operator= does prevent such assignments. Let us see how.

Consider the if statement in the body of the operator function operator=:

if (this != &rightObject) //avoids self-assignment
{

//algorithm to copy rightObject into this object
}

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

8

lenP 50

objectTwo

5 36 24 15 ...

FIGURE 3-24 Objects objectOne and objectTwo

158 | Chapter 3: Pointers and Array-Based Lists

Now the statement

x = x;

is compiled into the statement

x.operator=(x);

Because the function operator= is invoked by the object x, the pointer this in the
body of the function operator= refers to the object x. Furthermore, because x is also a
parameter to the function operator=, the formal parameter rightObject also refers to
the object x. Therefore, in the expression

this != &rightObject

this means the address of x, and &rightObject also means the address of x. Thus, this
expression will evaluate to false and, therefore, the body of the if statement will be skipped.

Notice that the return type of the function to overload the assignment operator is a
reference. This is so that the statements such as x = y = z; can be executed, that is, the
assignment operator can be used in a cascaded form.

In the section ‘‘Array-Based Lists,’’ later in this chapter, we explicitly illustrate how to
overload the assignment operator.

Copy Constructor
When declaring a class object, you can initialize it by using the value of an existing object
of the same type. For example, consider the following statement:

pointerDataClass objectThree(objectOne);

The object objectThree is being declared and is also being initialized by using the value of
objectOne. That is, the values of the member variables of objectOne are copied into the
corresponding member variables of objectThree. This initialization is called the default
memberwise initialization. The default memberwise initialization is due to the constructor,
called the copy constructor (provided by the compiler). Just as in the case of the assignment
operator, because the class pointerDataClass has pointer member variables, this default
initialization would lead to a shallow copying of the data, as shown in Figure 3-25. (Assume
that objectOne is given as before.)

3

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

8

lenP 50

objectThree

FIGURE 3-25 Objects objectOne and objectThree

Classes and Pointers: Some Peculiarities | 159

Before describing how to overcome this deficiency, let us describe one more situation
that could also lead to a shallow copying of the data. The solution to both these problems
is the same.

Recall that, as parameters to a function, class objects can be passed either by reference or by
value. Remember that the class pointerDataClass has the destructor, which deallocates
the memory space pointed to by p. Suppose that objectOne is as shown in Figure 3-26.

Let us consider the following function prototype:

void destroyList(pointerDataClass paramObject);

The function pointerDataClass has a formal value parameter, paramObject. Now
consider the following statement:

destroyList(objectOne);

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just
as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 3-27.

Because objectOne is passed by value, the member variables of paramObject should
have their own copy of the data. In particular, paramObject.p should have its own
memory space. How do we ensure that this is, in fact, the case?

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

8

lenP 50

paramObject

destroyList

FIGURE 3-27 Pointer member variables of objects objectOne and paramObject pointing
to the same array

objectOne x

p

8

lenP 50

5 36 24 15 ...

FIGURE 3-26 Object objectOne

160 | Chapter 3: Pointers and Array-Based Lists

If a class has pointer member variables:

• During object declaration, the initialization of one object using the value
of another object leads to a shallow copying of the data, if the default
memberwise copying of data is allowed.

• If, as a parameter, an object is passed by value and the default member-
wise copying of data is allowed, it leads to a shallow copying of the data.

In both cases, to force each object to have its own copy of the data, we must override the
definition of the copy constructor provided by the compiler; that is, we must provide our
own definition of the copy constructor. This is usually done by putting a statement that
includes the copy constructor in the definition of the class, and then writing the definition
of the copy constructor. Then, whenever the copy constructor needs to be executed, the
systemwould execute the definition provided by us, not the one provided by the compiler.
Therefore, for the class pointerDataClass, we can overcome this shallow copying
problem by including the copy constructor in the class pointerDataClass.

The copy constructor automatically executes in three situations (the first two are described
previously):

• When an object is declared and initialized by using the value of another
object

• When, as a parameter, an object is passed by value

• When the return value of a function is an object

Therefore, once the copy constructor is properly defined for the class pointerDataClass,
both objectOne.p and objectThree.p will have their own copies of the data.
Similarly, objectOne.p and paramObject.p will have their own copies of the data, as
shown in Figure 3-28.

When the function destroyList exits, the formal parameter paramObject goes out
of scope, and the destructor for the object paramObject deallocates the memory
space pointed to by paramObject.p. However, this deallocation has no effect on
objectOne.

3

objectOne x

p

8

lenP 50

5 36 24 15 ...

x

p

8

lenP 50

paramObject

destroyList

5 36 24 15 ...

FIGURE 3-28 Pointer member variables of objects objectOne and paramObject
with their own data

Classes and Pointers: Some Peculiarities | 161

The general syntax to include the copy constructor in the definition of a class is as
follows:

className(const className& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference
parameter.

In the section, ‘‘Array-Based Lists,’’ we explicitly illustrate how to include the copy constructor
in a class and how it works.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.

2. Overload the assignment operator for the class.

3. Include the copy constructor.

Inheritance, Pointers, and Virtual Functions
Recall that, as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a
formal parameter of the base class type.

First, let us discuss the case when the formal parameter is either a reference parameter or a
pointer. To be specific, let us consider the following classes:

class baseClass
{
public:

void print();
baseClass(int u = 0);

private:
int x;

};

class derivedClass: public baseClass
{
public:

void print();
derivedClass(int u = 0, int v = 0);

private:
int a;

};

The class baseClass has three members. The class derivedClass is derived from the
class baseClass, and has three members of its own. Both classes have a member function
print. Suppose that the definitions of the member functions of both classes are as follows:

162 | Chapter 3: Pointers and Array-Based Lists

void baseClass::print()
{

cout << "In baseClass x = " << x << endl;
}

baseClass::baseClass(int u)
{

x = u;
}

void derivedClass::print()
{

cout << "In derivedClass ***: ";
baseClass::print();
cout << "In derivedClass a = " << a << endl;

}

derivedClass::derivedClass(int u, int v)
: baseClass(u)

{
a = v;

}

Consider the following function in a user program (client code):

void callPrint(baseClass& p)
{

p.print();
}

The function callPrint has a formal reference parameter p of type baseClass. You
can call the function callPrint by using an object of either type baseClass or type
derivedClass as a parameter. Moreover, the body of the function callPrint calls the
member function print. Consider the following function main:

int main() //Line 1
{ //Line 2

baseClass one(5); //Line 3
derivedClass two(3, 15); //Line 4

one.print(); //Line 5
two.print(); //Line 6

cout << "*** Calling the function "
<< "callPrint ***" << endl; //Line 7

callPrint(one); //Line 8
callPrint(two); //Line 9

return 0; //Line 10
} //Line 11

3

Inheritance, Pointers, and Virtual Functions | 163

Sample Run:

In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15
*** Calling the function callPrint ***
In baseClass x = 5
In baseClass x = 3

The statements in Lines 3 through 7 are quite straightforward. Let us look at the statements
in Lines 8 and 9. The statement in Line 8 calls the function callPrint and passes the
object one as the parameter; it generates the fifth line of the output. The statement in Line
9 also calls the function callPrint, but passes the object two as the parameter; it generates
the sixth line of the output. The output generated by the statements in Lines 8 and 9 shows
only the value of x, even though in these statements a different class object is passed as a
parameter. (Because in Line 9 object two is passed as a parameter to the function
callPrint, one would expect that the output generated by the statement in Line 9 should
be similar to the output in the second and third lines of the output.) What actually occurred
is that for both statements (Lines 8 and 9), the member function print of the class
baseClass is executed. This is due to the fact that the binding of the member function
print, in the body of the function callPrint, occurred at compile time. Because the
formal parameter p of the function callPrint is of type baseClass, for the statement
p.print();, the compiler associates the function print of the class baseClass. More
specifically, in compile-time binding, the necessary code to call a specific function is
generated by the compiler. (Compile-time binding is also known as static binding.)

For the statement in Line 9, the actual parameter is of type derivedClass. Thus, when
the body of the function callPrint executes, logically the print function of object two
should execute, which is not the case. So, during program execution, how does C++
correct this problem of making the call to the appropriate function? C++ corrects this
problem by providing the mechanism of virtual functions. The binding of virtual
functions occurs at program execution time, not at compile time. This kind of binding
is called run-time binding. More formally, in run-time binding, the compiler does not
generate the code to call a specific function. Instead, it generates enough information to
enable the run-time system to generate the specific code for the appropriate function call.
Run-time binding is also known as dynamic binding.

In C++, virtual functions are declared using the reserved word virtual. Let us redefine
the previous classes using this feature:

class baseClass
{
public:

virtual void print(); //virtual function
baseClass(int u = 0);

private:
int x;

};

164 | Chapter 3: Pointers and Array-Based Lists

3

class derivedClass: public baseClass
{
public:

void print();
derivedClass(int u = 0, int v = 0);

private:
int a;

};

Note that we need to declare a virtual function only in the base class.

The definition of the member function print is the same as before. If we execute the
previous program with these modifications, the output is as follows.

Sample Run:

In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15
*** Calling the function callPrint ***
In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

This output shows that for the statement in Line 9, the print function of derivedClass
is executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature, suppose
we have the preceding classes. (We assume that the definition of the class baseClass is in
the header file baseClass.h, and the definition of the class derivedClass is in the
header file derivedClass.h.) Consider the following program:

//**
// Author: D.S. Malik
//
// This program illustrates how virtual functions and
// pointer formal parameters work.
//**

#include <iostream> //Line 1

#include "derivedClass.h" //Line 2

using namespace std; //Line 3

void callPrint(baseClass *p); //Line 4

int main() //Line 5
{ //Line 6

baseClass *q; //Line 7
derivedClass *r; //Line 8

Inheritance, Pointers, and Virtual Functions | 165

q = new baseClass(5); //Line 9
r = new derivedClass(3, 15); //Line 10

q->print(); //Line 11
r->print(); //Line 12

cout << "*** Calling the function "
<< "callPrint ***" << endl; //Line 13

callPrint(q); //Line 14
callPrint(r); //Line 15

return 0; //Line 16
} //Line 17

void callPrint(baseClass *p)
{

p->print();
}

Sample Run:

In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15
*** Calling the function callPrint ***
In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15

The preceding examples show that if a formal parameter, say p of a class type, is either a
reference parameter or a pointer and p uses a virtual function of the base class, we can
effectively pass a derived class object as an actual parameter to p.

However, if p is a value parameter, then this mechanism of passing a derived class object as
an actual parameter to p does not work, even if p uses a virtual function. Recall that, if a
formal parameter is a value parameter, the value of the actual parameter is copied into the
formal parameter. Therefore, if a formal parameter is of a class type, the member
variables of the actual object are copied into the corresponding member variables of the
formal parameter.

Suppose that we have the classes defined above—that is, baseClass and derivedClass.
Consider the following function definition:

void callPrint(baseClass p) //p is a value parameter
{

p.print();
}

Further suppose that we have the following declaration:

derivedClass two;

166 | Chapter 3: Pointers and Array-Based Lists

3

The object two has two member variables, x and a. The member variable x is inherited
from the base class. Consider the following function call:

callPrint(two);

In this statement, because the formal parameter p is a value parameter, the member
variables of two are copied into the member variables of p. However, because p is an
object of type baseClass, it has only one member variable. Consequently, only the
member variable x of two will be copied into the member variable x of p. Also, the
statement:

p.print();

in the body of the function will result in executing the member function print of the
class baseClass.

The output of the following program further illustrates this concept. (As before, we
assume that the definition of the class baseClass is in the header file baseClass.h,
and the definition of the class derivedClass is in the header file derivedClass.h.)

//***
// Author: D.S. Malik
//
// This program illustrates how virtual functions and a
// pointer variable of base class as a formal parameter
// work.
//***

#include <iostream> //Line 1

#include "derivedClass.h" //Line 2

using namespace std; //Line 3

void callPrint(baseClass p); //Line 4

int main() //Line 5
{ //Line 6

baseClass one(5); //Line 7
derivedClass two(3, 15); //Line 8

one.print(); //Line 9
two.print(); //Line 10

cout << "*** Calling the function "
<< "callPrint ***" << endl; //Line 11

callPrint(one); //Line 12
callPrint(two); //Line 13

return 0; //Line 14
} //Line 15

Inheritance, Pointers, and Virtual Functions | 167

void callPrint(baseClass p) //p is a value parameter
{

p.print();
}

Sample Run:

In baseClass x = 5
In derivedClass ***: In baseClass x = 3
In derivedClass a = 15
*** Calling the function callPrint ***
In baseClass x = 5
In baseClass x = 3

Look closely at the output of the statements in Lines 12 and 13 (the last two lines of
output). In Line 13, because the formal parameter p is a value parameter, the member
variables of two are copied into the corresponding member variables of p. However,
because p is an object of type baseClass, it has only one member variable. Conse-
quently, only the member variable x of two is copied into the member variable x of p.
Moreover, the statement p.print(); in the function callPrint executes the function
print of the class baseClass, not the class derivedClass. Therefore, the last line
of the output shows only the value of x (the member variable of two).

An object of the base class type cannot be passed to a formal parameter of the derived

class type.

Classes and Virtual Destructors
One thing recommended for classes with pointer member variables is that these classes
should have the destructor. The destructor is automatically executed when the class
object goes out of scope. Thus, if the object creates dynamic objects, the destructor
can be designed to deallocate the storage for them. If a derived class object is passed to a
formal parameter of the base class type, the destructor of the base class executes regardless
of whether the derived class object is passed by reference or by value. Logically, however,
the destructor of the derived class should be executed when the derived class object goes
out of scope.

To correct this problem, the destructor of the base class must be virtual. The virtual

destructor of a base class automatically makes the destructor of a derived class virtual.
When a derived class object is passed to a formal parameter of the base class type, then
when the object goes out of scope, the destructor of the derived class executes. After
executing the destructor of the derived class, the destructor of the base class executes.
Therefore, when the derived class object is destroyed, the base class part (that is, the
members inherited from the base class) of the derived class object is also destroyed.

If a base class contains virtual functions, make the destructor of the base class virtual.

168 | Chapter 3: Pointers and Array-Based Lists

Abstract Classes and Pure Virtual Functions
The preceding section discussed virtual functions. Other than enforcing run-time binding
of functions, virtual functions also have another use, which is discussed in this section.
Chapter 2 described the second principal of OOD—inheritance. Through inheritance we
can derive new classes without designing them from scratch. The derived classes, in
addition to inheriting the existing members of the base class, can add their own members
and also redefine or override public and protected member functions of the base class.
The base class can contain functions that you would want each derived class to imple-
ment. There are many scenarios when a class is desired to be served as a base class for a
number of derived classes, however, the base class may contain certain functions that may
not have meaningful definitions in the base class.

Let us consider the class shape given in Chapter 2. As noted in that chapter, from the
class shape you can derive other classes such as rectangle, circle, ellipse, and
so on. Some of the things common to every shape are its center, using the center to move
a shape to a different location, and drawing the shape. Among others, we can include
these in the class shape. For example, you could have the definition of the class
shape similar to the following:

class shape
{
public:

virtual void draw();
//Function to draw the shape.

virtual void move(double x, double y);
//Function to move the shape at the position (x, y).

.

.

.
};

Because the definitions of the functions draw and move are specific to a particular shape,
each derived class can provide an appropriate definition of these functions. Note that we
have made the functions draw and move virtual to enforce run-time binding of these
functions.

The way the definition of the class shape is written when you write the definition of
the functions of the class shape, you must also write the definitions of the functions
draw and move. However, at this point there is no shape to draw or move. Therefore,
these function bodies have no code. One way to handle this is to make the body of these
functions empty. This solution would work, but it has another drawback. Once we write
the definitions of the functions of the class shape, then we could create an object of
this class. Because there is no shape to work with, we would like to prevent the user from
creating objects of the class shape. It follows that we would like to do the following
two things—to not include the definitions of the functions draw and move, and to
prevent the user from creating objects of the class shape.

3

Abstract Classes and Pure Virtual Functions | 169

Because we do not want to include the definitions of the functions draw and move of the
class shape, we must convert these functions to pure virtual functions. In this case,
the prototypes of these functions are:

virtual void draw() = 0;
virtual void move(double x, double y) = 0;

Note the expression = 0 before the semicolon. Once you make these functions pure
virtual functions in the class shape, you no longer need to provide the definitions of
these functions for the class shape.

Once a class contains one or more pure virtual functions, then that class is called an abstract
class. Thus, the abstract definition of the class shape is similar to the following:

class shape
{
public:

virtual void draw() = 0;
//Function to draw the shape. Note that this is a
//pure virtual function.

virtual void move(double x, double y) = 0;
//Function to move the shape at the position (x, y).
//Note that this is a pure virtual function.

.

.

.
};

Because an abstract class is not a complete class, as it (or its implementation file) does not
contain the definitions of certain functions, you cannot create objects of that class.

Now suppose that we derive the class rectangle from the class shape. To make
rectangle a nonabstract class, so that we can create objects of this class, the class (or its
implementation file) must provide the definitions of the pure virtual functions of its
base class, which is the class shape.

Note that in addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the abstract class
must provide the definitions of constructor and functions that are not pure virtual.

Array-Based Lists
Everyone is familiar with the term list. You might have a list consisting of employee data,
student data, sales data, or a list of rental properties. One thing common to all lists is that all
the elements of a list are of the same type. More formally, we can define a list as follows:

List: A collection of elements of the same type.

The length of a list is the number of elements in the list.

170 | Chapter 3: Pointers and Array-Based Lists

Following are some of the operations performed on a list:

1. Create the list. The list is initialized to an empty state.

2. Determine whether the list is empty.

3. Determine whether the list is full.

4. Find the size of the list.

5. Destroy, or clear, the list.

6. Determine whether an item is the same as a given list element.

7. Insert an item in the list at the specified location.

8. Remove an item from the list at the specified location.

9. Replace an item at the specified location with another item.

10. Retrieve an item from the list from the specified location.

11. Search the list for a given item.

Before discussing how to implement these operations, we must first decide how to store the
list in the computer’s memory. Because all the elements of a list are of the same type, an
effective and convenient way to process a list is to store it in an array. Initially, the size of the
array holding the list elements is usually larger than the number of elements in the list so that,
at a later stage, the list can grow. Thus, we must know how full the array is; that is, we must
keep track of the number of list elements stored in the array. C++ allows the programmer to
create dynamic arrays. Therefore, we leave it for the user to specify the size of the array. The
size of the array can be specified when a list object is declared. It follows that, to maintain and
process the list in an array, we need the following three variables:

• The array holding the list elements

• A variable to store the length of the list (that is, the number of list
elements currently in the array)

• A variable to store the size of the array (that is, the maximum number of
elements that can be stored in the array)

Suppose that the variable length indicates the number of elements in the list and that
maxSize indicates the maximum number of elements that can be stored in the list. Then
length and maxSize are nonnegative integers and, therefore, we can declare them to be
of type int. What about the type of the array, that is, the data type of the array elements?
If we have a list of numbers, the array elements could be of type int or double. If we
have a list of names, the array elements are of type string. Similarly, if we have a list of
students, the array elements are of type studentType (a data type you can define). As
you can see, there are various types of lists.

A list of sales data or a list of students’ data is empty if its length is zero. To insert an item
at the end of a list of any type would require you to add the element after the current last
element and then increment the length by one. Similarly, it can be seen that, for the most
part, the algorithms to implement operations on a list of names, on a list of sales data, or
on a list of students’ data are the same. We do not want to spend time and efforts to

3

Array-Based Lists | 171

develop separate code for each type of list we encounter. Instead, we want to develop a
generic code that can be used to implement any type of list in a program. In other words,
while designing the algorithms, we do not want to be concerned whether we are
processing a list of numbers, a list of names, or a list of students’ data. However, while
illustrating a particular algorithm, we will consider a specific type of list. To develop
generic algorithms to implement list operations, we make use of class templates.

Now that we know the operations to be performed on a list and how to store the list into
the computer’s memory, next we define the class implementing the list as an abstract data
type (ADT). The following class, arrayListType, defines the list as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of array-based lists.
//***

template <class elemType>
class arrayListType
{
public:

const arrayListType<elemType>& operator=
(const arrayListType<elemType>&);

//Overloads the assignment operator
bool isEmpty() const;

//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.

bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full;
// otherwise, returns false.

int listSize() const;
//Function to determine the number of elements in the list
//Postcondition: Returns the value of length.

int maxListSize() const;
//Function to determine the size of the list.
//Postcondition: Returns the value of maxSize.

void print() const;
//Function to output the elements of the list
//Postcondition: Elements of the list are output on the
// standard output device.

bool isItemAtEqual(int location, const elemType& item) const;
//Function to determine whether the item is the same
//as the item in the list at the position specified by
//Postcondition: Returns true if list[location]
// is the same as the item; otherwise,
// returns false.

void insertAt(int location, const elemType& insertItem);
//Function to insert an item in the list at the
//position specified by location. The item to be inserted
//is passed as a parameter to the function.

172 | Chapter 3: Pointers and Array-Based Lists

3

//Postcondition: Starting at location, the elements of the
// list are shifted down, list[location] = insertItem;,
// and length++;. If the list is full or location is
// out of range, an appropriate message is displayed.

void insertEnd(const elemType& insertItem);
//Function to insert an item at the end of the list.
//The parameter insertItem specifies the item to be inserted.
//Postcondition: list[length] = insertItem; and length++;
// If the list is full, an appropriate message is
// displayed.

void removeAt(int location);
//Function to remove the item from the list at the
//position specified by location
//Postcondition: The list element at list[location] is removed
// and length is decremented by 1. If location is out of
// range, an appropriate message is displayed.

void retrieveAt(int location, elemType& retItem) const;
//Function to retrieve the element from the list at the
//position specified by location.
//Postcondition: retItem = list[location]
// If location is out of range, an appropriate message is
// displayed.

void replaceAt(int location, const elemType& repItem);
//Function to replace the elements in the list at the
//position specified by location. The item to be replaced
//is specified by the parameter repItem.
//Postcondition: list[location] = repItem
// If location is out of range, an appropriate message is
// displayed.

void clearList();
//Function to remove all the elements from the list.
//After this operation, the size of the list is zero.
//Postcondition: length = 0;

int seqSearch(const elemType& item) const;
//Function to search the list for a given item.
//Postcondition: If the item is found, returns the location
// in the array where the item is found; otherwise,
// returns -1.

void insert(const elemType& insertItem);
//Function to insert the item specified by the parameter
//insertItem at the end of the list. However, first the
//list is searched to see whether the item to be inserted
//is already in the list.
//Postcondition: list[length] = insertItem and length++
// If the item is already in the list or the list
// is full, an appropriate message is displayed.

void remove(const elemType& removeItem);
//Function to remove an item from the list. The parameter
//removeItem specifies the item to be removed.
//Postcondition: If removeItem is found in the list,
// it is removed from the list and length is
// decremented by one.

Array-Based Lists | 173

arrayListType(int size = 100);
//constructor
//Creates an array of the size specified by the
//parameter size. The default array size is 100.
//Postcondition: The list points to the array, length = 0,
// and maxSize = size

arrayListType(const arrayListType<elemType>& otherList);
//copy constructor

~arrayListType();
//destructor
//Deallocates the memory occupied by the array.

protected:
elemType *list; //array to hold the list elements
int length; //to store the length of the list
int maxSize; //to store the maximum size of the list

};

Figure 3-29 shows the UML class diagram of the class arrayListType.

+isEmpty()const: bool
+isFull()const: bool
+listSize()const: int
+maxListSize()const: int
+print() const: void
+isItemAtEqual(int, const elemType&)const: bool
+insertAt(int, const elemType&): void
+insertEnd(const elemType&): void
+removeAt(int): void
+retrieveAt(int, elemType&)const: void
+replaceAt(int, const elemType&): void
+clearList(): void
+seqSearch(const elemType&)const: int
+insert(const elemType&): void
+remove(const elemType&): void
+arrayListType(int = 100)
+arrayListType(const arrayListType<elemType>&)
+~arrayListType()

 +operator=(const arrayListType<elemType>&):

arrayListType

#*list: elemType
#length: int
#maxSize: int

 const arrayListType<elemType>&

FIGURE 3-29 UML class diagram of the class arrayListType

174 | Chapter 3: Pointers and Array-Based Lists

3

Notice that the data members of the class arrayListType are declared as protected.
This is because we want to derive classes from this class to implement special lists such as
an ordered list. Next, we write the definitions of these functions.

The list is empty if length is zero; it is full if length is equal to maxSize. Therefore,
the definitions of the functions isEmpty and isFull are as follows:

template <class elemType>
bool arrayListType<elemType>::isEmpty() const
{

return (length == 0);
}

template <class elemType>
bool arrayListType<elemType>::isFull() const
{

return (length == maxSize);
}

The data member length of the class stores the number of elements currently in the list.
Similarly, because the size of the array holding the list elements is stored in the data
member maxSize, maxSize specifies the maximum size of the list. Therefore, the
definitions of the functions listSize and maxListSize are as follows:

template <class elemType>
int arrayListType<elemType>::listSize() const
{

return length;
}

template <class elemType>
int arrayListType<elemType>::maxListSize() const
{

return maxSize;
}

Each of the functions isEmpty, isFull, listSize, and maxListSize contain only one
statement, which is either a comparison statement or a statement returning a value. It
follows that each of these functions is of O(1).

The member function print outputs the elements of the list. We assume that the output
is sent to the standard output device.

template <class elemType>
void arrayListType<elemType>::print() const
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

The function print uses a loop to output the elements of the list. The number of times
the for loop executes depends on the number of elements of the list. If the list has 100

Array-Based Lists | 175

elements, the for loop executes 100 times. In general, suppose that the number of
elements in the list is n. Then the function print is of O(n).

The definition of the function isItemAtEqual is straightforward.

template <class elemType>
bool arrayListType<elemType>::isItemAtEqual

(int location, const elemType& item) const
{

return(list[location] == item);
}

The body of function isItemAtEqual has only one statement, which is a comparison
statement. It is easy to see that this function is of O(1).

The function insertAt inserts an item at a specific location in the list. The item to be
inserted and the insert location in the array are passed as parameters to this function. To
insert the item somewhere in the middle of the list, we must first make room for the new
item. That is, we need to move certain elements right one array slot. Suppose that the
data member list of an arrayListType object is as shown in Figure 3-30. (Note that
this figure does not show the data members length and maxSize.)

The number of elements currently in the list is 6, so length is 6. Thus, after inserting a
new element, the length of the list is 7. If the item is to be inserted at, say location 6, we
can easily accomplish this by copying the item into list[6]. On the other hand, if the
item is to be inserted at, say location 3, we first need to move elements list[3],
list[4], and list[5] one array slot right to make room for the new item. Thus, we
must first copy list[5] into list[6], list[4] into list[5], and list[3] into
list[4], in this order. Then we can copy the new item into list[3].

Of course, special cases such as trying to insert in a full list must be handled separately.
Other member functions can handle some of these cases.

The definition of the function insertAt is as follows:

template <class elemType>
void arrayListType<elemType>::insertAt

(int location, const elemType& insertItem)
{

if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "

<< "is out of range" << endl;

[0] [1] [2] [3] [4] [5] [6] [7] [8]

list 35 24 45 17 26 78 ...

FIGURE 3-30 Array list

176 | Chapter 3: Pointers and Array-Based Lists

else
if (length >= maxSize) //list is full

cerr << "Cannot insert in a full list" << endl;
else
{

for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down

list[location] = insertItem; //insert the item at the
//specified position

length++; //increment the length
}

} //end insertAt

The function insertAt uses a for loop to shift the elements of the list. The number of
times the for loop executes depends on where in the list the item is to be inserted. If the
item is to be inserted at the first position, all the elements of the list are shifted. It can be
easily shown that this function is of O(n).

The function insertEnd can be implemented by using the function insertAt. How-
ever, the function insertEnd does not require the shifting of elements. Therefore, we
give its definition directly.

template <class elemType>
void arrayListType<elemType>::insertEnd(const elemType& insertItem)
{

if (length >= maxSize) //the list is full
cerr << "Cannot insert in a full list" << endl;

else
{

list[length] = insertItem; //insert the item at the end
length++; //increment the length

}
} //end insertEnd

The number of statements and, hence, the number of operations executed in the body of
the function insertEnd are fixed. Therefore, this function is of O(1).

The function removeAt is the opposite of the function insertAt. The function
removeAt removes an item from a specific location in the list. The location of the
item to be removed is passed as a parameter to this function. After removing the item
from the list, the length of the list is reduced by 1. If the item to be removed is
somewhere in the middle of the list, after removing the item we must move certain
elements left one array slot because we cannot leave holes in the portion of the array
containing the list. Suppose that the data member list of an arrayListType object
is as shown in Figure 3-31. (Note that this figure does not show the data members
length and maxSize.)

3

Array-Based Lists | 177

The number of elements currently in the list is 6, so length is 6. Thus, after removing an
element, the length of the list is 5. Suppose that the item to be removed is at, say
location 3. Clearly, we must move list[4] into list[3] and list[5] into list[4],
in this order.

The definition of the function removeAt is as follows:

template <class elemType>
void arrayListType<elemType>::removeAt(int location)
{

if (location < 0 || location >= length)
cerr << "The location of the item to be removed "

<< "is out of range" << endl;
else
{

for (int i = location; i < length - 1; i++)
list[i] = list[i+1];

length--;
}

} //end removeAt

Similar to the function insertAt, it is easily seen that the function removeAt is of O(n).

The definition of the function retrieveAt is straightforward. The index of the item to
be retrieved, and the location where to retrieve the item, are passed as parameters to this
function. Similarly, the definition of the function replaceAt is straightforward. The
definitions of these functions are as follows:

template <class elemType>
void arrayListType<elemType>::retrieveAt

(int location, elemType& retItem) const
{

if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is "

<< "out of range." << endl;
else

retItem = list[location];
} //end retrieveAt

template <class elemType>
void arrayListType<elemType>::replaceAt

(int location, const elemType& repItem)

[0] [1] [2] [3] [4] [5] [6] [7] [8]

list 35 24 45 17 26 78 ...

FIGURE 3-31 Array list

178 | Chapter 3: Pointers and Array-Based Lists

{
if (location < 0 || location >= length)

cerr << "The location of the item to be replaced is "
<< "out of range." << endl;

else
list[location] = repItem;

} //end replaceAt

The function clearList removes the elements from the list, leaving it empty. Because
the data member length indicates the number of elements in the list, the elements are
removed by simply setting length to 0. Therefore, the definition of this function is as
follows:

template <class elemType>
void arrayListType<elemType>::clearList()
{

length = 0;
} //end clearList

We now discuss the definition of the constructor and the destructor. The constructor
creates an array of the size specified by the user, and initializes the length of the list to 0

and the maxSize to the size of the array specified by the user. The size of the array is
passed as a parameter to the constructor. The default array size is 100. The destructor
deallocates the memory occupied by the array holding the list elements. The definition of
the constructor and the destructor are as follows:

template <class elemType>
arrayListType<elemType>::arrayListType(int size)
{

if (size < 0)
{

cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;

maxSize = 100;
}
else

maxSize = size;

length = 0;

list = new elemType[maxSize];
assert(list != NULL);

}

template <class elemType>
arrayListType<elemType>::~arrayListType()
{

delete [] list;
}

3

Array-Based Lists | 179

As before, it is easy to see that each of the functions retrieveAt, replaceAt,
clearList, as well as the constructor and destructor is of O(1).

Copy Constructor
Recall that the copy constructor is called when an object is passed as a (value) parameter
to a function, and when an object is declared and initialized using the value of another
object of the same type. It copies the data members of the actual object into the
corresponding data members of the formal parameter and the object being created. Its
definition is as follows:

template <class elemType>
arrayListType<elemType>::arrayListType

(const arrayListType<elemType>& otherList)
{

maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize]; //create the array
assert(list != NULL); //terminate if unable to allocate

//memory space

for (int j = 0; j < length; j++) //copy otherList
list [j] = otherList.list[j];

} //end copy constructor

Overloading the Assignment Operator
Next, because we are overloading the assignment operator for the class arrayListType,
we give the definition of the function template to overload the assignment operator.

template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator=

(const arrayListType<elemType>& otherList)
{

if (this != &otherList) //avoid self-assignment
{

delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;

list = new elemType[maxSize]; //create the array
assert(list != NULL); //if unable to allocate memory

//space, terminate the program
for (int i = 0; i < length; i++)

list[i] = otherList.list[i];
}

return *this;
}

180 | Chapter 3: Pointers and Array-Based Lists

3

Similar to the function print, it is easy to see that both the copy constructor and the
function to overload the assignment operator are of O(n).

Search
The search algorithm described next is called a sequential or linear search.

Consider the list of seven elements shown in Figure 3-32.

Suppose that you want to determine whether 27 is in the list. The sequential search
works as follows: First, you compare 27 with list[0]—that is, compare 27 with 35.
Because list[0] 6¼ 27, you then compare 27 with list[1] (that is, with 12, the second
item in the list). Because list[1] 6¼ 27, you compare 27 with the next element in the
list—that is, compare 27 with list[2]. Because list[2] = 27, the search stops. This is a
successful search.

Let us now search for 10. As before, the search starts with the first element in the list—
that is, at list[0]. This time the search item, which is 10, is compared with every item
in the list. Eventually, no more data is left in the list to compare with the search item.
This is an unsuccessful search.

It now follows that, as soon as you find an element in the list that is equal to the search
item, you must stop the search and report ‘‘success.’’ (In this case, you usually also tell the
location in the list where the search item was found.) Otherwise, after the search item is
compared with every element in the list, you must stop the search and report ‘‘failure.’’

Suppose that the name of the array containing the list elements is list. The following
function performs a sequential search on a list:

template <class elemType>
int arrayListType<elemType>::seqSearch(const elemType& item) const
{

int loc;
bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{

found = true;
break;

}

[0] [1] [2] [3] [4] [5] [6] [7]

list 35 12 27 18 45 16 38 ...

FIGURE 3-32 List of seven elements

Array-Based Lists | 181

if (found)
return loc;

else
return -1;

} //end seqSearch

Now that we know how to implement the (sequential) search algorithm, we can give
the definitions of the functions insert and remove. Recall that the function insert

inserts a new item at the end of the list if this item does not exist in the list and
the list is not full. The function remove removes an item from the list if the list is
not empty.

Chapter 9 explicitly shows that the function seqSearch is of O(n).

Insert
The function insert inserts a new item in the list. Because duplicates are not allowed,
this function first searches the list to determine whether the item to be inserted is already
in the list. To determine whether the item to be inserted is already in the list, this
function calls the member function seqSearch, described previously. If the item to be
inserted is not in the list, the new item is inserted at the end of the list and the length of
the list is increased by 1. Also, the item to be inserted is passed as a parameter to this
function. The definition of this function is as follows:

template <class elemType>
void arrayListType<elemType>::insert(const elemType& insertItem)
{

int loc;

if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and

//increment the length
else if (length == maxSize)

cerr << "Cannot insert in a full list." << endl;
else
{

loc = seqSearch(insertItem);

if (loc == -1) //the item to be inserted
//does not exist in the list

list[length++] = insertItem;
else

cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;

}
} //end insert

The function insert uses the function seqSearch to determine whether the
insertItem is already in the list. Because the function seqSearch is of O(n), it follows
that the function insert is of O(n).

182 | Chapter 3: Pointers and Array-Based Lists

Remove
The function remove deletes an item from the list. The item to be deleted is passed as a
parameter to this function. To delete the item, the function calls the member function
seqSearch to determine whether the item to be deleted is in the list. If the item to be
deleted is found in the list, the item is removed from the list and the length of the list is
decremented by 1. If the item to be removed is found in the list, the function seqSearch

returns the index of the item in the list to be deleted. We can now use the index
returned by the function seqSearch, and use the function removeAt to remove the item
from the list. Therefore, the definition of the function remove is as follows:

template<class elemType>
void arrayListType<elemType>::remove(const elemType& removeItem)
{

int loc;

if (length == 0)
cerr << "Cannot delete from an empty list." << endl;

else
{

loc = seqSearch(removeItem);

if (loc != -1)
removeAt(loc);

else
cout << "The item to be deleted is not in the list."

<< endl;
}

} //end remove

The function remove uses the functions seqSearch and removeAt to remove an item
from the list. Because each of these functions is of O(n) and because they are called in
sequence, it follows that the function remove is of O(n).

Time Complexity of List Operations
The following table summarizes the time complexity of list operations.

3

TABLE 3-1 Time complexity of list operations

Function Time-complexity

isEmpty O (1)

isFull O (1)

listSize O (1)

maxListSize O (1)

Array-Based Lists | 183

The following program tests the various operations on array-based lists.

//**
// Author: D.S. Malik
//
// This program illustrates how to use the class arrayListType.
//**

#include <iostream> //Line 1

#include <string> //Line 2
#include "arrayListType.h" //Line 3

TABLE 3-1 Time complexity of list operations (continued)

Function Time-complexity

print O (n)

isItemAtEqual O (1)

insertAt O (n)

insertEnd O (1)

removeAt O (n)

retrieveAt O (1)

replaceAt O (n)

clearList O (1)

constructor O (1)

destructor O (1)

copy constructor O (n)

overloading the assignment
operator

O (n)

seqSearch O (n)

insert O (n)

remove O (n)

184 | Chapter 3: Pointers and Array-Based Lists

using namespace std; //Line 4

int main() //Line 5
{ //Line 6

arrayListType<int> intList(100); //Line 7
arrayListType<string> stringList; //Line 8

int number; //Line 9

cout << "List 10: Enter 5 integers: "; //Line 10

for (int counter = 0; counter < 5; counter++) //Line 11
{ //Line 12

cin >> number; //Line 13
intList.insertAt(counter, number); //Line 14

} //Line 15

cout << endl; //Line 16
cout << "List 19: The list you entered is: "; //Line 17
intList.print(); //Line 18
cout << endl; //Line 19

cout << "Line 20: Enter the item to be deleted: "; //Line 20
cin >> number; //Line 21
intList.remove(number); //Line 22
cout << "Line 23: After removing " << number

<< ", the list is:" << endl; //Line 23
intList.print(); //Line 24
cout << endl; //Line 25

string str; //Line 26

cout << "Line 27: Enter 5 strings: "; //Line 27

for (int counter = 0; counter < 5; counter++) //Line 28
{ //Line 29

cin >> str; //Line 30
stringList.insertAt(counter, str); //Line 31

} //Line 32

cout << endl; //Line 33
cout << "Line 34: The list you entered is: " << endl; //Line 34
stringList.print(); //Line 35
cout << endl; //Line 36

cout << "Line 37: Enter the string to be deleted: "; //Line 37
cin >> str; //Line 38
stringList.remove(str); //Line 39
cout << "Line 40: After removing " << str

<< ", the list is:" << endl; //Line 40

3

Array-Based Lists | 185

stringList.print(); //Line 41
cout << endl; //Line 42

return 0; //Line 43
} //Line 44

Sample Run: In this sample run, the user input is shaded.

List 10: Enter 5 integers: 23 78 56 12 79

List 19: The list you entered is: 23 78 56 12 79

Line 20: Enter the item to be deleted: 56
Line 23: After removing 56, the list is:
23 78 12 79

Line 27: Enter 5 strings: hello sunny warm winter summer

Line 34: The list you entered is:
hello sunny warm winter summer

Line 37: Enter the string to be deleted: hello
Line 40: After removing hello, the list is:
sunny warm winter summer

The preceding program works as follows. The statement in Line 7 declares intList to
be an object of type arrayListType. The data member list of intList is an array of
100 components and the component type is int. The statement in Line 8 declares
stringList to be an object of type arrayListType. The data member list of
stringList is an array of 100 components (the default size) and the component type
is string. The statement in Line 10 prompts the user to enter five integers. The
statement in Line 13 gets the next number from the input stream. The statement in Line
14 uses the member function insertAt of intList to store the number into intList.
The statement in Line 18 uses the member function print of intList to output the
elements of intList. The statement in Line 20 prompts the user to enter the number to
be deleted from intList; the statement in Line 21 gets the number to be deleted from
the input stream. The statement in Line 22 uses the member function remove of
intList to remove the number from intList.

The statements in Lines 27 through 42 work the same way as the statements in Lines 10
through 25. These statements process a list of strings.

186 | Chapter 3: Pointers and Array-Based Lists

3

PROGRAMMING EXAMPLE: Polynomial Operations
You learned in a college algebra or calculus course that a polynomial, p(x), in one
variable, x, is an expression of the form:

pðxÞ ¼ a0 þ a1xþ . . .þ an�1xn�1 þ anx
n;

where ai are real (or complex) numbers and n is a nonnegative integer. If p(x) = a0,
p(x) is called a constant polynomial. If p(x) is a nonzero constant polynomial,
the degree of p(x) is defined to be 0. Even though, in mathematics, the degree of
the zero polynomial is undefined, for the purpose of this program, we consider
the degree of such polynomials to be zero. If p(x) is not constant and an 6¼ 0, n is
called the degree of p(x); that is, the degree of a nonconstant polynomial is defined
to be the exponent of the highest power of x. (Note that the symbol 6¼ means not
equal to.)

The basic operations performed on polynomials are add, subtract, multiply, divide,
and evaluate a polynomial at any given point. For example, suppose that

pðxÞ ¼ 1þ 2xþ 3x2;

and

qðxÞ ¼ 4þ x:

The degree of p(x) is 2 and the degree of q(x) is 1. Moreover,

pð2Þ ¼ 1þ 2 � 2þ 3 � 22 ¼ 17

pðxÞ þ qðxÞ ¼ 5þ 3xþ 3x2

pðxÞ � qðxÞ ¼ �3þ xþ 3x2

pðxÞ	qðxÞ ¼ 4þ 9xþ 14x2 þ 3x3

The purpose of this programming example is to design and implement the class
polynomialType to perform the various polynomial operations in a program.

To be specific, in this program, we will implement the following operations on
polynomials:

1. Evaluate a polynomial at a given value.

2. Add polynomials.

3. Subtract polynomials.

4. Multiply polynomials.

Furthermore, we assume that the coefficients of polynomials are real numbers. You
will be asked in Programming Exercise 8 to generalize it so that the coefficients can
also be complex numbers.To store a polynomial, we use a dynamic array as follows:

Programming Example: Polynomial Operations | 187

Suppose p(x) is a polynomial of degree n � 0. Let list be an array of size n + 1. The
coefficient ai of x

i is stored in list[i]. See Figure 3-33.

Figure 3-33 shows that if p(x) is a polynomial of degree n, we need an array of size
n+1 to store the coefficients of p(x). Suppose that p(x) = 1 + 8x – 3x2 + 5x4 + 7x8.
Then the array storing the coefficient of p(x) is given in Figure 3-34.

Similarly, if q(x) = –5x2 + 16x5, the array storing the coefficient of q(x) is given in
Figure 3-35.

Next, we define the operations +, –, and *. Suppose that

pðxÞ ¼ a0 þ a1xþ . . .þ an�1xn�1 þ anx
n and

qðxÞ ¼ b0 þ b1xþ . . .þ bm�1xm�1 þ amx
m:

Let t = max(n, m). Then

pðxÞ þ qðxÞ ¼ c0 þ c1xþ . . .þ ct�1xt�1 þ ctx
t;

where for i = 0, 1, 2, . . ., t

0 0 0–5 0q(x)

[0] [1] [2] [3] [4]

16

[5]

FIGURE 3-35 Polynomial q (x) of degree 5 and its coefficients

a0 a1 ai an–1 an

[0] [1] [i] [n-1] [n]

... ...p(x)

FIGURE 3-33 Polynomial p (x)

1 8 0–3 5p(x) 0 00 7

[0] [1] [2] [3] [4] [5] [6] [7] [8]

FIGURE 3-34 Polynomial p (x) of degree 8 and its coefficients

188 | Chapter 3: Pointers and Array-Based Lists

3

ci ¼
ai þ bi if i � minðn;mÞ
ai if i > m
bi if i > n

8<
:

The difference, p(x) - q(x), of p(x) and q(x) can be defined similarly. It follows that the
degree of the polynomials is � max(n, m).

The product, p(x) * q(x), of p(x) and q(x) is defined as follows:

pðxÞ 	 qðxÞ ¼ d0 þ d1xþ . . .þ dnþmxnþm;

The coefficient dk, for k ¼ 0, 1, 2, . . ., t, is given by the formula

dk ¼ a0 	 bk þ a1 	 bk�1 þ . . .þ ak 	 b0;
where if either ai or bi does not exist, it is assumed to be zero. For example,

d0 ¼ a0b0

d1 ¼ a0b1 þ a1b0

. . .

dnþm ¼ anbm

In Chapter 2, you learned how to overload various operators. This program overloads
the operators +, -, and * to perform polynomial addition, subtraction, and multi-
plication. Moreover, we also overload the function call operator, (), to evaluate a
polynomial at a given value. To simplify the input and output of polynomials, the
operators << and >> are also overloaded.

Because the coefficients of a polynomial are stored in a dynamic array, we use the
class arrayListType to store and manipulate the coefficients of a polynomial. In
fact, we derive the class polynomialType to implement polynomial operations
from the class arrayListType, which requires us to implement only the operations
needed to manipulate polynomials.

The following class defines polynomials as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// polynomial operations.
//***

class polynomialType: public arrayListType<double>
{

friend ostream& operator<<(ostream&, const polynomialType&);
//Overloads the stream insertion operator

friend istream& operator>>(istream&, polynomialType&);
//Overloads the stream extraction operator

Programming Example: Polynomial Operations | 189

public:
polynomialType operator+(const polynomialType&);

//Overloads the operator +
polynomialType operator-(const polynomialType&);

//Overloads the operator -
polynomialType operator*(const polynomialType&);

//Overloads the operator *

double operator() (double x);
//Overloads the operator () to evaluate the polynomial at
//a given point
//Postcondition: The value of the polynomial at x is
// calculated and returned

polynomialType(int size = 100);
//constructor

int min(int x, int y) const;
//Function to return the smaller of x and y

int max(int x, int y) const;
//Function to return the larger of x and y

};

In Exercise 24 (at the end of this chapter), you are asked to draw the UML diagram of
the class polynomialType.

If p(x) is a polynomial of degree 3, we can create an object, say p, of type polynomialType
and set the size of the array list to 4. The following statement declares such an
object p:

polynomialType p(4);

The degree of the polynomial is stored in the data member length, which is
inherited from the class arrayListType.

Next we discuss the definitions of the functions.

The constructor sets the value of length to the size of the array and initializes the
array list to 0.

polynomialType::polynomialType(int size)
: arrayListType<double>(size)

{
length = size;

for (int i = 0; i < size; i++)
list[i] = 0;

}

The definition of the function to overload the operator () is quite straightforward
and is given next.

190 | Chapter 3: Pointers and Array-Based Lists

3

double polynomialType::operator() (double x)
{

double value = 0.0;

for (int i = 0; i < length; i++)
{

if (list[i] != 0.0)
value = value + list[i] * pow(x,i);

}

return value;
}

Suppose that p(x) is a polynomial of degree n and q(x) is a polynomial of degree m.
If n¼ m, the operator + adds the corresponding coefficients of p(x) and q(x). If n> m, the
first m coefficients of p(x) are added with the corresponding coefficients of q(x). The
remaining coefficients of p(x) are copied into the polynomial containing the sum of p(x)
and q(x). Similarly, if n< m, the first n coefficients of q(x) are added with the correspond-
ing coefficients of p(x). The remaining coefficients of q(x) are copied into the polynomial
containing the sum. The definition of the operator – is similar to the definition of the
operator +. The definitions of these two operator functions are as follows:

polynomialType polynomialType::operator+
(const polynomialType& right)

{
int size = max(length, right.length);

polynomialType temp(size); //polynomial to store the sum

for (int i = 0; i < min(length, right.length); i++)
temp.list[i] = list[i] + right.list[i];

if (size == length)
for (int i = min(length, right.length); i < length; i++)

temp.list[i] = list[i];
else

for (int i = min(length, right.length); i < right.length;
i++)

temp.list[i] = right.list[i];

return temp;
}

polynomialType polynomialType::operator-
(const polynomialType& right)

{
int size = max(length, right.length);

polynomialType temp(size); //polynomial to store the difference

Programming Example: Polynomial Operations | 191

for (int i = 0; i < min(length, right.length); i++)
temp.list[i] = list[i] - right.list[i];

if (size == length)
for (int i = min(length, right.length); i < length; i++)

temp.list[i] = list[i];
else

for (int i = min(length, right.length); i < right.length;
i++)

temp.list[i] = -right.list[i];

return temp;
}

The definition of the function to overload the operator * to multiply two poly-
nomials is left as an exercise for you. See Programming Exercise 6 at the end of this
chapter. The definitions of the remaining functions of the class polynomialType

are as follows:

int polynomialType::min(int x, int y) const
{

if (x <= y)
return x;

else
return y;

}

int polynomialType::max(int x, int y) const
{

if (x >= y)
return x;

else
return y;

}

ostream& operator<<(ostream& os, const polynomialType& p)
{

int indexFirstNonzeroCoeff = 0;

for (int i = 0; i < p.length; i++) //determine the index of the
//first nonzero coefficient

if (p.list[i] != 0.0)
{

indexFirstNonzeroCoeff = i;
break;

}

if (indexFirstNonzeroCoeff < p.length)
{

if (indexFirstNonzeroCoeff == 0)
os << p.list[indexFirstNonzeroCoeff] << " ";

192 | Chapter 3: Pointers and Array-Based Lists

3

else
os << p.list[indexFirstNonzeroCoeff] << "x^"

<< indexFirstNonzeroCoeff << " ";

for (int i = indexFirstNonzeroCoeff + 1; i < p.length; i++)
{

if (p.list[i] != 0.0)
if (p.list[i] >= 0.0)

os << "+ " << p.list[i] << "x^" << i << " ";
else

os << "- " << -p.list[i] << "x^" << i << " ";
}

}
else

os << "0";

return os;
}

istream& operator>>(istream& is, polynomialType& p)
{

cout << "The degree of this polynomial is: "
<< p.length - 1 << endl;

for (int i = 0; i < p.length; i++)
{

cout << "Enter the coefficient of x^" << i << ": ";
is >> p.list[i];

}

return is;
}

MAIN

PROGRAM

//**
// Author: D.S. Malik
//
// This program illustrates how to use the class polynomialType.
//**

#include <iostream> //Line 1

#include "polynomialType.h" //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

polynomialType p(8); //Line 6
polynomialType q(4); //Line 7
polynomialType t; //Line 8

Programming Example: Polynomial Operations | 193

QUICK REVIEW

1. Pointer variables contain the addresses of other variables as their values.

2. In C++, no name is associated with the pointer data type.

3. A pointer variable is declared using an asterisk, *, between the data type and
the variable.

cin >> p; //Line 9
cout << endl << "Line 10: p(x): " << p << endl; //Line 10

cout << "Line 11: p(5): " << p(5) << endl << endl; //Line 11

cin >> q; //Line 12
cout << endl << "Line 13: q(x): " << q << endl

<< endl; //Line 13

t = p + q; //Line 14

cout << "Line 15: p(x) + q(x): " << t << endl; //Line 15

cout << "Line 16: p(x) - q(x): " << p - q << endl; //Line 16

return 0; //Line 17
} //Line 18

Sample Run: In this sample run, the user input is shaded.

The degree of this polynomial is: 7
Enter the coefficient of x^0: 0
Enter the coefficient of x^1: 1
Enter the coefficient of x^2: 4
Enter the coefficient of x^3: 0
Enter the coefficient of x^4: 0
Enter the coefficient of x^5: 0
Enter the coefficient of x^6: 0
Enter the coefficient of x^7: 6

Line 10: p(x): 1x^1 + 4x^2 + 6x^7
Line 11: p(5): 468855

The degree of this polynomial is: 3
Enter the coefficient of x^0: 1
Enter the coefficient of x^1: 2
Enter the coefficient of x^2: 0
Enter the coefficient of x^3: 3

Line 13: q(x): 1 + 2x^1 + 3x^3

Line 15: p(x) + q(x): 1 + 3x^1 + 4x^2 + 3x^3 + 6x^7
Line 16: p(x) - q(x): -1 - 1x^1 + 4x^2 - 3x^3 + 6x^7

194 | Chapter 3: Pointers and Array-Based Lists

3

4. In C++, & is called the address of operator.

5. The address of operator returns the address of its operand. For example, if p
is a pointer variable of type int and num is an int variable, the statement

p = #

sets the value of p to the address of num.

6. When used as a unary operator, * is called the dereferencing operator.

7. The memory location indicated by the value of a pointer variable is accessed
by using the dereferencing operator, *. For example, if p is a pointer variable
of type int, the statement

*p = 25;

sets the value of the memory location indicated by the value of p to 25.

8. You can use the member access operator arrow, ->, to access the compo-
nent of an object pointed to by a pointer.

9. Pointer variables are initialized using either 0 (the integer zero), NULL, or
the address of a variable of the same type.

10. The only integer value that can be directly assigned to a pointer variable is 0.

11. The only arithmetic operations allowed on pointer variables are increment (++),
decrement (--), addition of an integer to a pointer variable, subtraction of an
integer from a pointer variable, and subtraction of a pointer from another pointer.

12. Pointer arithmetic is different from ordinary arithmetic. When an integer is
added to a pointer, the value added to the value of the pointer variable is
the integer times the size of the object to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer, the value subtracted
from the value of the pointer variable is the integer times the size of the
object to which the pointer is pointing.

13. Pointer variables can be compared using relational operators. (It makes
sense to compare pointers of the same type.)

14. The value of one pointer variable can be assigned to another pointer
variable of the same type.

15. A variable created during program execution is called a dynamic variable.

16. The operator new is used to create a dynamic variable.

17. The operator delete is used to deallocate the memory occupied by a
dynamic variable.

18. In C++, both new and delete are reserved words.

19. The operator new has two forms: one to create a single dynamic variable,
and another to create an array of dynamic variables.

20. If p is a pointer of type int, the statement

p = new int;

allocates storage of type int somewhere in memory and stores the address
of the allocated storage in p.

Quick Review | 195

21. The operator delete has two forms: one to deallocate the memory
occupied by a single dynamic variable, and another to deallocate the
memory occupied by an array of dynamic variables.

22. If p is a pointer of type int, the statement delete p; deallocates the
memory to which p points.

23. The array name is a constant pointer. It always points to the same memory
location, which is the location of the first array component.

24. To create a dynamic array, the form of the new operator that creates an
array of dynamic variables is used. For example, if p is a pointer of type
int, the statement

p = new int[10];

creates an array of 10 components of type int. The base address of the array
is stored in p. We call p a dynamic array.

25. Array notation can be used to access the components of a dynamic array. For
example, suppose p is a dynamic array of 10 components. Then p[0] refers
to the first array component, p[1] refers to the second array component,
and so on. In particular, p[i] refers to the (i + 1)th component of the array.

26. An array created during program execution is called a dynamic array.

27. If p is a dynamic array, then the statement

delete [] p;

deallocates the memory occupied by p—that is, the components of p.

28. In a shallow copy, two or more pointers of the same type point to the same
memory space; that is, they point to the same data.

29. In a deep copy, two or more pointers of the same type have their own
copies of the data.

30. If a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope.

31. If a class has pointer data members, the built-in assignment operators
provide a shallow copy of the data.

32. A copy constructor executes when an object is declared and initialized by
using the value of another object, and when an object is passed by value as a
parameter.

33. C++ allows a user to pass an object of a derived class to a formal parameter
of the base class type.

34. The binding of virtual functions occurs at execution time, not at compile
time, and is called dynamic or run-time binding.

35. In C++, virtual functions are declared using the reserved word virtual.

36. A class is called an abstract class if it contains one or more pure virtual
functions.

196 | Chapter 3: Pointers and Array-Based Lists

37. Because an abstract class is not a complete classas—it (or its implementation
file) does not contain the definitions of certain functions as you cannot
create objects of that class.

38. In addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the
abstract class must provide the definitions of constructors and functions that
are not pure virtual.

39. A list is a collection of elements of the same type.

40. The commonly performed operations on a list are create the list, deter-
mine whether the list is empty, determine whether the list is full, find the
size of the list, destroy or clear the list, determine whether an item is the
same as a given list element, insert an item in the list at the specified
location, remove an item from the list at the specified location, replace an
item at the specified location with another item, retrieve an item from the
list from the specified location, and search the list for a given item.

EXERCISES

1. Mark the following statements as true or false.

a. In C++, pointer is a reserved word.

b. In C++, pointer variables are declared using the reserved word pointer.

c. The statement delete p; deallocates the variable pointer p.

d. The statement delete p; deallocates the dynamic variable to which p

points.

e. Given the declaration

int list[10];
int *p;

the statement

p = list;

is valid in C++.

f. Given the declaration

int *p;

the statement

p = new int[50];

dynamically allocates an array of 50 components of type int, and p

contains the base address of the array.

g. The address of operator returns the address and value of its operand.

h. If p is a pointer variable, the statement p = p * 2; is valid in C++.

3

Exercises | 197

2. Given the declaration

int x;
int *p;
int *q;

Mark the following statements as valid or invalid. If a statement is invalid,
explain why.

a. p = q;

b. *p = 56;

c. p = x;

d. *p = *q;

e. q = &x;

f. *p = q;

3. What is the output of the following C++ code?

int x;
int y;
int *p = &x;
int *q = &y;
*p = 35;
*q = 98;
*p = *q;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

4. What is the output of the following C++ code?

int x;
int y;
int *p = &x;
int *q = &y;
x = 35; y = 46;
p = q;
*p = 78;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

5. Given the declaration

int num = 6;
int *p = #

which of the following statement(s) increment the value of num?

a. p++;

b. (*p)++;

c. num++

d. (*num)++;

198 | Chapter 3: Pointers and Array-Based Lists

3

6. What is the output of the following code?

int *p;
int * q;
p = new int;
q = p;
*p = 46;
*q = 39;
cout << *p << " " << *q << endl;

7. What is the output of the following code?

int *p;
int *q;
p = new int;
*p = 43;
q = p;
*q = 52;
p = new int;
*p = 78;
q = new int;
*q = *p;
cout << *p << " " << *q << endl;

8. What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2

p = new int; //Line 3
*p = 43; //Line 4

q = p; //Line 5
*q = 52; //Line 6

delete q; //Line 7

cout << *p << " " << *q << endl; //Line 8

9. What is the output of the following code?

int x;
int *p;
int *q;
p = new int[10] ;
q = p;
*p = 4;

for(int j = 0; j < 10; j++)
{

x = *p;
p++;
*p = x + j;

}

Exercises | 199

for (int k = 0; k < 10; k++)
{

cout << *q << " ";
q++;

}
cout << endl;

10. What is the output of the following code?

int *secret;

secret = new int[10];
secret[0] = 10;
for (int j = 1; j < 10; j++)

secret[j] = secret[j -1] + 5;
for(int j = 0; j < 10; j++)

cout << secret[j] << " ";
cout << endl;

11. Explain the difference between a shallow copy and a deep copy of data.

12. What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2

p = new int [5]; //Line 3
*p = 2; //Line 4

for (int i = 1; i < 5; i++) //Line 5
p[i] = p[i-1] + i; //Line 6

q = p; //Line 7

delete [] p; //Line 8

for (int j = 0; j < 5; j++) //Line 9
cout << q[j] << " "; //Line 10

cout << endl; //Line 11

13. What is the output of the following code?

int *p;
int *q;

p = new int [5];
p[0] = 5;

for (int i = 1; i < 5; i++)
p[i] = p[i - 1] + 2 * i;

cout << "Array p: ";
for (int i = 0; i < 5; i++)

cout << p[i] << " ";
cout << endl;

200 | Chapter 3: Pointers and Array-Based Lists

3

q = new int[5];

for (int i = 0; i < 5; i++)
q[i] = p[4 - i];

cout << "Array q: ";
for (int i = 0; i < 5; i++)

cout << q[i] << " ";

cout << endl;

14. What is the output of the following code?

int **p;

p = new int* [5];

for (int i = 0; i < 5; i++)
p[i] = new int[3];

for (int i = 1; i < 5; i++)
for (int j = 0; j < 3; j++)

p[i][j] = 2 * i + j;

for (int i = 1; i < 5; i++)
{

for (int j = 0; j < 3; j++)
cout << p[i][j] << " ";

cout << endl;
}

15. What is the purpose of the copy constructor?

16. Name three situations when a copy constructor executes.

17. Name three things that you should do for classes with pointer data
members.

18. Suppose that you have the following definition of a class.

class dummyClass
{
public:

void print();
...

private:
int listLength;
int *list;
double salary;
string name;

}

a. Write the function prototype to overload the assignment operator for
the class dummyClass.

b. Write the definition of the function to overload the assignment opera-
tor for the class dummyClass.

Exercises | 201

c. Write the function prototype to include the copy constructor for the
class dummyClass.

d. Write the definition of the copy constructor for the class dummyClass.

19. Suppose that you have the following classes, classA and classB:

class classA
{
public:

virtual void print() const;
void doubleNum();
classA(int a = 0);

private:
int x;

};

void classA::print() const
{

cout << "ClassA x: " << x << endl;
}

void classA::doubleNum()
{

x = 2 * x;
}

classA::classA(int a)
{

x = a;
}

class classB: public classA
{
public:

void print() const;
void doubleNum();
classB(int a = 0, int b = 0);

private:
int y;

};

void classB::print() const
{

classA::print();
cout << "ClassB y: " << y << endl;

}

202 | Chapter 3: Pointers and Array-Based Lists

void classB::doubleNum()
{

classA::doubleNum();

y = 2 * y;
}

classB::classB(int a, int b)
: classA(a)

{
y = b;

}

What is the output of the following function main?

int main()
{

classA *ptrA;
classA objectA(2);

classB objectB(3, 5);

ptrA = &objectA;
ptrA->doubleNum();
ptrA->print();
cout << endl;

ptrA = &objectB;

ptrA->doubleNum();
ptrA->print();
cout << endl;

return 0;
}

20. What is the output of the function main of Exercise 19, if the definition of
classA is replaced by the following definition?

class classA
{
public:

virtual void print() const;
virtual void doubleNum();
classA(int a = 0);

private:
int x;

};

21. What is the difference between compile-time binding and run-time binding?

3

Exercises | 203

22. Consider the following definition of the class student.

public studentType: public personType
{
public:

void print();
void calculateGPA();
void setID(long id);
void setCourses(const string c[], int noOfC);
void setGrades(const char cG[], int noOfC);

void getID();
void getCourses(string c[], int noOfC);
void getGrades(char cG[], int noOfC);
void studentType(string fName = "", string lastName = "",

long id, string c[] = NULL,
char cG[] = NULL, int noOfC = 0);

private:
long studentId;
string courses[6];
char coursesGrade[6]
int noOfCourses;

}

Rewrite the definition of the class student so that the functions print
and calculateGPA are pure virtual functions.

23. What is the effect of the following statements?

a. arrayListType<int> intList(100);

b. arrayListType<string> stringList(1000);

c. arrayListType<double> salesList(-10);

24. Draw the UML diagram of the class polynomialType. Also show the
inheritance hierarchy.

PROGRAMMING EXERCISES

1. The function removeAt of the class arrayListType removes an element
from the list by shifting the elements of the list. However, if the element to be
removed is at the beginning of the list and the list is fairly large, it could take a
lot of computer time. Because the list elements are in no particular order, you
could simply remove the element by swapping the last element of the list with
the item to be removed and reducing the length of the list. Rewrite the
definition of the function removeAt using this technique.

2. The function remove of the class arrayListType removes only the first
occurrence of an element. Add the function removeAll to the class
arrayListType that would remove all occurrences of a given element. Also,
write the definition of the function removeAll and a program to test this function.

204 | Chapter 3: Pointers and Array-Based Lists

3. Add the function min to the class arrayListType to return the smallest
element of the list. Also, write the definition of the function min and a
program to test this function.

4. Add the function max to the class arrayListType to return the largest
element of the list. Also, write the definition of the function max and a
program to test this function.

5. The operators + and - are overloaded as member functions for the class
polynomialType. Redo Programming Example Polynomial Operations so
that these operators are overloaded as nonmember functions. Also write a
test program to test these operators.

6. Write the definition of the function to overload the operator * (as a member
function) for the class polynomialType to multiply two polynomials.
Also write a test program to test the operator *.

7. Let p(x) = a0 + a1x + . . . +an-1x
n-1 + anx

n be a polynomial of degree n, where
ai are real (or complex) numbers and n is a nonnegative integer. The
derivative of p(x), written p'(x), is defined to be p' (x) = a1 + 2a2x

2 +. . .
+ nanx

n-1. If p(x) is constant, then p' (x) ¼ 0. Overload the operator � as a
member function for the class polynomialType so that � returns the
derivative of a polynomial.

8. The class polynomialType as given in the Programming Example Poly-
nomial Operations processes polynomials with coefficients that are real
numbers. Design and implement a similar class that can be used to process
polynomials with coefficients as complex numbers. Your class must overload
the operators +, -, * to perform addition, subtraction, and multiplication;
and the operator () to evaluate a polynomial at a given complex number.
Also write a program to test various operations.

9. Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close friends,
and certain business associates. Your program should be able to handle a
maximum of 500 entries.

a. Define a class, addressType, that can store a street address, city, state,
and zip code. Use the appropriate functions to print and store the address.
Also, use constructors to automatically initialize the data members.

b. Define a class extPersonType using the class personType (as defined
in Example 1-12, Chapter 1), the class dateType (as designed in Pro-
gramming Exercise 2 of Chapter 2), and the class addressType. Add a
data member to this class to classify the person as a family member, friend,
or business associate. Also, add a data member to store the phone number.
Add (or override) the functions to print and store the appropriate informa-
tion. Use constructors to automatically initialize the data members.

c. Derive the class addressBookType from the class arrayListType, as
defined in this chapter, so that an object of type addressBookType can store

3

Programming Exercises | 205

objects of type extPersonType. An object of type addressBookType

should be able to process a maximum of 500 entries. Add necessary opera-
tions to the class addressBookType so that the program should perform
the following operations:

i. Load the data into the address book from a disk.

ii. Search for a person by last name.

iii. Print the address, phone number, and date of birth (if it exists) of a
given person.

iv. Print the names of the people whose birthdays are in a given month
or between two given dates.

v. Print the names of all the people having the same status, such as
family, friend, or business.

vi. Print the names of all the people between two last names.

10. (Safe Arrays) In C++, there is no check to determine whether the array
index is out of bounds. During program execution, an out-of-bound array
index can cause serious problems. Also, recall that in C++ the array index
starts at 0.

Design a class safeArray that solves the out-of-bound array index
problem and allows the user to begin the array index starting at any integer,
positive or negative. Every object of type safeArray should be an array of
type int. During execution, when accessing an array component, if the
index is out of bounds, the program must terminate with an appropriate
error message. For example,

safeArray list(2,13);
safeArray yourList(-5,9);

In this example, list is an array of 11 components, the component type is
int, and the components are list[2], list[3], ..., list[12]. Also,
yourList is an array of 15 components, the component type is int, and the
components are yourList[-5], yourlist[-4], ..., yourList[0], ...,
yourList[8].

11. Programming Exercise 10 processes only int arrays. Redesign the class

safeArray using class templates so that the class can be used in any
application that requires arrays to process data.

12. Design a class to perform various matrix operations. A matrix is a set of
numbers arranged in rows and columns. Therefore, every element of a
matrix has a row position and a column position. If A is a matrix of 5
rows and 6 columns, we say that matrix A is of the size 5 � 6 and
sometimes denote it as A5�6. Clearly, a convenient place to store a
matrix is in a two-dimensional array. Two matrices can be added
and subtracted if they have the same size. Suppose that A ¼ [aij] and

206 | Chapter 3: Pointers and Array-Based Lists

B ¼ [bij] are two matrices of the size m � n, where aij denotes the
element of A in the ith row and the jth column, and so on. The sum
and difference of A and B is given by

AþB ¼ ½aij þ bij
; A�B ¼ ½aij � bij

The multiplication of A and B (A * B) is defined only if the number
of columns of A are the same as the number of rows of B. If A is of the
size m � n and B is of the size n � t, then A * B ¼ [cik] is of the size m � t
and the element cik is given by the formula

cik ¼ ai1b1k þ ai2b2k þ . . .þ ainbnk

Design and implement a class matrixType that can store a matrix of any
size. Overload the operators +, -, and * to perform the addition, subtrac-
tion, and multiplication operations, respectively, and overload the operator
<< to output a matrix. Also, write a test program to test various operations
on matrices.

13. The class largeIntegers in Programming Exercise 16, in Chapter 2, is
designed to process large integers of at most 100 digits. Using dynamic
arrays, redesign this class so that integers of any digits can be added and/or
subtracted. Also overload the multiplication operator to multiply large
integers.

3

Programming Exercises | 207

This page intentionally left blank

STANDARD TEMPLATE

LIBRARY (STL) I
IN THIS CHAPTER , YOU WILL :

. Learn about the Standard Template Library (STL)

. Become familiar with the three basic components of the STL—containers, iterators, and algorithms

. Explore how vector and deque containers are used
to manipulate data in a program

. Discover the use of iterators

4C H A P T E R

Chapter 2 introduced and examined templates. With the help of class templates, we
developed (and used) a generic code to process lists. For example, in Chapter 3, we used
the class arrayListType to process a list of integers and a list of strings. In Chapters 5,
7, and 8, we will study the three most important data structures: linked lists, stacks,
and queues. In Chapter 5, using class templates, we will develop a generic code to
process linked lists. In addition, using the second principle, inheritance, of object-
oriented programming (OOP), we will develop a generic code to process ordered lists.
Then, in Chapters 7 and 8, we will use class templates to develop a generic code to
implement stacks and queues. Along the way, you will see that a template is a powerful
tool that promotes code reuse.

C++ is equipped with a Standard Template Library (STL). Among other things, the STL
provides class templates to process lists (contiguous or linked), stacks, and queues. This
chapter discusses some of the STL’s important features, and shows how to use certain
tools provided by the STL in a program. Chapter 13 describes the features of the STL not
described in this chapter.

In the ensuing chapters, you will learn how to develop your own code to implement and
manipulate data, as well as how to use professionally written code.

Components of the STL
The main objective of a program is to manipulate data and generate results. Achieving
this goal requires the ability to store data into computer memory, access a particular piece
of data, and write algorithms to manipulate the data.

For example, if all the data items are of the same type and we have some idea of the
number of data items, we could use an array to store the data. We can then use an
index to access a particular component of the array. Using a loop and the array index,
we can step through the elements of the array. Algorithms, such as those for initializ-
ing the array, sorting, and searching, are used to manipulate the data stored in an array.
On the other hand, if we do not want to worry about the size of the data, we can use a
linked list, as is described in Chapter 5, to process it. If the data needs to be processed
in a Last In First Out (LIFO) manner, we can use a stack (Chapter 7). Similarly, if the
data needs to be processed in a First In First Out (FIFO) manner, we can use a queue
(Chapter 8).

The STL is equipped with these features to effectively manipulate data. More formally,
the STL has three main components:

• Containers

• Iterators

• Algorithms

210 | Chapter 4: Standard Template Library (STL) I

Containers and iterators are class templates. Iterators are used to step through the elements
of a container. Algorithms are used to manipulate data. This chapter discusses some of the
containers and iterators. Algorithms are discussed in Chapter 13.

Container Types
Containers are used to manage objects of a given type. The STL containers are classified
into three categories:

• Sequence containers (also called sequential containers)

• Associative containers

• Container adapters

Associative containers are described in Chapter 13, and container adapters are described
in Chapters 7 and 8.

Sequence Containers
Every object in a sequence container has a specific position. The three predefined
sequence containers are as follows:

• vector

• deque

• list

Before discussing container types in general, let us first briefly describe the sequence
container vector. We do so because vector containers are logically the same as arrays
and, therefore, they can be processed like arrays. Also, with the help of vector containers,
we can describe several properties that are common to all containers. In fact, all containers
use the same names for the common operations. Of course, there are operations that are
specific to a container. These operations are discussed when describing a specific container.
This chapter discusses vector and deque containers. Chapter 5 discusses list containers.

Sequence Container: vector
A vector container stores and manages its objects in a dynamic array. Because an array is a
random access data structure, the elements of a vector can be accessed randomly. Item
insertion in the middle or beginning of an array is time consuming, especially if the array
is large. However, inserting an item at the end is fast.

The name of the class that implements the vector container is vector. (Recall that
containers are class templates.) The name of the header file containing the class vector
is vector. Thus, to use a vector container in a program, the program must include the
following statement:

#include <vector>

4

Components of the STL | 211

Furthermore, to define an object of type vector, we must specify the type of the object
because the class vector is a class template. For example, the statement

vector<int> intList;

declares intList to be a vector and the component type to be int. Similarly, the
statement

vector<string> stringList;

declares stringList to be a vector container and the component type to be string.

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default constructor.
Therefore, a vector container can be declared and initialized in several ways.
Table 4-1 describes how a vector container of a specific type can be declared and
initialized.

TABLE 4-1 Various ways to declare and initialize a vector container

Statement Effect

vector<elementType> vecList;
Creates an empty vector, vecList,
without any elements. (The default
constructor is invoked.)

vector<elementType>
vecList(otherVecList);

Creates a vector, vecList, and
initializes vecList to the elements
of the vector otherVecList.
vecList and otherVecList
are of the same type.

vector<elementType>
vecList(size);

Creates a vector, vecList, of size size.
vecList is initialized using the default
constructor.

vector<elementType>
vecList(n, elem);

Creates a vector, vecList, of size n.
vecList is initialized using n copies of
the element elem.

vector<elementType>
vecList(begin, end);

Creates a vector, vecList. vecList is
initialized to the elements in the range
[begin, end), that is, all elements in
the range begin...end-1.

212 | Chapter 4: Standard Template Library (STL) I

EXAMPLE 4-1

a. The following statement declares intList to be an empty vector
container and the element type is int.

vector<int> intList;

b. The following statement declares intList to be a vector container
of size 10 and the element type is int. The elements of intList
are initialized to 0.

vector<int> intList(10);

c. The following statement declares intList to be a vector container
of size 5 and the element type is int. The container intList is
initialized using the elements of the array.

int intArray[5] = {2,4,6,8,10};
vector<int> intList(intArray, intArray + 5);

The container intList is initialized using the elements of the array
intArray. That is, intList = {2,4,6,8,10}.

Now that we know how to declare a vector sequence container, let us now discuss how
to manipulate data stored in a vector container. To do so, we must know the following
basic operations:

• Item insertion

• Item deletion

• Stepping through the elements of a vector container

The elements in a vector container can be accessed directly by using the operations given
in Table 4-2.

4

TABLE 4-2 Operations to access the elements of a vector container

Expression Effect

vecList.at(index) Returns the element at the position specified by index.

vecList[index] Returns the element at the position specified by index.

vecList.front() Returns the first element. (Does not check whether the
container is empty.)

vecList.back() Returns the last element. (Does not check whether the
container is empty.)

Components of the STL | 213

From Table 4-2, it follows that that the elements in a vector can be processed just as they
can in an array. (Recall that in C++, arrays start at location 0. Similarly, the first element
in a vector container is at location 0.)

EXAMPLE 4-2

Consider the following statement, which declares intList to be a vector container of
size 5 and the element type is int.

vector<int> intList(5);

You can use a loop, such as the following, to store elements into intList:

for (int j = 0; j < 5; j++)
intList[j] = j;

Similarly, you can use a for loop to output the elements of intList.

The class vector provides various operations to process the elements of a vector
container. Suppose that vecList is a container of type vector. Item insertion and
deletion in vecList can be accomplished using the operations given in Table 4-3. These
operations are implemented as member functions of the class vector and are shown in
bold. Table 4-3 also shows how these operations are used.

TABLE 4-3 Various operations on a vector container

Expression Effect

vecList.clear() Deletes all elements from the
container.

vecList.erase(position) Deletes the element at the position
specified by position.

vecList.erase(beg, end)
Deletes all elements starting at beg
until end-1.

vecList.insert(position, elem)
A copy of elem is inserted at the
position specified by position. The
position of the new element is returned.

vecList.insert(position, n, elem)
n copies of elem are inserted at the
position specified by position.

vecList.insert(position, beg, end)
A copy of the elements, starting at beg
until end-1, is inserted into vecList
at the position specified by position.

214 | Chapter 4: Standard Template Library (STL) I

In Table 4-3, the argument position in STL terminology is called an iterator. An

iterator works just like a pointer. In general, iterators are used to step through the

elements of a container. In other words, with the help of an iterator, we can walk

through the elements of a container and process them one at a time. In the next

section, we describe how to declare an iterator in a vector container and how to

manipulate the data stored in a container. Because iterators are an integral part of

the STL, they are discussed in detail in the section ‘‘Iterators,’’ located later in

this chapter.

The function push_back is quite useful. This function is used to add an element
at the end of a container. The container intList of size 5 was declared in
Example 4-2. You might think that you can only add five elements to the container
intList. However, this is not the case. If you need to add more than five elements, you
can use the function push_back. You cannot use the array subscripting operator, as in
Example 4-2, to add elements past the position 4 unless you increase the size of the
container.

If you do not know the number of elements you need to store in a vector container,
then when you declare the vector container you do not need to specify its size (see
Example 4-3). In this case, you can use the function push_back, as shown in Examples
4-3 and 4-5, to add elements into a vector container.

4

TABLE 4-3 Various operations on a vector container (continued)

Expression Effect

vecList.push_back(elem) A copy of elem is inserted into
vecList at the end.

vecList.pop_back() Deletes the last element.

vecList.resize(num) Changes the number of elements to
num. If size(), that is, the number
of elements in the container
increases, the default constructor
creates the new elements.

vecList.resize(num, elem)
Changes the number of elements to
num. If size() increases, the
default constructor creates the new
elements.

Components of the STL | 215

EXAMPLE 4-3

The following statement declares intList to be a vector container of size 0.

vector<int> intList;

To add elements into intList, we can use the function push_back as follows:

intList.push_back(34);
intList.push_back(55);

After these statements execute, the size of intList is 2 and intList = {34, 55}. Of
course, you could have used the resize function to increase the size of intList and
then use the array subscripting operator. However, at times, the push_back function is
more convenient because it does not need to know the size of the container; it simply
adds elements at the end.

Declaring an Iterator to a Vector Container
Even though we can process a vector container just like an array using the array subscripting
operator, there are situations where we would like to process the elements of a vector
container using an iterator. (Recall that an iterator is just like a pointer.) For example,
suppose that we want to insert an element at a specific position in a vector container. Because
the element is to be inserted at a specific position, this would require shifting the elements of
the container (unless the element is added at the end). Of course, we must also think about
the size of the container. To make element(s) insertion convenient, the class vector
provides the function insert to insert the elements at a specific position in a vector
container. However, to use the function insert, the position where to insert the element(s)
must be specified by an iterator. Similarly, the function erase, to remove an element, also
requires the use of an iterator. This section describes how to declare and use an iterator on a
vector container.

The class vector contains a typedef iterator, which is declared as a public
member. An iterator to a vector container is declared using the typedef iterator.
For example, the statement

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator into a vector container of type int.

Because iterator is a typedef defined inside the class vector, we must use the
container name (vector), container element type, and scope resolution operator to use
the typedef iterator.

Suppose that the iterator intVecIter points to an element of a vector container whose
elements are of type int. The expression

++intVecIter

216 | Chapter 4: Standard Template Library (STL) I

advances the iterator intVecIter to the next element into the container. The expression

*intVecIter

returns the element at the current iterator position.

Note that these operations are the same as the operations on pointers, discussed in Chapter 3.
Recall that when used as a unary operator, * is called the dereferencing operator.

We now discuss how to use an iterator into a vector container to manipulate the data
stored into it. Suppose that we have the following statements:

vector<int> intList; //Line 1
vector<int>::iterator intVecIter; //Line 2

The statement in Line 1 declares intList to be a vector container and the element type
to be int. The statement in Line 2 declares intVecIter to be an iterator into a vector

container whose element type is int.

Containers and the Functions begin and end
Every container contains the member functions begin and end. The function begin
returns the position of the first element into the container; the function end returns the
position of the last element into the container. These functions have no parameters.

After the following statement executes:

intVecIter = intList.begin();

the iterator intVecIter points to the first element into the container intList.

The following for loop uses an iterator to output the elements of intList onto the
standard output device:

for (intVecIter = intList.begin(); intVecIter != intList.end();
intVecList)

cout << *intVecIter << " ";

EXAMPLE 4-4

Consider the following statements:

int intArray[7] = {1, 3, 5, 7, 9, 11, 13}; //Line 1
vector<int> vecList(intArray, intArray + 7}; //Line 2
vector<int>::iterator intVecIter; //Line 3

The statement in Line 2 declares and initializes the vector container vecList. Now
consider the following statements:

intVecIter = vecList.begin(); //Line 4
++intVecIter; //Line 5
vecList.insert(intVecIter, 22}; //Line 6

4

Components of the STL | 217

The statement in Line 4 initializes the iterator intVecIter to the first element of
vecList. The statement in Line 5 advances intVecIter to the second element of
vecList. The statement in Line 6 inserts 22 at the position specified by intVecIter.
After the statement in Line 6 executes, vecList = {1, 22, 3, 5, 7, 9, 11, 13}. Notice
that the size of the container also increases.

The class vector also contains member functions that can be used to find the number
of elements currently in the container, the maximum number of elements that can be
inserted in a container, and so on. Table 4-4 describes some of these operations. (Suppose
that vecCont is a vector container.)

Example 4-5 illustrates how to use a vector container in a program and how to process
the elements into a vector container.

EXAMPLE 4-5

//***
// Author: D.S. Malik
//
// This program illustrates how to use a vector container in a
// program.
//***

#include <iostream> //Line 1
#include <vector> //Line 2

using namespace std; //Line 3

TABLE 4-4 Functions to determine the size of a vector container

Expression Effect

vecCont.capacity()
Returns the maximum number of elements that can be
inserted into the container vecCont without
reallocation.

vecCont.empty() Returns true if the container vecCont is empty
and false otherwise.

vecCont.size() Returns the number of elements currently in the
container vecCont.

vecCont.max_size() Returns the maximum number of elements that can be
inserted into the container vecCont.

218 | Chapter 4: Standard Template Library (STL) I

int main() //Line 4
{ //Line 5

vector<int> intList; //Line 6

intList.push_back(13); //Line 7
intList.push_back(75); //Line 8
intList.push_back(28); //Line 9
intList.push_back(35); //Line 10

cout << "Line 11: List Elements: "; //Line 11
for (int i = 0; i < 4; i++) //Line 12

cout << intList[i] << " "; //Line 13
cout << endl; //Line 14

for (int i = 0; i < 4; i++) //Line 15
intList[i] *= 2; //Line 16

cout << "Line 17: List Elements: "; //Line 17
for (int i = 0; i < 4; i++) //Line 18

cout << intList[i] << " "; //Line 19
cout << endl; //Line 20

vector<int>::iterator listIt; //Line 21

cout << "Line 22: List Elements: "; //Line 22
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 23
cout << *listIt << " "; //Line 24

cout << endl; //Line 25

listIt = intList.begin(); //Line 26
++listIt; //Line 27
++listIt; //Line 28
intList.insert(listIt, 88); //Line 29

cout << "Line 30: List Elements: "; //Line 30
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 31
cout << *listIt << " "; //Line 32

cout << endl; //Line 33

return 0; //Line 34
} //Line 35

Sample Run:

Line 11: List Elements: 13 75 28 35
Line 17: List Elements: 26 150 56 70
Line 22: List Elements: 26 150 56 70
Line 30: List Elements: 26 150 88 56 70

4

Components of the STL | 219

The statement in Line 6 declares a vector container (or vector for short), intList, of
type int. The statements in Lines 7 through 10 use the operation push_back to insert
four numbers—13, 75, 28, and 35—into intList. The statements in Lines 12 and 13
use the for loop and the array subscripting operator [] to output the elements of
intList. In the output, see the line marked Line 11, which contains the output of
Lines 11 through 14 of the program. The statements in Lines 15 and 16 use a for loop to
double the value of each element of intList; the statements in Lines 18 and 19 output
the elements of intList. In the output, see the line marked Line 17, which contains the
output of Lines 17 through 20 of the program.

The statement in Line 21 declares listIt to be a vector iterator that processes any vector
container whose elements are of type int. Using the iterator listIt, the statements in
Lines 23 and 24 output the elements of intList. After the statement in Line 26 executes,
listIt points to the first element of intList. The statements in Lines 27 and 28
advance listIt twice; after these statements execute, listIt points to the third
element of intList. The statement in Line 29 inserts 88 into intList at the position
specified by the iterator listIt. Because listIt points to the component at position 2
(the third element of intList), 88 is inserted at position 2 in intList; that is, 88

becomes the third element of intList. The statements in Lines 31 and 32 output the
modified intList.

Member Functions Common to All Containers
The previous section discussed vector containers. We now look at operations that are
common to all containers. For example, every container class has a default constructor,
several constructors with parameters, a destructor, a function to insert an element into a
container, and so on.

Recall that a class encapsulates data, and operations on that data, into a single unit.
Because every container is a class, several operations are directly defined for a container
and are provided as part of the class definition. Also, recall that the operations to
manipulate the data are implemented with the help of functions and are called member
functions of the class. Table 4-5 describes the member functions that are common to all
containers; that is, these functions are included as members of the class template imple-
menting the container.

Suppose that ct, ct1, and ct2 are containers of the same type. Table 4-5 shows the name
of the function in bold, and shows how a function is called.

220 | Chapter 4: Standard Template Library (STL) I

4

TABLE 4-5 Member functions common to all containers

Member function Effect

Default constructor Initializes the object to an empty state.

Constructor with parameters

In addition to the default constructor, every
container has constructors with parameters. We
describe these constructors when we discuss a
specific container.

Copy constructor
Executes when an object is passed as a parameter
by value, and when an object is declared and
initialized using another object of the same type.

Destructor Executes when the object goes out of scope.

ct.empty() Returns true if container ct is empty and
false otherwise.

ct.size() Returns the number of elements currently in
container ct.

ct.max_size() Returns the maximum number of elements that
can be inserted into container ct.

ct1.swap(ct2) Swaps the elements of containers ct1 and ct2.

ct.begin() Returns an iterator to the first element into
container ct.

ct.end() Returns an iterator to the last element into
container ct.

ct.rbegin()
Reverse begin. Returns a pointer to the last
element into container ct. This function is used
to process the elements of ct in reverse.

ct.rend() Reverse end. Returns a pointer to the first
element into container ct.

ct.insert(position, elem)
Inserts elem into container ct at the position
specified by the argument position. Note
that here position is an iterator.

ct.erase(begin, end)
Deletes all elements between begin...end-1
from container ct.

Components of the STL | 221

Because these operations are common to all containers, when discussing a specific

container, to save space, these operations are not listed again.

Member Functions Common to Sequence Containers
The previous section described the member functions that are common to all containers.
In addition to these member functions, Table 4-6 describes the member functions that are
common to all sequence containers—that is, containers of type vector, deque, and
list. (Suppose that seqCont is a sequence container.)

TABLE 4-5 Member functions common to all containers (continued)

Member function Effect

ct.clear() Deletes all elements from the container. After a
call to this function, container ct is empty.

Operator functions

ct1 = ct2
Copies the elements of ct2 into ct1. After this
operation, the elements in both containers are
the same.

ct1 == ct2
Returns true if containers ct1 and ct2 are
equal and false otherwise.

ct1 != ct2
Returns true if containers ct1 and ct2 are
not equal and false otherwise.

ct1 < ct2
Returns true if container ct1 is less than
container ct2 and false otherwise.

ct1 <= ct2
Returns true if container ct1 is less than or
equal to container ct2 and false otherwise.

ct1 > ct2
Returns true if container ct1 is greater than
container ct2 and false otherwise.

ct1 >= ct2
Returns true if container ct1 is greater than
or equal to container ct2 and false
otherwise.

222 | Chapter 4: Standard Template Library (STL) I

4

The copy Algorithm
Example 4-5 used a for loop to output the elements of a vector container. The STL
provides a convenient way to output the elements of a container with the help of the
function copy. The function copy is provided as a part of the generic algorithms of the STL
and can be used with any container type as well as arrays. Because we frequently need to
output the elements of a container, before continuing with our discussion of containers, let
us describe this function.

TABLE 4-6 Member functions common to all sequence containers

Expression Effect

seqCont.insert(position, elem)

A copy of elem is inserted at the
position specified by position.
The position of the new element is
returned.

seqCont.insert(position, n, elem)
n copies of elem are inserted at the
position specified by position.

seqCont.insert(position, beg, end)

A copy of the elements, starting at
beg until end-1, are inserted
into seqCont at the position
specified by position.

seqCont.push_back(elem) A copy of elem is inserted into
seqCont at the end.

seqCont.pop_back() Deletes the last element.

seqCont.erase(position) Deletes the element at the
position specified by position.

seqCont.erase(beg, end)
Deletes all elements starting at
beg until end-1.

seqCont.clear() Deletes all elements from the
container.

seqCont.resize(num)

Changes the number of elements
to num. If size() grows, the
new elements are created by their
default constructor.

seqCont.resize(num, elem)
Changes the number of elements to
num. If size() grows, the new
elements are copies of elem.

Components of the STL | 223

Like the function copy, the STL contains many functions as part of generic algorithms,

which are described in Chapter 13.

The function copy does more than output the elements of a container. In general, it
allows us to copy the elements from one place to another. For example, to output the
elements of a vector or to copy the elements of a vector into another vector, we can use
the function copy. The prototype of the function template copy is as follows:

template <class inputIterator, class outputIterator>
outputItr copy(inputIterator first1, inputIterator last,

outputIterator first2);

The parameter first1 specifies the position from which to begin copying the elements;
the parameter last specifies the end position. The parameter first2 specifies where to
copy the elements. Therefore, the parameters first1 and last specify the source, and
the parameter first2 specifies the destination. Note that the elements within the range
first1...last-1 are copied.

The definition of the function template copy is contained in the header file algorithm.
Thus, to use the function copy, the program must include the statement

#include <algorithm>

The function copy works as follows. Consider the following statement:

int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75}; //Line 1
vector<int> vecList(9); //Line 2

This statement in Line 1 creates the array intArray of nine components—that is,

intArray = {5, 6, 8, 3, 40, 36, 98, 29, 75}

Here intArray[0] = 5, intArray[1] = 6, and so on.

The statement in Line 2 creates an empty container of nine components of type vector
and the element type int.

Recall that the array name, intArray, is actually a pointer and contains the base
address of the array. Therefore, intArray points to the first component of the array,
intArray + 1 points to the second component of the array, and so on.

Now consider the statement

copy(intArray, intArray+9, vecList.begin()); //Line 3

This statement copies the elements starting at the location intArray, which is the first
component of the array intArray, until intArray + 9 - 1 (that is, intArray + 8),
which is the last element of the array intArray, into the container vecList. (Note that
here first1 is intArray, last is intArray + 9, and first2 is vecList.begin().)
After the statement in Line 3 executes,

224 | Chapter 4: Standard Template Library (STL) I

vecList = {5, 6, 8, 3, 40, 36, 98, 29, 75} //Line 4

Next, consider the statement

copy(intArray + 1, intArray + 9, intArray); //Line 5

Here first1 is intArray + 1; that is, first1 points to the location of the second
element of the array intArray, and last is intArray + 9. Also, first2 is intArray;
that is, first2 points to the location of the first element of the array intArray.
Therefore, the second array element is copied into the first array component, the third
array element into the second array component, and so on. After the statement in Line 5
executes,

intArray[] = {6, 8, 3, 40, 36, 98, 29, 75, 75} //Line 6

Notice that the elements of the array intArray are shifted to the left by one position.

Suppose that vecList is as in Line 4. Consider the statement

copy(vecList.rbegin() + 2, vecList.rend(),
vecList.rbegin()); //Line 7

Recall that the function rbegin (reverse begin) returns a pointer to the last element into
a container; it is used to process the elements of a container in reverse. Therefore,
vecList.rbegin() + 2 returns a pointer to the third-to-last element into the container
vecList. Similarly, the function rend (reverse end) returns a pointer to the first element
of a container. The previous statement shifts the elements of the container vecList to
the right by two positions. After the statement in Line 7 executes, the container vecList
is as follows:

vecList = {5, 6, 5, 6, 8, 3, 40, 36, 98}

Example 4-6 shows the effect of the preceding statements using a C++ program. Before
discussing Example 4-6, let us describe a special type of iterator, called ostream iterators,
which work well with the function copy to copy the elements of a container to an output
device.

ostream Iterator and Function copy
One way to output the contents of a container is to use a for loop and the function
begin to initialize the for loop control variable, and to use the function end to set the
limit. Alternatively, the function copy can be used to output the elements of a container.
In this case, an iterator of type ostream specifies the destination (ostream iterators are
discussed in detail later in this chapter). When we create an iterator of type ostream, we
also specify the type of element the iterator will output.

The following statement illustrates how to create an ostream iterator of type int:

ostream_iterator<int> screen(cout, " "); //Line A

4

Components of the STL | 225

This statement creates screen to be an ostream iterator with the element type int. The
iterator screen has two arguments: the object cout and a space. Thus, the iterator
screen is initialized using the object cout, and when this iterator outputs the elements
they are separated by a space.

The statement

copy(intArray, intArray+9, screen);

outputs the elements of intArray on the screen.

Similarly, the statement

copy(vecList.begin(), vecList.end(), screen);

outputs the elements of the container vecList on the screen.

We will frequently use the function copy to output the elements of a container by using
an ostream iterator. Also, until we discuss ostream iterators in detail, we will use
statements similar to the statement in Line A to create an ostream iterator.

Of course, we can directly specify an ostream iterator in the function copy. For
example, the statement (shown previously)

copy(vecList.begin(), vecList.end(), screen);

is equivalent to the statement

copy(vecList.begin(), vecList.end(), ostream_iterator<int>(cout, " "));

Finally, the statement

copy(vecList.begin(), vecList.end(),
ostream_iterator<int>(cout, ", "));

outputs the elements of vecList with a comma and space between them.

Example 4-6 illustrates how to use the function copy and an ostream iterator in a
program.

EXAMPLE 4-6

//***
// Author: D.S. Malik
//
// This program illustrates how to use the function copy and
// an ostream iterator in a program.
//***

#include <algorithm> //Line 1
#include <vector> //Line 2
#include <iterator> //Line 3
#include <iostream> //Line 4

226 | Chapter 4: Standard Template Library (STL) I

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75}; //Line 8

vector<int> vecList(9); //Line 9

ostream_iterator<int> screen(cout, " "); //Line 10

cout << "Line 11: intArray: "; //Line 11
copy(intArray, intArray + 9, screen); //Line 12
cout << endl; //Line 13

copy(intArray, intArray + 9, vecList.begin()); //Line 14

cout << "Line 15: vecList: "; //Line 15
copy(vecList.begin(), vecList.end(), screen); //Line 16
cout << endl; //Line 17

copy(intArray + 1, intArray + 9, intArray); //Line 18
cout << "Line 19: After shifting the elements one "

<< "position to the left, intArray: " << endl; //Line 19
copy(intArray, intArray + 9, screen); //Line 20
cout << endl; //Line 21

copy(vecList.rbegin() + 2, vecList.rend(),
vecList.rbegin()); //Line 22

cout << "Line 23: After shifting the elements down "
<< "by two positions, vecList:" << endl; //Line 23

copy(vecList.begin(), vecList.end(), screen); //Line 24
cout << endl; //Line 25

return 0; //Line 26
} //Line 27

Sample Run:

Line 11: intArray: 5 6 8 3 40 36 98 29 75
Line 15: vecList: 5 6 8 3 40 36 98 29 75
Line 19: After shifting the elements one position to the left, intArray:
6 8 3 40 36 98 29 75 75
Line 23: After shifting the elements down by two positions, vecList:
5 6 5 6 8 3 40 36 98

Sequence Container: deque
This section describes the deque sequence containers. The term deque stands for
double-ended queue. Deque containers are implemented as dynamic arrays in such a
way that the elements can be inserted at both ends. Thus, a deque can expand in either

4

Components of the STL | 227

direction. Elements can also be inserted in the middle. Inserting elements at the beginning
or at the end is fast; inserting elements in the middle, however, is time consuming
because the elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. The definition of the
class deque, and the functions to implement the various operations on a deque object,
are also contained in the header file deque. Therefore, to use a deque container in a
program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized
in various ways when it is declared, as described in Table 4-7.

In addition to the operations that are common to all containers (see Table 4-6), Table 4-8
describes the operations that can be used to manipulate the elements of a deque

container. The name of the function implementing the operations is shown in bold.
The statement also shows how to use a particular function. Suppose that deq is a deque

container.

TABLE 4-7 Various ways to declare a deque object

Statement Effect

deque<elementType> deq;
Creates an empty deque container without
any elements. (The default constructor is
invoked.)

deque<elementType>
deq(otherDeq);

Creates a deque container, deq, and
initializes deq to the elements of
otherDeq; deq and otherDeq are of
the same type.

deque<elementType>
deq(size);

Creates a deque container, deq, of size
size. deq is initialized using the default
constructor.

deque<elementType>
deq(n, elem);

Creates a deque container, deq, of size n.
deq is initialized using n copies of the
element elem.

deque<elementType>
deq(begin, end);

Creates a deque container, deq. deq is
initialized to the elements in the range
[begin, end)—that is, all elements in
the range begin...end-1.

228 | Chapter 4: Standard Template Library (STL) I

4

Example 4-7 illustrates how to use a deque container in a program.

EXAMPLE 4-7

//***
// Author: D.S. Malik
//
// This program illustrates how to use a deque container in a
// program.
//***

#include <iostream> //Line 1
#include <deque> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

deque<int> intDeq; //Line 8
ostream_iterator<int> screen(cout, " "); //Line 9

intDeq.push_back(13); //Line 10
intDeq.push_back(75); //Line 11

TABLE 4-8 Various operations that can be performed on a deque object

Expression Effect

deq.assign(n,elem) Assigns n copies of elem.

deq.assign(beg,end) Assigns all the elements in the range beg...end-1.

deq.push_front(elem) Inserts elem at the beginning of deq.

deq.pop_front() Removes the first element from deq.

deq.at(index) Returns the element at the position specified by
index.

deq[index]
Returns the element at the position specified by
index.

deq.front() Returns the first element. (Does not check whether
the container is empty.)

deq.back() Returns the last element. (Does not check whether
the container is empty.)

Components of the STL | 229

intDeq.push_back(28); //Line 12
intDeq.push_back(35); //Line 13

cout << "Line 14: intDeq: "; //Line 14
copy(intDeq.begin(), intDeq.end(), screen); //Line 15
cout << endl; //Line 16

intDeq.push_front(0); //Line 17
intDeq.push_back(100); //Line 18

cout << "Line 19: After adding two more "
<< "elements, one at the front " << endl
<< " and one at the back, intDeq: "; //Line 19

copy(intDeq.begin(), intDeq.end(), screen); //Line 20
cout << endl; //Line 21

intDeq.pop_front(); //Line 22
intDeq.pop_front(); //Line 23

cout << "Line 24: After removing the first "
<< "two elements, intDeq: "; //Line 24

copy(intDeq.begin(), intDeq.end(), screen); //Line 25
cout << endl; //Line 26

intDeq.pop_back(); //Line 27
intDeq.pop_back(); //Line 28

cout << "Line 29: After removing the last "
<< "two elements, intDeq = "; //Line 29

copy(intDeq.begin(), intDeq.end(), screen); //Line 30
cout << endl; //Line 31

deque<int>::iterator deqIt; //Line 32

deqIt = intDeq.begin(); //Line 33
++deqIt; //deqIt points to the second element //Line 34
intDeq.insert(deqIt, 444); //Line 35
cout << "Line 36: After inserting 444, intDeq: "; //Line 36
copy(intDeq.begin(), intDeq.end(), screen); //Line 37
cout << endl; //Line 38

return 0; //Line 39
} //Line 40

Sample Run:

Line 14: intDeq: 13 75 28 35
Line 19: After adding two more elements, one at the front

and one at the back, intDeq: 0 13 75 28 35 100
Line 24: After removing the first two elements, intDeq: 75 28 35 100
Line 29: After removing the last two elements, intDeq = 75 28
Line 36: After inserting 444, intDeq: 75 444 28

230 | Chapter 4: Standard Template Library (STL) I

4

The statement in Line 8 declares a deque container intDeq of type int; that is, all the
elements of intDeq are of type int. The statement in Line 9 declares screen to be
an ostream iterator initialized to the standard output device. The statements in Lines
10 through 13 use the push_back operation to insert four numbers—13, 75, 28, and
35—into intDeq. The statement in Line 15 outputs the elements of intDeq. In the
output, see the line marked Line 14, which contains the output of the statements in Lines
14 through 16 of the program.

The statement in Line 17 inserts 0 at the beginning of intDeq. The statement in
Line 18 inserts 100 at the end of intDeq. The statement in Line 20 outputs the
modified intDeq.

The statements in Lines 22 and 23 use the operation pop_front to remove the
first two elements of intDeq; the statement in Line 25 outputs the modified
intDeq. The statements in Lines 27 and 28 use the operation pop_back to remove
the last two elements of intDeq; the statement in Line 30 outputs the modified
intDeq.

The statement in Line 32 declares deqIt to be a deque iterator that processes all
deque containers whose elements are of type int. After the statement in Line 33
executes, deqIt points to the first element of intDeq. The statement in Line 34
advances deqIt to the next element of intDeq. The statement in Line 35 inserts 444
into intDeq at the position specified by deqIt. The statement in Line 37 outputs
intDeq.

Iterators
Examples 4-5 through 4-7 further clarify that iterators are quite important to efficiently
process the elements of a container. Let us discuss iterators in some detail.

Iterators work just like pointers. In general, an iterator points to the elements of a
container (sequence or associative). Thus, with the help of iterators, we can successively
access each element of a container.

The two most common operations on iterators are ++ (the increment operator) and * (the
dereferencing operator). Suppose that cntItr is an iterator into a container. The statement

++cntItr;

advances cntItr so that it points to the next element in the container. The statement

*cntItr;

returns the value of the element of the container pointed to by cntItr.

Iterators | 231

Types of Iterators
There are five types of iterators: input iterators, output iterators, forward iterators,
bidirectional iterators, and random access iterators. In the next few sections, we describe
these iterators.

Input Iterators
Input iterators, with read access, step forward element-by-element and so return the values
element-by-element. These iterators are provided for reading data from an input stream.

Suppose inputIterator is an input iterator. Table 4-9 describes the operations on
inputIterator.

Output Iterators
Output iterators, with write access, step forward element-by-element. These iterators are
typically used for writing data to an output stream.

Suppose outputIterator is an output iterator. Table 4-10 describes the operations on
outputIterator.

TABLE 4-9 Operations on an input iterator

Expression Effect

*inputIterator
Gives access to the element to which
inputIterator points.

inputIterator->member Gives access to the member of the element.

++inputIterator Moves forward, returns the new position (preincrement).

inputIterator++ Moves forward, returns the old position (postincrement).

inputIt1 == inputIt2
Returns true if the two iterators are the same and
false otherwise.

inputIt1 != inputIt2
Returns true if the two iterators are not the same
and false otherwise.

Type(inputIterator) Copies the iterators.

232 | Chapter 4: Standard Template Library (STL) I

Output iterators cannot be used to iterate over a range twice. Thus, if we write data at the

same position twice, there is no guarantee that the new value will replace the old value.

Forward Iterators
Forward iterators combine all of the functionality of input iterators and almost all of the
functionality of output iterators. Suppose forwardIterator is a forward iterator. Table
4-11 describes the operations on forwardIterator.

4

TABLE 4-11 Operations on a forward iterator

Expression Effect

*forwardIterator
Gives access to the element to which
forwardIterator points.

forwardIterator->member Gives access to the member of the element.

++forwardIterator
Moves forward, returns the new position
(preincrement).

forwardIterator++
Moves forward, returns the old position
(postincrement).

forwardIt1 == forwardIt2
Returns true if the two iterators are the
same and false otherwise.

forwardIt1 != forwardIt2
Returns true if the two iterators are not
the same and false otherwise.

forwardIt1 = forwardIt2 Assignment.

TABLE 4-10 Operations on an output iterator

Expression Effect

*outputIterator = value;
Writes the value at the position specified
by the outputIterator.

++outputIterator
Moves forward, returns the new position
(preincrement).

outputIterator++
Moves forward, returns the old position
(postincrement).

Type(outputIterator) Copies the iterators.

Iterators | 233

A forward iterator can refer to the same element in the same collection and process the

same element more than once.

Bidirectional Iterators
Bidirectional iterators are forward iterators that can also iterate backward over
the elements. Suppose biDirectionalIterator is a bidirectional iterator. The
operations defined for forward iterators (Table 4-11) are also applicable to bidirec-
tional iterators. To step backward, the decrement operations are also defined for
biDirectionalIterator. Table 4-12 shows additional operations on a bidirec-
tional iterator.

Bidirectional iterators can be used only with containers of type vector, deque, list,

set, multiset, map, and multimap.

Random Access Iterators
Random access iterators are bidirectional iterators that can randomly process the elements of
a container. These iterators can be used with containers of type vector, deque, string,
and arrays. The operations defined for bidirectional iterators (for example, Tables 4-11
and 4-12) are also applicable to random access iterators. Table 4-13 describes the additional
operations that are defined for random access iterators. (Suppose rAccessIterator is a
random access iterator.)

TABLE 4-12 Additional operations on a bidirectional iterator

Expression Effect

--biDirectionalIterator
Moves backward, returns the new position
(predecrement).

biDirectionalIterator--
Moves backward, returns the old position
(postdecrement).

234 | Chapter 4: Standard Template Library (STL) I

4

TABLE 4-13 Additional operations on a random access iterator

Expression Effect

rAccessIterator[n] Accesses the nth element.

rAccessIterator += n
Moves rAccessIterator forward
n elements if n >= 0 and backward
if n < 0.

rAccessIterator -= n
Moves rAccessIterator backward
n elements if n >= 0 and forward
if n < 0.

rAccessIterator + n Returns the iterator of the next nth element.

n + rAccessIterator Returns the iterator of the next nth element.

rAccessIterator - n
Returns the iterator of the previous nth
element.

rAccessIt1 - rAccessIt2
Returns the distance between the iterators
rAccessIt1 and rAccessIt2.

rAccessIt1 < rAccessIt2
Returns true if rAccessIt1 is before
rAccessIt2 and false otherwise.

rAccessIt1 <= rAccessIt2
Returns true if rAccessIt1 is before or
equal to rAccessIt2 and false
otherwise.

rAccessIt1 > rAccessIt2
Returns true if rAccessIt1 is after
rAccessIt2 and false otherwise.

rAccessIt1 >= rAccessIt2
Returns true if rAccessIt1 is after
or equal to rAccessIt2 and false
otherwise.

Iterators | 235

Figure 4-1 shows the iterator hierarchy.

Now that you know the different types of iterators, next we describe how to declare an
iterator to a container.

typedef iterator Every container (sequence or associative) contains a typedef
iterator. Thus, an iterator into a container is declared using the typedef iterator.
For example, the statement

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator into a vector container of type int. Moreover,
the iterator intVecIter can be used on any vector<int>, but not on any other
container, such as vector<double>, vector<string>, and deque.

Because iterator is a typedef defined inside a container (that is, a class) such as
vector, we must use the appropriate container name, container element type, and the
scope resolution operator to use the typedef iterator.

typedef const_iterator Because an iterator works like a pointer, with the help
of an iterator into a container and the dereferencing operator, *, we can modify the
elements of the container. However, if a container is declared as const, then we must
prevent the iterator from modifying the elements of the container, especially accidentally.
To handle this situation, every container contains another typedef const_iterator.
For example, the statement

vector<int>::const_iterator intConstVecIt;

declares intConstVecIt to be an iterator into a vector container whose elements are of
type int. The iterator intConstVecIt is used to process the elements of those vector
containers that are declared as constant vector containers of type vector<int>.

An iterator of type const_iterator is a read-only iterator.

Input iterators Output iterators

Forward iterators

Bidirectional iterators

Random access iterators

FIGURE 4-1 Iterator hierarchy

236 | Chapter 4: Standard Template Library (STL) I

typedef reverse_iterator Every container also contains the typedef

reverse_iterator. An iterator of this type is used to iterate through the elements of
a container in reverse.

typedef const_reverse_iterator An iterator of this type is a read-only iterator
and is used to iterate through the elements of a container in reverse. It is required if the
container is declared as const and we need to iterate through the elements of the
container in reverse.

In addition to the previous four typedefs, several other typedefs are common to all
containers. Table 4-14 describes them.

Stream Iterators
Another useful set of iterators is stream iterators—istream iterators and ostream
iterators. This section describes both types of iterators.

istream_iterator The istream iterator is used to input data into a program from
an input stream. The class istream_iterator contains the definition of an input
stream iterator. The general syntax to use an istream iterator is as follows:

istream_iterator<Type> isIdentifier(istream&);

4

TABLE 4-14 Various typedefs common to all containers

typedef Effect

difference_type
The type of result from subtracting two iterators
referring to the same container.

pointer
A pointer to the type of elements stored in the
container.

reference
A reference to the type of elements stored in the
container.

const_reference
A constant reference to the type of elements stored in
the container. A constant reference is read-only.

size_type
The type used to count the elements in a container. This
type is also used to index through sequence containers,
except list containers.

value_type The type of container elements.

Iterators | 237

where Type is either a built-in type or a user-defined class type, for which an input
iterator is defined. The identifier isIdentifier is initialized using the constructor
whose argument is either an istream class object such as cin, or any publicly defined
istream subtype, such as ifstream.

ostream_iterator The ostream iterators are used to output data from a program into
an output stream. These iterators were defined earlier in this chapter. We review them
here for the sake of completeness.

The class ostream_iterator contains the definition of an output stream iterator. The
general syntax to use an ostream iterator is as follows:

ostream_iterator<Type> osIdentifier(ostream&);

or

ostream_iterator<Type> osIdentifier(ostream&, char* deLimit);

where Type is either a built-in type or a user-defined class type, for which an output
iterator is defined. The identifier osIdentifier is initialized using the constructor
whose argument is either an ostream class object such as cout, or any publicly defined
ostream subtype, such as ofstream. In the second form used for declaring an ostream
iterator, by using the second argument (deLimit) of the initializing constructor, we can
specify a character separating the output.

PROGRAMMING EXAMPLE: Grade Report
The midsemester point at your local university is approaching. The registrar’s office
wants to prepare the grade reports as soon as the students’ grades are recorded. Some
of the students enrolled have not yet paid their tuition, however.

If a student has paid the tuition, the grades are shown on the grade report together
with the grade point average (GPA). If a student has not paid the tuition, the grades
are not printed. For these students, the grade report contains a message indicating that
the grades have been held for nonpayment of the tuition. The grade report also shows
the billing amount.

The registrar’s office and the business office want your help in writing a program that
can analyze the students’ data and print the appropriate grade reports. The data is
stored in a file in the following form:

345
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade

238 | Chapter 4: Standard Template Library (STL) I

4

courseName courseNumber creditHours grade
...
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade
...

The first line indicates the tuition rate per credit hour. The students’ data is given
thereafter.

A sample input file follows:

345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A
...

The first line indicates that the tuition rate is $345 per credit hour. Next, the course data
for student Lisa Miller is given: Lisa Miller’s ID is 890238, she has paid the tuition,
and is taking 4 courses. The course number for the mathematics class she is taking is
MTH345, the course has 4 credit hours, her midsemester grade is A, and so on.

The desired output for each student is in the following form:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade
CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credits: 13
Midsemester GPA: 3.54

This output shows that the courses must be ordered according to the course number.
To calculate the GPA, we assume that the grade A is equivalent to 4 points, B is
equivalent to 3 points, C is equivalent to 2 points, D is equivalent to 1 point, and F is
equivalent to 0 points.

Input A file containing the data in the form given previously. For easy reference
in the rest of the discussion, let us assume that the name of the input file is
stData.txt.

Output A file containing the output of the form given previously. Let us assume
that the name of the output file is stDataOut.txt.

Programming Example: Grade Report | 239

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We must first identify the main components of the program. The university has
students, and every student takes courses. Thus, the two main components are the
student and the course.

Let us first describe the component course.

Course The main characteristics of a course are the course name, course number, and number
of credit hours. Although the grade a student receives is not really a characteristic of
a course, to simplify the program this component also includes the student’s grade.

Some of the basic operations that need to be performed on an object of the course
type are as follows:

1. Set the course information.

2. Print the course information.

3. Show the credit hours.

4. Show the course number.

5. Show the grade.

The following class defines the course as an ADT:

class courseType
{
public:

void setCourseInfo(string cName, string cNo,
char grade, int credits);

//Function to set the course information
//The course information is set according to the
//incoming parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseGrade = grade; courseCredits = credits;

void print(ostream& outp, bool isGrade);
//Function to print the course information
//If the bool parameter isGrade is true, the grade is
//shown, otherwise three stars are printed.

int getCredits();
//Function to return the credit hours
//The value of the private data member courseCredits
//is returned.

void getCourseNumber(string& cNo);
//Function to return the course number
//Postcondition: cNo = courseNo;

char getGrade();
//Function to return the grade for the course
//The value of the private data member courseGrade
//is returned.

240 | Chapter 4: Standard Template Library (STL) I

4

bool operator==(const courseType&) const;
bool operator!=(const courseType&) const;
bool operator<=(const courseType&) const;
bool operator<(const courseType&) const;
bool operator>=(const courseType&) const;
bool operator>(const courseType&) const;

courseType(string cName = "", string cNo = "",
char grade = '*', int credits = 0);

//Constructor
//The object is initialized according to the parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseGrade = grade; courseCredits = credits;

private:
string courseName; //variable to store the course name
string courseNo; //variable to store the course number
char courseGrade; //variable to store the grade
int courseCredits; //variable to store the course credits

};

Figure 4-2 shows the UML class diagram of the class courseType.

Next, we discuss the definition of the functions to implement the operations of the
class courseType. These definitions are quite straightforward and easy to follow.

The function setCourseInfo sets the values of the private data members accord-
ing to the values of the parameters. Its definition is as follows:

courseType

–courseName: string
–courseNo: string
–courseGrade: char
–courseCredits: int

+setCourseInfo(string, string, char, int): void
+print(ostream&, bool): void
+getCredits(): int
+getCourseNumber(string&): void
+getGrade(): char
+operator==(const courseType&) const: bool
+operator!=(const courseType&) const: bool
+operator<=(const courseType&) const: bool
+operator<(const courseType&) const: bool
+operator>=(const courseType&) const: bool
+operator>(const courseType&) const: bool
+courseType(string = "", string = "", char = '*', int = 0)

FIGURE 4-2 UML class diagram of the class courseType

Programming Example: Grade Report | 241

void courseType::setCourseInfo(string cName, string cNo,
char grade, int credits)

{
courseName = cName;
courseNo = cNo;
courseGrade = grade;
courseCredits = credits;

}

The function print prints the course information. If the bool parameter isGrade
is true, the grade is printed on the screen; otherwise, three stars are shown in place
of the grade. Also, we print the course name and course number left-justified rather
than right-justified (the default). Thus, we need to set the left manipulator. This
manipulator will be unset before we print the grade and the credit hours. The
following steps describe this function:

1. Set the left manipulator.

2. Print the course number.

3. Print the course name.

4. Unset the left manipulator.

5. Print the credit hours.

6. If isGrade is true

Output the grade
else

Output three stars.

The definition of the function print is as follows:

void courseType::print(ostream& outp, bool isGrade)
{

outp << left; //Step 1
outp << setw(8) << courseNo << " "; //Step 2
outp << setw(15) << courseName; //Step 3
outp.unsetf(ios::left); //Step 4
outp << setw(3) << courseCredits << " "; //Step 5

if (isGrade) //Step 6
outp << setw(4) << courseGrade << endl;

else
outp << setw(4) << "***" << endl;

}

The constructor is declared with default values. If no values are specified when a
courseType object is declared, the constructor uses the default to initialize the object.
Using the default values, the object’s data members are initialized as follows:
courseNo to blank, courseName to blank, courseGrade to *, and creditHours to
0. Otherwise, the values specified in the object declaration are used to initialize the
object. Its definition is as follows:

242 | Chapter 4: Standard Template Library (STL) I

4

courseType::courseType(string cName, string cNo,
char grade, int credits)

{
setCourseInfo(cName, cNo, grade, credits);

}

The definitions of the remaining functions are straightforward.

int courseType::getCredits()
{

return courseCredits;
}

char courseType::getGrade()
{

return courseGrade;
}

void courseType::getCourseNumber(string& cNo)
{

cNo = courseNo;
}

bool courseType::operator==(const courseType& right) const
{

return (courseNo == right.courseNo);
}

bool courseType::operator!=(const courseType& right) const
{

return (courseNo != right.courseNo);
}

bool courseType::operator<=(const courseType& right) const
{

return (courseNo <= right.courseNo);
}

bool courseType::operator<(const courseType& right) const
{

return (courseNo < right.courseNo);
}

bool courseType::operator>=(const courseType& right) const
{

return (courseNo >= right.courseNo);
}

bool courseType::operator>(const courseType& right) const
{

return (courseNo > right.courseNo);
}

Programming Example: Grade Report | 243

Next we discuss the component student.

Student The main characteristics of a student are the student name, student ID, number of
courses in which enrolled, courses in which enrolled, and the grade for each course.
Because every student has to pay tuition, we also include a member to indicate
whether the student has paid the tuition.

Every student is a person, and every student takes courses. We have already designed a
class personType to process a person’s first name and last name. We have also
designed a class to process the information of a course. Thus, we see that we can
derive the class studentType to keep track of a student’s information from the
class personType, and one member of this class is of type courseType. We can
add more members as needed.

The basic operations to be performed on an object of type studentType are as follows:

1. Set the student information.

2. Print the student information.

3. Calculate the number of credit hours taken.

4. Calculate the GPA.

5. Calculate the billing amount.

6. Because the grade report will print the courses in ascending order,
sort the courses according to the course number.

The following class defines studentType as an ADT. We assume that a student takes
no more than six courses per semester:

class studentType: public personType
{
public:

void setInfo(string fname, string lName, int ID,
bool isTPaid,
vector<courseType> courses);

//Function to set the student's information
//The private data members are set according
//to the parameters.

void print(ostream& out, double tuitionRate);
//Function to print the student's grade report
//The output is stored in a file specified by the
//parameter out.

studentType();
//Default constructor
//Postcondition: Data members are initialized to
//the default values.

244 | Chapter 4: Standard Template Library (STL) I

4

int getHoursEnrolled();
//Function to return the credit hours a student
//is enrolled in.
//Postcondition: The number of credit hours in which a
// student is enrolled is calculated and returned.

double getGpa();
//Function to return the grade point average.
//Postcondition: The GPA is calculated and returned.

double billingAmount(double tuitionRate);
//Function to return the tuition fees
//Postcondition: The tuition fees due is calculated
// and returned.

private:
int sId; //variable to store the student ID
int numberOfCourses; //variable to store the number

//of courses
bool isTuitionPaid; //variable to indicate if the tuition

//is paid
vector<courseType> coursesEnrolled;//vector to store the courses

};

Figure 4-3 shows the UML class diagram of the class studentType and the
inheritance hierarchy.

Next, we discuss the definitions of the functions to implement the operations of the
class studentType.

The function setInfo first initializes the private data members according to the
incoming parameters. The class studentType is derived from the class

personType, and the variables to store the first name and last name are private data

studentType

–sId: int
–numberOfCourses: int
–isTuitionPaid: bool
–coursesEnrolled: vector<courseType>

+setInfo(string, string, int, bool,
 vector<courseType>): void
+print(ostream& out, double tuitionRate): void
+getHoursEnrolled(): int
+getGpa(): double
+billingAmount(double): double
+studentType() studentType

personType

FIGURE 4-3 UML class diagram of the class studentType and the inheritance hierarchy

Programming Example: Grade Report | 245

members of that class. Therefore, we call the member function setName of the
class personType, and we pass the appropriate variables to set the first and last
names. To sort the array coursesEnrolled we use the algorithm sort provided by
the STL.

To use the algorithm sort, to sort the vector coursesEnrolled, we need to know
the position of the first element and last element in the vector coursesEnrolled.
When we declare the vector coursesEnrolled, we did not specify its size. The
function begin of the class vector returns the position of the first element in a
vector container; the function end specifies the position of the last element.
Therefore, coursesEnrolled.begin() specifies the position of the first element of
the vector coursesEnrolled, and coursesEnrolled.end() specifies the position
of the last element. Now the operator <= is overloaded for the class courseType

and it compares the courses by the course number; the sort algorithm will use this
criteria to sort the vector coursesEnrolled. The following statement sorts the
vector coursesEnrolled.

sort(coursesEnrolled.begin(), coursesEnrolled.end());

The definition of the function setInfo is as follows:

void studentType::setInfo(string fName, string lName, int ID,
bool isTPaid,
vector<courseType> courses)

{
setName(fName, lName);

sId = ID;
isTuitionPaid = isTPaid;
numberOfCourses = courses.size();

coursesEnrolled = courses;

sort(coursesEnrolled.begin(), coursesEnrolled.end());
}

The default constructor initializes the private data members to the default values.
Note that because the private data member coursesEnrolled is of type vector,
the default constructor of the class vector executes automatically and initializes
coursesEnrolled.

studentType::studentType()
{

numberOfCourses = 0;
sId = 0;
isTuitionPaid = false;

}

246 | Chapter 4: Standard Template Library (STL) I

4

The function print prints the grade report. If the student has paid his or her tuition, the
grades and the GPA are shown. Otherwise, three stars are printed in place of each grade,
the GPA is not shown, a message indicates that the grades are being held for nonpayment
of the tuition, and the amount due is shown. This function has the following steps:

1. Output the student’s name.

2. Output the student’s ID.

3. Output the number of courses in which enrolled.

4. Output heading: CourseNo CourseName Credits Grade

5. Print each course’s information.

6. Print the total credit hours.

7. To output the GPA and billing amount in a fixed decimal format
with the decimal point and trailing zeros, set the necessary flag. Also,
set the precision to two decimal places.

8. if isTuitionPaid is true
Output the GPA

else

Output the billing amount and a message about withholding the
grades.

This definition of the function print is as follows:

void studentType::print(ostream& outp, double tuitionRate)
{

outp << "Student Name: " << personType::getFirstName()
<< " " << personType::getLastName() << endl; //Step 1

outp << "Student ID: " << sId << endl; //Step 2

outp << "Number of courses enrolled: "
<< numberOfCourses << endl << endl; //Step 3

outp << left;
outp << "Course No" << setw(15) << " Course Name"

<< setw(8) << "Credits"
<< setw(6) << "Grade" << endl; //Step 4

outp.unsetf(ios::left);

for (int i = 0; i < numberOfCourses; i++)
coursesEnrolled[i].print(outp, isTuitionPaid); //Step 5

outp << endl;

outp << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outp << fixed << showpoint << setprecision(2); //Step 7

Programming Example: Grade Report | 247

if (isTuitionPaid) //Step 8
outp << "Midsemester GPA: " << getGpa() << endl;

else
{

outp << "*** Grades are being held for not paying "
<< "the tuition. ***" << endl;

outp << "Amount Due: $" << billingAmount(tuitionRate)
<< endl;

}

outp << "-*"
<< "-*-*-*-*-" << endl << endl;

}

The function getHoursEnrolled calculates and returns the total credit hours that a
student is taking. These credit hours are needed to calculate both the GPA and the
billing amount. The total credit hours are calculated by adding the credit hours of
each course in which the student is enrolled. The credit hours for a course are in the
private data member of an object of type courseType. Therefore, we use the
member function getCredits of the class courseType to retrieve the credit
hours. The definition of this function is as follows:

int studentType::getHoursEnrolled()
{

int totalCredits = 0;

for (int i = 0; i < numberOfCourses; i++)
totalCredits += coursesEnrolled[i].getCredits();

return totalCredits;
}

If a student has not paid the tuition, the function billingAmount calculates and
returns the amount due, based on the number of credit hours enrolled. The definition
of this function is as follows:

double studentType::billingAmount(double tuitionRate)
{

return tuitionRate * getHoursEnrolled();
}

We now discuss the function getGpa. This function calculates a student’s GPA. To
find the GPA, we find the equivalent points for each grade, add the points, and then
divide the sum by the total credit hours the student is taking. The definition of this
function is as follows:

double studentType::getGpa()
{

double sum = 0.0;

248 | Chapter 4: Standard Template Library (STL) I

4

for (int i = 0; i < numberOfCourses; i++)
{

switch (coursesEnrolled[i].getGrade())
{
case 'A':

sum += coursesEnrolled[i].getCredits() * 4;
break;

case 'B':
sum += coursesEnrolled[i].getCredits() * 3;
break;

case 'C':
sum += coursesEnrolled[i].getCredits() * 2;
break;

case 'D':
sum += coursesEnrolled[i].getCredits() * 1;
break;

case 'F':
break;

default:
cout << "Invalid Course Grade" << endl;

}
}

if (getHoursEnrolled() != 0)
return sum / getHoursEnrolled();

else
return 0;

}

MAIN

PROGRAM

Now that we have designed the classes courseType and studentType, we will use
these classes to complete the program.

Because the function print of the class does the necessary computations to print the
final grade report, the main program has very little work to do. In fact, all that is left
for the main program is to declare the objects to hold the students’ data, load the data
into these objects, and then print the grade reports. Because the input is in a file and
the output will be sent to a file, we declare stream variables to access the input and
output files. Essentially, the main algorithm for the program is as follows:

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Open the output file.

Programming Example: Grade Report | 249

5. Get the tuition rate.

6. Load the students’ data.

7. Print the grade reports.

Variables To store students’ data, we use the vector container, studentList, whose
elements are of type studentType. We also need to store the tuition rate. Because the
data will be read from a file, and because the output is sent to a file, we need two stream
variables to access the input and output files. Thus, we need the following variables:

vector<studentType> studentList; //vector to store the
// students' data

double tuitionRate; //variable to store the tuition rate

ifstream infile; //input stream variable
ofstream outfile; //output stream variable

To simplify the complexity of the function main, we write a function, getStudentData,
to load the students’ data and another function, printGradeReports, to print the grade
reports. The next two sections describe these functions.

Function

getStudent
Data

This function has two parameters: a parameter to access the input file and a parameter
to access the vector container studentList. In pseudocode, the definition of this
function is as follows:

For each student in the university,

1. Get the first name, last name, student ID, and isPaid.

2. if isPaid is 'Y'
set isTuitionPaid to true

else

set isTuitionPaid to false

3. Get the number of courses the student is taking.

4. For each course

a. Get the course name, course number, credit hours, and grade.

b. Load the course information into a courseType object.

c. Push the object containing course information into the vector
container that stores course data.

5. Load the data into a studentType object.

6. Push the object containing student’s data into studentList.

We need to declare several local variables to read and store the data. The definition of
the function getStudentData is as follows:

250 | Chapter 4: Standard Template Library (STL) I

4

void getStudentData(ifstream& infile,
vector<studentType> &studentList)

{
//Local variable

string fName; //variable to store the first name
string lName; //variable to store the last name
int ID; //variable to store the student ID
int noOfCourses; //variable to store the number of courses
char isPaid; //variable to store Y/N, that is,

//is tuition paid
bool isTuitionPaid; //variable to store true/false

string cName; //variable to store the course name
string cNo; //variable to store the course number
int credits; //variable to store the course credit hours
char grade; //variable to store the course grade

vector<courseType> courses; //vector of objects to store course
//information

courseType cTemp;
studentType sTemp;

infile >> fName; //Step 1

while (infile)
{

infile >> lName >> ID >> isPaid; //Step 1

if (isPaid == 'Y') //Step 2
isTuitionPaid = true;

else
isTuitionPaid = false;

infile >> noOfCourses; //Step 3

courses.clear();

for (int i = 0; i < noOfCourses; i++) //Step 4
{

infile >> cName >> cNo >> credits >> grade; //Step 4.a
cTemp.setCourseInfo(cName, cNo,

grade, credits); //Step 4.b
courses.push_back(cTemp); //Step 4.c

}

sTemp.setInfo(fName, lName, ID, isTuitionPaid,
courses); //Step 5

studentList.push_back(sTemp); //Step 6

infile >> fName; //Step 1
}//end while

}

Programming Example: Grade Report | 251

Function

printGrade
Reports

This function prints the grade reports. For each student, it calls the function print of
the class studentType to print the grade report. The definition of the function
printGradeReports is as follows:

void printGradeReports(ofstream& outfile,
vector<studentType> studentList,
double tuitionRate)

{
for (int count = 0; count < studentList.size(); count++)

studentList[count].print(outfile, tuitionRate);
}

MAIN

PROGRAM

//**
// Author: D.S. Malik
//
// This program illustrates how to use the classes courseType,
// studentType, and vector.
//**

#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include <vector>
#include <iterator>

#include "studentType.h"

using namespace std;

void getStudentData(ifstream& infile,
vector<studentType> &studentList);

void printGradeReports(ofstream& outfile,
vector<studentType> studentList,
double tuitionRate);

int main()
{

vector<studentType> studentList;

double tuitionRate;

ifstream infile;
ofstream outfile;

infile.open("stData.txt");

252 | Chapter 4: Standard Template Library (STL) I

4

if (!infile)
{

cout << "Input file does not exist. "
<< "Program terminates." << endl;

return 1;
}

outfile.open("stDataOut.txt");

infile >> tuitionRate; //get the tuition rate

getStudentData(infile, studentList);
printGradeReports(outfile, studentList, tuitionRate);

return 0;
}

//Place the definition of the function getStudentData here
//Place the definition of the function printGradeReports here

Sample Run:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade
CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credit hours: 13
Midsemester GPA: 3.54
-*-

Student Name: Bill Wilton
Student ID: 798324
Number of courses enrolled: 5

Course No Course Name Credits Grade
BIO234 Biology 4 ***
CHM256 Chemistry 4 ***
ENG378 English 3 ***
MTH346 Mathematics 3 ***
PHL534 Philosophy 3 ***

Total number of credit hours: 17
*** Grades are being held for not paying the tuition. ***
Amount Due: $5865.00
-*-

Programming Example: Grade Report | 253

QUICK REVIEW

1. The STL provides class templates that process lists, stacks, and queues.

2. The three main components of the STL are containers, iterators, and
algorithms.

3. STL containers are class templates.

4. Iterators are used to step through the elements of a container.

Student Name: Dandy Goat
Student ID: 746333
Number of courses enrolled: 6

Course No Course Name Credits Grade
BUS128 Business 3 C
CHM348 Chemistry 4 B
CSC201 ComputerSci 3 B
ENG328 English 3 B
HIS101 History 3 A
MTH137 Mathematics 3 A

Total number of credit hours: 19
Midsemester GPA: 3.16
-*-

Input File

345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A

Bill Wilton 798324 N 5
English ENG378 3 B
Philosophy PHL534 3 A
Chemistry CHM256 4 C
Biology BIO234 4 A
Mathematics MTH346 3 C

Dandy Goat 746333 Y 6
History HIS101 3 A
English ENG328 3 B
Mathematics MTH137 3 A
Chemistry CHM348 4 B
ComputerSci CSC201 3 B
Business BUS128 3 C

254 | Chapter 4: Standard Template Library (STL) I

5. Algorithms are used to manipulate the elements in a container.

6. The main categories of containers are sequence containers, associative
containers, and container adapters.

7. The three predefined sequence containers are vector, deque, and list.

8. A vector container stores and manages its objects in a dynamic array.

9. Because an array is a random access data structure, elements of a vector can
be accessed randomly.

10. The name of the class that implements the vector container is vector.

11. Item insertion in a vector container is accomplished by using the operations
insert and push_back.

12. Item deletion in a vector container is accomplished by using the operations
pop_back, erase, and clear.

13. An iterator to a vector container is declared using the typedef iterator,
which is declared as a public member of the class vector.

14. Member functions common to all containers are the default constructor,
constructors with parameters, the copy constructor, the destructor, empty,
size, max_size, swap, begin, end, rbegin, rend, insert, erase,
clear, and the relational operator functions.

15. The member function begin returns an iterator to the first element into
the container.

16. The member function end returns an iterator to the last element into the
container.

17. In addition to the member functions listed in 14, the other member
functions common to all sequence containers are insert, push_back,
pop_back, erase, clear, and resize.

18. The copy algorithm is used to copy the elements in a given range to
another place.

19. The function copy, using an ostream iterator, can also be used to output
the elements of a container.

20. When we create an iterator of the type ostream, we also specify the type
of element that the iterator will output.

21. Deque containers are implemented as dynamic arrays in such a way that the
elements can be inserted at both ends of the array.

22. A deque can expand in either direction.

23. The name of the header file containing the definition of the class deque
is deque.

24. In addition to the operations that are common to all containers, the other
operations that can be used to manipulate the elements of a deque are
assign, push_front, pop_front, at, array subscripting operator [],
front, and back.

4

Quick Review | 255

25. The five categories of iterators are: input, output, forward, bidirectional,
and random access iterator.

26. Input iterators are used to input data from an input stream.

27. Output iterators are used to output data to an output stream.

28. A forward iterator can refer to the same element in the same collection and
process the same element more than once.

29. Bidirectional iterators are forward iterators that can also iterate backwards
over the elements.

30. Bidirectional iterators can be used with containers of type list, set,
multiset, map, and multimap.

31. Random access iterators are bidirectional iterators that can randomly pro-
cess the elements of a container.

32. Random access iterators can be used with containers of type vector,
deque, string, and arrays.

EXERCISES

1. What are the three main components of the STL?

2. What is the difference between an STL container and an STL iterator?

3. Write a statement that declares a vector object that can store 50 decimal numbers.

4. Write a statement that declares and stores the elements of the following
array into a vector object:

char vowels[5] = {'a', 'e', 'i', 'o', 'u'};

5. Write a statement to declare screen to be an ostream_iterator initialized
to the standard output device that outputs the elements of an int vector object.

6. Consider the following statements:

vector<int> intVector;

Suppose that intVector = {5, 7, 9, 11, 13}. Moreover, suppose that
screen is an ostream_iterator initialized to the standard output device
to output the elements of an int vector object. What is the effect of the
following statement?

copy(vecList.begin(), vecList.end(), screen);

7. What is the output of the following program segment?

vector<int> vecList(5);

for (int j = 0; j < 5; j++)
vecList[j] = 2 * j;

for (int j = 0; j < 5; j++)
cout << vecList[j] << " ";

cout << endl;

256 | Chapter 4: Standard Template Library (STL) I

4

8. What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type int.)

int list[5] = {2,4,6,8,10};
vector<int> vecList(5);

copy(list, list + 5, vecList.begin());

copy(vecList.begin(), vecList.end(), screen);
cout << endl;

9. What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type int.)

vector<int> vecList;
vector<int>::iterator vecIt;

vecList.push_back(3);
vecList.push_back(5);
vecList.push_back(7);
vecIt = vecList.begin();
++vecIt;
vecList.erase(vecIt);
vecList.push_back(9);

copy(vecList.begin(), vecList.end(), screen);
cout << endl;

10. What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type int.)

int list[5] = {2,4,6,8,10};
vector<int> vecList(7);

copy(list, list + 5, vecList.begin());

vecList.push_back(12);

copy(vecList.begin(), vecList.end(), screen);
cout << endl;

11. What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
to output elements of type double.)

vector<double> sales(3);

sales[0] = 50.00;
sales[1] = 75.00;
sales[2] = 100.00;

Exercises | 257

sales.resize(5);

sales[3] = 200.00;
sales[4] = 95.00;

copy(sales.begin(), sales.end(), screen);
cout << endl;

12. What is the output of the following program segment? (Assume that
screen is an ostream_iterator initialized to the standard output device
that outputs elements of type int.)

vector<int> intVector;
vector<int>::iterator vecIt;

intVector.push_back(15);
intVector.push_back(2);
intVector.push_back(10);
intVector.push_back(7);
vecIt = intVector.begin();
vecIt++;
intVector.erase(vecIt);
intVector.pop_back();

copy(intVector.begin(),intVector.end(), screen);

13. Suppose that vecList is a vector container and

vecList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes:

copy(vecList.begin() + 2, vecList.end(), vecList.begin());

14. Suppose that vecList is a vector container and

vecList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes:

copy(vecList.rbegin() + 3, vecList.rend(), vecList.rbegin());

15. What is the output of the following program segment?

deque<int> intDeq;
ostream_iterator<int> screen(cout, " ");
deque<int>::iterator deqIt;

intDeq.push_back(5);
intDeq.push_front(23);
intDeq.push_front(45);
intDeq.push_back(35);
intDeq.push_front(0);
intDeq.push_back(50);
intDeq.push_front(34);

deqIt = intDeq.begin();
intDeq.insert(deqIt,76);
intDeq.pop_back();

258 | Chapter 4: Standard Template Library (STL) I

deqIt = intDeq.begin();
++deqIt;
++deqIt;

intDeq.erase(deqIt);
intDeq.push_front(2 * intDeq.back());
intDeq.push_back(3 * intDeq.front());

copy(intDeq.begin(), intDeq.end(), screen);
cout << endl;

PROGRAMMING EXERCISES

1. Write a program that allows the user to enter the last names of five candidates in
a local election and the votes received by each candidate. The program should
then output each candidate’s name, votes received by that candidate, and the
percentage of the total votes received by the candidate. Your program should
also output the winner of the election. A sample output is as follows:

Candidate Votes Received % of Total Votes
Johnson 5000 25.91
Miller 4000 20.72
Duffy 6000 31.09
Robinson 2500 12.95
Sam 1800 9.33
Total 19300
The Winner of the Election is Duffy.

2. Write a program that allows the user to input the students’ names followed
by their test scores and outputs the following:

a. Class average

b. Names of all students whose test scores are below the class average
with an appropriate message

c. Highest test score and the names of all students having the highest score

3. Write a program that uses a vector object to store a set of real numbers. The
program outputs the smallest, largest, and average of the numbers. When declar-
ing the vector object, do not specify its size. Use the function push_back to
insert elements in the vector object.

4. Write the definition of the function template reverseVector to reverse the
elements of a vector object.

template<class elemType>
void reverseVector(vector<elemType> &list);

//Reverses the elements of the vector list.
//Example: Suppose list = {4, 8, 2, 5}.
// After a call to this function, list = {5, 2, 8, 4}.

4

Programming Exercises | 259

Also, write a program to test the function reverseVector. When declaring
the vector object, do not specify its size. Use the function push_back to
insert elements in the vector object.

5. Write the definition of the function template seqSearch to implement the
sequential search on a vector object.

template<class elemType>
int seqSearch(const vector<elemType> &list, const elemType& item);

//If item is found in the list, returns the
//position of the item in the list; otherwise, returns -1.

Also, write a program to test the function seqSearch. Use the function
push_back to insert elements in the vector object.

6. Write a program to find the mean and standard deviation of numbers. The
mean (average) of n numbers x1, x2, . . ., xn is x ¼ (x1 + x2 + . . . + xn) / n.
The standard deviation of these numbers is as follows:

s ¼
ffi
ðx1 � xÞ2 þ ðx2 � xÞ2 þ � � � þ ðxi � xÞ2 þ � � � þ ðxn � xÞ2

n

s

Use a vector object to store the numbers.

7. a. Some of the characteristics of a book are the title, author(s), publisher,
ISBN, price, and year of publication. Design the class bookType that
defines the book as an ADT.

Each object of the class bookType can hold the following information
about a book: title, up to four authors, publisher, ISBN, price, and
number of copies in stock. To keep track of the number of authors,
add another data member.

Include the member functions to perform the various operations on the
objects of bookType. For example, the typical operations that can be per-
formed on the title are to show the title, set the title, and check whether a title
is the same as the actual title of the book. Similarly, the typical operations that
can be performed on the number of copies in stock are to show the number
of copies in stock, set the number of copies in stock, update the number of
copies in stock, and return the number of copies in stock. Add similar
operations for the publisher, ISBN, book price, and authors. Add the appro-
priate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookType.

c. Write a program that uses the class bookType and tests the various
operations on the objects of class bookType. Declare a vector container of
type bookType. Some of the operations that you should perform are to
search for a book by its title, search by ISBN, and update the number of
copies in stock.

260 | Chapter 4: Standard Template Library (STL) I

4

8. a. In the first part of this exercise, you will design a class memberType.

i. Each object of memberType can hold the name of a person,
member ID, number of books bought, and amount spent.

ii. Include the member functions to perform the various operations
on the objects of memberType—for example, modify, set, and
show a person’s name. Similarly, update, modify, and show the
number of books bought and the amount spent.

iii. Add the appropriate constructors and a destructor (if one is needed).

iv. Write the definitions of the member functions of memberType.

b. Using the classes designed in Programming Exercise 7 and part (8a),
write a program to simulate a bookstore. The bookstore has two types
of customers: those who are members of the bookstore and those who
buy books from the bookstore only occasionally. Each member has to
pay a $10 yearly membership fee and receives a 5% discount on each
book bought.

For each member, the bookstore keeps track of the number of books
bought and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of
the last 10 books bought, applies this amount as a discount, and then
resets the total amount spent to 0.

Your program should contain a menu that gives the user different
choices to effectively run the program; in other words, your program
should be self-driven.

9. Redo Programming Exercise 9 of Chapter 3 so that the address book is
stored in a vector object.

10. (Stock Market) Write a program to help a local stock trading company
automate its systems. The company invests only in the stock market. At the
end of each trading day, the company would like to generate and post the
listing of its stocks so that investors can see how their holdings performed
that day. We assume that the company invests in, say, 10 different stocks.
The desired output is to produce two listings, one sorted by stock symbol
and another sorted by percent gain from highest to lowest.
The input data is stored in a file in the following format:

symbol openingPrice closingPrice todayHigh todayLow prevClose
volume

For example, the sample data is as follows:

MSMT 112.50 115.75 116.50 111.75 113.50 6723823
CBA 67.50 75.50 78.75 67.50 65.75 378233
.
.
.

Programming Exercises | 261

The first line indicates that the stock symbol is MSMT, today’s opening price
was 112.50, the closing price was 115.75, today’s high price was 116.50,
today’s low price was 111.75, yesterday’s closing price was 113.50, and the
number of shares currently being held is 6723823.

The listing sorted by stock symbols must be in the following form:

********* First Investor's Heaven **********
********* Financial Report **********
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume
------ ---- ----- ---- --- ----- ---- ------
ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CSCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000
MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920
Closing Assets: $9628300.00
-*

Develop this programming exercise in two steps. In the first step (part a),
design and implement a stock object. In the second step (part b), design and
implement an object to maintain a list of stocks.

a. (Stock Object) Design and implement the stock object. Call the class
that captures the various characteristics of a stock object stockType.

The main components of a stock are the stock symbol, stock price, and
number of shares. Moreover, we need to output the opening price, high
price, low price, previous price, and the percent gain/loss for the day.
These are also all the characteristics of a stock. Therefore, the stock
object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.

ii. Print the stock information.

iii. Show the different prices.

iv. Calculate and print the percent gain/loss.

v. Show the number of shares.

a.1. The natural ordering of the stock list is by stock symbol. Overload the
relational operators to compare two stock objects by their symbols.

a.2. Overload the insertion operator, <<, for easy output.

a.3. Because data is stored in a file, overload the stream extraction operator,
>>, for easy input.
For example, suppose infile is an ifstream object and the input
file was opened using the object infile. Further suppose that
myStock is a stock object. Then, the statement

infile >> myStock;

262 | Chapter 4: Standard Template Library (STL) I

reads data from the input file and stores it in the object myStock.
(Note that this statement reads and stores data in relevant components
of myStock.)

b. Now that you have designed and implemented the class stockType

to implement a stock object in a program, it is time to create a list of
stock objects. Let us call the class to implement a list of stock objects
stockListType. To store the list of stocks, you need to declare a
vector. The component type of this vector is stockType.

Because the company also requires you to produce the list ordered by
the percent gain/loss, you need to sort the stock list by this compo-
nent. However, you are not to physically sort the list by the compo-
nent percent gain/loss; instead, you will provide a logical ordering
with respect to this component.

To do so, add a data member, a vector, to hold the indices of the stock list
ordered by the component percent gain/loss. Call this array indexByGain.
When printing the list ordered by the component percent gain/loss, use
the array indexByGain to print the list. The elements of the array
indexByGain will tell which component of the stock list to print next.
In skeleton form, the definition of the class stockListType is as follows:

class stockListType
{
public:

void insert(const stockType& item));
//Function to insert a stock in the list.

...

private:
vector<int> indexByGain;
vector<stockType> list; //vector to store the list //of stocks

};

c. Write a program that uses these two classes to automate the company’s
analysis of stock data.

4

Programming Exercises | 263

This page intentionally left blank

LINKED LISTS
IN THIS CHAPTER , YOU WILL :

. Learn about linked lists

. Become aware of the basic properties of linked lists

. Explore the insertion and deletion operations on linked lists

. Discover how to build and manipulate a linked list

. Learn how to construct a doubly linked list

. Discover how to use the STL container list

. Learn about linked lists with header and trailer nodes

. Become aware of circular linked lists

5C H A P T E R

You have already seen how data is organized and processed sequentially using an array, called a
sequential list. You have performed several operations on sequential lists, such as sorting, inserting,
deleting, and searching. You also found that if data is not sorted, searching for an item in the list
can be very time consuming, especially with large lists. Once the data is sorted, you can use a
binary search and improve the search algorithm. However, in this case, insertion and deletion
become time consuming, especially with large lists because these operations require data
movement. Also, because the array size must be fixed during execution, new items can be
added only if there is room. Thus, there are limitations when you organize data in an array.

This chapter helps you to overcome some of these problems. Chapter 3 showed how
memory (variables) can be dynamically allocated and deallocated using pointers. This chapter
uses pointers to organize and process data in lists, called linked lists.Recall that when data is
stored in an array, memory for the components of the array is contiguous—that is, the blocks
are allocated one after the other. However, as we will see, the components (called nodes) of a
linked list need not be contiguous.

Linked Lists
A linked list is a collection of components, called nodes. Every node (except the last node)
contains the address of the next node. Thus, every node in a linked list has two components:
one to store the relevant information (that is, data) and one to store the address, called the
link, of the next node in the list. The address of the first node in the list is stored in a separate
location, called the head or first. Figure 5-1 is a pictorial representation of a node.

Linked list: A list of items, called nodes, in which the order of the nodes is determined
by the address, called the link, stored in each node.

The list in Figure 5-2 is an example of a linked list.

The arrow in each node indicates that the address of the node to which it is pointing is
stored in that node. The down arrow in the last node indicates that this link field is NULL.

data link

FIGURE 5-1 Structure of a node

45 7665 34head

FIGURE 5-2 Linked list

266 | Chapter 5: Linked Lists

For a better understanding of this notation, suppose that the first node is at memory
location 1200, and the second node is at memory location 1575, see Figure 5-3.

The value of the head is 1200, the data part of the first node is 45, and the link component
of the first node contains 1575, the address of the second node. If no confusion arises, we
will use the arrow notation whenever we draw the figure of a linked list.

For simplicity and for the ease of understanding and clarity, Figures 5-3 through 5-5 use
decimal integers as the values of memory addresses. However, in computer memory the
memory addresses are in binary.

Because each node of a linked list has two components, we need to declare each node as a
class or struct. The data type of each node depends on the specific application—that is,
what kind of data is being processed. However, the link component of each node is a
pointer. The data type of this pointer variable is the node type itself. For the previous linked
list, the definition of the node is as follows. (Suppose that the data type is int.)

struct nodeType
{

int info;
nodeType *link;

};

The variable declaration is as follows:

nodeType *head;

Linked Lists: Some Properties
To better understand the concept of a linked list and a node, some important properties
of linked lists are described next.

Consider the linked list in Figure 5-4.

5

45 1575 65head 1200

1200 1575

FIGURE 5-3 Linked list and values of the links

17 2800
head
2000 92 1500 63 3600 45 0

info link info link info link info link

2000 2800 1500 3600

FIGURE 5-4 Linked list with four nodes

Linked Lists | 267

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and link, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800, the
third node is at location 1500, and the fourth node is at location 3600. Table 5-1 shows
the values of head and some other nodes in the list shown in Figure 5-4.

Suppose that current is a pointer of the same type as the pointer head. Then the
statement

current = head;

copies the value of head into current. Now consider the following statement:

current = current->link;

This statement copies the value of current->link, which is 2800, into current.
Therefore, after this statement executes, current points to the second node in the list.
(When working with linked lists, we typically use these types of statements to advance a
pointer to the next node in the list.) See Figure 5-5.

17 2800
head
2000

info link
92 1500

info link
63 3600

info link
45 0

info link

2000 2800 1500 3600

current 2800

FIGURE 5-5 List after the statement current = current->link; executes

TABLE 5-1 Values of head and some of the nodes of the linked list in Figure 5-4

Value Explanation

head 2000

head->info 17
Because head is 2000 and the info of the
node at location 2000 is 17

head->link 2800

head->link->info 92
Because head->link is 2800 and the
info of the node at location 2800 is 92

268 | Chapter 5: Linked Lists

5

Table 5-2 shows the values of current, head, and some other nodes in Figure 5-5.

From now on, when working with linked lists, we will use only the arrow notation.

TRAVERSING A LINKED LIST

The basic operations of a linked list are as follows: Search the list to determine whether a
particular item is in the list, insert an item in the list, and delete an item from the list.
These operations require the list to be traversed. That is, given a pointer to the first node
of the list, we must step through the nodes of the list.

Suppose that the pointer head points to the first node in the list, and the link of the last
node is NULL. We cannot use the pointer head to traverse the list because if we use the
head to traverse the list, we would lose the nodes of the list. This problem occurs because
the links are in only one direction. The pointer head contains the address of the first
node, the first node contains the address of the second node, the second node contains the
address of the third node, and so on. If we move head to the second node, the first node
is lost (unless we save a pointer to this node). If we keep advancing head to the next
node, we will lose all the nodes of the list (unless we save a pointer to each node before
advancing head, which is impractical because it would require additional computer time
and memory space to maintain the list).

Therefore, we always want head to point to the first node. It now follows that we must
traverse the list using another pointer of the same type. Suppose that current is a pointer
of the same type as head. The following code traverses the list:

TABLE 5-2 Values of current, head, and some of the nodes of the linked list in Figure 5-5

Value

current 2800

current->info 92

current->link 1500

current->link->info 63

head->link->link 1500

head->link->link->info 63

head->link->link->link 3600

current->link->link->link 0 (that is, NULL)

current->link->link->link->info Does not exist (run-time error)

Linked Lists | 269

current = head;

while (current != NULL)
{

//Process current
current = current->link;

}

For example, suppose that head points to a linked list of numbers. The following code
outputs the data stored in each node:

current = head;

while (current != NULL)
{

cout << current->info << " ";
current = current->link;

}

Item Insertion and Deletion
This section discusses how to insert an item into, and delete an item from, a linked list.
Consider the following definition of a node. (For simplicity, we assume that the info

type is int. The next section, which discusses linked lists as an abstract data type (ADT)
using templates, uses the generic definition of a node.)

struct nodeType
{

int info;
nodeType *link;

};

We will use the following variable declaration:

nodeType *head, *p, *q, *newNode;

INSERTION

Consider the linked list shown in Figure 5-6.

p

45 7665 34head

FIGURE 5-6 Linked list before item insertion

270 | Chapter 5: Linked Lists

Suppose that p points to the node with info 65, and a new node with info 50 is to be
created and inserted after p. Consider the following statements:

newNode = new nodeType; //create newNode
newNode->info = 50; //store 50 in the new node
newNode->link = p->link;
p->link = newNode;

Table 5-3 shows the effect of these statements.

Note that the sequence of statements to insert the node, that is,

newNode->link = p->link;
p->link = newNode;

is very important because to insert newNode in the list we use only one pointer, p, to
adjust the links of the nodes of the linked list. Suppose that we reverse the sequence of the
statements and execute the statements in the following order:

p->link = newNode;
newNode->link = p->link;

5

TABLE 5-3 Inserting a node in a linked list

Statement Effect

newNode = new nodeType;

newNode

p

45 7665 34head

newNode->info = 50;

50newNode

p

45 7665 34head

newNode->link = p->link; p

45 7665 34head

50newNode

p->link = newNode; p

45 7665 34head

50newNode

Linked Lists | 271

Figure 5-7 shows the resulting list after these statements execute.

From Figure 5-7, it is clear that newNode points back to itself and the remainder of the
list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to
the node with info 34. (See Figure 5-8.)

The following statements insert newNode between p and q:

newNode->link = q;
p->link = newNode;

The order in which these statements execute does not matter. To illustrate this, suppose
that we execute the statements in the following order:

p->link = newNode;
newNode->link = q;

p

45 7665 34head

50newNode

FIGURE 5-7 List after the execution of the statement p->link = newNode; followed by the
execution of the statement newNode->link = p->link;

50newNode

p

45 7665 34head

q

FIGURE 5-8 List with pointers p and q

272 | Chapter 5: Linked Lists

Table 5-4 shows the effect of these statements.

DELETION

Consider the linked list shown in Figure 5-9.

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list:

p->link = p->link->link;

Figure 5-10 shows the resulting list after the preceding statement executes.

From Figure 5-10, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node and this memory is inaccessible; that

5

p

45 7665 34head

FIGURE 5-10 List after the statement p->link = p->link->link; executes

p

45 7665 34head

FIGURE 5-9 Node to be deleted is with info 34

TABLE 5-4 Inserting a node in a linked list using two pointers

Statement Effect

p->link = newNode; p

45 7665 34head

50newNode

q

newNode->link = q; p

45 7665 34head

50newNode
q

Linked Lists | 273

is, this node is dangling. To deallocate the memory, we need a pointer to this node. The
following statements delete the node from the list and deallocate the memory occupied
by this node:

q = p->link;
p->link = q->link;
delete q;

Table 5-5 shows the effect of these statements.

Building a Linked List
Now that we know how to insert a node in a linked list, let us see how to build a linked list.
First, we consider a linked list in general. If the data we read is unsorted, the linked list will be
unsorted. Such a list can be built in twoways: forward and backward. In the forward manner,
a new node is always inserted at the end of the linked list. In the backward manner, a new
node is always inserted at the beginning of the list. We will consider both cases.

BUILDING A LINKED LIST FORWARD

Suppose that the nodes are in the usual info-link form and info is of type int. Let us
assume that we process the following data:

2 15 8 24 34

We need three pointers to build the list: one to point to the first node in the list, which
cannot be moved, one to point to the last node in the list, and one to create the new
node. Consider the following variable declaration:

nodeType *first, *last, *newNode;
int num;

TABLE 5-5 Deleting a node from a linked list

Statement Effect

q = p->link; p

45 7665 34head

q

p->link = q->link;
p

45 7665 34head

q

delete q; p

45 65 76head

274 | Chapter 5: Linked Lists

Suppose that first points to the first node in the list. Initially, the list is empty, so both
first and last are NULL. Thus, we must have the statements

first = NULL;
last = NULL;

to initialize first and last to NULL.

Next, consider the following statements:

1 cin >> num; //read and store a number in num
2 newNode = new nodeType; //allocate memory of type nodeType

//and store the address of the
//allocated memory in newNode

3 newNode->info = num; //copy the value of num into the
//info field of newNode

4 newNode->link = NULL; //initialize the link field of
//newNode to NULL

5 if (first == NULL) //if first is NULL, the list is empty;
//make first and last point to newNode

{
5a first = newNode;
5b last = newNode;

}
6 else //list is not empty

{
6a last->link = newNode; //insert newNode at the end of the list
6b last = newNode; //set last so that it points to the

//actual last node in the list
}

Let us now execute these statements. Initially, both first and last are NULL. Therefore,
we have the list as shown in Figure 5-11.

After statement 1 executes, num is 2. Statement 2 creates a node and stores the address of
that node in newNode. Statement 3 stores 2 in the info field of newNode, and statement 4
stores NULL in the link field of newNode. (See Figure 5-12.)

5

first

 last

FIGURE 5-11 Empty list

2newNode

FIGURE 5-12 newNode with info 2

Linked Lists | 275

Because first is NULL, we execute statements 5a and 5b. Figure 5-13 shows the resulting list.

We now repeat statements 1 through 6b. After statement 1 executes, num is 15.
Statement 2 creates a node and stores the address of this node in newNode. Statement
3 stores 15 in the info field of newNode, and statement 4 stores NULL in the link field of
newNode. (See Figure 5-14.)

Because first is not NULL, we execute statements 6a and 6b. Figure 5-15 shows the
resulting list.

We now repeat statements 1 through 6b three more times. Figure 5-16 shows the resulting list.

first

 last
2

newNode

FIGURE 5-13 List after inserting newNode in it

first

 last
2

newNode 15

FIGURE 5-14 List and newNode with info 15

last

first 2

newNode

15

FIGURE 5-15 List after inserting newNode at the end

last

first 2

newNode

3415 8 24

FIGURE 5-16 List after inserting 8, 24, and 34

276 | Chapter 5: Linked Lists

We can put the previous statements in a loop, and execute the loop until certain conditions
are met, to build the linked list. We can, in fact, write a C++ function to build a linked list.

Suppose that we read a list of integers ending with -999. The following function,
buildListForward, builds a linked list (in a forward manner) and returns the pointer
of the built list:

nodeType* buildListForward()
{

nodeType *first, *newNode, *last;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType;
newNode->info = num;
newNode->link = NULL;

if (first == NULL)
{

first = newNode;
last = newNode;

}
else
{

last->link = newNode;
last = newNode;

}
cin >> num;

} //end while

return first;
} //end buildListForward

BUILDING A LINKED LIST BACKWARD

Now we consider the case of building a linked list backward. For the previously given
data—2, 15, 8, 24, and 34—the linked list is as shown in Figure 5-17.

5

first 34

newNode

224 8 15

FIGURE 5-17 List after building it backward

Linked Lists | 277

Because the new node is always inserted at the beginning of the list, we do not need to know
the end of the list, so the pointer last is not needed. Also, after inserting the new node at the
beginning, the new node becomes the first node in the list. Thus, we need to update the value
of the pointer first to correctly point to the first node in the list. We see, then, that we need
only two pointers to build the linked list: one to point to the list and one to create the new
node. Because initially the list is empty, the pointer first must be initialized to NULL. The
following C++ function builds the linked list backward and returns the pointer of the built list:

nodeType* buildListBackward()
{

nodeType *first, *newNode;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType; //create a node
newNode->info = num; //store the data in newNode
newNode->link = first; //put newNode at the beginning

//of the list
first = newNode; //update the head pointer of

//the list, that is, first
cin >> num; //read the next number

}

return first;
} //end buildListBackward

Linked List as an ADT
The previous sections taught you the basic properties of linked lists and how to construct and
manipulate linked lists. Because a linked list is a very important data structure, rather than
discuss specific lists such as a list of integers or a list of strings, this section discusses linked lists
as an abstract data type (ADT). Using templates, this section gives a generic definition of
linked lists, which is then used in the next section and later in this book. The programming
example at the end of this chapter also uses this generic definition of linked lists.

The basic operations on linked lists are as follows:

1. Initialize the list.

2. Determine whether the list is empty.

3. Print the list.

4. Find the length of the list.

5. Destroy the list.

278 | Chapter 5: Linked Lists

5

6. Retrieve the info contained in the first node.

7. Retrieve the info contained in the last node.

8. Search the list for a given item.

9. Insert an item in the list.

10. Delete an item from the list.

11. Make a copy of the linked list.

In general, there are two types of linked lists—sorted lists, whose elements are arranged according
to some criteria, and unsorted lists, whose elements are in no particular order. The algorithms to
implement the operations search, insert, and remove slightly differ for sorted and unsorted lists.
Therefore, we will define the class linkedListType to implement the basic operations on a
linked list as an abstract class. Using the principal of inheritance, we derive two classes—
unorderedLinkedList and orderedLinkedList—from the class linkedListType.

Objects of the class unorderedLinkedList would arrange list elements in no particular
order, that is, these lists may not be sorted. On the other hand, objects of the class
orderedLinkedList would arrange elements according to some comparison criteria, usually
less than or equal to. That is, these lists will be in ascending order. Moreover, after inserting an
element into or removing an element from an ordered list, the resulting list will be ordered.

If a linked list is unordered, we can insert a new item at either the end or the beginning.
Furthermore, you can build such a list in either a forward manner or a backward manner.
The function buildListForward inserts the new item at the end, whereas the function
buildListBackward inserts the new item at the beginning. To accommodate both
operations, we will write two functions: insertFirst to insert the new item at the
beginning of the list and insertLast to insert the new item at the end of the list. Also,
to make the algorithms more efficient, we will use two pointers in the list: first, which
points to the first node in the list, and last, which points to the last node in the list.

Structure of Linked List Nodes
Recall that each node of a linked list must store the data as well as the address for the next
node in the list (except the last node of the list). Therefore, the node has two instance
variables. To simplify operations such as insert and delete, we define the class to implement
the node of a linked list as a struct. The definition of the struct nodeType is as follows:

//Definition of the node

template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

The class to implement the node of a linked list is declared as a struct. Programming

Exercise 8, at the end of this chapter, asks you to redefine the class to implement the nodes

of a linked list so that the instance variables of the class nodeType are private.

Linked List as an ADT | 279

Member Variables of the class linkedListType
To maintain a linked list, we use two pointers—first and last. The pointer first

points to the first node in the list, and last points to the last node in the list. We also
keep a count of the number of nodes in the list. Therefore, the class linkedListType
has three instance variables, as follows:

protected:
int count; //variable to store the number of elements in the list
nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

Linked List Iterators
One of the basic operations performed on a list is to process each node of the list. This
requires the list to be traversed starting at the first node. Moreover, a specific application
requires each node to be processed in a very specific way. A common technique to
accomplish this is to provide an iterator. So what is an iterator? An iterator is an object
that produces each element of a container, such as a linked list, one element at a time.
The two most common operations on iterators are ++ (the increment operator) and *

(the dereferencing operator). The increment operator advances the iterator to the next
node in the list while the dereferencing operator returns the info of the current node.

Note that an iterator is an object. So we need to define a class, which we will call
linkedListIterator, to create iterators to objects of the class linkedListType.
The iterator class would have one member variable pointing to (the current) node.

//***
// Author: D.S. Malik
//
// This class specifies the members to implement an iterator
// to a linked list.
//***

template <class Type>
class linkedListIterator
{
public:

linkedListIterator();
//Default constructor
//Postcondition: current = NULL;

linkedListIterator(nodeType<Type> *ptr);
//Constructor with a parameter.
//Postcondition: current = ptr;

Type operator*();
//Function to overload the dereferencing operator *.
//Postcondition: Returns the info contained in the node.

linkedListIterator<Type> operator++();
//Overload the preincrement operator.
//Postcondition: The iterator is advanced to the next node.

280 | Chapter 5: Linked Lists

5

bool operator==(const linkedListIterator<Type>& right) const;
//Overload the equality operator.
//Postcondition: Returns true if this iterator is equal to
// the iterator specified by right, otherwise it returns
// false.

bool operator!=(const linkedListIterator<Type>& right) const;
//Overload the not equal to operator.
//Postcondition: Returns true if this iterator is not equal to
// the iterator specified by right, otherwise it returns
// false.

private:
nodeType<Type> *current; //pointer to point to the current

//node in the linked list
};

Figure 5-18 shows the UML class diagram of the class linkedListIterator.

The definitions of the functions of the class linkedListIterator are as follows:

template <class Type>
linkedListIterator<Type>::linkedListIterator()
{

current = NULL;
}

template <class Type>
linkedListIterator<Type>::

linkedListIterator(nodeType<Type> *ptr)
{

current = ptr;
}

template <class Type>
Type linkedListIterator<Type>::operator*()
{

return current->info;
}

linkedListIterator<Type>

- *current: nodeType<Type>

+linkedListIterator()
+linkedListIterator(nodeType<Type>)
+operator*(): Type
+operator++(): linkedListIterator<Type>
+operator==(const linkedListIterator<Type>&) const: bool
+operator!=(const linkedListIterator<Type>&) const: bool

FIGURE 5-18 UML class diagram of the class linkedListIterator

Linked List as an ADT | 281

template <class Type>
linkedListIterator<Type> linkedListIterator<Type>::operator++()
{

current = current->link;

return *this;
}

template <class Type>
bool linkedListIterator<Type>::operator==

(const linkedListIterator<Type>& right) const
{

return (current == right.current);
}

template <class Type>
bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const
{

return (current != right.current);
}

From the definitions of the functions and constructors of the class linkedListIterator,
it follows that each function and the constructors are of O(1).

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next, we describe the class linkedListType to implement the
basic porperties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of a linked list. This is an abstract class.
// We cannot instantiate an object of this class.
//***

template <class Type>
class linkedListType
{
public:

const linkedListType<Type>& operator=
(const linkedListType<Type>&);

//Overload the assignment operator.

void initializeList();
//Initialize the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

282 | Chapter 5: Linked Lists

5

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty, otherwise
// it returns false.

void print() const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

virtual void insertFirst(const Type& newItem) = 0;
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to
// the last node in the list, and count is incremented by
// 1.

virtual void insertLast(const Type& newItem) = 0;
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list. first points to the first node,
// last points to the last node of the updated list, and
// count is decremented by 1.

Linked List as an ADT | 283

linkedListIterator<Type> begin();
//Function to return an iterator at the beginning of the
//linked list.
//Postcondition: Returns an iterator such that current is set
// to first.

linkedListIterator<Type> end();
//Function to return an iterator one element past the
//last element of the linked list.
//Postcondition: Returns an iterator such that current is set
// to NULL.

linkedListType();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType(const linkedListType<Type>& otherList);
//copy constructor

~linkedListType();
//destructor
//Deletes all the nodes from the list.
//Postcondition: The list object is destroyed.

protected:
int count; //variable to store the number of list elements

//
nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copyList(const linkedListType<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.

};

284 | Chapter 5: Linked Lists

Figure 5-19 shows the UML class diagram of the class linkedListType.

Note that, typically, in the UML class diagram the names of an abstract class and abstract
function are shown in italic.

The instance variables first and last, as defined earlier, of the class linkedListType

are protected, not private, because as noted previously, we will derive the classes
unorderedLinkedList and orderedLinkedList from the class linkedListType.
Because each of the classes unorderedLinkedList and orderedLinkedList will
provide separate definitions of the functions search, insertFirst, insertLast, and
deleteNode, and because these functions would access the instance variable, to provide
direct access to the instance variables, the instance variables are declared as protected.

The definition of the class linkedListType includes a member function to overload
the assignment operator. For classes that include pointer data members, the assignment
operator must be explicitly overloaded (see Chapters 2 and 3). For the same reason, the
definition of the class also includes a copy constructor.

Notice that the definition of the class linkedListType contains the member function
copyList, which is declared as a private member. This is because this function is used
only to implement the copy constructor and overload the assignment operator.

5

linkedListType<Type>

-count: int
-*first: nodeType<Type>
-*last: nodeType<Type>

+operator=(const linkedListType<Type>&):
 const linkedListType<Type>&
+initializeList(): void
+isEmptyList() const: bool
+print() const: void
+length() const: int
+destroyList(): void
+front() const: Type
+back() const: Type
+search(const Type&) const = 0: bool
+insertFirst(const Type&) = 0: void
+insertLast(const Type&) = 0: void
+deleteNode(const Type&) = 0: void
+begin(): linkedListIterator<Type>
+end(): linkedListIterator<Type>
+linkedListType()
+linkedListType(const linkedListType<Type>&)
+~linkedListType()
-copyList(const linkedListType<Type>&): void

FIGURE 5-19 UML class diagram of the class linkedListType

Linked List as an ADT | 285

Next, we write the definitions of the nonabstract functions of the class LinkedListClass.

The list is empty if first is NULL. Therefore, the definition of the function isEmptyList

to implement this operation is as follows:

template <class Type>
bool linkedListType<Type>::isEmptyList() const
{

return (first == NULL);
}

Default Constructor
The default constructor, linkedListType, is quite straightforward. It simply initializes
the list to an empty state. Recall that when an object of the linkedListType type is
declared and no value is passed, the default constructor is executed automatically.

template <class Type>
linkedListType<Type>::linkedListType() //default constructor
{

first = NULL;
last = NULL;
count = 0;

}

From the definitions of the functions isEmptyList and the default constructor, it
follows that each of these functions is of O(1).

Destroy the List
The function destroyList deallocates the memory occupied by each node. We traverse
the list starting from the first node and deallocate the memory by calling the operator
delete. We need a temporary pointer to deallocate the memory. Once the entire list is
destroyed, we must set the pointers first and last to NULL and count to 0.

template <class Type>
void linkedListType<Type>::destroyList()
{

nodeType<Type> *temp; //pointer to deallocate the memory
//occupied by the node

while (first != NULL) //while there are nodes in the list
{

temp = first; //set temp to the current node
first = first->link; //advance first to the next node
delete temp; //deallocate the memory occupied by temp

}

last = NULL; //initialize last to NULL; first has already
//been set to NULL by the while loop

count = 0;
}

286 | Chapter 5: Linked Lists

5

If the list has n items, the while loop executes n times. From this, it follows that the
function destroyList is of O(n).

Initialize the List
The function initializeList initializes the list to an empty state. Note that the default
constructor or the copy constructor has already initialized the list when the list object was
declared. This operation, in fact, reinitializes the list to an empty state, and so it must delete
the nodes (if any) from the list. This task can be accomplished by using the destroyList

operation, which also resets the pointers first and last to NULL and sets count to 0.

template <class Type>
void linkedListType<Type>::initializeList()
{

destroyList(); //if the list has any nodes, delete them
}

The function initializeList uses the function destroyList, which is of O(n).
Therefore, the function initializeList is of O(n).

Print the List
The member function print prints the data contained in each node. To print the data
contained in each node, we must traverse the list starting at the first node. Because the
pointer first always points to the first node in the list, we need another pointer to
traverse the list. (If we use first to traverse the list, the entire list will be lost.)

template <class Type>
void linkedListType<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current point to the first node
while (current != NULL) //while more data to print
{

cout << current->info << " ";
current = current->link;

}
}//end print

As in the case of the function destroyList, the function print is of O(n).

Length of a List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int linkedListType<Type>::length() const
{

return count;
}

Linked List as an ADT | 287

Retrieve the Data of the First Node
The function front returns the info contained in the first node, and its definition is
straightforward.

template <class Type>
Type linkedListType<Type>::front() const
{

assert(first != NULL);

return first->info; //return the info of the first node
}//end front

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function check, you have to check to see whether the list is nonempty.

Retrieve the Data of the Last Node
The function back returns the info contained in the last node. Its definition is as follows:

template <class Type>
Type linkedListType<Type>::back() const
{

assert(last != NULL);

return last->info; //return the info of the last node
}//end back

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, you have to check to see whether the list is nonempty.

From the definitions of the functions length, front, and back, it follows easily that
each of these functions are of O(1).

Begin and End
The function begin returns an iterator to the first node in the linked list and the function
end returns an iterator to the last node in the linked list. Their definitions are as follows:

template <class Type>
linkedListIterator<Type> linkedListType<Type>::begin()
{

linkedListIterator<Type> temp(first);

return temp;
}

template <class Type>
linkedListIterator<Type> linkedListType<Type>::end()
{

linkedListIterator<Type> temp(NULL);

return temp;
}

288 | Chapter 5: Linked Lists

From the definitions of the functions length, front, back, begin, and end, it follows
easily that each of these functions are of O(1).

Copy the List
The function copyList makes an identical copy of a linked list. Therefore, we traverse
the list to be copied starting at the first node. Corresponding to each node in the original
list, we do the following:

1. Create a node and call it newNode.

2. Copy the info of the node (in the original list) into newNode.

3. Insert newNode at the end of the list being created.

The definition of the function copyList is as follows:

template <class Type>
void linkedListType<Type>::copyList

(const linkedListType<Type>& otherList)
{

nodeType<Type> *newNode; //pointer to create a node
nodeType<Type> *current; //pointer to traverse the list

if (first != NULL) //if the list is nonempty, make it empty
destroyList();

if (otherList.first == NULL) //otherList is empty
{

first = NULL;
last = NULL;
count = 0;

}
else
{

current = otherList.first; //current points to the
//list to be copied

count = otherList.count;

//copy the first node
first = new nodeType<Type>; //create the node
first->info = current->info; //copy the info
first->link = NULL; //set the link field of the node to NULL
last = first; //make last point to the first node
current = current->link; //make current point to the next

// node

//copy the remaining list
while (current != NULL)
{

newNode = new nodeType<Type>; //create a node
newNode->info = current->info; //copy the info
newNode->link = NULL; //set the link of newNode to NULL

5

Linked List as an ADT | 289

last->link = newNode; //attach newNode after last
last = newNode; //make last point to the actual last

//node
current = current->link; //make current point to the

//next node
}//end while

}//end else
}//end copyList

The function copyList contains a while loop. The number of times the while loop
executes depends on the number of items in the list. If the list contains n items, the while

loop executes n times. Therefore, the function copyList is of O(n).

Destructor
The destructor deallocates the memory occupied by the nodes of a list when the class
object goes out of scope. Because memory is allocated dynamically, resetting the pointers
first and last does not deallocate the memory occupied by the nodes in the list. We
must traverse the list, starting at the first node, and delete each node in the list. The list
can be destroyed by calling the function destroyList. Therefore, the definition of the
destructor is as follows:

template <class Type>
linkedListType<Type>::~linkedListType() //destructor
{

destroyList();
}

Copy Constructor
Because the class linkedListType contains pointer data members, the definition of
this class contains the copy constructor. Recall that, if a formal parameter is a value
parameter, the copy constructor provides the formal parameter with its own copy of the
data. The copy constructor also executes when an object is declared and initialized using
another object.

The copy constructor makes an identical copy of the linked list. This can be done by
calling the function copyList. Because the function copyList checks whether the
original is empty by checking the value of first, we must first initialize the pointer
first to NULL before calling the function copyList.

The definition of the copy constructor is as follows:

template <class Type>
linkedListType<Type>::linkedListType

(const linkedListType<Type>& otherList)
{

first = NULL;
copyList(otherList);

}//end copy constructor

290 | Chapter 5: Linked Lists

Overloading the Assignment Operator
The definition of the function to overload the assignment operator for the class
linkedListType is similar to the definition of the copy constructor. We give its defini-
tion for the sake of completeness.

//overload the assignment operator
template <class Type>
const linkedListType<Type>& linkedListType<Type>::operator=

(const linkedListType<Type>& otherList)
{

if (this != &otherList) //avoid self-copy
{

copyList(otherList);
}//end else

return *this;
}

The destructor uses the function destroyList, which is of O(n). The copy constructor
and the function to overload the assignment operator use the function copyList, which
is of O(n). Therefore, each of these functions are of O(n).

5

TABLE 5-6 Time-complexity of the operations of the class linkedListType

Function Time-complexity

isEmptyList O (1)

default constructor O (1)

destroyList O (n)

front O (1)

end O (1)

initializeList O (n)

print O (n)

length O (1)

front O (1)

back O (1)

copyList O (n)

Linked List as an ADT | 291

Unordered Linked Lists
As described in the previous section, we derive the class unorderedLinkedList from the
abstract class linkedListType and implement the operations search, insertFirst,
insertLast, and deleteNode.

The following class defines an unordered linked list as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an unordered linked list. This class is
// derived from the class linkedListType.
//***

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to
// the last node, and count is incremented by 1.
//

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem

TABLE 5-6 Time-complexity of the operations of the class linkedListType (continued)

Function Time-complexity

destructor O (n)

copy constructor O (n)

Overloading the assignment operator O (n)

292 | Chapter 5: Linked Lists

5

// is deleted from the list. first points to the first
// node, last points to the last node of the updated
// list, and count is decremented by 1.

};

Figure 5-20 shows a UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy.

Next we give the definitions of the member functions of the class unorderedLinkedList.

Search the List
The member function search searches the list for a given item. If the item is found, it
returns true; otherwise, it returns false. Because a linked list is not a random access
data structure, we must sequentially search the list starting from the first node.

This function has the following steps:

1. Compare the search item with the current node in the list. If the info of
the current node is the same as the search item, stop the search; otherwise,
make the next node the current node.

2. Repeat Step 1 until either the item is found or no more data is left in the
list to compare with the search item.

template <class Type>
bool unorderedLinkedList<Type>::

search(const Type& searchItem) const
{

nodeType<Type> *current; //pointer to traverse the list
bool found = false;

current = first; //set current to point to the first
//node in the list

while (current != NULL && !found) //search the list
if (current->info == searchItem) //searchItem is found

found = true;

unorderedLinkedList<Type>

+search(const Type&) const: bool
+insertFirst(const Type&): void
+insertLast(const Type&): void
+deleteNode(const Type&): void

linkedListType

unorderedLinkedList

FIGURE 5-20 UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy

Unordered Linked Lists | 293

else
current = current->link; //make current point to

//the next node
return found;

}//end search

The number of times the while loop executes, in the function search, depends on where
in the list the search item is located. Suppose the list has n items. If the search item is not in
the list, the while loop executes n times. On the other hand, if the search item is the first
item, the while loop executes 1 time. Similarly, if the search item is the ith item in the list,
the while loop executes i times. From these observations, we can show that the function
search is ofO(n). We will explicitly analyze the sequential search algorithm in Chapter 9.

Insert the First Node
The function insertFirst inserts the new item at the beginning of the list—that is, before
the node pointed to by first. The steps needed to implement this function are as follows:

1. Create a new node.

2. If unable to create the node, terminate the program.

3. Store the new item in the new node.

4. Insert the node before first.

5. Increment count by 1.

template <class Type>
void unorderedLinkedList<Type>::insertFirst(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = first; //insert newNode before first
first = newNode; //make first point to the actual first node
count++; //increment count

if (last == NULL) //if the list was empty, newNode is also
//the last node in the list

last = newNode;
}//end insertFirst

Insert the Last Node
The definition of the member function insertLast is similar to the definition of the
member function insertFirst. Here, we insert the new node after last. Essentially,
the function insertLast is as follows:

template <class Type>
void unorderedLinkedList<Type>::insertLast(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node

294 | Chapter 5: Linked Lists

5

newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = NULL; //set the link field of newNode to NULL

if (first == NULL) //if the list is empty, newNode is
//both the first and last node

{
first = newNode;
last = newNode;
count++; //increment count

}
else //the list is not empty, insert newNode after last
{

last->link = newNode; //insert newNode after last
last = newNode; //make last point to the actual

//last node in the list
count++; //increment count

}
}//end insertLast

From the definitions of the functions insertFirst and insertLast, it follows that
each of these functions is of O(1).

DELETE A NODE

Next, we discuss the implementation of the member function deleteNode, which
deletes a node from the list with a given info. We need to consider the following cases:

• The list is empty.

• The node is nonempty and the node to be deleted is the first node.

• The node is nonempty and the node to be deleted is not the first node, it
is somewhere in the list.

• The node to be deleted is not in the list.

If list is empty, we can simply print a message indicating that the list is empty. If list is
not empty, we search the list for the node with the given info and, if such a node is
found, we delete this node. After deleting the node, count is decremented by 1. In
pseudocode, the algorithm is as follows:

if list is empty
Output(cannot delete from an empty list);

else
{

if the first node is the node with the given info
adjust the head pointer, that is, first, and deallocate
the memory;

else
{

search the list for the node with the given info
if such a node is found, delete it and adjust the
values of last (if necessary) and count.

}
}

Unordered Linked Lists | 295

Case 1: The list is empty. If the list is empty, output an error message as shown in the
pseudocode.

Case 2: The list is not empty and the node to be deleted is the first node. This case has
two scenarios: list has only one node, and list has more than one node. If list
has only one node, then after deletion, the list becomes empty. Therefore, after
deletion, both first and last are set to NULL and count is set to 0.

Suppose that the node to be deleted is the first node and list has more than one node.
Then after deleting this node, the second node becomes the first node. Therefore, after
deleting the node the value of the pointer first changes and it contains the address of
the second node.

Case 3: The node to be deleted is not the first node, but is somewhere in the list.

This case has two subcases: (a) the node to be deleted is not the last node, and (b) the
node to be deleted is the last node. Let us illustrate the first cases.

Case 3a: The node to be deleted is not the last node.

Consider the list shown in Figure 5-21.

Suppose that the node to be deleted is 37. After deleting this node, the resulting list
is as shown in Figure 5-22. (Notice that the deletion of 37 does not require us to
change the values of first and last. The link field of the previous node—that is,
17—changes. After deletion, the node with info 17 contains the address of the node
with 24.)

first

 last

list

28

5count

17 37 24 54

FIGURE 5-21 list before deleting 37

first

 last

list

28

4count

17 24 54

FIGURE 5-22 list after deleting 37

296 | Chapter 5: Linked Lists

5

Case 3b: The node to be deleted is the last node. In this case, after deleting the node, the
value of the pointer last changes. It contains the address of the node just
before the node to be deleted. For example, consider the list given in Figure 5-
21 and the node to be deleted is 54. After deleting 54, last contains the
address of the node with info 24. Also, count is decremented by 1.

Case 4: The node to be deleted is not in the list. In this case, the list requires no adjustment.We
simply output an error message, indicating that the item to be deleted is not in the list.

From cases 2, 3, and 4, it follows that the deletion of a node requires us to traverse the
list. Because a linked list is not a random access data structure, we must sequentially search
the list. We handle case 1 separately because it does not require us to traverse the list. We
sequentially search the list starting at the second node. If the node to be deleted is in
the middle of the list, we need to adjust the link field of the node just before the node to
be deleted. Thus, we need a pointer to the previous node. When we search the list for
the given info, we use two pointers: one to check the info of the current node, and one
to keep track of the node just before the current node. If the node to be deleted is the last
node, we must adjust the pointer last.

The definition of the function deleteNode is as follows:

template <class Type>
void unorderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1; the list is empty.
cout << "Cannot delete from an empty list."

<< endl;
else
{

if (first->info == deleteItem) //Case 2
{

current = first;
first = first->link;
count--;

if (first == NULL) //the list has only one node
last = NULL;

delete current;
}
else //search the list for the node with the given info
{

found = false;
trailCurrent = first; //set trailCurrent to point

//to the first node
current = first->link; //set current to point to

//the second node

Unordered Linked Lists | 297

while (current != NULL && !found)
{

if (current->info != deleteItem)
{

trailCurrent = current;
current = current-> link;

}
else

found = true;
}//end while

if (found) //Case 3; if found, delete the node
{

trailCurrent->link = current->link;
count--;

if (last == current) //node to be deleted was the
//last node

last = trailCurrent; //update the value of last
delete current; //delete the node from the list

}
else

cout << "The item to be deleted is not in "
<< "the list." << endl;

}//end else
}//end else

}//end deleteNode

From the definition of the function deleteNode, it can be shown that this function is ofO(n).

Table 5-7 gives the time-complexity of the operations of the class unorderedLinkedList.

Header File of the Unordered Linked List
For the sake of completeness, we show how to create the header file that defines the
class unorderedListType and the operations on such lists. (We assume that the
definition of the class linkedListType and the definitions of the functions to imple-
ment the operations are in the header file linkedList.h.)

TABLE 5-7 Time-complexity of the operations of the class unorderedLinkedList

Function Time-complexity

search O (n)

insertFirst O (1)

insertLast O (1)

deleteNode O (n)

298 | Chapter 5: Linked Lists

5

#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an unordered linked list. This class is
// derived from the class linkedListType.
//***

#include "linkedList.h"

using namespace std;

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to
// the last node, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem
// is deleted from the list. first points to the first
// node, last points to the last node of the updated list,
// and count is decremented by 1.

};

//Place the definitions of the functions search, insertNode,
//insertFirst, insertLast, and deleteNode here.
.
.
.
#endif

The Web site accompanying this book contains several programs illustrating how to use

the class unorderedLinkedList.

Unordered Linked Lists | 299

Ordered Linked Lists
The preceding section described the operations on an unordered linked list. This section
deals with ordered linked lists. As noted earlier, we derive the class orderedLinkedList

from the class linkedListType and provide the definitions of the abstract functions
insertFirst, insertLast, search, and deleteNode to take advantage of the fact that
the elements of an ordered linked list are arranged using some ordering criteria. For
simplicity, we assume that elements of an ordered linked list are arranged in ascending order.

Because the elements of an ordered linked list are in order, we include the function
insert to insert an element in an ordered list at the proper place.

The following class defines an ordered linked list as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an ordered linked list. This class is
// derived from the class linkedListType.
//***

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the list, and
// count is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to the
// last node in the list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is

300 | Chapter 5: Linked Lists

5

// deleted from the list; first points to the first node
// of the new list, and count is decremented by 1. If
// deleteItem is not in the list, an appropriate message
// is printed.

};

Figure 5-23 shows a UML class diagram of the class orderedLinkedList and the
inheritance hierarchy.

Next we give the definitions of the member functions of the class orderedLinkedList.

Search the List
First, we discuss the search operation. The algorithm to implement the search operation is
similar to the search algorithm for general lists discussed earlier. Here, because the list is
sorted, we can improve the search algorithm somewhat. As before, we start the search at
the first node in the list. We stop the search as soon as we find a node in the list with info

greater than or equal to the search item, or we have searched the entire list.

The following steps describe this algorithm:

1. Compare the search item with the current node in the list. If the info of
the current node is greater than or equal to the search item, stop the
search; otherwise, make the next node the current node.

2. Repeat Step 1 until either an item in the list that is greater than or equal
to the search item is found, or no more data is left in the list to compare
with the search item.

Note that the loop does not explicitly check whether the search item is equal to an item
in the list. Thus, after the loop executes, we must check whether the search item is equal
to the item in the list.

template <class Type>
bool orderedLinkedList<Type>::

search(const Type& searchItem) const

orderedLinkedList<Type>

+search(const Type&) const: bool
+insert(const Type&): void
+insertFirst(const Type&): void
+insertLast(const Type&): void
+deleteNode(const Type&): void

linkedListType

orderedLinkedList

FIGURE 5-23 UML class diagram of the class orderedLinkedList and the
inheritance hierarchy

Ordered Linked Lists | 301

{
bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first; //start the search at the first node

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->link;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search

As in the case of the search function of the class unorderedLinkedList, the search

function of the class orderedLinkedList is also of O(n).

Insert a Node
To insert an item in an ordered linked list, we first find the place where the new item is
supposed to go, then we insert the item in the list. To find the place for the new item in the
list, as before, we search the list. Here we use two pointers, current and trailCurrent, to
search the list. The pointer current points to the node whose info is being compared with
the item to be inserted, and trailCurrent points to the node just before current. Because
the list is in order, the search algorithm is the same as before. The following cases arise:

Case 1: The list is initially empty. The node containing the new item is the only node
and, thus, the first node in the list.

Case 2: The new item is smaller than the smallest item in the list. The new item goes at
the beginning of the list. In this case, we need to adjust the list’s head pointer—
that is, first. Also, count is incremented by 1.

Case 3: The item is to be inserted somewhere in the list.

Case 3a: The new item is larger than all the items in the list. In this case, the new
item is inserted at the end of the list. Thus, the value of current is NULL
and the new item is inserted after trailCurrent. Also, count is incre-
mented by 1.

Case 3b: The new item is to be inserted somewhere in the middle of the list. In this
case, the new item is inserted between trailCurrent and current.
Also, count is incremented by 1.

The following statements can accomplish both cases 3a and 3b. Assume newNode points
to the new node.

trailCurrent->link = newNode;
newNode->link = current;

302 | Chapter 5: Linked Lists

Let us next illustrate Case 3.

Case 3: The list is not empty, and the item to be inserted is larger than the first item in
the list. As indicated previously, this case has two scenarios.

Case 3a: The item to be inserted is larger than the largest item in the list; that is, it goes at
the end of the list. Consider the list shown in Figure 5-24.

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as
shown in Figure 5-25.

Case 3b: The item to be inserted goes somewhere in the middle of the list. Again
consider the list shown in Figure 5-24. Suppose that we want to insert 25
in this list. Clearly, 25 goes between 17 and 27, which would require the
link of the node with info 17 to be changed. After inserting 25, the
resulting list is as shown in Figure 5-26.

5

first

 last

list

4count

17 27 38 54

FIGURE 5-24 list before inserting 65

first

 last

list

17

5count

27 38 54 65

FIGURE 5-25 list after inserting 65

first

 last

list

17

5count

25 27 38 54

FIGURE 5-26 list after inserting 25 in the list in Figure 5-24

Ordered Linked Lists | 303

From case 3, it follows that we must first traverse the list to find the place where the new
item is to be inserted. It also follows that we should traverse the list with two pointers—
say, current and trailCurrent. The pointer current is used to traverse the list and
compare the info of the node in the list with the item to be inserted. The pointer
trailCurrent points to the node just before current. For example, in case 3b, when
the search stops, trailCurrent points to node 17 and current points to node 27. The
item is inserted after trailCurrent. In case 3a, after searching the list to find the place
for 65, trailCurrent points to node 54 and current is NULL.

The definition of the function insert is as follows:

template <class Type>
void orderedLinkedList<Type>::insert(const Type& newItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node

bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = newItem; //store newItem in the node
newNode->link = NULL; //set the link field of the node

//to NULL

if (first == NULL) //Case 1
{

first = newNode;
last = newNode;
count++;

}
else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= newItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == first) //Case 2
{

newNode->link = first;
first = newNode;
count++;

}

304 | Chapter 5: Linked Lists

else //Case 3
{

trailCurrent->link = newNode;
newNode->link = current;

if (current == NULL)
last = newNode;

count++;
}

}//end else
}//end insert

The function insert uses a while loop to find the place where the new item is to be
inserted and this loop is similar to the while loop used in the search function. It can be
shown that the function insert is of O(n).

The function insert does not check if the item to be inserted is already in the list, that

is, it does not check for duplicates. In Programming Exercise 7 at the end of this chapter

you are asked to revise the definition of the function insert so that before inserting the

item it checks whether the item to be inserted is already in the list. If the item to be

inserted is already in the list, the function outputs an appropriate error message. In other

words, duplicates are not allowed.

Insert First and Insert Last
The function insertFirst inserts the new item at the beginning of the list. However,
because the resulting list must be sorted, the new item must be inserted at the proper
place. Similarly, the function insertLast must insert the new item at the proper place.
We, therefore, use the function insert to insert the new item at its proper place. The
definitions of these functions are as follows:

template <class Type>
void orderedLinkedList<Type>::insertFirst(const Type& newItem)
{

insert(newItem);
}//end insertFirst

template <class Type>
void orderedLinkedList<Type>::insertLast(const Type& newItem)
{

insert(newItem);
}//end insertLast

Note that in reality, the functions insertFirst and insertLast do not apply to an ordered
linked list because the new itemmust be inserted at the proper place in the list. However, you
must provide its definition as these functions are declared as abstract in the parent class.

The functions insertFirst and insertLast use the function insert, which is of
O(n). It follows that these functions are of O(n).

5

Ordered Linked Lists | 305

Delete a Node
To delete a given item from an ordered linked list, first we search the list to see whether
the item to be deleted is in the list. The function to implement this operation is the same
as the delete operation on general linked lists. Here, because the list is sorted, we can
somewhat improve the algorithm for ordered linked lists.

As in the case of insertNode, we search the list with two pointers, current and
trailCurrent. Similar to the operation insertNode, several cases arise:

Case 1: The list is initially empty. We have an error. We cannot delete from an empty list.

Case 2: The item to be deleted is contained in the first node of the list. We must adjust
the head pointer of the list—that is, first.

Case 3: The item to be deleted is somewhere in the list. In this case, current points to
the node containing the item to be deleted, and trailCurrent points to the
node just before the node pointed to by current.

Case 4: The list is not empty, but the item to be deleted is not in the list.

After deleting a node, count is decremented by 1. The definition of the function
deleteNode is as follows:

template <class Type>
void orderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1
cout << "Cannot delete from an empty list." << endl;

else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == NULL) //Case 4
cout << "The item to be deleted is not in the list."

<< endl;
else

if (current->info == deleteItem) //the item to be
//deleted is in the list

306 | Chapter 5: Linked Lists

{
if (first == current) //Case 2
{

first = first->link;

if (first == NULL)
last = NULL;

delete current;
}
else //Case 3
{

trailCurrent->link = current->link;

if (current == last)
last = trailCurrent;

delete current;
}
count--;

}
else //Case 4

cout << "The item to be deleted is not in the "
<< "list." << endl;

}
}//end deleteNode

From the definition of the function deleteNode, it can be shown that this function is ofO(n).

Table 5-8 gives the time-complexity of the operations of the class orderedLinkedList.

Header File of the Ordered Linked List
For the sake of completeness, we show how to create the header file that defines the
class orderedListType and the operations on such lists. (We assume that the defini-

5

TABLE 5-8 Time-complexity of the operations of the class orderedLinkedList

Function Time-complexity

search O (n)

insert O (n)

insertFirst O (n)

insertLast O (n)

deleteNode O (n)

Ordered Linked Lists | 307

tion of the class linkedListType and the definitions of the functions to implement
the operations are in the header file linkedList.h.)

#ifndef H_orderedListType
#define H_orderedListType

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an ordered linked list. This class is
// derived from the class linkedListType.
//***

#include "linkedList.h"

using namespace std;

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list, and count
// is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list, last points to the
// last node in the list, and count is incremented by 1.
//

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the end of the list, last points to the
// last node in the list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list; first points to the first node of
// the new list, and count is decremented by 1. If
// deleteItem is not in the list, an appropriate message
// is printed.

};

308 | Chapter 5: Linked Lists

//Place the definitions of the functions search, insert,
//insertfirst, insertLast, and deleteNode here.
.
.
.
#endif

The following program tests various operations on an ordered linked list:

//**
// Author: D.S. Malik
//
// This program tests the various operations on an ordered
// linked list.
//**

#include <iostream> //Line 1
#include "orderedLinkedList.h" //Line 2

using namespace std; //Line 3

int main() //Line 4
{

orderedLinkedList<int> list1, list2; //Line 5
int num; //Line 6

cout << "Line 7: Enter numbers ending "
<< "with -999." << endl; //Line 7

cin >> num; //Line 8

while (num != -999) //Line 9
{ //Line 10

list1.insert(num); //Line 11
cin >> num; //Line 12

} //Line 13

cout << endl; //Line 14

cout << "Line 15: list1: "; //Line 15
list1.print(); //Line 16
cout << endl; //Line 17

list2 = list1; //test the assignment operator Line 18

cout << "Line 19: list2: "; //Line 19
list2.print(); //Line 20
cout << endl; //Line 21

cout << "Line 22: Enter the number to be "
<< "deleted: "; //Line 22

cin >> num; //Line 23
cout << endl; //Line 24

5

Ordered Linked Lists | 309

list2.deleteNode(num); //Line 25

cout << "Line 26: After deleting "
<< num << ", list2: " << endl; //Line 26

list2.print(); //Line 27
cout << endl; //Line 28

return 0; //Line 29
} //Line 30

Sample Run: In this sample run, the user input is shaded:

Line 7: Enter numbers ending with -999.
23 65 34 72 12 82 36 55 29 -999

Line 15: list1: 12 23 29 34 36 55 65 72 82
Line 19: list2: 12 23 29 34 36 55 65 72 82
Line 22: Enter the number to be deleted: 34

Line 26: After deleting 34, list2:
12 23 29 36 55 65 72 82

The preceding output is self-explanatory. The details are left as an exercise for you.

Notice that the function insert does not check whether the item to be inserted is

already in the list, that is, it does not check for duplicates. Programming Exercise 7 at

the end of this chapter asks you to revise the definition of the function insert so that

before inserting the item it checks whether it is already in the list. If the item to be

inserted is already in the list, the function outputs an appropriate error message. In

other words, duplicates are not allowed.

Doubly Linked Lists
A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node).
(See Figure 5-27.)

first

last

FIGURE 5-27 Doubly linked list

310 | Chapter 5: Linked Lists

A doubly linked list can be traversed in either direction. That is, we can traverse the list
starting at the first node or, if a pointer to the last node is given, we can traverse the list
starting at the last node.

As before, the typical operations on a doubly linked list are as follows: Initialize the list,
destroy the list, determine whether the list is empty, search the list for a given item, insert
an item, delete an item, and so on. The following class defines a doubly linked list as an
ADT and specifies the basic operations on a doubly linked list:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement the basic
// properties of an ordered doubly linked list.
//***

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *next;
nodeType<Type> *back;

};

template <class Type>
class doublyLinkedList
{
public:

const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);

//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.

5

Doubly Linked Lists | 311

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the first element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program terminates;
// otherwise, the last element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in the
// list, otherwise returns false.

void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first node, last points
// to the last node of the new list, and count is
// incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem is
// deleted from the list; first points to the first node of
// the new list, last points to the last node of the new
// list, and count is decremented by 1; otherwise an
// appropriate message is printed.

doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor

~doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.

protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node

312 | Chapter 5: Linked Lists

private:
void copyList(const doublyLinkedList<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and assigned
// to this list.

};

We leave the UML class diagram of the class doublyLinkedList as an exercise for
you, see Exercise 11 at the end of this chapter.

The functions to implement the operations of a doubly linked list are similar to the ones
discussed earlier. Here, because every node has two pointers, back and next, some of the
operations require the adjustment of two pointers in each node. For the insert and delete
operations, because we can traverse the list in either direction, we use only one pointer to
traverse the list. Let us call this pointer current. We can set the value of trailCurrent
by using both the current pointer and the back pointer of the node pointed to by
current. We give the definition of each function here, with four exceptions. Definitions
of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 10 at the end
of this chapter.) Furthermore, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor
The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{

first= NULL;
last = NULL;
count = 0;

}

isEmptyList
This operation returns true if the list is empty; otherwise, it returns false. The list is
empty if the pointer first is NULL.

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{

return (first == NULL);
}

Destroy the List
This operation deletes all the nodes in the list, leaving the list in an empty state. We traverse
the list starting at the first node and then delete each node. Furthermore, count is set to 0.

5

Doubly Linked Lists | 313

template <class Type>
void doublyLinkedList<Type>::destroy()
{

nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{

temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

}

Initialize the List
This operation reinitializes the doubly linked list to an empty state. This task can be done by
using the operation destroy. The definition of the function initializeList is as follows:

template <class Type>
void doublyLinkedList<Type>::initializeList()
{

destroy();
}

Length of the List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int doublyLinkedList<Type>::length() const
{

return count;
}

Print the List
The function print outputs the info contained in each node. We traverse the list
starting from the first node.

template <class Type>
void doublyLinkedList<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first node

while (current != NULL)

314 | Chapter 5: Linked Lists

{
cout << current->info << " "; //output info
current = current->next;

}//end while
}//end print

Reverse Print the List
This function outputs the info contained in each node in reverse order. We traverse the
list in reverse order starting from the last node. Its definition is as follows:

template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{

nodeType<Type> *current; //pointer to traverse the list

current = last; //set current to point to the last node

while (current != NULL)
{

cout << current->info << " ";
current = current->back;

}//end while
}//end reversePrint

Search the List
The function search returns true if searchItem is found in the list; otherwise, it returns
false. The search algorithm is exactly the same as the search algorithm for an ordered linked list.

template <class Type>
bool doublyLinkedList<Type>::search(const Type& searchItem) const
{

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first;

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->next;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search

5

Doubly Linked Lists | 315

First and Last Elements
The function front returns the first element of the list and the function back returns the
last element of the list. If the list is empty, both functions terminate the program. Their
definitions are as follows:

template <class Type>
Type doublyLinkedList<Type>::front() const
{

assert(first != NULL);

return first->info;
}

template <class Type>
Type doublyLinkedList<Type>::back() const
{

assert(last != NULL);

return last->info;
}

INSERT A NODE

Because we are inserting an item in a doubly linked list, the insertion of a node in the
list requires the adjustment of two pointers in certain nodes. As before, we find the
place where the new item is supposed to be inserted, create the node, store the new
item, and adjust the link fields of the new node and other particular nodes in the list.
There are four cases:

Case 1: Insertion in an empty list

Case 2: Insertion at the beginning of a nonempty list

Case 3: Insertion at the end of a nonempty list

Case 4: Insertion somewhere in a nonempty list

Both cases 1 and 2 require us to change the value of the pointer first. Cases 3 and 4 are
similar. After inserting an item, count is incremented by 1. Next, we show case 4.

Consider the doubly linked list shown in Figure 5-28.

8
first

15 24 40

last

count 4

FIGURE 5-28 Doubly linked list before inserting 20

316 | Chapter 5: Linked Lists

5

Suppose that 20 is to be inserted in the list. After inserting 20, the resulting list is as shown
in Figure 5-29.

From Figure 5-29, it follows that the next pointer of node 15, the back pointer of node 24,
and both the next and back pointers of node 20 need to be adjusted.

The definition of the function insert is as follows:

template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;

if (first == NULL) //if list is empty, newNode is the only node
{

first = newNode;
last = newNode;
count++;

}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= insertItem)

found = true;
else
{

trailCurrent = current;
current = current->next;

}

8first 15 24 40

20

last

count 5

FIGURE 5-29 Doubly linked list after inserting 20

Doubly Linked Lists | 317

if (current == first) //insert newNode before first
{

first->back = newNode;
newNode->next = first;
first = newNode;
count++;

}
else
{

//insert newNode between trailCurrent and current
if (current != NULL)
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;

}
else
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;

}

count++;
}//end else

}//end else
}//end insert

DELETE A NODE

This operation deletes a given item (if found) from the doubly linked list. As before, we
first search the list to see whether the item to be deleted is in the list. The search
algorithm is the same as before. Similar to the insert operation, this operation (if the
item to be deleted is in the list) requires the adjustment of two pointers in certain nodes.
The delete operation has several cases:

Case 1: The list is empty.

Case 2: The item to be deleted is in the first node of the list, which would require us to
change the value of the pointer first.

Case 3: The item to be deleted is somewhere in the list.

Case 4: The item to be deleted is not in the list.

318 | Chapter 5: Linked Lists

5

After deleting a node, count is decremented by 1. Let us demonstrate case 3. Consider
the list shown in Figure 5-30.

Suppose that the item to be deleted is 17. First, we search the list with two pointers and find the
node with info 17, and then adjust the link field of the affected nodes. (See Figure 5-31.)

Next, we delete the node pointed to by current. (See Figure 5-32.)

The definition of the function deleteNode is as follows:

template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current

5first 17 44 52

last

count 4

FIGURE 5-30 Doubly linked list before deleting 17

5first 17 44 52

current
trailCurrent

last

count 4

FIGURE 5-31 List after adjusting the links of the nodes before and after the node with info 17

5first 44 52

last

count 3

FIGURE 5-32 List after deleting the node with info 17

Doubly Linked Lists | 319

bool found;

if (first == NULL)
cout << "Cannot delete from an empty list." << endl;

else if (first->info == deleteItem) //node to be deleted is
//the first node

{
current = first;
first = first->next;

if (first != NULL)
first->back = NULL;

else
last = NULL;

count--;

delete current;
}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else

current = current->next;

if (current == NULL)
cout << "The item to be deleted is not in "

<< "the list." << endl;
else if (current->info == deleteItem) //check for equality
{

trailCurrent = current->back;
trailCurrent->next = current->next;

if (current->next != NULL)
current->next->back = trailCurrent;

if (current == last)
last = trailCurrent;

count--;
delete current;

}
else

cout << "The item to be deleted is not in list." endl;
}//end else

}//end deleteNode

320 | Chapter 5: Linked Lists

STL Sequence Container: list
Chapter 4 listed three types of sequence containers—vector, deque, and list. The
sequence containers vector and deque are described in Chapter 4. This section describes
the STL sequence container list. List containers are implemented as doubly linked lists.
Thus, every element in a list points to its immediate predecessor and to its immediate
successor (except the first and last elements). Recall that a linked list is not a random
access data structure such as an array. Therefore, to access, for example, the fifth element
in the list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is list. The
definition of the class list, and the definitions of the functions to implement the
various operations on a list, are contained in the header file list. Therefore, to use list

in a program, the program must include the following statement:

#include <list>

Like other container classes, the class list contains several constructors. Thus, a
list object can be initialized in several ways when it is declared, as described in
Table 5-9.

5

TABLE 5-9 Various ways to declare a list object

Statement Description

list<elemType> listCont;
Creates the empty list container
listCont. (The default constructor is
invoked.)

list<elemType> listCont(otherList);

Creates the list container listCont
and initializes it to the elements of
otherList. listCont and
otherList are of the same type.

list<elemType> listCont(size);
Creates the list container listCont
of size size. listCont is initialized
using the default constructor.

list<elemType> listCont(n, elem);
Creates the list container listCont
of size n. listCont is initialized using
n copies of the element elem.

list<elemType> listCont(beg, end);

Creates the list container listCont.
listCont is initialized to the elements in
the range [beg, end), that is, all the
elements in the range beg...end-1.
Both beg and end are iterators.

STL Sequence Container: list | 321

Table 4-5 describes the operations that are common to all containers, and Table 4-6
describes the operations that are common to all sequence containers. In addition to these
common operations, Table 5-10 describes the operations that are specific to a list
container. The name of the function implementing the operation is shown in bold.
(Suppose that listCont is a container of type list.)

TABLE 5-10 Operations specific to a list container

Expression Description

listCont.assign(n, elem) Assigns n copies of elem.

listCont.assign(beg, end)
Assigns all the elements in the range
beg...end-1. Both beg and end are
iterators.

listCont.push_front(elem) Inserts elem at the beginning of listCont.

listCont.pop_front() Removes the first element from listCont.

listCont.front()
Returns the first element. (Does not check
whether the container is empty.)

listCont.back()
Returns the last element. (Does not check
whether the container is empty.)

listCont.remove(elem)
Removes all the elements that are equal
to elem.

listCont.remove_if(oper)
Removes all the elements for which oper
is true.

listCont.unique()
If the consecutive elements in listCont
have the same value, removes the
duplicates.

listCont.unique(oper)
If the consecutive elements in listCont
have the same value, removes the
duplicates, for which oper is true.

listCont1.splice(pos, listCont2)

All the elements of listCont2 are
moved to listCont1 before the position
specified by the iterator pos. After this
operation, listCont2 is empty.

322 | Chapter 5: Linked Lists

5

Example 5-1 shows how to use various operations on a list container.

EXAMPLE 5-1

//**
// Author: D.S. Malik
//
// This program illustrates how to use a list container in a
// program.
//**

TABLE 5-10 Operations specific to a list container (continued)

Expression Description

listCont1.splice(pos, listCont2,
pos2)

All the elements starting at pos2 of
listCont2 are moved to listCont1
before the position specified by the
iterator pos.

listCont1.splice(pos, listCont2,
beg, end)

All the elements in the range beg...end-1
of listCont2 are moved to listCont1
before the position specified by the iterator
pos. Both beg and end are iterators.

listCont.sort()
The elements of listCont are sorted.
The sort criterion is <.

listCont.sort(oper)
The elements of listCont are sorted. The
sort criterion is specified by oper.

listCont1.merge(listCont2)

Suppose that the elements of listCont1
and listCont2 are sorted. This
operation moves all the elements of
listCont2 into listCont1. After this
operation, the elements in listCont1
are sorted. Moreover, after this operation,
listCont2 is empty.

listCont1.merge(listCont2, oper)

Suppose that the elements of listCont1
and listCont2 are sorted according to the
sort criteria oper. This operation moves all
the elements of listCont2 into
listCont1. After this operation, the
elements in listCont1 are sorted
according to the sort criteria oper.

listCont.reverse() The elements of listCont are reversed.

STL Sequence Container: list | 323

#include <iostream> //Line 1
#include <list> //Line 2
#include <iterator> //Line 3
#include <algorithm> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

list<int> intList1, intList2; //Line 8

ostream_iterator<int> screen(cout, " "); //Line 9

intList1.push_back(23); //Line 10
intList1.push_back(58); //Line 11
intList1.push_back(58); //Line 12
intList1.push_back(36); //Line 13
intList1.push_back(15); //Line 14
intList1.push_back(98); //Line 15
intList1.push_back(58); //Line 16

cout << "Line 17: intList1: "; //Line 17
copy(intList1.begin(), intList1.end(), screen); //Line 18
cout << endl; //Line 19

intList2 = intList1; //Line 20

cout << "Line 21: intList2: "; //Line 21
copy(intList2.begin(), intList2.end(), screen); //Line 22
cout << endl; //Line 23

intList1.unique(); //Line 24

cout << "Line 25: After removing the consecutive "
<< "duplicates," << endl
<< " intList1: "; //Line 25

copy(intList1.begin(), intList1.end(), screen); //Line 26
cout << endl; //Line 27

intList2.sort(); //Line 28

cout << "Line 29: After sorting, intList2: "; //Line 29
copy(intList2.begin(), intList2.end(), screen); //Line 30
cout << endl; //Line 31

return 0; //Line 32
} //Line 33

Sample Run:

Line 17: intList1: 23 58 58 36 15 98 58
Line 21: intList2: 23 58 58 36 15 98 58
Line 25: After removing the consecutive duplicates,

intList1: 23 58 36 15 98 58
Line 29: After sorting, intList2: 15 23 36 58 58 58 98

324 | Chapter 5: Linked Lists

For the most part, the output of the preceding program is straightforward. The statements
in Lines 10 through 16 insert the element numbers 23, 58, 58, 36, 15, 98, and 58 (in that
order) into intList1. The statement in Line 20 copies the elements of intList1 into
intList2. After this statement executes, intList1 and intList2 are identical. The
statement in Line 24 removes any consecutive occurrences of the same elements. For
example, the number 58 appears consecutively two times. The operation unique removes
two occurrences of 58. Note that this operation has no effect on the 58 that appears at the
end of intList1. The statement in Line 28 sorts intList2.

Linked Lists with Header and Trailer Nodes
When inserting and deleting items from a linked list (especially an ordered list), we saw that
there are special cases, such as inserting (or deleting) at the beginning (the first node) of the
list or in an empty list. These cases needed to be handled separately. As a result, the insertion
and deletion algorithms were not as simple and straightforward as wewould like. Oneway to
simplify these algorithms is to never insert an item before the first or last item and to never
delete the first node. Next we discuss how to accomplish this.

Suppose the nodes of a list are in order; that is, they are arranged with respect to a given key.
Suppose it is possible for us to determine what the smallest and largest keys are in the given data
set. In this case, we can set up a node, called the header, at the beginning of the list containing
a value smaller than the smallest value in the data set. Similarly, we can set up a node, called the
trailer, at the end of the list containing a value larger than the largest value in the data set.
These two nodes, header and trailer, serve merely to simplify the insertion and deletion
algorithms and are not part of the actual list. The actual list is between these two nodes.

For example, suppose the data are ordered according to the last name. Further, assume
that the last name is a string of at most 8 characters. The smallest last name is larger than
the string "A" and the largest last name is smaller than the string "zzzzzzzz". We can set
up the header node with the value "A" and the trailer node with the value "zzzzzzzz".
Figure 5-33 shows an empty and a nonempty linked list with header and trailer nodes.

5

A zzzzzzzzBell Grantfirst

A zzzzzzzzfirst

(a) Empty linked list with header and trailer nodes

(b) Nonempty linked list with header and trailer nodes

FIGURE 5-33 Linked list with header and trailer nodes

Linked Lists with Header and Trailer Nodes | 325

As before, the usual operations on lists with header and trailer nodes are as follows:
Initialize the list (to an empty state), destroy the list, print the list, find the length of the
list, search the list for a given item, insert an item in the list, delete an item from the list,
and copy the list.

We leave it as an exercise for you to design a class to implement a linked list with header
and trailer nodes. (See Programming Exercise 12 at the end of this chapter.)

Circular Linked Lists
A linked list in which the last node points to the first node is called a circular linked list.
Figure 5-34 shows various circular linked lists.

In a circular linked list with more than one node, as in Figure 5-34(c), it is convenient to
make the pointer first point to the last node of the list. Then by using first you can
access both the first and the last node of the list. For example, first points to the last node
and first->link points to the first node.

As before, the usual operations on a circular list are as follows: Initialize the list (to an
empty state), determine if the list is empty, destroy the list, print the list, find the length of
the list, search the list for a given item, insert an item in the list, delete an item from the
list, and copy the list.

We leave it as exercise for you to design a class to implement a sorted circular linked list.
(See Programming Exercise 13 at the end of this chapter.)

first
first

first

(a) Empty circular list (b) Circular linked list with one node

(c) Circular linked list with more than one node

FIGURE 5-34 Circular linked lists

326 | Chapter 5: Linked Lists

5

PROGRAMMING EXAMPLE: Video Store
During holidays or on weekends, a family or an individual typically rents a movie either
from a local store or online. Therefore, we write a program that does the following:

1. Rent a video; that is, check out a video.

2. Return, or check in, a video.

3. Create a list of videos owned by the store.

4. Show the details of a particular video.

5. Print a list of all the videos in the store.

6. Check whether a particular video is in the store.

7. Maintain a customer database.

8. Print a list of all the videos rented by each customer.

Let us write a program for the video store. This example further illustrates the object-
oriented design methodology and, in particular, inheritance and overloading.

The programming requirement tells us that the video store has two major compo-
nents: videos and customers. We will describe these two components in detail. We
also need to maintain various lists:

• A list of all the videos in the store

• A list of all the store’s customers

• Lists of the videos currently rented by each customer

We will develop the program in two parts. In part 1, we design, implement, and test
the video component. In part 2, we design and implement the customer component,
which is then added to the video component developed in part 1. That is, after
completing parts 1 and 2, we can perform all the operations listed previously.

PART 1: VIDEO

COMPONENT

Video

Object

This is the first stage, wherein we discuss the video component. The common
things associated with a video are as follows:

• Name of the movie

• Names of the stars

• Name of the producer

• Name of the director

• Name of the production company

• Number of copies in the store

Programming Example: Video Store | 327

From this list, we see that some of the operations to be performed on the video object
are as follows:

1. Set the video information—that is, the title, stars, production
company, and so on.

2. Show the details of a particular video.

3. Check the number of copies in the store.

4. Check out (that is, rent) the video. In other words, if the number of
copies is greater than zero, decrement the number of copies by one.

5. Check in (that is, return) the video. To check in a video, first we
must check whether the store owns such a video and, if it does,
increment the number of copies by one.

6. Check whether a particular video is available—that is, check whether
the number of copies currently in the store is greater than zero.

The deletion of a video from the video list requires that the video list be searched
for the video to be deleted. Thus, we need to check the title of a video to find
out which video is to be deleted from the list. For simplicity, we assume that two
videos are the same if they have the same title.

The following class defines the video object as an ADT:

//**
// Author: D.S. Malik
//
// class videoType
// This class specifies the members to implement a video.
//**

#include <iostream>
#include <string>

using namespace std;

class videoType
{

friend ostream& operator<< (ostream&, const videoType&);

public:
void setVideoInfo(string title, string star1,

string star2, string producer,
string director, string productionCo,
int setInStock);

//Function to set the details of a video.
//The private member variables are set according to the
//parameters.

328 | Chapter 5: Linked Lists

5

//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

int getNoOfCopiesInStock() const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut();
//Function to rent a video.
//Postcondition: The number of copies in stock is
// decremented by one.

void checkIn();
//Function to check in a video.
//Postcondition: The number of copies in stock is
// incremented by one.

void printTitle() const;
//Function to print the title of a movie.

void printInfo() const;
//Function to print the details of a video.
//Postcondition: The title of the movie, stars, director,
// and so on are displayed on the screen.

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the video.
//Postcondition: Returns the value true if the title is the
// same as the title of the video; false otherwise.

void updateInStock(int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock(int num);
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle() const;
//Function to return the title of the video.
//Postcondition: The title of the video is returned.

videoType(string title = "", string star1 = "",
string star2 = "", string producer = "",
string director = "", string productionCo = "",
int setInStock = 0);

Programming Example: Video Store | 329

//constructor
//The member variables are set according to the
//incoming parameters. If no values are specified, the
//default values are assigned.
//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

//Overload the relational operators.
bool operator==(const videoType&) const;
bool operator!=(const videoType&) const;

private:
string videoTitle; //variable to store the name of the movie
string movieStar1; //variable to store the name of the star
string movieStar2; //variable to store the name of the star
string movieProducer; //variable to store the name of the

//producer
string movieDirector; //variable to store the name of the

//director
string movieProductionCo; //variable to store the name

//of the production company
int copiesInStock; //variable to store the number of

//copies in stock
};

We leave the UML diagram of the class videoType as an exercise for you, see
Exercise 15 at the end of this chapter.

For easy output, we will overload the output stream insertion operator, <<, for
the class videoType.

Next, we write the definitions of each function in the class videoType. The definitions
of these functions, as shown here, are quite straightforward and easy to follow:

void videoType::setVideoInfo(string title, string star1,
string star2, string producer,
string director,
string productionCo,
int setInStock)

{
videoTitle = title;
movieStar1 = star1;
movieStar2 = star2;
movieProducer = producer;
movieDirector = director;
movieProductionCo = productionCo;
copiesInStock = setInStock;

}

330 | Chapter 5: Linked Lists

5

void videoType::checkOut()
{

if (getNoOfCopiesInStock() > 0)
copiesInStock--;

else
cout << "Currently out of stock" << endl;

}

void videoType::checkIn()
{

copiesInStock++;
}

int videoType::getNoOfCopiesInStock() const
{

return copiesInStock;
}

void videoType::printTitle() const
{

cout << "Video Title: " << videoTitle << endl;
}

void videoType::printInfo() const
{

cout << "Video Title: " << videoTitle << endl;
cout << "Stars: " << movieStar1 << " and "

<< movieStar2 << endl;
cout << "Producer: " << movieProducer << endl;
cout << "Director: " << movieDirector << endl;
cout << "Production Company: " << movieProductionCo << endl;
cout << "Copies in stock: " << copiesInStock << endl;

}

bool videoType::checkTitle(string title)
{

return (videoTitle == title);
}

void videoType::updateInStock(int num)
{

copiesInStock += num;
}

void videoType::setCopiesInStock(int num)
{

copiesInStock = num;
}

Programming Example: Video Store | 331

string videoType::getTitle() const
{

return videoTitle;
}

videoType::videoType(string title, string star1,
string star2, string producer,
string director,
string productionCo, int setInStock)

{
setVideoInfo(title, star1, star2, producer, director,

productionCo, setInStock);
}

bool videoType::operator==(const videoType& other) const
{

return (videoTitle == other.videoTitle);
}

bool videoType::operator!=(const videoType& other) const
{

return (videoTitle != other.videoTitle);
}

ostream& operator<< (ostream& osObject, const videoType& video)
{

osObject << endl;
osObject << "Video Title: " << video.videoTitle << endl;
osObject << "Stars: " << video.movieStar1 << " and "

<< video.movieStar2 << endl;
osObject << "Producer: " << video.movieProducer << endl;
osObject << "Director: " << video.movieDirector << endl;
osObject << "Production Company: "

<< video.movieProductionCo << endl;
osObject << "Copies in stock: " << video.copiesInStock

<< endl;
osObject << "_____________________________________" << endl;

return osObject;
}

Video List This program requires us to maintain a list of all the videos in the store, and we should
be able to add a new video to our list. In general, we would not know how many
videos are in the store, and adding or deleting a video from the store would change the
number of videos in the store. Therefore, we will use a linked list to create a list of videos.

Earlier in this chapter, we defined the class unorderedLinkedList to create a
linked list of objects. We also defined the basic operations such as insertion and deletion

332 | Chapter 5: Linked Lists

5

of a video in the list. However, some operations are very specific to the video list,
such as check out a video, check in a video, set the number of copies of a video, and so
on. These operations are not available in the class unorderedLinkedList. We,
therefore, derive a class videoListType from the class unorderedLinkedList

and add these operations.

The definition of the class videoListType is as follows:

//***
// Author: D.S. Malik
//
// class videoListType
// This class specifies the members to implement a list of videos.
//***

#include <string>
#include "unorderedLinkedList.h"
#include "videoType.h"

using namespace std;

class videoListType:public unorderedLinkedList<videoType>
{
public:

bool videoSearch(string title) const;
//Function to search the list to see whether a
//particular title, specified by the parameter title,
//is in the store.
//Postcondition: Returns true if the title is found, and
// false otherwise.

bool isVideoAvailable(string title) const;
//Function to determine whether a copy of a particular
//video is in the store.
//Postcondition: Returns true if at least one copy of the
// video specified by title is in the store, and false
// otherwise.

void videoCheckOut(string title);
//Function to check out a video, that is, rent a video.
//Postcondition: copiesInStock is decremented by one.

void videoCheckIn(string title);
//Function to check in a video returned by a customer.
//Postcondition: copiesInStock is incremented by one.

bool videoCheckTitle(string title) const;
//Function to determine whether a particular video is in
//the store.
//Postcondition: Returns true if the video’s title is the
// same as title, and false otherwise.

Programming Example: Video Store | 333

void videoUpdateInStock(string title, int num);
//Function to update the number of copies of a video
//by adding the value of the parameter num. The
//parameter title specifies the name of the video for
//which the number of copies is to be updated.
//Postcondition: copiesInStock = copiesInStock + num;

void videoSetCopiesInStock(string title, int num);
//Function to reset the number of copies of a video.
//The parameter title specifies the name of the video
//for which the number of copies is to be reset, and the
//parameter num specifies the number of copies.
//Postcondition: copiesInStock = num;

void videoPrintTitle() const;
//Function to print the titles of all the videos in the store.

private:
void searchVideoList(string title, bool& found,

nodeType<videoType>* ¤t) const;
//This function searches the video list for a particular
//video, specified by the parameter title.
//Postcondition: If the video is found, the parameter found is
// set to true, otherwise it is set to false. The parameter
// current points to the node containing the video.

};

Note that the class videoListType is derived from the class unorderedLinkedList

via a public inheritance. Furthermore, unorderedLinkedList is a class template and
we have passed the class videoType as a parameter to this class. That is, the class

videoListType is not a template. Because we are now dealing with a very specific data
type, the class videoListType is no longer needed to be a template. Thus, the info
type of each node in the linked list is now videoType. Through the member functions
of the class videoType, certain members—such as videoTitle and copiesInStock

of an object of type videoType—can now be accessed.

The definitions of the functions to implement the operations of the class
videoListType are given next.

The primary operations on the video list are to check in a video and to check out a
video. Both operations require the list to be searched and the location of the video
being checked in or checked out to be found in the video list. Other operations
such as seeing whether a particular video is in the store, updating the number of
copies of a video, and so on also require the video list to be searched. To simplify
the search process, we will write a function that searches the video list for a
particular video. If the video is found, it sets a parameter found to true and returns
a pointer to the video so that check-in, check-out, and other operations on the
video object can be performed. Note that the function searchVideoList is a

334 | Chapter 5: Linked Lists

5

private data member of the class videoListType because it is used only for
internal manipulation. First, we describe the search procedure.

The following function definition performs the desired search:

void videoListType::searchVideoList(string title, bool& found,
nodeType<videoType>* ¤t) const

{
found = false; //set found to false

current = first; //set current to point to the first node

while (current != NULL && !found) //search the list
if (current->info.checkTitle(title)) //the item is found

found = true;
else

current = current->link; //advance current to
//the next node

}//end searchVideoList

If the search is successful, the parameter found is set to true and the parameter
current points to the node containing the video info. If it is unsuccessful, found
is set to false and current will be NULL.

The definitions of the other functions of the class videoListType follow:

bool videoListType::isVideoAvailable(string title) const
{

bool found;
nodeType<videoType> *location;

searchVideoList(title, found, location);

if (found)
found = (location->info.getNoOfCopiesInStock() > 0);

else
found = false;

return found;
}

void videoListType::videoCheckIn(string title)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.checkIn();

Programming Example: Video Store | 335

else
cout << "The store does not carry " << title

<< endl;
}

void videoListType::videoCheckOut(string title)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.checkOut();

else
cout << "The store does not carry " << title

<< endl;
}

bool videoListType::videoCheckTitle(string title) const
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

return found;
}

void videoListType::videoUpdateInStock(string title, int num)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.updateInStock(num);

else
cout << "The store does not carry " << title

<< endl;
}

void videoListType::videoSetCopiesInStock(string title, int num)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location);

if (found)
location->info.setCopiesInStock(num);

336 | Chapter 5: Linked Lists

5

else
cout << "The store does not carry " << title

<< endl;
}

bool videoListType::videoSearch(string title) const
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location);

return found;
}

void videoListType::videoPrintTitle() const
{

nodeType<videoType>* current;

current = first;
while (current != NULL)
{

current->info.printTitle();
current = current->link;

}
}

PART 2:

CUSTOMER

COMPONENT

Customer

Object

The customer object stores information about a customer, such as the first name,
last name, account number, and a list of videos rented by the customer.

Every customer is a person.We have already designed the class personType in Example
1-12 (Chapter 1) and described the necessary operations on the name of a person.
Therefore, we can derive the class customerType from the class personType and
add the additional members that we need. First, however, we must redefine the class

personType to take advantage of the new features of object-oriented design that you have
learned, such as operator overloading, and then derive the class customerType.

The basic operations on an object of type customerType are as follows:

1. Print the name, the account number, and the list of rented videos.

2. Set the name and the account number.

3. Rent a video; that is, add the rented video to the list.

4. Return a video; that is, delete the rented video from the list.

5. Show the account number.

Programming Example: Video Store | 337

The details of implementing the customer component are left as an exercise for
you. (See Programming Exercise 14 at the end of this chapter.)

MAIN

PROGRAM

We will now write the main program to test the video object. We assume that the
necessary data for the videos are stored in a file. We will open the file and create the
list of videos owned by the video store. The data in the input file is in the following
form:

video title (that is, the name of the movie)
movie star1
movie star2
movie producer
movie director
movie production co.
number of copies
.
.
.

We will write a function, createVideoList, to read the data from the input file and
create the list of videos. We will also write a function, displayMenu, to show the
different choices—such as check in a movie or check out a movie—that the user can
make. The algorithm of the function main is as follows:

1. Open the input file.

If the input file does not exist, exit the program.

2. Create the list of videos (createVideoList).

3. Show the menu (displayMenu).

4. While not done

Perform various operations.

Opening the input file is straightforward. Let us describe Steps 2 and 3, which are
accomplished by writing two separate functions: createVideoList and displayMenu.

createVideoList This function reads the data from the input file and creates a linked list of videos.
Because the data will be read from a file and the input file was opened in the function
main, we pass the input file pointer to this function. We also pass the video list
pointer, declared in the function main, to this function. Both parameters are
reference parameters. Next, we read the data for each video and then insert the
video in the list. The general algorithm is as follows:

1. Read the data and store it in a video object.

2. Insert the video in the list.

3. Repeat Steps a and b for each video’s data in the file.

338 | Chapter 5: Linked Lists

5

displayMenu This function informs the user what to do. It contains the following output state-
ments:

Select one of the following:

1: To check whether the store carries a particular video

2: To check out a video

3: To check in a video

4: To check whether a particular video is in stock

5: To print only the titles of all the videos

6: To print a list of all the videos

9: To exit

PROGRAM LISTING

//**
// Author: D.S. Malik
//
// This program illustrates how to use the classes videoType and
// videListType to create and process a list of videos.
//**

#include <iostream>
#include <fstream>
#include <string>
#include "videoType.h"
#include "videoListType.h"

using namespace std;

void createVideoList(ifstream& infile,
videoListType& videoList);

void displayMenu();

int main()
{

videoListType videoList;
int choice;
char ch;
string title;

ifstream infile;

//open the input file
infile.open("videoDat.txt");
if (!infile)

Programming Example: Video Store | 339

{
cout << "The input file does not exist. "

<< "The program terminates!!!" << endl;
return 1;

}

//create the video list
createVideoList(infile, videoList);
infile.close();

//show the menu
displayMenu();
cout << "Enter your choice: ";
cin >> choice; //get the request
cin.get(ch);
cout << endl;

//process the requests
while (choice != 9)
{

switch (choice)
{
case 1:

cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
cout << "The store carries " << title

<< endl;
else

cout << "The store does not carry "
<< title << endl;

break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
{

videoList.videoCheckOut(title);
cout << "Enjoy your movie: "

<< title << endl;
}
else

cout << "Currently " << title
<< " is out of stock." << endl;

}

340 | Chapter 5: Linked Lists

5

else
cout << "The store does not carry "

<< title << endl;
break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

videoList.videoCheckIn(title);
cout << "Thanks for returning "

<< title << endl;
}
else

cout << "The store does not carry "
<< title << endl;

break;

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
cout << title << " is currently in "

<< "stock." << endl;
else

cout << title << " is currently out "
<< "of stock." << endl;

}
else

cout << "The store does not carry "
<< title << endl;

break;

case 5:
videoList.videoPrintTitle();
break;

case 6:
videoList.print();
break;

default:
cout << "Invalid selection." << endl;

}//end switch

Programming Example: Video Store | 341

displayMenu(); //display menu

cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get(ch);
cout << endl;

}//end while

return 0;
}

void createVideoList(ifstream& infile,
videoListType& videoList)

{
string title;
string star1;
string star2;
string producer;
string director;
string productionCo;
char ch;
int inStock;

videoType newVideo;

getline(infile, title);

while (infile)
{

getline(infile, star1);
getline(infile, star2);
getline(infile, producer);
getline(infile, director);
getline(infile, productionCo);
infile >> inStock;
infile.get(ch);
newVideo.setVideoInfo(title, star1, star2, producer,

director, productionCo, inStock);
videoList.insertFirst(newVideo);

getline(infile, title);
}//end while

}//end createVideoList

void displayMenu()
{

cout << "Select one of the following:" << endl;
cout << "1: To check whether the store carries a "

<< "particular video." << endl;
cout << "2: To check out a video." << endl;
cout << "3: To check in a video." << endl;

342 | Chapter 5: Linked Lists

QUICK REVIEW

1. A linked list is a list of items, called nodes, in which the order of the nodes
is determined by the address, called a link, stored in each node.

2. The pointer to a linked list—that is, the pointer to the first node in the
list—is stored in a separate location, called the head or first.

3. A linked list is a dynamic data structure.

4. The length of a linked list is the number of nodes in the list.

5. Item insertion and deletion from a linked list does not require data move-
ment; only the pointers are adjusted.

6. A (single) linked list is traversed in only one direction.

7. The search on a linked list is sequential.

8. The first (or head) pointer of a linked list is always fixed, pointing to the
first node in the list.

9. To traverse a linked list, the program must use a pointer different than the
head pointer of the list, initialized to the first node in the list.

10. In a doubly linked list, every node has two links: one points to the next
node, and one points to the previous node.

11. A doubly linked list can be traversed in either direction.

12. In a doubly linked list, item insertion and deletion requires the adjustment
of two pointers in a node.

13. The name of the class containing the definition of the class list is list.

14. In addition to the operations that are common to sequence containers (see
Chapter 4), the other operations that can be used to manipulate the
elements in a list container are assign, push_front, pop_front,
front, back, remove, remove_if, unique, splice, sort, merge, and
reverse.

15. A linked list with header and trailer nodes simplifies the insertion and
deletion operations.

16. The header and trailer nodes are not part of the actual list. The actual list
elements are between the header and trailer nodes.

5

cout << "4: To check whether a particular video is "
<< "in stock." << endl;

cout << "5: To print only the titles of all the videos."
<< endl;

cout << "6: To print a list of all the videos." << endl;
cout << "9: To exit" << endl;

} //end createVideoList

Quick Review | 343

17. A linked list with header and trailer nodes is empty if the only nodes in the
list are the header and the trailer.

18. A circular linked list is a list in which, if the list is nonempty, the last node
points to the first node.

EXERCISES

1. Mark the following statements as true or false.

a. In a linked list, the order of the elements is determined by the order in
which the nodes were created to store the elements.

b. In a linked list, memory allocated for the nodes is sequential.

c. A single linked list can be traversed in either direction.

d. In a linked list, nodes are always inserted either at the beginning or the
end because a linked link is not a random access data structure.

e. The head pointer of a linked list cannot be used to traverse the list.

Consider the linked list shown in Figure 5-35. Assume that the nodes are in
the usual info-link form. Use this list to answer Exercises 2 through 7. If
necessary, declare additional variables. (Assume that list, p, s, A, and B are
pointers of type nodeType.)

2. What is the output of each of the following C++ statements?

a. cout << list->info;

b. cout << A->info;

c. cout << B->link->info;

d. cout << list->link->link->info

3. What is the value of each of the following relational expressions?

a. list->info >= 18

b. list->link == A

c. A->link->info == 16

d. B->link == NULL

e. list->info == 18

18 32 23 16 43 87 25 44

BA

list

FIGURE 5-35 Linked list for Exercises 2–7

344 | Chapter 5: Linked Lists

4. Mark each of the following statements as valid or invalid. If a statement is
invalid, explain why.

a. A = B;

b. list->link = A->link;

c. list->link->info = 45;

d. *list = B;

e. *A = *B;

f. B = A->link->info;

g. A->info = B->info;

h. list = B->link->link;

i. B = B->link->link->link;

5. Write C++ statements to do the following:

a. Make A point to the node containing info 23.

b. Make list point to the node containing 16.

c. Make B point to the last node in the list.

d. Make list point to an empty list.

e. Set the value of the node containing 25 to 35.

f. Create and insert the node with info 10 after the node pointed to by A.

g. Delete the node with info 23. Also, deallocate the memory occupied
by this node.

6. What is the output of the following C++ code?

p = list;

while (p != NULL)
cout << p->info << " ";
p = p->link;

cout << endl;

7. If the following C++ code is valid, show the output. If it is invalid, explain
why.

a. s = A;
p = B;
s->info = B;
p = p->link;
cout << s->info << " " << p->info << endl;

b. p = A;
p = p->link;
s = p;
p->link = NULL;
s = s->link;
cout << p->info << " " << s->info << endl;

5

Exercises | 345

8. Show what is produced by the following C++ code. Assume the node is in
the usual info-link form with the info of type int. (list and ptr are
pointers of type nodeType.)

a. list = new nodeType;
list->info = 10;
ptr = new nodeType;
ptr->info = 13;
ptr->link = NULL;
list->link = ptr;
ptr = new nodeType;
ptr->info = 18;
ptr->link = list->link;
list->link = ptr;
cout << list->info << " " << ptr->info << " ";
ptr = ptr->link;
cout << ptr->info << endl;

b. list = new nodeType;
list->info = 20;
ptr = new nodeType;
ptr->info = 28;
ptr->link = NULL;
list->link = ptr;
ptr = new nodeType;
ptr->info = 30;
ptr->link = list;
list = ptr;
ptr = new nodeType;
ptr->info = 42;
ptr->link = list->link;
list->link = ptr;
ptr = List;
while (ptr != NULL)
{

cout << ptr->info << endl;
ptr = ptr->link;

}

9. Consider the following C++ statements. (The class unorderedLinkedList
is as defined in this chapter.)

unorderedLinkedList<int> list;

list.insertFirst(15);
list.insertLast(28);
list.insertFirst(30);
list.insertFirst(2);
list.insertLast(45);
list.insertFirst(38);
list.insertLast(25);
list.deleteNode(30);
list.insertFirst(18);
list.deleteNode(28);

346 | Chapter 5: Linked Lists

list.deleteNode(12);
list.print();

What is the output of this program segment?

10. Suppose the input is:

18 30 4 32 45 36 78 19 48 75 -999

What is the output of the following C++ code? (The class unorderedLinkedList
is as defined in this chapter.)

unorderedLinkedList<int> list;
unorderedLinkedList<int> copyList;
int num;

cin >> num;
while (num != -999)
{

if (num % 5 == 0 || num % 5 == 3)
list.insertFirst(num);

else
list.insertLast(num);

cin >> num;
}

list.print();
cout << endl;

copyList = list;

copyList.deleteNode(78);
copyList.deleteNode(35);

cout << "Copy List = ";
copyList.print();
cout << endl;

11. Draw the UML diagram of the class doublyLinkedList as discussed in
this chapter.

12. Suppose that intList is a list container and

intList = {3, 23, 23, 43, 56, 11, 11, 23, 25}

Show intList after the following statement executes: intList.unique();

13. Suppose that intList1 and intList2 are list containers and

intList1 = {3, 58, 78, 85, 6, 15, 93, 98, 25}
intList2 = {5, 24, 16, 11, 60, 9}

Show intList1 after the following statement executes:

intList1.splice(intList1.begin(), intList2);

5

Exercises | 347

14. What is the output of the following program segment?

list<int> intList;
ostream_iterator<int> screen(cout, " ");
list<int>::iterator listIt;

intList.push_back(5);
intList.push_front(23);
intList.push_front(45);
intList.pop_back();
intList.push_back(35);

intList.push_front(0);
intList.push_back(50);
intList.push_front(34);

copy(intList.begin(), intList.end(), screen);
cout << endl;

listIt = intList.begin();
intList.insert(listIt,76);

++listIt;
++listIt;
intList.insert(listIt,38);

intList.pop_back();

++listIt;
++listIt;

intList.erase(listIt);
intList.push_front(2 * intList.back());
intList.push_back(3 * intList.front());

copy(intList.begin(), intList.end(), screen);
cout << endl;

15. Draw the UML diagram of the class videoType of the Programming
Example Video Store.

16. Draw the UML diagram of the class videoListType of the Program-
ming Example Video Store.

PROGRAMMING EXERCISES

1. (Online Address BookRevisited) Programming Exercise 9 in Chapter 3 could
handle a maximum of only 500 entries. Using linked lists, redo the program to
handle as many entries as required. Add the following operations to your program:

a. Add or delete a new entry to the address book.

b. When the program terminates, write the data in the address book to a disk.

348 | Chapter 5: Linked Lists

2. Extend the class linkedListType by adding the following operations:

a. Find and delete the node with the smallest info in the list. (Delete only
the first occurrence and traverse the list only once.)

b. Find and delete all occurrences of a given info from the list. (Traverse
the list only once.) Add these as abstract functions in the class

linkedListType and provide the definitions of these functions in the
class unorderedLinkedList. Also write a program to test these
functions.

3. Extend the class linkedListType by adding the following operations:

a. Write a function that returns the info of the kth element of the linked
list. If no such element exists, terminate the program.

b. Write a function that deletes the kth element of the linked list. If no
such element exists, output an appropriate message. Provide the defi-
nitions of these functions in the class linkedListType. Also write
a program to test these functions. (Use either the class

unorderedLinkedList or the class orderedLinkedList to test
your function.)

4. (Dividing a linked list into two sublists of almost equal sizes)

a. Add the operation divideMid to the class linkedListType as fol-
lows:

void divideMid(linkedListType<Type> &sublist);
//This operation divides the given list into two sublists
//of (almost) equal sizes.
//Postcondition: first points to the first node and last
// points to the last node of the first sublist.
// sublist.first points to the first node and sublist.last
// points to the last node of the second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> subList;

Suppose myList points to the list with elements 34 65 27 89 12 (in this
order). The statement:

myList.divideMid(subList);

divides myList into two sublists: myList points to the list with the
elements 34 65 27, and subList points to the sublist with the elements
89 12.

b. Write the definition of the function template to implement the opera-
tion divideMid. Also write a program to test your function.

5

Programming Exercises | 349

5. (Splitting a linked list, at a given node, into two sublists)

a. Add the following operation to the class linkedListType:

void divideAt(linkedListType<Type> &secondList,
const Type& item);

//Divide the list at the node with the info item into two
//sublists.
//Postcondition: first and last point to the first and last
// nodes of the first sublist.
// secondList.first and secondList.last point to the
// first and last nodes of the second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> otherList;

Suppose myList points to the list with the elements:

34 65 18 39 27 89 12

(in this order). The statement:

myList.divideAt(otherList, 18);

divides myList into two sublists: myList points to the list with the
elements 34 65, and otherList points to the sublist with the elements
18 39 27 89 12.

b. Write the definition of the function template to implement the opera-
tion divideAt. Also write a program to test your function.

6. a. Add the following operation to the class orderedLinkedList:

void mergeLists(orderedLinkedList<Type> &list1,
orderedLinkedList<Type> &list2);

//This function creates a new list by merging the
//elements of list1 and list2.
//Postcondition: first points to the merged list; list1
// and list2 are empty

Example: Consider the following statements:

orderedLinkedList<int> newList;
orderedLinkedList<int> list1;
orderedLinkedList<int> list2;

Suppose list1 points to the list with the elements 2 6 7 and list2
points to the list with the elements 3 5 8. The statement:

newList.mergeLists(list1, list2);

350 | Chapter 5: Linked Lists

creates a new linked list with the elements in the order 2 3 5 6 7 8 and
the object newList points to this list. Also, after the preceding statement
executes, list1 and list2 are empty.

b. Write the definition of the function template mergeLists to implement
the operation mergeLists. Also write a program to test your function.

7. The function insert of the class orderedLinkedList does not check if
the item to be inserted is already in the list; that is, it does not check for
duplicates. Rewrite the definition of the function insert so that before
inserting the item it checks whether the item to be inserted is already in the
list. If the item to be inserted is already in the list, the function outputs an
appropriate error message. Also write a program to test your function.

8. In this chapter, the class to implement the nodes of a linked list is defined as a
struct. The following rewrites the definition of the struct nodeType so
that it is declared as a class and the member variables are private.

template <class Type>
class nodeType
{
public:

const nodeType<Type>& operator=(const nodeType<Type>&);
//Overload the assignment operator.

void setInfo(const Type& elem);
//Function to set the info of the node.
//Postcondition: info = elem;

Type getInfo() const;
//Function to return the info of the node.
//Postcondition: The value of info is returned.

void setLink(nodeType<Type> *ptr);
//Function to set the link of the node.
//Postcondition: link = ptr;

nodeType<Type>* getLink() const;
//Function to return the link of the node.
//Postcondition: The value of link is returned.

nodeType();
//Default constructor
//Postcondition: link = NULL;

nodeType(const Type& elem, nodeType<Type> *ptr);
//Constructor with parameters
//Sets info point to the object elem points to and
//link is set to point to the object ptr points to.
//Postcondition: info = elem; link = ptr

5

Programming Exercises | 351

nodeType(const nodeType<Type> &otherNode);
//Copy constructor

~nodeType();
//Destructor

private:
Type info;
nodeType<Type> *link;

};

Write the definitions of the member functions of the class nodeType.
Also write a program to test your class.

9. Programming Exercise 8 asks you to redefine the class to implement the nodes
of a linked list so that the instance variables are private. Therefore, the
class linkedListType and its derived classes unorderedLinkedList

and orderedLinkedList can no longer directly access the instance variables
of the class nodeType. Rewrite the definitions of these classes so that these
classes use the member functions of the class nodeType to access the info
and link fields of a node. Also write programs to test various operations of the
classes unorderedLinkedList and orderedLinkedList.

10. Write the definitions of the function copyList, the copy constructor, and the
function to overload the assignment operator for theclassdoublyLinkedList.

11. Write a program to test various operations of the class doublyLinkedList.

12. (Linked List with Header and Trailer Nodes) This chapter defined and
identified various operations on a linked list with header and trailer nodes.

a. Write the definition of the class that defines a linked list with header
and trailer nodes as an ADT.

b. Write the definitions of the member functions of the class defined in (a).
(You may assume that the elements of the linked list with header and
trailer nodes are in ascending order.)

c. Write a program to test various operations of the class defined in (a).

13. (Circular Linked Lists) This chapter defined and identified various opera-
tions on a circular linked list.

a. Write the definitions of the class circularLinkedList and its
member functions. (You may assume that the elements of the circular
linked list are in ascending order.)

b. Write a program to test various operations of the class defined in (a).

14. (Programming Example Video Store)

a. Complete the design and implementation of the class customerType
defined in the Programming Example Video Store.

b. Design and implement the class customerListType to create and
maintain a list of customers for the video store.

352 | Chapter 5: Linked Lists

15. (Programming Example Video Store) Complete the design and imple-
mentation of the video store program. In other words, write a program that
uses the classes designed in the Programming Example Video Store and in
Programming Exercise 14 to make a video store operational.

16. Redo the video store program so that the list of videos, the list of customers,
and the list of videos rented by a customer are kept in a list container.

17. Extend the class linkedListType by adding the following function:

void rotate();
//Function to remove the first node of a linked list and put it
//at the end of the linked list.

18. Write a program that prompts the user to input a string and then outputs
the string in the pig Latin form. The rules for converting a string into pig
Latin form are as follows:

a. If the string begins with a vowel, add the string "-way" at the end of the
string. For example, the pig Latin form of the string "eye" is "eye-way".

b. If the string does not begin with a vowel, first add "-" at the end of the
string. Then rotate the string one character at a time; that is, move the
first character of the string to the end of the string until the first
character of the string becomes a vowel. Then add the string "ay" at
the end. For example, the pig Latin form of the string "There" is
"ere-Thay".

c. Strings such as "by" contain no vowels. In cases like this, the letter y
can be considered a vowel. So, for this program the vowels are a, e, i,
o, u, y, A, E, I, O, U, and Y. Therefore, the pig Latin form of "by" is
"y-bay".

d. Strings such as "1234" contain no vowels. The pig Latin form of the
string "1234" is "1234-way". That is, the pig Latin form of a string
that has no vowels in it is the string followed by the string "-way".

Your program must store the characters of a string into a linked list and
use the function rotate, as described in Programming Exercise 17, to
rotate the string.

5

Programming Exercises | 353

This page intentionally left blank

RECURSION
IN THIS CHAPTER , YOU WILL :

. Learn about recursive definitions

. Explore the base case and the general case of a recursive definition

. Learn about recursive algorithm

. Learn about recursive functions

. Explore how to use recursive functions to implement recursive algorithms

6C H A P T E R

In previous chapters, to devise solutions to problems we used the most common
technique, called iteration. For certain problems, however, using the iterative technique
to obtain the solution is quite complicated. This chapter introduces another problem-
solving technique, called recursion, and provides several examples demonstrating how
recursion works.

Recursive Definitions
The process of solving a problem by reducing it to smaller versions of itself is called
recursion. Recursion is a very powerful way to solve certain problems for which the
solution would otherwise be very complicated. Let us consider a problem that is familiar
to most everyone.

In an algebra course, you probably learned how to find the factorial of a nonnegative
integer. For example, the factorial of 5, written 5!, is 5 � 4 � 3 � 2 � 1 = 120.
Similarly, 4! ¼ 4 � 3 � 2 � 1 = 24. Also, factorial of 0 is defined to be 0! ¼ 1. Note
that 5! ¼ 5 � 4 � 3 � 2 � 1 = 5 � (4 � 3 � 2 � 1) = 5� 4!. In general, if n is a
nonnegative, the factorial of n, written as n! can be defined as follows:

0! ¼ 1 ðEquation 6-1Þ
n! ¼ n� ðn� 1Þ! if n > 0 ðEquation 6-2Þ

In this definition, 0! is defined to be 1, and if n is an integer greater than 0, first we
find (n � 1)! and then multiply it by n. To find (n � 1)!, we apply the definition
again. If (n � 1) > 0, then we use Equation 6-2; otherwise, we use Equation 6-1.
Thus, for an integer n greater than 0, n! is obtained by first finding (n � 1)! and then
multiplying (n � 1)! by n.

Let us apply this definition to find 3!. Here n ¼ 3. Because n > 0, we use Equation 6-2 to
obtain:

3! ¼ 3� 2!

Next, we find 2! Here n ¼ 2. Because n > 0, we use Equation 6-2 to obtain:

2! ¼ 2� 1!

Now to find 1!, we again use Equation 6-2 because n ¼ 1 > 0. Thus:

1! ¼ 1� 0!

Finally, we use Equation 6-1 to find 0!, which is 1. Substituting 0! into 1! gives 1! ¼ 1.
This gives 2! ¼ 2 � 1! ¼ 2 � 1 ¼ 2, which in turn gives 3! ¼ 3 � 2! ¼ 3 � 2 ¼ 6.

356 | Chapter 6: Recursion

The solution in Equation 6-1 is direct—that is, the right side of the equation contains no
factorial notation. The solution in Equation 6-2 is given in terms of a smaller version of
itself. The definition of the factorial given in Equations 6-1 and 6-2 is called a recursive
definition. Equation 6-1 is called the base case (that is, the case for which the solution is
obtained directly); Equation 6-2 is called the general case.

Recursive definition: A definition in which something is defined in terms of a smaller
version of itself.

From the previous example (factorial), it is clear that:

1. Every recursive definition must have one (or more) base cases.

2. The general case must eventually be reduced to a base case.

3. The base case stops the recursion.

The concept of recursion in computer science works similarly. Here, we talk about recursive
algorithms and recursive functions. An algorithm that finds the solution to a given problem
by reducing the problem to smaller versions of itself is called a recursive algorithm. The
recursive algorithm must have one or more base cases, and the general solution must
eventually be reduced to a base case.

A function that calls itself is called a recursive function. That is, the body of the
recursive function contains a statement that causes the same function to execute again
before completing the current call. Recursive algorithms are implemented using recursive
functions.

Next, let us write the recursive function that implements the factorial function.

int fact(int num)
{

if (num == 0)
return 1;

else
return num * fact(num - 1);

}

Figure 6-1 traces the execution of the following statement:

cout << fact(3) << endl;

6

Recursive Definitions | 357

The output of the previous cout statement is: 6

In Figure 6-1, the down arrow represents the successive calls to the function fact, and
the upward arrows represent the values returned to the caller, that is, the calling function.

Let us note the following from the previous example, involving the factorial function:

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point immedi-
ately following the recursive call.

Direct and Indirect Recursion
A function is called directly recursive if it calls itself. A function that calls another
function and eventually results in the original function call is said to be indirectly

because num != 0
 return 3 * fact(2);

fact(3)

because num != 0
 return 2 * fact(1);

fact(2)

because num != 0
 return 1 * fact(0);

fact(1)

because num is 0
 return 1;

fact(0)

return 1

return 1 * 1

fact(1) = 1

return 2 * 1

fact(2) = 2

return 3 * 2

fact(3) = 6
6

3num

2num

1num

0num fact(0) = 1

FIGURE 6-1 Execution of fact(4)

358 | Chapter 6: Recursion

recursive. For example, if a function A calls a function B and function B calls function A,
then function A is indirectly recursive. Indirect recursion can be several layers deep.
For example, suppose that function A calls function B, function B calls function C,
function C calls function D, and function D calls function A. Function A is then
indirectly recursive.

Indirect recursion requires the same careful analysis as direct recursion. The base cases
must be identified and appropriate solutions to them must be provided. However, tracing
through indirect recursion can be tedious. You must, therefore, exercise extra care when
designing indirect recursive functions. For simplicity, the problems in this book involve
only direct recursion.

A recursive function in which the last statement executed is the recursive call is called a
tail recursive function. The function fact is an example of a tail recursive function.

Infinite Recursion
Figure 6-1 shows that the sequence of recursive calls eventually reached a call that made
no further recursive calls. That is, the sequence of recursive calls eventually reached a base
case. On the other hand, if every recursive call results in another recursive call, the
recursive function (algorithm) is said to have infinite recursion. In theory, infinite
recursion executes forever. Every call to a recursive function requires the system to
allocate memory for the local variables and formal parameters. The system also saves this
information so that after completing a call, control can be transferred back to the right
caller. Therefore, because computer memory is finite, if you execute an infinite recursive
function on a computer, the function executes until the system runs out of memory and
results in an abnormal termination of the program.

Recursive functions (algorithms) must be carefully designed and analyzed. You must make
sure that every recursive call eventually reduces to a base case. This chapter provides several
examples that illustrate how to design and implement recursive algorithms.

To design a recursive function, you must do the following:

1. Understand the problem requirements.

2. Determine the limiting conditions. For example, for a list, the limiting condition
is the number of elements in the list.

3. Identify the base cases and provide a direct solution to each base case.

4. Identify the general cases and provide a solution to each general case in terms of
smaller versions of itself.

Problem Solving Using Recursion
The next few sections illustrate how recursive algorithms are developed and implemented
in C++ using recursive functions.

6

Problem Solving Using Recursion | 359

Largest Element in an Array
In this example, we use a recursive algorithm to find the largest element in an array.
Consider the list given in Figure 6-2.

The largest element in the list in Figure 6-2 is 10.

Suppose list is the name of the array containing the list elements. Also, suppose that
list[a]...list[b] stands for the array elements list[a], list[a + 1], ..., list[b].
For example, list[0]...list[5] represents the array elements list[0], list[1],
list[2], list[3], list[4], and list[5]. Similarly, list[1]...list[5] represents
the array elements list[1], list[2], list[3], list[4], and list[5]. To write a
recursive algorithm to find the largest element in list, let us think in terms of recursion.

If list is of length 1, then list has only one element, which is the largest element.
Suppose the length of list is greater than 1. To find the largest element in
list[a]...list[b], we first find the largest element in list[a + 1]...list[b] and
then compare this largest element with list[a]. That is, the largest element in
list[a]...list[b] is given by:

maximum(list[a], largest(list[a + 1]...list[b]))

Let us apply this formula to find the largest element in the list shown in Figure 6-2. This
list has six elements, given by list[0]...list[5]. Now the largest element in list is
given by:

maximum(list[0], largest(list[1]...list[5]))

That is, the largest element in list is the maximum of list[0] and the largest element
in list[1]...list[5]. To find the largest element in list[1]...list[5], we use
the same formula again because the length of this list is greater than 1. The largest element
in list[1]...list[5] is then:

maximum(list[1], largest(list[2]...list[5]))

and so on. We see that every time we use the previous formula to find the largest element
in a sublist, the length of the sublist in the next call is reduced by one. Eventually, the
sublist is of length 1, in which case the sublist contains only one element, which is the
largest element in the sublist. From this point onward, we backtrack through the recursive
calls. This discussion translates into the following recursive algorithm, which is presented
in pseudocode:

[0] [1] [2] [3] [4]
list

[5] [6]
5 8 2 10 9 4

FIGURE 6-2 list with six elements

360 | Chapter 6: Recursion

Base Case: The size of the list is 1

The only element in the list is the largest element

General Case: The size of the list is greater than 1
To find the largest element in list[a]...list[b]

1. Find the largest element in list[a + 1]...list[b]
and call it max

2. Compare the elements list[a] and max
if (list[a] >= max)

the largest element in list[a]...list[b] is list[a]
otherwise

the largest element in list[a]...list[b] is max

This algorithm translates into the following C++ function to find the largest element in
an array:

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

else
return max;

}
}

Consider the list given in Figure 6-3.

Let us trace the execution of the following statement:

cout << largest(list, 0, 3) << endl;

6

[0] [1] [2] [3]
list 5 10 12 8

FIGURE 6-3 list with four elements

Problem Solving Using Recursion | 361

Here upperIndex = 3 and the list has four elements. Figure 6-4 traces the execution of
largest(list, 0, 3).

The value returned by the expression largest(list, 0, 3) is 12, which is the largest
element in list.

The followingC++programuses the functionlargest to determine the largest element in a list:

//**
// Author: D.S. Malik
//
// This program uses a recursive function to find the largest
// element in a list.
//**

#include <iostream>

using namespace std;

because list[2] > max
 return list[2]

because list[1] < max
 return max

because lowerIndex != upperIndex
 max = largest(list,1,3)

largest(list,0,3)

because lowerIndex != upperIndex
 max = largest(list,2,3)

largest(list,1,3)

because lowerIndex != upperIndex
 max = largest(list,3,3)

largest(list,2,3)

because lowerIndex = upperIndex
 return list[3]

largest(list,3,3)

return 8

because list[0] < max
 return max

return 12

return 12

return 12

1lowerIndex
3upperIndex

max

0lowerIndex
3upperIndex

max

2lowerIndex
3upperIndex

max

3lowerIndex
3upperIndex

max

12max

12max

8max

FIGURE 6-4 Execution of largest(list, 0, 3)

362 | Chapter 6: Recursion

6

int largest(const int list[], int lowerIndex, int upperIndex);

int main()
{

int intArray[10] = {23, 43, 35, 38, 67, 12, 76, 10, 34, 8};

cout << "The largest element in intArray: "
<< largest(intArray, 0, 9);

cout << endl;

return 0;
}

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

else
return max;

}
}

Sample Run:

The largest element in intArray: 76

Print a Linked List in Reverse Order
The nodes of an ordered linked list (as constructed in Chapter 5) are in ascending order.
Certain applications, however, might require the data to be printed in descending order, which
means that we must print the list backward. We now discuss the function reversePrint.
Given a pointer to a list, this function prints the elements of the list in reverse order.

Consider the linked list shown in Figure 6-5.

For the list in Figure 6-5, the output should be in the following form:

15 10 5

5first 10 15

FIGURE 6-5 Linked list

Problem Solving Using Recursion | 363

Because the links are in only one direction, we cannot traverse the list backward starting from
the last node. Let us see howwe can effectively use recursion to print the list in reverse order.

Let us think in terms of recursion. We cannot print the info of the first node until we
have printed the remainder of the list (that is, the tail of the first node). Similarly, we
cannot print the info of the second node until we have printed the tail of the second
node, and so on. Every time we consider the tail of a node, we reduce the size of the list
by 1. Eventually, the size of the list is reduced to zero, in which case the recursion stops.

Base Case: List is empty: no action

General Case: List is nonempty

1. Print the tail

2. Print the element

Let us write this algorithm. (Suppose that current is a pointer to a linked list.)

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << endl; //print the node

}

Here, we do not see the base case; it is hidden. The list is printed only if the pointer,
current, to the list is not NULL. Also, inside the if statement the recursive call is on the
tail of the list. Because eventually the tail of a list will be empty, the if statement in the
next call fails and the recursion stops. Also, note that statements (for example, printing
the info of the node) appear after the recursive call; thus, when the transfer comes back
to the calling function, we must execute the remaining statements. Recall that the
function exits only after the last statement executes. (By the ‘‘last statement,’’ we do
not mean the physical last statement, but rather the logical last statement.)

Let us write a function template to implement the previous algorithm and then apply it
to a list.

template <class Type>
void linkedListType<Type>::reversePrint

(nodeType<Type> *current) const
{

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << " "; //print the node

}
}

Consider the statement

reversePrint(first);

where first is a pointer of type nodeType<Type>.

364 | Chapter 6: Recursion

Let us trace the execution of this statement; which is a function call, for the list shown in
Figure 6-5. Because the formal parameter is a value parameter, the value of the actual
parameter is passed to the formal parameter. See Figure 6-6.

THE FUNCTION printListReverse

Now that we have written the function reversePrint, we can write the definition of the
function printListReverse, which can be used to print an ordered linked list contained in
an object of the type linkedListType. Its definition is as follows:

template <class Type>
void linkedListType<Type>::printListReverse() const
{

reversePrint(first);
cout << endl;

}

We can include the function printListReverse as a public member in the definition
of the class and the function reversePrint as a private member. We include the

6

current->5

because(current != NULL)
 reversePrint(current->link)

reversePrint(first)

reversePrint(current->link)

reversePrint(current->link)

reversePrint(current->link)

execute the statement
 cout << current->info;
 Print 15
 Now control goes back
 to the caller

execute the statement
 cout << current->info;
 Print 10
 Now control goes back
 to the caller

execute the statement
 cout << current->info;
 Print 5
 Now control goes back
 to the caller

current->10

because(current != NULL)
 reversePrint(current->link)

current->15

because(current != NULL)
 reversePrint(current->link)

current is NULL

because current is NULL
 the if statement fails
 control goes back to the
caller

FIGURE 6-6 Execution of the statement reversePrint(first);

Problem Solving Using Recursion | 365

function reversePrint as a private member because it is used only to implement the
function printListReverse.

Fibonacci Number
Consider the following sequence of numbers:

1; 1; 2; 3; 5; 8; 13; 21; 34; . . . :

Given the first two numbers of the sequence (say a1 and a2), the nth number an, n>¼ 3,
of this sequence is given by:

an ¼ an�1 þ an�2

Thus:

a3 ¼ a2 + a1 ¼ 1 + 1 ¼ 2, a4 ¼ a3 + a2 ¼ 2 + 1 ¼ 3, and so on.

Such a sequence is called a Fibonacci sequence. In the previous sequence, a2¼ 1 and a1¼ 1.
However, given any first two numbers, using this process, you can determine the nth number,
an, n>¼ 3, of such a sequence. The number determined this way is called the nth Fibonacci

number. Suppose a2 ¼ 6 and a1 ¼ 3.

Then:

a3 ¼ a2 þ a1 ¼ 6þ 3 ¼ 9; a4 ¼ a3 þ a2 ¼ 9þ 6 ¼ 15:

In this example, we write a recursive function, rFibNum, to determine the desired
Fibonacci number. The function rFibNum takes as parameters three numbers representing
the first two numbers of the Fibonacci sequence and a number n, the desired nth Fibonacci
number. The function rFibNum returns the nth Fibonacci number in the sequence.

Recall that the third Fibonacci number is the sum of the first two Fibonacci numbers.
The fourth Fibonacci number in a sequence is the sum of the second and third Fibonacci
numbers. Therefore, to calculate the fourth Fibonacci number, we add the second
Fibonacci number and the third Fibonacci number (which is itself the sum of the first
two Fibonacci numbers). The following recursive algorithm calculates the nth Fibonacci
number, where a denotes the first Fibonacci number, b the second Fibonacci number,
and n the nth Fibonacci number:

rFibNumða; b; nÞ ¼
a if n ¼ 1

b if n ¼ 2 ðEquation 6-3Þ
rFibNumða; b; n� 1Þþ
rFibNumða; b; n� 2Þ if n > 2:

8>><
>>:

366 | Chapter 6: Recursion

The following recursive function implements this algorithm:

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Let us trace the execution of the following statement:

cout << rFibNum(2, 3, 4) << endl;

In this statement, the first number is 2, the second number is 3, and we want to
determine the 4th Fibonacci number of the sequence. Figure 6-7 traces the execution
of the expression rFibNum(2,3,4). The value returned is 8, which is the 4th Fibonacci
number of the sequence whose first number is 2 and whose second number is 3.

6

return rFibNum(2,3,3) + rFibNum(2,3,2)

rFibNum(2,3,4)

rFibNum(2,3,2)

return rFibNum(2,3,2) + rFibNum(2,3,1)

 return b return a

rFibNum(2,3,1)

 return b

rFibNum(2,3,2)rFibNum(2,3,3)

return 3
return 2

return 5
return 3

return 8

2a
3b
4n

2a
3b
3n

2a
3b
2n

2a
3b
1n

2a
3b
2n

FIGURE 6-7 Execution of rFibNum(2, 3, 4)

Problem Solving Using Recursion | 367

Figure 6-7 reveals that the execution of the recursive version of the program to calculate a
Fibonacci number is not as efficient as the execution of the nonrecursive version, even
though the algorithm and the method implementing the algorithm might be simpler. In
the recursive version, some values are calculated more than once. For example, to calculate
rFibNum(2, 3, 4), the value rFibNum(2, 3, 2) is calculated twice. So a recursive
method might be easier to write, but might not execute as efficiently. The section
‘‘Recursion or Iteration?’’, presented later in this chapter, discusses these two alternatives.

The following C++ program uses the function rFibNum:

//***
// Author: D.S. Malik
//
// Given the first two numbers of a Fibonacci sequence, this
// program uses a recursive function to determine a specific
// number(s) of a Fibonacci sequence.
//***

#include <iostream>

using namespace std;

int rFibNum(int a, int b, int n);

int main()
{

int firstFibNum;
int secondFibNum;
int nth;

cout << "Enter the first Fibonacci number: ";
cin >> firstFibNum;
cout << endl;

cout << "Enter the second Fibonacci number: ";
cin >> secondFibNum;
cout << endl;

cout << "Enter the position of the desired Fibonacci number: ";
cin >> nth;
cout << endl;

cout << "The Fibonacci number at position " << nth
<< " is: " << rFibNum(firstFibNum, secondFibNum, nth)
<< endl;

return 0;
}

368 | Chapter 6: Recursion

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Sample Run: In this sample run, the user input is shaded.

Enter the first Fibonacci number: 2

Enter the second Fibonacci number: 5

Enter the position of the desired Fibonacci number: 6

The Fibonacci number at position 6 is: 31

Tower of Hanoi
In the nineteenth century, a game called the Tower of Hanoi became popular in Europe.
This game represents work that is under way in the temple of Brahma. At the creation of
the universe, priests in the temple of Brahma were supposedly given three diamond
needles, with one needle containing 64 golden disks. Each golden disk is slightly smaller
than the disk below it. The priests’ task is to move all 64 disks from the first needle to the
third needle. The rules for moving the disks are as follows:

1. Only one disk can be moved at a time.

2. The removed disk must be placed on one of the needles.

3. A larger disk cannot be placed on top of a smaller disk.

The priests were told that once they had moved all the disks from the first needle to the
third needle, the universe would come to an end.

Our objective is to write a program that prints the sequence of moves needed to transfer
the disks from the first needle to the third needle. Figure 6-8 shows the Tower of Hanoi
problem with three disks.

6

3
2
1

FIGURE 6-8 Tower of Hanoi problem with three disks

Problem Solving Using Recursion | 369

As before, we think in terms of recursion. Let us first consider the case when the first
needle contains only one disk. In this case, the disk can be moved directly from
needle 1 to needle 3. So let us consider the case when the first needle contains only
two disks. In this case, first we move the first disk from needle 1 to needle 2, and
then we move the second disk from needle 1 to needle 3. Finally, we move the first
disk from needle 2 to needle 3. Next, we consider the case when the first needle
contains three disks, and then generalize this to the case of 64 disks (in fact, to an
arbitrary number of disks).

Suppose that needle 1 contains three disks. To move disk number 3 to needle 3, the top
two disks must first be moved to needle 2. Disk number 3 can then be moved from
needle 1 to needle 3. To move the top two disks from needle 2 to needle 3, we use the
same strategy as before. This time we use needle 1 as the intermediate needle. Figure 6-9
shows a solution to the Tower of Hanoi problem with three disks.

Move disk 1 from needle 1 to needle 3

3
2
1

3
2

1

Move 1

Move disk 2 from needle 1 to needle 2

3
2

3 2 11

Move 2

Move disk 1 from needle 3 to needle 2

3 2 3 2
1

1

Move 3

Move disk 3 from needle 1 to needle 3

3 2 32
11

Move 4

Move disk 1 from needle 2 to needle 1

32 321
1

Move 5

Move disk 2 from needle 2 to needle 3

32 3
2

11

Move 6

Move disk 1 from needle 1 to needle 3

3
2

3
2
1

1

Move 7

FIGURE 6-9 Solution to Tower of Hanoi problem with three disks

370 | Chapter 6: Recursion

6

Let us now generalize this problem to the case of 64 disks. To begin, the first needle
contains all 64 disks. Disk number 64 cannot be moved from needle 1 to needle 3 unless
the top 63 disks are on the second needle. So first we move the top 63 disks from needle
1 to needle 2, and then we move disk number 64 from needle 1 to needle 3. Now the top
63 disks are all on needle 2. To move disk number 63 from needle 2 to needle 3, we first
move the top 62 disks from needle 2 to needle 1, and then we move disk number 63
from needle 2 to needle 3. To move the remaining 62 disks, we use a similar procedure.
This discussion translates into the following recursive algorithm given in pseudocode.
Suppose that needle 1 contains n disks, where n � 1.

1. Move the top n � 1 disks from needle 1 to needle 2, using needle 3 as
the intermediate needle.

2. Move disk number n from needle 1 to needle 3.

3. Move the top n � 1 disks from needle 2 to needle 3, using needle 1 as
the intermediate needle.

This recursive algorithm translates into the following C++ function:

void moveDisks(int count, int needle1, int needle3, int needle2)
{

if (count > 0)
{

moveDisks(count - 1, needle1, needle2, needle3);

cout << "Move disk " << count << " from " << needle1
<< " to " << needle3 << "." << endl;

moveDisks(count - 1, needle2, needle3, needle1);
}

}

TOWER OF HANOI: ANALYSIS

Let us determine how long it would take to move all 64 disks from needle 1 to needle 3.
If needle 1 contains 3 disks, then the number of moves required to move all 3 disks from
needle 1 to needle 3 is 23 �1 ¼ 7. Similarly, if needle 1 contains 64 disks, then the
number of moves required to move all 64 disks from needle 1 to needle 3 is 264 �1.
Because 210 ¼ 1024 � 1000 ¼ 103, we have

264 ¼ 24 � 260 � 24 � 1018 ¼ 1:6� 1019

The number of seconds in one year is approximately 3.2 � 107. Suppose the priests move
one disk per second and they do not rest. Now:

1:6� 1019 ¼ 5� 3:2� 1018 ¼ 5� ð3:2� 107Þ � 1011 ¼ ð3:2� 107Þ � ð5� 1011Þ

The time required to move all 64 disks from needle 1 to needle 3 is roughly 5 � 1011

years. It is estimated that our universe is about 15 billion years old (1.5 � 1010). Also,

Problem Solving Using Recursion | 371

5 � 1011 ¼ 50 � 1010 � 33 � (1.5 � 1010). This calculation shows that our universe
would last about 33 times as long as it already has.

Assume that a computer can generate 1 billion (109) moves per second. Then the number
of moves that the computer can generate in one year is:

ð3:2� 107Þ � 109 ¼ 3:2� 1016

So the computer time required to generate 264 moves is:

264 � 1:6� 1019 ¼ 1:6� 1016 � 103 ¼ ð3:2� 1016Þ � 500

Thus, it would take about 500 years for the computer to generate 264 moves at the rate of
1 billion moves per second.

Converting a Number from Decimal to Binary
In this example, we design a program that uses recursion to convert a nonnegative integer
in decimal format—that is, base 10—into the equivalent binary number—that is, base 2.
First we define some terms.

Let x be an integer. We call the remainder of x after division by 2 the rightmost bit of x.
Thus, the rightmost bit of 33 is 1 because 33 % 2 is 1, and the rightmost bit of 28 is 0
because 28 % 2 is 0. (Recall that in C++, % is the mod operator; it produces the remainder
of the integer division.)

We first illustrate the algorithm to convert an integer in base 10 to the equivalent number
in binary format with the help of an example.

Suppose we want to find the binary representation of 35. First, we divide 35 by 2. The
quotient is 17 and the remainder—that is, the rightmost bit of 35—is 1. Next, we divide
17 by 2. The quotient is 8 and the remainder—that is, the rightmost bit of 17—is 1.
Next, we divide 8 by 2. The quotient is 4 and the remainder—that is, the rightmost bit of
8—is 0. We continue this process until the quotient becomes 0.

The rightmost bit of 35 cannot be printed until we have printed the rightmost bit of 17. The
rightmost bit of 17 cannot be printed until we have printed the rightmost bit of 8, and so on.
Thus, the binary representation of 35 is the binary representation of 17 (that is, the quotient
of 35 after division by 2), followed by the rightmost bit of 35.

Thus, to convert an integer num in base 10 into the equivalent binary number, we first
convert the quotient num / 2 into an equivalent binary number, and then append the
rightmost bit of num to the binary representation of num / 2.

This discussion translates into the following recursive algorithm, where binary(num)

denotes the binary representation of num:

1. binary(num) = num if num = 0.

2. binary(num) = binary(num / 2) followed by num % 2 if num > 0.

372 | Chapter 6: Recursion

The following recursive function implements this algorithm:

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Figure 6-10 traces the execution of the following statement:

decToBin(13, 2);

where num is 13 and base is 2.

6

execute
 cout << 1 % 2;

Output: 1

decToBin(13,2)

 num base

because num > 0
 decToBin(13/2,2);

decToBin(6,2)

 num base

because num > 0
 decToBin(6/2,2);

decToBin(3,2)

 num base

because num > 0
 decToBin(3/2,2);

decToBin(1,2)

 num base

because num > 0
 decToBin(1/2,2);

decToBin(0,2)

 num base

because num is 0
 exit this call

Call 1

Call 2

Call 3

Call 4

Call 5

execute
 cout << 3 % 2;

Output: 1

execute
 cout << 6 % 2;

Output: 0

execute
 cout << 13 % 2;

Output: 1

13

6 2

3 2

1 2

0 2

2

FIGURE 6-10 Execution of decToBin(13, 2)

Problem Solving Using Recursion | 373

Because the if statement in call 5 fails, this call does not print anything. The first output
is produced by call 4, which prints 1; the second output is produced by call 3, which
prints 1; the third output is produced by call 2, which prints 0; and the fourth output is
produced by call 1, which prints 1. Thus, the output of the statement:

decToBin(13, 2);

is:

1101

The following C++ program tests the function decToBin:

//**
// Author: D. S. Malik
//
// Program: Decimal to binary
// This program uses recursion to find the binary
// representation of a nonnegative integer.
//**

#include <iostream>

using namespace std;

void decToBin(int num, int base);

int main()
{

int decimalNum;
int base;

base = 2;

cout << "Enter number in decimal: ";
cin >> decimalNum;
cout << endl;

cout << "Decimal " << decimalNum << " = ";
decToBin(decimalNum, base);
cout << " binary" << endl;

return 0;
}

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

374 | Chapter 6: Recursion

6

Sample Run: In this sample run, the user input is shaded.

Enter a number in decimal: 57

Decimal 57 = 111001 binary

Recursion or Iteration?
Often there are two ways to solve a particular problem—recursion or iteration. The
programs in the previous chapters used a loop to repeat a set of statements to perform
certain calculations. In other words, the programs in the previous chapters used an iterative
control structure to repeat a set of statements. Formally, iterative control structures use a
looping structure, such as while, for, or do. . .while, to repeat a set of statements.

This chapter began by designing a recursive method to find the factorial of a nonnegative
integer. Using an iterative control structure, we can easily write an algorithm to find the
factorial of a nonnegative integer. Given our familiarity with iterative techniques, the iterative
solution will seem simpler than the recursive solution. The only reason we gave a recursive
solution to the factorial problem was to illustrate how recursion works using a simple example.

In this chapter, we also used recursion to determine the largest element in a list,
determining a Fibonacci number. Using an iterative control structure, we can also write
an algorithm to find the largest number in an array. Similarly, an algorithm that uses an
iterative control structure can be designed to find the Fibonacci number.

The obvious question becomes, which approach is better? There is no general answer,
but there are some guidelines. In addition to the nature of the solution, efficiency is the
other key factor in determining the better approach.

When a function is called, memory space is allocated for its formal parameters and local
variables. When the function terminates, that memory space is deallocated. In this chapter,
while tracing the execution of recursive methods, we saw that every recursive call had its
own set of parameters and local variables. That is, every recursive call required the system to
allocate memory space for its formal parameters and local variables, and then deallocate the
memory space when the function exited. Even though we don’t need to write program
statements to allocate and deallocate memory, overhead is associated with executing a
recursive function, both in terms of memory space and execution time. Therefore, a
recursive function executes more slowly than its iterative counterpart. On slower compu-
ters, especially those with limited memory space, the (relatively slow) execution of a
recursive function is noticeable. Clearly, a recursive function is less efficient than a
corresponding iterative function in terms of execution time and memory usage.

Efficiency is not determined solely by execution time and memory usage. Chances are that
you have never been concerned with either execution time or memory usage as you have
been writing C++ programs. Efficient use of a programmer’s time also is an important
consideration. Chances are that you have considered carefully what you can do to minimize
the time required to produce C++ programs. Often this is entirely appropriate. As a
professional programmer, your time typically is far more expensive than the cost of the

Recursion or Iteration? | 375

computer you use to produce programs. Of course, if you are developing software that will
be used many times a day by large numbers of users, then execution time and memory usage
become important considerations.

Today’s computers are fast and have abundant memory. Therefore, the additional
execution time and the memory consumed by a recursive function might not be notice-
able. Given the ever-increasing speed and memory capacity of today’s computers, the
choice between iteration and recursion depends more and more on how the programmer
envisions the solution to the problem, and less on execution time and memory usage. In
rare instances where execution time must be minimized or the demand for memory is
inordinately high, iteration might be better than recursion even when the recursive
solution is more obvious. Fortunately, any program that can be written recursively also
can be written iteratively.

As a general rule, if you think an iterative solution is at least as obvious and easy to
construct as a recursive solution, choose the iterative solution. On the other hand, if the
recursive solution is more obvious and easier to construct, such as the solution to the
Towers of Hanoi problem, choose the recursive solution.

If you question the existence of problems for which a recursive solution is more obvious
and easier to construct than an iterative solution, attempt to solve the Towers of Hanoi
problem without using recursion. You’ll quickly gain an increased appreciation for
recursion. The ability to write recursive solutions is an important programming skill.

Recursion and Backtracking: 8-Queens Puzzle
This section describes a problem-solving and algorithm design technique called back-
tracking. Let us consider the following 8-queens puzzle: Place 8 queens on a chess-board
(8 by 8 square board) so that no two queens can attack each other. For any two queens to
be nonattacking, they cannot be in the same row, same column, or same diagonals.
Figure 6-11 gives one possible solution to the 8-queens puzzle.

Q

Q

Q

Q

Q

Q

Q

Q

FIGURE 6-11 A solution to the 8-queens puzzle

376 | Chapter 6: Recursion

In 1850, the 8-queens puzzle was considered by the great C. F. Gauss, who was unable to
obtain a complete solution. The term backtrack was first coined by D. H. Lehmer in 1950.
In 1960, R. J. Walker gave an algorithmic account of backtracking. A general description
of backtracking with a variety of applications was presented by S. Golomb and L. Baumert.

Backtracking
The backtracking algorithm attempts to find solutions to a problem by constructing
partial solutions and making sure that any partial solution does not violate the problem
requirements. The algorithm tries to extend a partial solution toward completion. How-
ever, if it is determined that the partial solution would not lead to a solution, that is, the
partial solution would end in a dead end, then the algorithm backs up by removing the
most recently added part and trying other possibilities.

n-Queens Puzzle
In backtracking, the solution of the n-queens puzzle, because each queen must be placed in a
different row, can be represented as an n-tuple (x1, x2, . . ., xn), where xi is an integer such that
1� xi� n. In this tuple, xi specifies the column number, where to place the ith queen in the
ith row. Therefore, for the 8-queens puzzle the solution is an 8-tuple (x1, x2, x3, x4, x5, x6,
x7, x8), where xi is the column where to place the ith queen in the ith row. For example, the
solution in Figure 6-11 can be represented as the 8-tuple (4,6,8,2,7,1,3,5). That is, the first
queen is placed in the first row and fourth column, the second queen is placed in the second
row and sixth column, and so on. Clearly, each xi is an integer such that 1 � xi � 8.

Let us again consider the 8-tuple (x1, x2, x3, x4, x5, x6, x7, x8), where xi is an integer such
that 1 � xi � 8. Because each xi has 8 choices, there are 88 such tuples, and so possibly 88

solutions. However, because no two queens can be placed in the same row, no two
elements of the 8-tuple (x1, x2, x3, x4, x5, x6, x7, x8) are the same. From this, it follows
that the number of 8-tuples possibly representing solutions are 8!.

The solution that we develop can, in fact, be applied to any number of queens. There-
fore, to illustrate the backtracking technique, we consider the 4-queens puzzle. That is,
you are given a 4 by 4 square board (see Figure 6-12) and you are to place 4 queens on
the board so that no two queens attack each other.

6

FIGURE 6-12 Square board for the 4-queens puzzle

Recursion and Backtracking: 8-Queens Puzzle | 377

We start by placing the first queen in the first row and first column as shown in Figure 6-13(a).
(A cross in a box means no other queen can be placed in that box.)

After placing the first queen, we try to place the second queen in the second row. Clearly,
the first square in the second row where the second queen can be placed is the third
column. So we place the second queen in that column; see Figure 6-13(b).

Next, we try to place the third queen in the third row. We find that the third queen
cannot be placed in the third row and so we arrive at a dead end. At this point we
backtrack to the previous board configuration and place the second queen in the fourth
column; see Figure 6-13(c). Next, we try to place the third queen in the third row. This
time, we successfully place the third queen in the second column of the third row; see
Figure 6-13(d). After placing the third queen in the third row, when we try to place the
fourth queen, we discover that the fourth queen cannot be placed in the fourth row.

We backtrack to the third row and try placing the queen in any other column. Because
no other column is available for queen three, we backtrack to row two and try placing the
second queen in any other column, which cannot be done. We, therefore, backtrack to
the first row and place the first queen in the next column. After placing the first queen in
the second column, we place the remaining queens in the successive rows. This time we
obtain the solution, as shown by Figure 6-14.

Backtracking and the 4-Queens Puzzle
Suppose that the rows of the square board of the 4-queens puzzle are numbered 0
through 3 and the columns are numbered 0 through 3. (Recall that in C++, an array
index starts at 0.)

Q Q
Q

Q
Q

Q
Q

Q

(a) (b) (c) (d)

FIGURE 6-13 Finding a solution to the 4-queens puzzle

(a) (b) (c) (d)

Q Q
Q

Q
Q

Q

Q
Q

Q
Q

FIGURE 6-14 A solution to the 4-queens puzzle

378 | Chapter 6: Recursion

For the 4-queens puzzle, we start by placing the first queen in the first row and first
column, thus generating the tuple (0). We then place the second queen in the third
column of the second row and so generate the tuple (0,2). When we try to place the
third queen in the third row, we determined that the third queen cannot be placed
in the third row and so we back up to the partial solution (0,2), remove 2 from the
tuple and then generate the tuple (0,3), that is, the third queen is placed in the fourth
column of the second row. With the partial solution (0,3), we then try to place the
third queen in the third row and generate the tuple (0,3,1). Next, with the partial
solution (0,3,1), when we try to place the fourth queen in the fourth row, it is
determined that it cannot be done and so the partial solution (0,3,1) ends up in a
dead end.

From the partial solution (0,3,1), the backtracking algorithm, in fact, backs up to
placing the first queen and so removes all the elements of the tuple. The algorithm
then places the first queen in the second column of the first row and thus generates the
partial solution (1). In this case, the sequence of partial solution generated is, (1), (1,3),
(1,3,0), and (1,3,0,2), which represents a solution to the 4-queens puzzle. The solutions
generated by the backtracking algorithm can be represented by a tree, as shown in
Figure 6-15.

8-Queens Puzzle
Let us now consider the 8-queens puzzle. Like the 4-queens puzzle, no two queens can
be in the same row, same columns, and same diagonals. Determining whether two
queens are in the same row or column is easy because we can check their row and
column position. Let us describe how to determine whether two queens are in the same
diagonal or not.

6

1

2

x1 = 0

x2 = 1

3 4 5

x2 = 2
x2 = 3

7

6 8

x3 = 1

9

10 11 12

13

14

x2 = 0

x1= 1

x2 = 3
x2 = 2

x4 = 2

x3 = 0

(1)

(0,3)

(0,3,1)

(1,3)

(1,3,0,2)
solution

(1,3,0)

(0)

FIGURE 6-15 4-queens tree

Recursion and Backtracking: 8-Queens Puzzle | 379

Consider the 8 by 8 square board shown in Figure 6-16. The rows are numbered 0
through 7; the columns are numbered 0 through 7. (Recall that, in C++, the array index
starts at 0.)

Consider the diagonal from upper left to lower right, as indicated by the arrow. The
positions of the squares on this diagonal are (0,4), (1,5), (2,6), and (3,7). Notice that for
these entries rowPosition – columnPosition is – 4. For example, 0 – 4 ¼ 1 – 5 ¼ 2 –
6 ¼ 3 – 7 ¼ – 4. It can be shown that for each square on a diagonal from upper left to
lower right, rowPosition – columnPosition is the same.

Now consider the diagonal from upper right to lower left as indicated by the arrow. The
positions of the squares on this diagonal are (0,6), (1,5), (2,4), (3,3), (4,2), (5,1), and (6,0).
Here rowPosition + columnPosition ¼ 6. It can be shown that for each square on a
diagonal from upper right to lower left, rowPosition + columnPosition is the same.

We can use these results to determine whether two queens are on the same diagonal or
not. Suppose a queen is at position (i, j), (row i and column j), and another queen is at
position (k, l) , (row k and column l). These queens are on the same diagonal if either i +
j ¼ k + l or i - j ¼ k – l. The first equation implies that j – l ¼ i – k and the second
equation implies that j – l ¼ k – i. From this it follows that the two queens are on the
same diagonal if |j – l| ¼ |i – k|, where |j – l| is the absolute value of j – l and so on.

Because a solution to the 8-queens puzzle is represented as an 8-tuple, we use the array
queensInRow of size 8, where queensInRow[k] specifies the column position of the kth
queen in row k. For example, queensInRow[0] = 3 means the first queen is placed in
column 3 (which is the fourth column) of row 0 (which is the first row).

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

FIGURE 6-16 8 � 8 square board

380 | Chapter 6: Recursion

6

Suppose that we place the first k-1 queens in the first k – 1 rows. Next we try to place the kth
queen in a columnof the kth row.Wewrite the functioncanPlaceQueen(k,i),which returns
true if the kth queen can be placed in the ith column of row k; otherwise, it returns false.

The first k-1 queens are in the first k-1 rows and we are trying to place the kth queen in
the kth row. The kth row, therefore, must first be empty. It thus follows that the kth
queen can be placed in column i of row k, provided no other queen is in column i and no
queens are on the diagonals on which square (k, i) lies. The general algorithm for the
function canPlaceQueen(k, i) is as follows:

for (int j = 0; j < k; j++)
if((queensInRow[j] == i) //there is already a queen in column i

|| (abs(queensInRow[j] - i) == abs(j-k))) //there is already
//a queen in one of the diagonals
//on which square (k,i) lies

return false;

return true;

The for loop checks whether there is already a queen either in column i or in one of the
diagonals on which square (k, i) lies. If it finds a queen at any of such positions, the for

loop returns the value false. Otherwise, the value true is returned.

The following class defines the n-queens puzzle as an ADT:

//***
// D.S. Malik
//
// This class specifies the functions to solve the n-queens puzzle.
//***

class nQueensPuzzle
{
public:

nQueensPuzzle(int queens = 8);
//constructor
//Postcondition: noOfSolutions = 0; noOfQueens = queens;
// queensInRow is a pointer to the array to store the
// n-tuple

bool canPlaceQueen(int k, int i);
//Function to determine whether a queen can be placed
//in row k and column i.
//Postcondition: returns true if a queen can be placed in
// row k and column i; otherwise it returns false

void queensConfiguration(int k);
//Function to determine all solutions to the n-queens
//puzzle using backtracking.
//The function is called with the value 0.
//Postcondition: All n-tuples representing solutions of
// n-queens puzzle are generated and printed.

Recursion and Backtracking: 8-Queens Puzzle | 381

void printConfiguration();
//Function to output an n-tuple containing a solution
//to the n-queens puzzle.

int solutionsCount();
//Function to return the total number of solutions.
//Postcondition: The value of noOfSolution is returned.

private:
int noOfSolutions;
int noOfQueens;
int *queensInRow;

};

The definitions of the member functions of the class nQueensPuzzle are given next:

nQueensPuzzle::nQueensPuzzle(int queens)
{

noOfQueens = queens;
queensInRow = new int[noOfQueens];
noOfSolutions = 0;

}

bool nQueensPuzzle::canPlaceQueen(int k, int i)
{

for (int j = 0; j < k; j++)
if ((queensInRow[j] == i)

|| (abs(queensInRow[j] - i) == abs(j-k)))
return false;

return true;
}

Using recursion, the function queensConfiguration implements the backtracking
technique to determine all solutions to the n-queens puzzle. The parameter k specifies
the queen to be placed in the kth row. Its definition is straightforward and is given next.

void nQueensPuzzle::queensConfiguration(int k)
{

for (int i = 0; i < noOfQueens; i++)
{

if (canPlaceQueen(k, i))
{

queensInRow[k] = i; //place the kth queen in column i
if (k == noOfQueens - 1) //all the queens are placed

printConfiguration(); //print the n-tuple
else

queensConfiguration(k + 1); //determine the place
//for the (k+1)th queen

}
}

}

382 | Chapter 6: Recursion

void nQueensPuzzle::printConfiguration()
{

noOfSolutions++;
cout << "(";
for (int i = 0; i < noOfQueens - 1; i++)

cout << queensInRow[i] << ", ";

cout << queensInRow[noOfQueens - 1] << ")" << endl;
}

int nQueensPuzzle::solutionsCount()
{

return noOfSolutions;
}

We leave it as an exercise for you to write a program to test the n-queens puzzle class for
various board sizes; see Programming Exercise 17 at the end of this chapter.

Recursion, Backtracking, and Sudoku
In the previous section, we used recursion and backtracking to solve the 8-queens
problem. In this section, we introduce the well-known sudoku problem, which can be
solved using recursion and backtracking. This problem involves filling numbers 1 to 9 in
a partially filled, 9 � 9 grid with constraints described in this section. Figure 6-17(a)
shows a partially filled grid.

The sudoku grid is a 9 � 9 grid consisting of nine rows, nine columns, and nine 3 � 3
smaller grids. In Figure 6-17, the nine 3 � 3 smaller grids are separated by darker
horizontal and vertical lines. The first 3 � 3 smaller grid is in rows 1 to 3 and columns
1 to 3, the second 3 � 3 smaller grid is in rows 1 to 3 and columns 4 to 6, and so on.

The objective is to fill the entire grid with numbers 1 to 9 such that each number appears
exactly once in each row, each column, and each 3 � 3 smaller grid. For example, the
solution to the sudoku problem in Figure 6-17(a) is shown in Figure 6-17(c).

6

6 3 2 9
5 8

2 4 7 1
6 1 4 3

8 5 6
4 6 3 2

8 2 7
1 7 5 8
3 6 1 5

6 5 3 2 9
5 8

2 4 7 1
6 1 4 3

8 5 6
4 6 3 2

8 2 7
1 7 5 8
3 6 1 5

(b)(a)

6 5 3 1 2 8 7 9 4
1 7 4 3 5 9 6 8 2
9 2 8 4 6 7 5 3 1
2 8 6 5 1 4 3 7 9
3 9 1 7 8 2 4 5 6
5 4 7 6 9 3 2 1 8
8 6 5 2 3 1 9 4 7
4 1 2 9 7 5 8 6 3
7 3 9 8 4 6 1 2 5

(c)

FIGURE 6-17 Sudoku problem and its solution

Recursion, Backtracking, and Sudoku | 383

Next, we describe, a simple recursive backtracking algorithm to find the solution to the
sudoku problem in Figure 6-17(a).

Starting at the first row, we find the first empty grid slot. For example, in Figure 6-17(a),
the first empty grid slot is in the second row and second column. Next we find the first
number, between 1 and 9, that can be placed in this slot. (Note that before placing a
number in an empty slot, we must check that the number does not appear in the row,
column, and the 3 � 3 grid containing the slot.) For example, in Figure 6-17(a), the first
number that can be placed in the second row and second column is 5; see Figure 6-17(b).
After placing a number in the first empty slot, we find the next empty slot and try to place
a number in that slot. If a number cannot be placed in a slot, then we must backtrack to
the previous slot, where the number was placed, place a different number, and continue.
If we arrive at a slot where no number can be placed, then the sudoku problem has
no solutions.

The following class implements the sudoku problem as an ADT:

//***
// D.S. Malik
//
// This class specifies the functions to solve a sudoku problem.
//***

class sudoku
{
public:

sudoku();
//default constructor
//Postcondition: grid is initialized to 0

sudoku(int g[][9]);
//constructor
//Postcondition: grid = g

void initializeSudokuGrid();
//Function to prompt the user to specify the numbers of the
//partially filled grid.
//Postcondition: grid is initialized to the numbers
// specified by the user.

void initializeSudokuGrid(int g[][9]);
//Function to initialize grid to g
//Postcondition: grid = g;

void printSudokuGrid();
//Function to print the sudoku grid.

bool solveSudoku();
//Funtion to solve the sudoku problem.
//Postcondition: If a solution exits, it returns true,
// otherwise it returns false.

384 | Chapter 6: Recursion

bool findEmptyGridSlot(int &row, int &col);
//Function to determine if the grid slot specified by
//row and col is empty.
//Postcondition: Returns true if grid[row][col] = 0;

bool canPlaceNum(int row, int col, int num);
//Function to determine if num can be placed in
//grid[row][col]
//Postcondition: Returns true if num can be placed in
// grid[row][col], otherwise it returns false.

bool numAlreadyInRow(int row, int num);
//Function to determine if num is in grid[row][]
//Postcondition: Returns true if num is in grid[row][],
// otherwise it returns false.

bool numAlreadyInCol(int col, int num);
//Function to determine if num is in grid[row][]
//Postcondition: Returns true if num is in grid[row][],
// otherwise it returns false.

bool numAlreadyInBox(int smallGridRow, int smallGridCol,
int num);

//Function to determine if num is in the small grid
//Postcondition: Returns true if num is in small grid,
// otherwise it returns false.

private:
int grid[9][9];

};

Note that we use the digit 0 to specify an empty grid. For example, the partially filled
sudoku grid in Figure 6-17(a) is entered and stored as:

6 0 3 0 2 0 0 9 0
0 0 0 0 5 0 0 8 0
0 2 0 4 0 7 0 0 1
0 0 6 0 1 4 3 0 0
0 0 0 0 8 0 0 5 6
0 4 0 6 0 3 2 0 0
8 0 0 2 0 0 0 0 7
0 1 0 0 7 5 8 0 0
0 3 0 0 0 6 1 0 5

Next we write the definition of the function solveSudoku.

The function solveSudoku uses recursion and backtracking to find a solution, if one
exists, of the partially filled sudoku grid. The general algorithm is as follows:

1. Find the position of the first empty slot in the partially filled grid.
If the grid has no empty slots, return true and print the solution.

2. Suppose the variables row and col specify the position of the empty grid
position.

6

Recursion, Backtracking, and Sudoku | 385

for (int digit = 1; digit <= 9; digit++)
{

if (grid[row][col] <> digit)
{

grid[row][col] = digit;
recursively fill the updated grid;
if the grid is filled successfully, return true,
otherwise remove the assigned digit from grid[row][col]
and try another digit.

}
If all the digits have been tried and nothing worked, return false.

The definition of the function is as follows:

bool sudoku::solveSudoku()
{

int row, col;

if (findEmptyGridSlot(row, col))
{

for (int num = 1; num <= 9; num++)
{

if (canPlaceNum(row, col, num))
{

grid[row][col] = num;
if (solveSudoku()) //recursive call

return true;
grid[row][col] = 0;

}
}

return false; //backtrack
}
else

return true; //there are no empty slots
}

We leave it is as an exercise for you to write the definitions of the remaining functions of
the class sudoku and program that solves sudoku problems; see Programming Exercise
18 at end of this chapter.

QUICK REVIEW

1. The process of solving a problem by reducing it to smaller versions of itself
is called recursion.

2. A recursive definition defines a problem in terms of smaller versions of itself.

3. Every recursive definition has one or more base cases.

4. A recursive algorithm solves a problem by reducing it to smaller versions of itself.

5. Every recursive algorithm has one or more base cases.

386 | Chapter 6: Recursion

6. The solution to the problem in a base case is obtained directly.

7. A function is called recursive if it calls itself.

8. Recursive algorithms are implemented using recursive functions.

9. Every recursive function must have one or more base cases.

10. The general solution breaks the problem into smaller versions of itself.

11. The general case must eventually be reduced to a base case.

12. The base case stops the recursion.

13. While tracing a recursive function:

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point imme-
diately following the recursive call.

14. A function is called directly recursive if it calls itself.

15. A function that calls another function and eventually results in the original
function call is said to be indirectly recursive.

16. A recursive function in which the last statement executed is the recursive
call is called a tail recursive function.

17. To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list the limiting
condition is the number of elements in the list.

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case in
terms of smaller versions of itself.

EXERCISES

1. Mark the following statements as true or false.

a. Every recursive definition must have one or more base cases.

b. Every recursive function must have one or more base cases.

c. The general case stops the recursion.

d. In the general case, the solution to the problem is obtained directly.

e. A recursive function always returns a value.

6

Exercises | 387

2. What is a base case?

3. What is a recursive case?

4. What is direct recursion?

5. What is indirect recursion?

6. What is tail recursion?

7. Consider the following recursive function:

int mystery(int number) //Line 1
{ //Line 2

if (number == 0) //Line 3
return number; //Line 4

else //Line 5
return(number + mystery(number - 1)); //Line 6

} //Line 7

a. Identify the base case.

b. Identify the general case.

c. What valid values can be passed as parameters to the function mystery?

d. If mystery(0) is a valid call, what is its value? If not, explain why.

e. If mystery(5) is a valid call, what is its value? If not, explain why.

f. If mystery(-3) is a valid call, what is its value? If not, explain why.

8. Consider the following recursive function:

void funcRec(int u, char v) //Line 1
{ //Line 2

if (u == 0) //Line 3
cout << v; //Line 4

else if (u == 1) //Line 5
cout << static_cast<char>

(static_cast<int>(v) + 1); //Line 6
else //Line 7

funcRec(u - 1, v); //Line 8
} //Line 9

Answer the following questions:

a. Identify the base case.

b. Identify the general case.

c. What is the output of the following statement?

funcRec(5, 'A');

9. Consider the following recursive function:

void exercise(int x)
{

if (x > 0 && x < 10)
{

cout << x << " ";
exercise(x + 1);

}
}

388 | Chapter 6: Recursion

What is the output of the following statements?

a. exercise(0);

b. exercise(5);

c. exercise(10);

d. exercise(-5);

10. Consider the following function:

int test(int x, int y)
{

if (x == y)
return x;

else if (x > y)
return (x + y);

else
return test(x + 1, y - 1);

}

What is the output of the following statements?

a. cout << test(5, 10) << endl;

b. cout << test(3, 9) << endl;

11. Consider the following function:

int func(int x)
{

if (x == 0)
return 2;

else if (x == 1)
return 3;

else
return (func(x - 1) + func(x - 2));

}

What is the output of the following statements?

a. cout << func(0) << endl;

b. cout << func(1) << endl;

c. cout << func(2) << endl;

d. cout << func(5) << endl;

12. Suppose that intArray is an array of integers, and length specifies the
number of elements in intArray. Also, suppose that low and high are two
integers such that 0 <= low < length, 0 <= high < length, and low < high.
That is, low and high are two indices in intArray. Write a recursive
definition that reverses the elements in intArray between low and high.

13. Write a recursive algorithm to multiply two positive integers m and n using
repeated addition. Specify the base case and the recursive case.

6

Exercises | 389

14. Consider the following problem: How many ways can a committee of four
people be selected from a group of 10 people? There are many other similar
problems, where you are asked to find the number of ways to select a set of
items from a given set of items. The general problem can be stated as
follows: Find the number of ways r different things can be chosen from a
set of n items, where r and n are nonnegative integers and r � n. Suppose
C(n, r) denotes the number of ways r different things can be chosen from a
set of n items. Then C(n, r) is given by the following formula:

Cðn; rÞ ¼ n!

r!ðn� rÞ!
where the exclamation point denotes the factorial function. Moreover,C(n, 0)¼
C(n, n) ¼ 1. It is also known that C(n, r) ¼ C(n – 1, r – 1) + C(n – 1, r).

a. Write a recursive algorithm to determine C(n, r). Identify the base
case(s) and the general case(s).

b. Using your recursive algorithm, determine C(5, 3) and C(9, 4).

PROGRAMMING EXERCISES

1. Write a recursive function that takes as a parameter a nonnegative integer
and generates the following pattern of stars. If the nonnegative integer is 4,
the pattern generated is as follows:

**
*
*
**

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the preceding pattern.

2. Write a recursive function to generate a pattern of stars such as the following:

*
**

**
*

390 | Chapter 6: Recursion

6

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the preceding pattern.

3. Write a recursive a function to generate the following pattern of stars:

*
* *

* * *
* * * *
* * *
* *
*

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the preceding pattern.

4. Write a recursive function, vowels, that returns the number of vowels in a
string. Also, write a program to test your function.

5. Write a recursive function that finds and returns the sum of the elements of
an int array. Also, write a program to test your function.

6. A palindrome is a string that reads the same both forward and backward. For
example, the string "madam" is a palindrome. Write a program that uses a
recursive function to check whether a string is a palindrome. Your program
must contain a value-returning recursive function that returns true if the
string is a palindrome and false otherwise. Do not use any global variables;
use the appropriate parameters.

7. Write a program that uses a recursive function to print a string backward. Do
not use any global variables; use the appropriate parameters.

8. Write a recursive function, reverseDigits, that takes an integer as a
parameter and returns the number with the digits reversed. Also, write a
program to test your function.

9. Write a recursive function, power, that takes as parameters two integers x
and y such that x is nonzero and returns xy. You can use the following
recursive definition to calculate xy. If y � 0,

powerðx; yÞ ¼
1 if y ¼ 0

x if y ¼ 1

x� powerðx; y� 1Þ if y > 1:

8<
:

If y < 0,

powerðx; yÞ ¼ 1

powerðx;�yÞ :

Also, write a program to test your function.

Programming Exercises | 391

10. (Greatest Common Divisor) Given two integers x and y, the following
recursive definition determines the greatest common divisor of x and y,
written gcd(x,y):

gcdðx; yÞ ¼ x if y ¼ 0

gcdðy; x%yÞ if y 6¼ 0

�

Note: In this definition, % is the mod operator.

Write a recursive function, gcd, that takes as parameters two integers and
returns the greatest common divisor of the numbers. Also, write a program
to test your function.

11. Write a recursive function to implement the recursive algorithm of Exercise 12
(reversing the elements of an array between two indices). Also, write a program
to test your function.

12. Write a recursive function to implement the recursive algorithm of Exercise 13
(multiplying two positive integers using repeated addition). Also, write a pro-
gram to test your function.

13. Write a recursive function to implement the recursive algorithm of Exercise 14
(determining the number of ways to select a set of things from a given set of
things). Also, write a program to test your function.

14. In the section ‘‘Converting a Number from Decimal to Binary,’’ in this
chapter, you learned how to convert a decimal number into the equivalent
binary number. Two more number systems, octal (base 8) and hexadecimal
(base 16), are of interest to computer scientists. In fact, in C++, you can
instruct the computer to store a number in octal or hexadecimal.

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The
digits in the hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, and F. So A in hexadecimal is 10 in decimal, B in hexadecimal is
11 in decimal, and so on.

The algorithm to convert a positive decimal number into an equivalent
number in octal (or hexadecimal) is the same as discussed for binary
numbers. Here, we divide the decimal number by 8 (for octal) and by 16
(for hexadecimal). Suppose ab represents the number a to the base b. For
example, 7510 means 75 to the base 10 (that is decimal), and 8316 means 83
to the base 16 (that is, hexadecimal). Then:

75310 ¼ 13618
75310 ¼ 2F116

Themethodof converting adecimal number to base 2, or 8, or 16 canbe extended
to any arbitrary base. Suppose you want to convert a decimal number n into an
equivalent number in base b, where b is between 2 and 36. You then divide the
decimal number n by b as in the algorithm for converting decimal to binary.

392 | Chapter 6: Recursion

Note that the digits in, say base 20, are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, F, G, H, I, and J.

Write a program that uses a recursive function to convert a number in decimal
to a given base b, where b is between 2 and 36. Your program should prompt
the user to enter the number in decimal and in the desired base.

Test your program on the following data:

9098 and base 20

692 and base 2

753 and base 16

15. (Recursive Sequential Search) The sequential search algorithm given in
Chapter 3 is nonrecursive. Write and implement a recursive version of the
sequential search algorithm.

16. The function sqrt from the header file cmath can be used to find the
square root of a nonnegative real number. Using Newton’s method, you
can also write an algorithm to find the square root of a nonnegative real
number within a given tolerance as follows: Suppose x is a nonnegative real
number, a is the approximate square root of x, and epsilon is the tolerance.
Start with a ¼ x;

a. If |a2- x| � epsilon, then a is the square root of x within the tolerance;
otherwise:

b. Replace a with (a2 + x) / (2a) and repeat Step a

where | a2- x| denotes the absolute value of a2- x.

Write a recursive function to implement this algorithm to find the square
root of a nonnegative real number. Also, write a program to test your
function.

17. Write a program to find solutions to the n-queens puzzle for various values
of n. To be specific, test your program for n ¼ 4 and n ¼ 8.

18. Write the definitions of the remaining functions of the class sudoku. Also
write a program to solve some sudoku problems.

19. (Knight’s Tour) This chapter described the backtracking algorithm and
how to use recursion to implement it. Another well-known chessboard
problem that can be solved using the backtracking algorithm is a knight’s
tour. Given an initial board position, determine a sequence of moves by a
knight that visits every square of the chessboard exactly once. For example,
for a 5 � 5 and 6 � 6 square board, the sequence of moves are shown in
Figure 6-18:

6

Programming Exercises | 393

A knight moves by jumping two positions either vertically or horizontally and
one position in the perpendicular direction. Write a recursive backtracking
program that takes as input an initial board position and determines a sequence
of moves by a knight that visits each square of the board exactly once.

1 6 15 10 21

14 9 20 5 16

19 2 7 22 11

8 13 24 17 4

25 18 3 12 23

1 16 7 26 11

34 25 12 15 6

17 2 33 8 13

32 35 24 21 8

23 18 3 30 9

14

27

10

5

20

36 31 22 19 4 29

FIGURE 6-18 Knight’s tour

394 | Chapter 6: Recursion

7C H A P T E R
STACKS

IN THIS CHAPTER , YOU WILL :

. Learn about stacks

. Examine various stack operations

. Learn how to implement a stack as an array

. Learn how to implement a stack as a linked list

. Discover stack applications

. Learn how to use a stack to remove recursion

This chapter discusses a very useful data structure called a stack. It has numerous
applications in computer science.

Stacks
Suppose that you have a program with several functions. To be specific, suppose that you
have the functions A, B, C, and D in your program. Now suppose that function A calls
function B, function B calls function C, and function C calls function D. When function
D terminates, control goes back to function C; when function C terminates, control goes
back to function B; and when function B terminates, control goes back to function A.
During program execution, how do you think the computer keeps track of the function
calls? What about recursive functions? How does the computer keep track of the
recursive calls? In Chapter 6, we designed a recursive function to print a linked list
backward. What if you want to write a nonrecursive algorithm to print a linked list
backward?

This section discusses the data structure called the stack, which the computer uses to
implement function calls. You can also use stacks to convert recursive algorithms into
nonrecursive algorithms, especially recursive algorithms that are not tail recursive. Stacks
have numerous other applications in computer science. After developing the tools
necessary to implement a stack, we will examine some applications of stacks.

A stack is a list of homogenous elements in which the addition and deletion of elements
occurs only at one end, called the top of the stack. For example, in a cafeteria, the second
tray in a stack of trays can be removed only if the first tray has been removed. For another
example, to get to your favorite computer science book, which is underneath your math
and history books, you must first remove the math and history books. After removing
these books, the computer science book becomes the top book—that is, the top element
of the stack. Figure 7-1 shows some examples of stacks.

The elements at the bottom of the stack have been in the stack the longest. The top
element of the stack is the last element added to the stack. Because the elements are added

Stack of
coins

Stack of trays

Stack of boxes

5

Chemistry
English

C++ Programming
World History

Applied Math

Stack of books

FIGURE 7-1 Various examples of stacks

396 | Chapter 7: Stacks

and removed from one end (that is, the top), it follows that the item that is added last will
be removed first. For this reason, a stack is also called a Last In First Out (LIFO) data
structure.

Stack: A data structure in which the elements are added and removed from one end
only; a Last In First Out (LIFO) data structure.

Now that you know what a stack is, let us see what kinds of operations can be performed
on a stack. Because new items can be added to the stack, we can perform the add
operation, called push, to add an element onto the stack. Similarly, because the top item
can be retrieved and/or removed from the stack, we can perform the operation top to
retrieve the top element of the stack, and the operation pop to remove the top element
from the stack.

The push, top, and pop operations work as follows: Suppose there are boxes lying on
the floor that need to be stacked on a table. Initially, all of the boxes are on the floor and
the stack is empty. (See Figure 7-2.)

First we push box A onto the stack. After the push operation, the stack is as shown in
Figure 7-3(a).

We then push box B onto the stack. After this push operation, the stack is as shown in
Figure 7-3(b). Next, we push box C onto the stack. After this push operation, the stack is
as shown in Figure 7-3(c). Next, we look at the top element of the stack. After this
operation, the stack is unchanged and shown in Figure 7-3(d). We then push box D onto

7
Empty stack

A

B
D

C
E

FIGURE 7-2 Empty stack

(a) Push Box A

A

(c) Push Box C

AB

(b) Push Box B

AB C

(d) Peek at the top element (e) Push Box D (f) Pop stack

ABC ABCABC
D

FIGURE 7-3 Stack operations

Stacks | 397

the stack. After this push operation, the stack is as shown in Figure 7-3(e). Next, we pop
the stack. After the pop operation, the stack is as shown in Figure 7-3(f).

An element can be removed from the stack only if there is something in the stack, and an
element can be added to the stack only if there is room. The two operations that
immediately follow from push, top, and pop are isFullStack (checks whether the
stack is full) and isEmptyStack (checks whether the stack is empty). Because a stack
keeps changing as we add and remove elements, the stack must be empty before we first
start using it. Thus, we need another operation, called initializeStack, which
initializes the stack to an empty state. Therefore, to successfully implement a stack, we
need at least these six operations, which are described next. (We might also need other
operations on a stack, depending on the specific implementation.)

• initializeStack—Initializes the stack to an empty state.

• isEmptyStack—Determines whether the stack is empty. If the stack
is empty, it returns the value true; otherwise, it returns the value
false.

• isFullStack—Determines whether the stack is full. If the stack is full, it
returns the value true; otherwise, it returns the value false.

• push—Adds a new element to the top of the stack. The input to this
operation consists of the stack and the new element. Prior to this opera-
tion, the stack must exist and must not be full.

• top—Returns the top element of the stack. Prior to this operation, the
stack must exist and must not be empty.

• pop—Removes the top element of the stack. Prior to this operation, the
stack must exist and must not be empty.

The following abstract class stackADT defines these operations as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the basic operations on a stack.
//***

template <class Type>
class stackADT
{
public:

virtual void initializeStack() = 0;
//Method to initialize the stack to an empty state.
//Postcondition: Stack is empty.

virtual bool isEmptyStack() const = 0;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

398 | Chapter 7: Stacks

virtual bool isFullStack() const = 0;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

virtual void push(const Type& newItem) = 0;
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem is added
// to the top of the stack.

virtual Type top() const = 0;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element of the stack
// is returned.

virtual void pop() = 0;
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top element
// is removed from the stack.

};

Figure 7-4 shows the UML class diagram of the class stackADT.

We now consider the implementation of our abstract stack data structure. Functions such
as push and pop that are required to implement a stack are not available to C++
programmers. We must write the functions to implement the stack operations.

Because all the elements of a stack are of the same type, a stack can be implemented as
either an array or a linked structure. Both implementations are useful and are discussed in
this chapter.

7

stackADT<Type>

+initializeStack(): void
+isEmptyStack(): boolean
+isFullStack(): boolean
+push(Type): void
+top(): Type
+pop(): void

FIGURE 7-4 UML class diagram of the class stackADT

Stacks | 399

Implementation of Stacks as Arrays
Because all the elements of a stack are of the same type, you can use an array to
implement a stack. The first element of the stack can be put in the first array slot, the
second element of the stack in the second array slot, and so on. The top of the stack is the
index of the last element added to the stack.

In this implementation of a stack, stack elements are stored in an array, and an array
is a random access data structure; that is, you can directly access any element of the
array. However, by definition, a stack is a data structure in which the elements are
accessed (popped or pushed) at only one end—that is, a Last In First Out data
structure. Thus, a stack element is accessed only through the top, not through the
bottom or middle. This feature of a stack is extremely important and must be
recognized in the beginning.

To keep track of the top position of the array, we can simply declare another variable,
called stackTop.

The following class, stackType, implements the functions of the abstract class
stackADT. By using a pointer, we can dynamically allocate arrays, so we will leave it
for the user to specify the size of the array (that is, the stack size). We assume that the
default stack size is 100. Because the class stackType has a pointer member variable
(the pointer to the array to store the stack elements), we must overload the assignment
operator and include the copy constructor and destructor. Moreover, we give a generic
definition of the stack. Depending on the specific application, we can pass the stack
element type when we declare a stack object.

//***
// Author: D.S. Malik
//
// This class specifies the basic operation on a stack as an
// array.
//***

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);
//Overload the assignment operator.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: stackTop = 0;

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

400 | Chapter 7: Stacks

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem is
// added to the top of the stack.

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element of the stack
// is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top element is
// removed from the stack.

stackType(int stackSize = 100);
//Constructor
//Create an array of the size stackSize to hold
//the stack elements. The default stack size is 100.
//Postcondition: The variable list contains the base address
// of the array, stackTop = 0, and maxStackSize = stackSize

stackType(const stackType<Type>& otherStack);
//Copy constructor

~stackType();
//Destructor
//Remove all the elements from the stack.
//Postcondition: The array (list) holding the stack
// elements is deleted.

private:
int maxStackSize; //variable to store the maximum stack size
int stackTop; //variable to point to the top of the stack
Type *list; //pointer to the array that holds the stack elements

void copyStack(const stackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and assigned
// to this stack.

};

7

Implementation of Stacks as Arrays | 401

Figure 7-5 shows the UML class diagram of the class stackType.

If stackTop is 0, the stack is empty. If stackTop is nonzero, the stack is nonempty

and the top element of the stack is given by stackTop – 1 because the first stack

element is at position 0.

The function copyStack is included as a private member. It contains the code that

is common to the functions to overload the assignment operator and the copy constructor.

We use this function only to implement the copy constructor and overload the assignment

operator. To copy a stack into another stack, the program can use the assignment

operator.

Figure 7-6 shows this data structure, wherein stack is an object of type stackType.
Note that stackTop can range from 0 to maxStackSize. If stackTop is nonzero, then
stackTop - 1 is the index of the top element of the stack. Suppose that maxStackSize
= 100.

stackType<Type>

-maxStackSize: int
-stackTop: int
-*list: Type

+operator=(const stackType<Type>&): const stackType<Type>&
+initializeStack(): void
+isEmptyStack() const: bool
+isFullStack() const: bool
+push(const Type&): void
+top() const: Type
+pop(): void
-copyStack(const stackType<Type>&): void
+stackType(int = 100)
+stackType(const stackType<Type>&)
+~stackType()

FIGURE 7-5 UML class diagram of the class stackType

402 | Chapter 7: Stacks

Note that the pointer list contains the base address of the array (holding the stack
elements)—that is, the address of the first array component. Next we discuss how to
implement the member functions of the class stackType.

Initialize Stack
Let us consider the initializeStack operation. Because the value of stackTop

indicates whether the stack is empty, we can simply set stackTop to 0 to initialize the
stack. (See Figure 7-7.)

The definition of the function initializeStack is as follows:

template <class Type>
void stackType<Type>::initializeStack()
{

stackTop = 0;
}//end initializeStack

7

maxStackSize 100
stackTop 4

list

stack

A
B
C

.

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3] D

FIGURE 7-6 Example of a stack

maxStackSize 100
stackTop 0

list

stack

A
B
C

.

.

.

[0]
[1]
[2]

[99]

unused
stack[3] D

FIGURE 7-7 Empty stack

Implementation of Stacks as Arrays | 403

Empty Stack
We have seen that the value of stackTop indicates whether the stack is empty. If
stackTop is 0, the stack is empty; otherwise, the stack is not empty. The definition of
the function isEmptyStack is as follows:

template <class Type>
bool stackType<Type>::isEmptyStack() const
{

return(stackTop == 0);
}//end isEmptyStack

Full Stack
Next, we consider the operation isFullStack. It follows that the stack is full if stackTop
is equal to maxStackSize. The definition of the function isFullStack is as follows:

template <class Type>
bool stackType<Type>::isFullStack() const
{

return(stackTop == maxStackSize);
} //end isFullStack

Push
Adding, or pushing, an element onto the stack is a two-step process. Recall that the value
of stackTop indicates the number of elements in the stack, and stackTop - 1 gives the
position of the top element of the stack. Therefore, the push operation is as follows:

1. Store the newItem in the array component indicated by stackTop.

2. Increment stackTop.

Figure 7-8(a) shows the stack before pushing 'y' into the stack. Figure 7-8(b) shows the
stack after pushing 'y' into the stack.

maxStackSize 100

stackTop 4

list

stack

S

u

n

n

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3] stack

S

u

n

n

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

y [4]

maxStackSize 100

stackTop 5

list

(a) Before pushing y (b) After pushing y

FIGURE 7-8 Stack before and after the push operation

404 | Chapter 7: Stacks

The definition of the function push is as follows:

template <class Type>
void stackType<Type>::push(const Type& newItem)
{

if (!isFullStack())
{

list[stackTop] = newItem; //add newItem at the top
stackTop++; //increment stackTop

}
else

cout << "Cannot add to a full stack." << endl;
}//end push

If we try to add a new item to a full stack, the resulting condition is called an overflow.
Error checking for an overflow can be handled in different ways. One way is as shown
previously. Or, we can check for an overflow before calling the function push, as shown
next (assuming stack is an object of type stackType).

if (!stack.isFullStack())
stack.push(newItem);

Return the Top Element
The operation top returns the top element of the stack. Its definition is as follows:

template <class Type>
Type stackType<Type>::top() const
{

assert(stackTop != 0); //if stack is empty, terminate the
//program

return list[stackTop - 1]; //return the element of the stack
//indicated by stackTop - 1

}//end top

Pop
To remove, or pop, an element from the stack, we simply decrement stackTop by 1.

Figure 7-9(a) shows the stack before popping 'D' from the stack. Figure 7-9(b) shows the
stack after popping 'D' from the stack.

7

Implementation of Stacks as Arrays | 405

The definition of the function pop is as follows:

template <class Type>
void stackType<Type>::pop()
{

if (!isEmptyStack())
stackTop--; //decrement stackTop

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

If we try to remove an item from an empty stack, the resulting condition is called an
underflow. Error checking for an underflow can be handled in different ways. One way
is as shown previously. Or, we can check for an underflow before calling the function
pop, as shown next (assuming stack is an object of type stackType).

if (!stack.isEmptyStack())
stack.pop();

Copy Stack
The function copyStack makes a copy of a stack. The stack to be copied is passed as a
parameter to the function copyStack. We will, in fact, use this function to implement
the copy constructor and overload the assignment operator. The definition of this
function is as follows:

template <class Type>
void stackType<Type>::copyStack(const stackType<Type>& otherStack)
{

delete [] list;
maxStackSize = otherStack.maxStackSize;
stackTop = otherStack.stackTop;

maxStackSize 100

4

list

stack

B

O

L

D

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

stackTop

maxStackSize 100

3
list

stack

B

O

L

D

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

stackTop

(a) Stack before popping D (b) Stack after popping D

FIGURE 7-9 Stack before and after the pop operation

406 | Chapter 7: Stacks

list = new Type[maxStackSize];

//copy otherStack into this stack
for (int j = 0; j < stackTop; j++)

list[j] = otherStack.list[j];
} //end copyStack

Constructor and Destructor
The functions to implement the constructor and the destructor are straightforward. The
constructor with parameters sets the stack size to the size specified by the user, sets
stackTop to 0, and creates an appropriate array in which to store the stack elements. If
the user does not specify the size of the array in which to store the stack elements, the
constructor uses the default value, which is 100, to create an array of size 100. The
destructor simply deallocates the memory occupied by the array (that is, the stack) and
sets stackTop to 0. The definitions of the constructor and destructor are as follows:

template <class Type>
stackType<Type>::stackType(int stackSize)
{

if (stackSize <= 0)
{

cout << "Size of the array to hold the stack must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxStackSize = 100;
}
else

maxStackSize = stackSize; //set the stack size to
//the value specified by
//the parameter stackSize

stackTop = 0; //set stackTop to 0
list = new Type[maxStackSize]; //create the array to

//hold the stack elements
}//end constructor

template <class Type>
stackType<Type>::~stackType() //destructor
{

delete [] list; //deallocate the memory occupied
//by the array

}//end destructor

Copy Constructor
The copy constructor is called when a stack object is passed as a (value) parameter to a
function. It copies the values of the member variables of the actual parameter into the
corresponding member variables of the formal parameter. Its definition is as follows:

7

Implementation of Stacks as Arrays | 407

template <class Type>
stackType<Type>::stackType(const stackType<Type>& otherStack)
{

list = NULL;

copyStack(otherStack);
}//end copy constructor

Overloading the Assignment Operator (=)
Recall that for classes with pointer member variables, the assignment operator must be
explicitly overloaded. The definition of the function to overload the assignment operator
for the class stackType is as follows:

template <class Type>
const stackType<Type>& stackType<Type>::operator=

(const stackType<Type>& otherStack)
{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

return *this;
} //end operator=

Stack Header File
Now that you know how to implement the stack operations, you can put the definitions
of the class and the functions to implement the stack operations together to create the
stack header file. For the sake of completeness, we next describe the header file. Suppose
that the name of the header file containing the definition of the class stackType is
myStack.h. We will refer to this header file in any program that uses a stack.

//Header file: myStack.h

#ifndef H_StackType
#define H_StackType

#include <iostream>
#include <cassert>

#include "stackADT.h"

using namespace std;

//Place the definition of the class template stackType, as given
//previously in this chapter, here.

//Place the definitions of the member functions as discussed here.
#endif

408 | Chapter 7: Stacks

7

The analysis of the stack operations is similar to the operations of the class arrayListType

(Chapter 3). We, therefore, provide only a summary in Table 7-1.

EXAMPLE 7-1

Before we give a programming example, let us first write a simple program that uses the
class stackType and tests some of the stack operations. Among others, we will test the
assignment operator and the copy constructor. The program and its output are as follows:

//***
// Author: D.S. Malik
//
// This program tests various operations of a stack.
//***

#include <iostream>
#include "myStack.h"

using namespace std;

TABLE 7-1 Time complexity of the operations of the class stackType on a stack with
n elements

Function Time complexity

isEmptyStack O (1)

isFullStack O (1)

initializeStack O (1)

constructor O (1)

top O (1)

push O (1)

pop O (1)

copyStack O (n)

destructor O (1)

copy constructor O (n)

Overloading the assignment operator O (n)

Implementation of Stacks as Arrays | 409

void testCopyConstructor(stackType<int> otherStack);

int main()
{

stackType<int> stack(50);
stackType<int> copyStack(50);
stackType<int> dummyStack(100);

stack.initializeStack();
stack.push(23);
stack.push(45);
stack.push(38);
copyStack = stack; //copy stack into copyStack

cout << "The elements of copyStack: ";

while (!copyStack.isEmptyStack()) //print copyStack
{

cout << copyStack.top() << " ";
copyStack.pop();

}
cout << endl;

copyStack = stack;
testCopyConstructor(stack); //test the copy constructor

if (!stack.isEmptyStack())
cout << "The original stack is not empty." << endl

<< "The top element of the original stack: "
<< copyStack.top() << endl;

dummyStack = stack; //copy stack into dummyStack

cout << "The elements of dummyStack: ";

while (!dummyStack.isEmptyStack()) //print dummyStack
{

cout << dummyStack.top() << " ";
dummyStack.pop();

}

cout << endl;

return 0;
}

void testCopyConstructor(stackType<int> otherStack)
{

if (!otherStack.isEmptyStack())
cout << "otherStack is not empty." << endl

<< "The top element of otherStack: "
<< otherStack.top() << endl;

}

410 | Chapter 7: Stacks

Sample Run:

The elements of copyStack: 38 45 23
otherStack is not empty.
The top element of otherStack: 38
The original stack is not empty.
The top element of the original stack: 38
The elements of dummyStack: 38 45 23

It is recommended that you do a walk-through of this program.

7

PROGRAMMING EXAMPLE: Highest GPA
In this example, we write a C++ program that reads a data file consisting of each
student’s GPA followed by the student’s name. The program then prints the highest
GPA and the names of all the students who received that GPA. The program scans the
input file only once. Moreover, we assume that there are a maximum of 100 students
in the class.

Input The program reads an input file consisting of each student’s GPA, followed by the
student’s name. Sample data is as follows:

3.5 Bill
3.6 John
2.7 Lisa
3.9 Kathy
3.4 Jason
3.9 David
3.4 Jack

Output The program outputs the highest GPA and all the names associated with the
highest GPA. For example, for the preceding data, the highest GPA is 3.9 and
the students with that GPA are Kathy and David.

PROGRAM

ANALYSIS AND

ALGORITHM

DESIGN

We read the first GPA and the name of the student. Because this data is the first item read,
it is the highest GPA so far. Next, we read the second GPA and the name of the student.
We then compare this (second) GPA with the highest GPA so far. Three cases arise:

1. The new GPA is greater than the highest GPA so far. In this case, we
do the following:

a. Update the value of the highest GPA so far.

b. Initialize the stack—that is, remove the names of the students
from the stack.

c. Save the name of the student having the highest GPA so far in
the stack.

Programming Example: Highest GPA | 411

2. The new GPA is equal to the highest GPA so far. In this case, we
add the name of the new student to the stack.

3. The new GPA is smaller than the highest GPA so far. In this case,
we discard the name of the student having this grade.

We then read the next GPA and the name of the student, and repeat Steps 1
through 3. We continue this process until we reach the end of file.

From this discussion, it is clear that we need the following variables:

double GPA; //variable to hold the current GPA
double highestGPA; //variable to hold the highest GPA
string name; //variable to hold the name of the student
stackType<string> stack(100); //object to implement the stack

The previous discussion translates into the following algorithm:

1. Declare the variables and initialize stack.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Set the output of the floating-point numbers to a fixed decimal
format with a decimal point and trailing zeroes. Also, set the preci-
sion to two decimal places.

5. Read the GPA and the student name.

6. highestGPA = GPA;

7. while (not end of file)
{

7.1. if (GPA > highestGPA)

{

7.1.1. initializeStack(stack);

7.1.2. push(stack, student name);

7.1.3. highestGPA = GPA;

}

7.2. else
if (GPA is equal to highestGPA)

push(stack, student name);

7.3. Read GPA and student name;

}

8. Output the highest GPA.

9. Output the names of the students having the highest GPA.

412 | Chapter 7: Stacks

7

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// This program reads a data file consisting of students' GPAs
// followed by their names. The program then prints the highest
// GPA and the names of the students with the highest GPA.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>

#include "myStack.h"

using namespace std;

int main()
{

//Step 1
double GPA;
double highestGPA;
string name;

stackType<string> stack(100);

ifstream infile;

infile.open("HighestGPAData.txt"); //Step 2

if (!infile) //Step 3
{

cout << "The input file does not "
<< "exist. Program terminates!" << endl;

return 1;
}

cout << fixed << showpoint; //Step 4
cout << setprecision(2); //Step 4

infile >> GPA >> name; //Step 5

highestGPA = GPA; //Step 6

while (infile) //Step 7
{

if (GPA > highestGPA) //Step 7.1
{

stack.initializeStack(); //Step 7.1.1

Programming Example: Highest GPA | 413

if (!stack.isFullStack()) //Step 7.1.2
stack.push(name);

highestGPA = GPA; //Step 7.1.3
}
else if (GPA == highestGPA) //Step 7.2

if (!stack.isFullStack())
stack.push(name);

else
{

cout << "Stack overflows. "
<< "Program terminates!" << endl;

return 1; //exit program
}

infile >> GPA >> name; //Step 7.3
}

cout << "Highest GPA = " << highestGPA << endl;//Step 8
cout << "The students holding the "

<< "highest GPA are:" << endl;

while (!stack.isEmptyStack()) //Step 9
{

cout << stack.top() << endl;
stack.pop();

}

cout << endl;

return 0;
}

Sample Run:

Input File (HighestGPAData.txt)

3.4 Randy
3.2 Kathy
2.5 Colt
3.4 Tom
3.8 Ron
3.8 Mickey
3.6 Peter
3.5 Donald
3.8 Cindy
3.7 Dome
3.9 Andy
3.8 Fox
3.9 Minnie
2.7 Gilda
3.9 Vinay
3.4 Danny

414 | Chapter 7: Stacks

7

Linked Implementation of Stacks
Because an array size is fixed, in the array (linear) representation of a stack, only a fixed
number of elements can be pushed onto the stack. If in a program the number of
elements to be pushed exceeds the size of the array, the program might terminate in an
error. We must overcome this problem.

We have seen that by using pointer variables we can dynamically allocate and deallocate
memory, and by using linked lists we can dynamically organize data (such as an ordered
list). Next, we will use these concepts to implement a stack dynamically.

Recall that in the linear representation of a stack, the value of stackTop indicates the
number of elements in the stack, and the value of stackTop - 1 points to the top item in
the stack. With the help of stackTop, we can do several things: Find the top element,
check whether the stack is empty, and so on.

Similar to the linear representation, in a linked representation stackTop is used to locate
the top element in the stack. However, there is a slight difference. In the former case,
stackTop gives the index of the array. In the latter case, stackTop gives the address
(memory location) of the top element of the stack.

The following class implements the functions of the abstract class stackADT:

//***
// Author: D.S. Malik
//
// This class specifies the basic operation on a stack as a
// linked list.
//***

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

Output

Highest GPA = 3.90
The students holding the highest GPA are:
Vinay
Minnie
Andy

Note that the names of the students with the highest GPA are output in the reverse
order, relative to the order they appear in the input because the top element of the
stack is the last element added to the stack.

Linked Implementation of Stacks | 415

template <class Type>
class linkedStackType: public stackADT<Type>
{
public:

const linkedStackType<Type>& operator=
(const linkedStackType<Type>&);

//Overload the assignment operator.

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty;
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns false.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: The stack elements are removed;
// stackTop = NULL;

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem is
// added to the top of the stack.

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element of
// the stack is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

linkedStackType();
//Default constructor
//Postcondition: stackTop = NULL;

linkedStackType(const linkedStackType<Type>& otherStack);
//Copy constructor

~linkedStackType();
//Destructor
//Postcondition: All the elements of the stack are removed.

416 | Chapter 7: Stacks

private:
nodeType<Type> *stackTop; //pointer to the stack

void copyStack(const linkedStackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and
// assigned to this stack.

};

In this linked implementation of stacks, the memory to store the stack elements is

allocated dynamically. Logically, the stack is never full. The stack is full only if we run out

of memory space. Therefore, in reality, the function isFullStack does not apply to

linked implementations of stacks. However, the class linkedStackType must

provide the definition of the function isFullStack because it is defined in the

parent abstract class stackADT.

We leave the UML class diagram of the class linkedStackType as an exercise for you.
(See Exercise 12 at the end of this chapter.)

EXAMPLE 7-2

Suppose that stack is an object of type linkedStackType. Figure 7-10(a) shows an
empty stack and Figure 7-10(b) shows a nonempty stack.

In Figure 7-10(b), the top element of the stack is C; that is, the last element pushed onto
the stack is C.

7

stackTop

stack

stackTop

stack

C

B

A

(a) Empty stack

(b) Nonempty stack

FIGURE 7-10 Empty and nonempty linked stacks

Linked Implementation of Stacks | 417

Next, we discuss the definitions of the functions to implement the operations of a linked
stack.

Default Constructor
The first operation that we consider is the default constructor. The default constructor
initializes the stack to an empty state when a stack object is declared. Thus, this function
sets stackTop to NULL. The definition of this function is as follows:

template <class Type>
linkedStackType<Type>::linkedStackType()
{

stackTop = NULL;
}

Empty Stack and Full Stack
The operations isEmptyStack and isFullStack are quite straightforward. The
stack is empty if stackTop is NULL. Also, because the memory for a stack element
is allocated and deallocated dynamically, the stack is never full. (The stack is full
only if we run out of memory.) Thus, the function isFullStack always returns the
value false. The definitions of the functions to implement these operations are as
follows:

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const
{

return(stackTop == NULL);
} //end isEmptyStack

template <class Type>
bool linkedStackType<Type>::isFullStack() const
{

return false;
} //end isFullStack

Recall that in the linked implementation of stacks, the function isFullStack does not
apply because logically the stack is never full. However, you must provide its definition
because it is included as an abstract function in the parent class stackADT.

Initialize Stack
The operation initializeStack reinitializes the stack to an empty state. Because the
stack might contain some elements and we are using a linked implementation of a stack,
we must deallocate the memory occupied by the stack elements and set stackTop to
NULL. The definition of this function is as follows:

418 | Chapter 7: Stacks

template <class Type>
void linkedStackType<Type>:: initializeStack()
{

nodeType<Type> *temp; //pointer to delete the node

while (stackTop != NULL) //while there are elements in
//the stack

{
temp = stackTop; //set temp to point to the

//current node
stackTop = stackTop->link; //advance stackTop to the

//next node
delete temp; //deallocate memory occupied by temp

}
} //end initializeStack

Next, we consider the push, top, and pop operations. From Figure 7-10(b), it is clear
that the newElement will be added (in the case of push) at the beginning of the linked
list pointed to by stackTop. In the case of pop, the node pointed to by stackTop will be
removed. In both cases, the value of the pointer stackTop is updated. The operation top

returns the info of the node to which stackTop is pointing.

Push
Consider the stack shown in Figure 7-11.

7

stackTop

stack

C

B

A

FIGURE 7-11 Stack before the push operation

Linked Implementation of Stacks | 419

Figure 7-12 shows the steps of the push operation. (Assume that the new element to be
pushed is 'D'.)

As shown in Figure 7-12, to push 'D' into the stack, first we create a new node and
store 'D' into it. Next, we put the new node on top of the stack. Finally, we make
stackTop point to the top element of the stack. The definition of the function push is
as follows:

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store newElement in the node
newNode->link = stackTop; //insert newNode before stackTop
stackTop = newNode; //set stackTop to point to the

//top node
} //end push

We do not need to check whether the stack is full before we push an element onto the
stack because in this implementation, logically, the stack is never full.

Return the Top Element
The operation to return the top element of the stack is quite straightforward. Its definition
is as follows:

D

stackTop

stack

C

B

A

D

C

B

A

newNode

(a) Create newNode
and store D

(b) Put newNode on
the top of stack

(c) Make stackTop point
to the top element

stackTop

stack

stackTop

stack

newNode newNode

D

C

B

A

FIGURE 7-12 Push operation

420 | Chapter 7: Stacks

template <class Type>
Type linkedStackType<Type>::top() const
{

assert(stackTop != NULL); //if stack is empty,
//terminate the program

return stackTop->info; //return the top element
}//end top

Pop
Now we consider the pop operation, which removes the top element of the stack.
Consider the stack shown in Figure 7-13.

Figure 7-14 shows the pop operation.

7

stackTop

stack

C

B

A

FIGURE 7-13 Stack before the pop operation

temp C

B

A

stackTop

stack

C

B

A

B

A

stackTop

stack

stackTop

temp

(a) Make temp point to the
top element

(b) Make stackTop point to
the next element

(c) Delete temp

FIGURE 7-14 Pop operation

Linked Implementation of Stacks | 421

As shown in Figure 7-14, first we make a pointer temp point to the top of the stack. Next we
make stackTop point to the next element of the stack, which will become the top element
of the stack. Finally, we delete temp. The definition of the function pop is as follows:

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp; //pointer to deallocate memory

if (stackTop != NULL)
{

temp = stackTop; //set temp to point to the top node

stackTop = stackTop->link; //advance stackTop to the
//next node

delete temp; //delete the top node
}
else

cout << "Cannot remove from an empty stack." << endl;
}//end pop

Copy Stack
The function copyStack makes an identical copy of a stack. Its definition is similar to the
definition of copyList for linked lists, given in Chapter 5. The definition of the function
copyStack is as follows:

template <class Type>
void linkedStackType<Type>::copyStack

(const linkedStackType<Type>& otherStack)
{

nodeType<Type> *newNode, *current, *last;

if (stackTop != NULL) //if stack is nonempty, make it empty
initializeStack();

if (otherStack.stackTop == NULL)
stackTop = NULL;

else
{

current = otherStack.stackTop; //set current to point
//to the stack to be copied

//copy the stackTop element of the stack
stackTop = new nodeType<Type>; //create the node

stackTop->info = current->info; //copy the info
stackTop->link = NULL; //set the link field to NULL
last = stackTop; //set last to point to the node
current = current->link; //set current to point to the

//next node

422 | Chapter 7: Stacks

//copy the remaining stack
while (current != NULL)
{

newNode = new nodeType<Type>;

newNode->info = current->info;
newNode->link = NULL;
last->link = newNode;
last = newNode;
current = current->link;

}//end while
}//end else

} //end copyStack

Constructors and Destructors
We have already discussed the default constructor. To complete the implementation of
the stack operations, next we give the definitions of the functions to implement the copy
constructor and the destructor, and to overload the assignment operator. (These functions
are similar to those discussed for linked lists in Chapter 5.)

//copy constructor
template <class Type>
linkedStackType<Type>::linkedStackType(

const linkedStackType<Type>& otherStack)
{

stackTop = NULL;
copyStack(otherStack);

}//end copy constructor

//destructor
template <class Type>
linkedStackType<Type>::~linkedStackType()
{

initializeStack();
}//end destructor

Overloading the Assignment Operator (=)
The definition of the function to overload the assignment operator for the class

linkedStackType is as follows:

template <class Type>
const linkedStackType<Type>& linkedStackType<Type>::operator=

(const linkedStackType<Type>& otherStack)
{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

return *this;
}//end operator=

7

Linked Implementation of Stacks | 423

Table 7-2 summarizes the time complexity of the operations to implement a linked stack.

The definition of a stack, and the functions to implement the stack operations discussed
previously, are generic. Also, as in the case of an array representation of a stack, in the
linked representation of a stack, we put the definition of the stack and the functions to
implement the stack operations together in a (header) file. A client’s program can include
this header file via the include statement.

The program in Example 7-3 illustrates how a linkedStack object is used in a program.

EXAMPLE 7-3

We assume that the definition of the class linkedStackType and the functions to
implement the stack operations are included in the header file "linkedStack.h".

//***
// Author: D.S. Malik
//
// This program tests various operations of a linked stack.
//***

TABLE 7-2 Time complexity of the operations of the class linkedStackType on a
stack with n elements

Function Time complexity

isEmptyStack O (1)

isFullStack O (1)

initializeStack O (n)

constructor O (1)

top O (1)

push O (1)

pop O (1)

copyStack O (n)

destructor O (n)

copy constructor O (n)

Overloading the assignment operator O (n)

424 | Chapter 7: Stacks

#include <iostream>
#include "linkedStack.h"

using namespace std;

void testCopy(linkedStackType<int> OStack);

int main()
{

linkedStackType<int> stack;
linkedStackType<int> otherStack;
linkedStackType<int> newStack;

//Add elements into stack
stack.push(34);
stack.push(43);
stack.push(27);

//Use the assignment operator to copy the elements
//of stack into newStack

newStack = stack;

cout << "After the assignment operator, newStack: "
<< endl;

//Output the elements of newStack
while (!newStack.isEmptyStack())
{

cout << newStack.top() << endl;
newStack.pop();

}

//Use the assignment operator to copy the elements
//of stack into otherStack

otherStack = stack;

cout << "Testing the copy constructor." << endl;

testCopy(otherStack);

cout << "After the copy constructor, otherStack: " << endl;

while (!otherStack.isEmptyStack())
{

cout << otherStack.top() << endl;
otherStack.pop();

}

return 0;
}

7

Linked Implementation of Stacks | 425

//Function to test the copy constructor
void testCopy(linkedStackType<int> OStack)
{

cout << "Stack in the function testCopy:" << endl;

while (!OStack.isEmptyStack())
{

cout << OStack.top() << endl;
OStack.pop();

}
}

Sample Run:

After the assignment operator, newStack:
27
43
34
Testing the copy constructor.
Stack in the function testCopy:
27
43
34
After the copy constructor, otherStack:
27
43
34

Stack as Derived from the class unorderedLinkedList
If we compare the push function of the stack with the insertFirst function discussed
for general lists in Chapter 5, we see that the algorithms to implement these operations
are similar. A comparison of other functions, such as initializeStack and
initializeList, isEmptyList and isEmptyStack, and so on, suggests that the
class linkedStackType can be derived from the class linkedListType. Moreover,
the functions pop and isFullStack can be implemented as in the previous section.
Note that the class linkedListType is an abstract class and does not implement all
the operations. However, the class unorderedLinkedList is derived from the
the class linkedListType and provides the definitions of the abstract functions of
the class linkedListType. Therefore, we can derive the class linkedStackType
from the class unorderedLinkedList.

Next, we define the class linkedStackType that is derived from the class

unorderedLinkedList. The definitions of the functions to implement the stack opera-
tions are also given.

#include <iostream>
#include "unorderedLinkedList.h"

426 | Chapter 7: Stacks

7

using namespace std;

template <class Type>
class linkedStackType: public unorderedLinkedList<Type>
{
public:

void initializeStack();
bool isEmptyStack() const;
bool isFullStack() const;
void push(const Type& newItem);
Type top() const;
void pop();

};

template <class Type>
void linkedStackType<Type>::initializeStack()
{

unorderedLinkedList<Type>::initializeList();
}

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const
{

return unorderedLinkedList<Type>::isEmptyList();
}

template <class Type>
bool linkedStackType<Type>::isFullStack() const
{

return false;
}

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

unorderedLinkedList<Type>::insertFirst(newElement);
}

template <class Type>
Type linkedStackType<Type>::top() const
{

return unorderedLinkedList<Type>::front();
}

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp;

temp = first;
first = first->link;
delete temp;

}

Linked Implementation of Stacks | 427

Application of Stacks: Postfix Expressions
Calculator
The usual notation for writing arithmetic expressions (the notation we learned in
elementary school) is called infix notation, in which the operator is written between
the operands. For example, in the expression a + b, the operator + is between the
operands a and b. In infix notation, the operators have precedence. That is, we must
evaluate expressions from left to right, and multiplication and division have higher
precedence than addition and subtraction. If we want to evaluate the expression in a
different order, we must include parentheses. For example, in the expression a + b * c, we
first evaluate * using the operands b and c, and then we evaluate + using the operand a
and the result of b * c.

In the early 1920s, the Polish mathematician Jan Lukasiewicz discovered that if operators
were written before the operands (prefix or Polish notation; for example, + a b), the
parentheses can be omitted. In the late 1950s, the Australian philosopher and early
computer scientist Charles L. Hamblin proposed a scheme in which the operators follow
the operands (postfix operators), resulting in the Reverse Polish notation. This has the
advantage that the operators appear in the order required for computation.

For example, the expression:

a + b * c

in a postfix expression is:

a b c * +

The following example shows various infix expressions and their equivalent postfix
expressions.

EXAMPLE 7-4

Shortly after Lukasiewicz’s discovery, it was realized that postfix notation had important
applications in computer science. In fact, many compilers use stacks to first translate infix
expressions into some form of postfix notation and then translate this postfix expression
into machine code. Postfix expressions can be evaluated using the following algorithm:

Infix expression Equivalent postfix expression

a + b a b +

a + b * c a b c * +

a * b + c a b * c +

(a + b) * c a b + c *

(a – b) * (c + d) a b – c d + *

(a + b) * (c – d / e) + f a b + c d e / – * f +

428 | Chapter 7: Stacks

Scan the expression from left to right. When an operator is found, back up to get the required number
of operands, perform the operation, and continue.

Consider the following postfix expression:

6 3 + 2 * =

Let us evaluate this expression using a stack and the previous algorithm. Figure 7-15
shows how this expression gets evaluated.

Read the first symbol, 6, which is a number. Push the number onto the stack; see
Figure 7-15(a). Read the next symbol, 3, which is a number. Push the number onto the
stack; see Figure 7-15(b). Read the next symbol, +, which is an operator. Because an
operator requires two operands to be evaluated, pop the stack twice; see Figure 7-15(c).
Perform the operation and put the result back onto the stack; see Figure 7-15(d).

Read the next symbol, 2, which is a number. Push the number onto the stack; see
Figure 7-15(e). Read the next symbol, *, which is an operator. Because an operator
requires two operands to be evaluated, pop the stack twice; see Figure 7-15(f). Perform
the operation and put the result back onto the stack; see Figure 7-15(g).

Scan the next symbol, =, which is the equal sign, indicating the end of the expression.
Therefore, print the result. The result of the expression is in the stack, so pop and print;
see Figure 7-15(h).

The value of the expression 6 3 + 2 * = 18.

7

6

Push
6
into
stack

(a)

3
6

(b)

+
Pop
stack
twice
op2 = 3;
op1 = 6;

(c)

op1 + op2
= 9
Push 9
into
stack 9

(d)

Expression: 6 3 + 2 * =

Push
3
into
stack

2
9

(e)

Push
2
into
stack

*
Pop
stack
twice
op2 = 2;
op1 = 9;

(f)

op1 * op2
= 18
Push 18
into
stack 18

(g)

=
Pop
stack
and
print:
18

(h)

FIGURE 7-15 Evaluating the postfix expression: 6 3 + 2 * =

Application of Stacks: Postfix Expressions Calculator | 429

From this discussion, it is clear that when we read a symbol other than a number, the
following cases arise:

1. The symbol we read is one of the following: +, -, *, /, or =.

a. If the symbol is +, -, *, or /, the symbol is an operator and so we
must evaluate it. Because an operator requires two operands, the
stack must have at least two elements; otherwise, the expression has
an error.

b. If the symbol is = (an equal sign), the expression ends and we must
print the answer. At this step, the stack must contain exactly one
element; otherwise, the expression has an error.

2. The symbol we read is something other than +, -, *, /, or ¼. In this
case, the expression contains an illegal operator.

It is also clear that when an operand (number) is encountered in an expression, it is
pushed onto the stack because the operator comes after the operands.

Consider the following expressions:

i. 7 6 + 3 ; 6 - =

ii. 14 + 2 3 * =

iii. 14 2 3 + =

Expression (i) has an illegal operator, expression (ii) does not have enough operands for +,
and expression (iii) has too many operands. In the case of expression (iii), when we
encounter the equal sign (=), the stack will have two elements and this error cannot be
discovered until we are ready to print the value of the expression.

To make the input easier to read, we assume that the postfix expressions are in the
following form:

#6 #3 + #2 * =

The symbol # precedes each number in the expression. If the symbol scanned is #, the
next input is a number (that is, an operand). If the symbol scanned is not #, it is either an
operator (might be illegal) or an equal sign (indicating the end of the expression).
Furthermore, we assume that each expression contains only the +, -, *, and / operators.

This program outputs the entire postfix expression together with the answer. If the
expression has an error, the expression is discarded. In this case, the program outputs
the expression together with an appropriate error message. Because an expression might
contain an error, we must clear the stack before processing the next expression. Also, the
stack must be initialized; that is, the stack must be empty.

MAIN ALGORITHM

Pursuant to the previous discussion, the main algorithm in pseudocode is as follows:

430 | Chapter 7: Stacks

7

Read the first character
while not the end of input data
{

a. initialize the stack
b. process the expression
c. output result
d. get the next expression

}

To simplify the complexity of the function main, we write four functions—
evaluateExpression, evaluateOpr, discardExp, and printResult. The function
evaluateExpression, if possible, evaluates the expression and leaves the result in the
stack. If the postfix expression is error free, the function printResult outputs the result.
The function evaluateOpr evaluates an operator, and the function discardExp discards
the current expression if there is any error in the expression.

FUNCTION evaluateExpression

The function evaluateExpression evaluates each postfix expression. Each expression
ends with the symbol =. The general algorithm in pseudocode is as follows:

while (ch is not = '=') //process each expression
//= marks the end of an expression

{
switch (ch)
{
case '#':

read a number
output the number;
push the number onto the stack;
break;

default:
assume that ch is an operation
evaluate the operation;

} //end switch

if no error was found, then
{

read next ch;
output ch;

}
else

Discard the expression
} //end while

From this algorithm, it follows that this method has five parameters—a parameter to
access the input file, a parameter to access the output file, a parameter to access the stack, a
parameter to pass a character of the expression, and a parameter to indicate whether there
is an error in the expression. The definition of this function is as follows:

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk)

Application of Stacks: Postfix Expressions Calculator | 431

{
double num;
outF << ch;

while (ch != '=')
{

switch (ch)
{
case '#':

inpF >> num;
outF << num << " ";
if (!stack.isFullStack())

stack.push(num);
else
{

cout << "Stack overflow. "
<< "Program terminates!" << endl;

exit(0); //terminate the program
}

break;

default:
evaluateOpr(outF, stack, ch, isExpOk);

}//end switch

if (isExpOk) //if no error
{

inpF >> ch;
outF << ch;

if (ch != '#')
outF << " ";

}
else

discardExp(inpF, outF, ch);
} //end while (!= '=')

} //end evaluateExpression

Note that the funtion exit terminates the program.

FUNCTION evaluateOpr

This function (if possible) evaluates an expression. Two operands are needed to evaluate
an operation and operands are saved in the stack. Therefore, the stack must contain at
least two numbers. If the stack contains fewer than two numbers, the expression has an
error. In this case, the entire expression is discarded and an appropriate message is
printed. This function also checks for any illegal operations. In pseudocode, this
function is as follows:

432 | Chapter 7: Stacks

if stack is empty
{

error in the expression
set expressionOk to false

}
else
{

retrieve the top element of stack into op2
pop stack
if stack is empty
{

error in the expression
set expressionOk to false

}
else
{

retrieve the top element of stack into op1
pop stack

//If the operation is legal, perform the operation and
//push the result onto the stack;
//otherwise, report the error.

switch (ch)
{
case '+': //add the operands: op1 + op2

stack.push(op1 + op2);
break;

case '-': //subtract the operands: op1 - op2
stack.push(op1 - op2);
break;

case '*': //multiply the operands: op1 * op2
stack.push(op1 * op2);
break;

case '/': //If (op2 != 0), op1 / op2
stack.push(op1 / op2);
break;

otherwise operation is illegal
{

output an appropriate message;
set expressionOk to false

}
} //end switch

}

Following this pseudocode, the definition of the function evaluateOpr is as follows:

void evaluateOpr(ofstream& out, stackType<double>& stack,
char& ch, bool& isExpOk)

{
double op1, op2;

7

Application of Stacks: Postfix Expressions Calculator | 433

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}
else
{

op2 = stack.top();
stack.pop();

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}
else
{

op1 = stack.top();
stack.pop();

switch (ch)
{
case '+':

stack.push(op1 + op2);
break;

case '-':
stack.push(op1 - op2);
break;

case '*':
stack.push(op1 * op2);
break;

case '/':
if (op2 != 0)

stack.push(op1 / op2);
else
{

out << " (Division by 0)";
isExpOk = false;

}
break;

default:
out << " (Illegal operator)";
isExpOk = false;

}//end switch
} //end else

} //end else
} //end evaluateOpr

434 | Chapter 7: Stacks

FUNCTION discardExp

This function is called whenever an error is discovered in the expression. It reads and
writes the input data only until the input is '=', the end of the expression. The definiton
of this function is as follows:

void discardExp(ifstream& in, ofstream& out, char& ch)
{

while (ch != '=')
{

in.get(ch);
out << ch;

}
} //end discardExp

FUNCTION printResult

If the postfix expression contains no errors, the function printResult prints the result;
otherwise, it outputs an appropriate message. The result of the expression is in the stack
and the output is sent to a file. Therefore, this function must have access to the stack and
the output file. Suppose that no errors were encountered by the method
evaluateExpression. If the stack has only one element, the expression is error free
and the top element of the stack is printed. If either the stack is empty or it has more than
one element, there is an error in the postfix expression. In this case, this method outputs
an appropriate error message. The definition of this method is as follows:

void printResult(ofstream& outF, stackType<double>& stack,
bool isExpOk)

{
double result;

if (isExpOk) //if no error, print the result
{

if (!stack.isEmptyStack())
{

result = stack.top();
stack.pop();

if (stack.isEmptyStack())
outF << result << endl;

else
outF << " (Error: Too many operands)" << endl;

} //end if
else

outF << " (Error in the expression)" << endl;
}
else

outF << " (Error in the expression)" << endl;

outF << "_________________________________"
<< endl << endl;

} //end printResult

7

Application of Stacks: Postfix Expressions Calculator | 435

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// This program uses a stack to evaluate postfix expressions.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include "mystack.h"

using namespace std;

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk);

void evaluateOpr(ofstream& out, stackType<double>& stack,
char& ch, bool& isExpOk);

void discardExp(ifstream& in, ofstream& out, char& ch);
void printResult(ofstream& outF, stackType<double>& stack,

bool isExpOk);

int main()
{

bool expressionOk;
char ch;
stackType<double> stack(100);
ifstream infile;
ofstream outfile;

infile.open("RpnData.txt");

if (!infile)
{

cout << "Cannot open the input file. "
<< "Program terminates!" << endl;

return 1;
}

outfile.open("RpnOutput.txt");

outfile << fixed << showpoint;
outfile << setprecision(2);

infile >> ch;
while (infile)
{

stack.initializeStack();
expressionOk = true;
outfile << ch;

436 | Chapter 7: Stacks

evaluateExpression(infile, outfile, stack, ch,
expressionOk);

printResult(outfile, stack, expressionOk);
infile >> ch; //begin processing the next expression

} //end while

infile.close();
outfile.close();

return 0;

} //end main

//Place the definitions of the function evaluateExpression,
//evaluateOpr, discardExp, and printResult as described
//previously here.

Sample Run:

Input File

#35 #27 + #3 * =
#26 #28 + #32 #2 ; - #5 / =
#23 #30 #15 * / =
#2 #3 #4 + =
#20 #29 #9 * ; =
#25 #23 - + =
#34 #24 #12 #7 / * + #23 - =

Output

#35.00 #27.00 + #3.00 * = 186.00

#26.00 #28.00 + #32.00 #2.00 ; (Illegal operator) - #5 / = (Error in the expression)

#23.00 #30.00 #15.00 * / = 0.05

#2.00 #3.00 #4.00 + = (Error: Too many operands)

#20.00 #29.00 #9.00 * ; (Illegal operator) = (Error in the expression)

#25.00 #23.00 - + (Not enough operands) = (Error in the expression)

#34.00 #24.00 #12.00 #7.00 / * + #23.00 - = 52.14

7

Application of Stacks: Postfix Expressions Calculator | 437

Removing Recursion: Nonrecursive Algorithm
to Print a Linked List Backward
In Chapter 6, we used recursion to print a linked list backward. In this section, you will
learn how a stack can be used to design a nonrecursive algorithm to print a linked list
backward.

Consider the linked list shown in Figure 7-16.

To print the list backward, first we need to get to the last node of the list, which we can
do by traversing the linked list starting at the first node. However, once we are at the last
node, how do we get back to the previous node, especially given that links go in only one
direction? You can again traverse the linked list with the appropriate loop termination
condition, but this approach might waste a considerable amount of computer time,
especially if the list is very large. Moreover, if we do this for every node in the list, the
program might execute very slowly. Next, we show how to use a stack effectively to
print the list backward.

After printing the info of a particular node, we need to move to the node immediately
behind this node. For example, after printing 15, we need to move to the node with
info 10. Thus, while initially traversing the list to move to the last node, we must save a
pointer to each node. For example, for the list in Figure 7-16, we must save a pointer to
each of the nodes with info 5 and 10. After printing 15, we go back to the node with
info 10; after printing 10, we go back to the node with info 5. From this, it follows
that we must save pointers to each node in a stack, so as to implement the Last In First
Out principle.

Because the number of nodes in a linked list is usually not known, we will use the linked
implementation of a stack. Suppose that stack is an object of type linkedListType,
and current is a pointer of the same type as the pointer first. Consider the following
statements:

current = first; //Line 1

while (current != NULL) //Line 2
{ //Line 3

stack.push(current); //Line 4
current = current->link; //Line 5

} //Line 6

5first 10 15

FIGURE 7-16 Linked list

438 | Chapter 7: Stacks

After the statement in Line 1 executes, current points to the first node. (See Figure 7-17)

Because current is not NULL, the statements in Lines 4 and 5 execute. (See Figure 7-18.)

Because current is not NULL, statements in Lines 4 and 5 execute. In fact, statements in
Lines 4 and 5 execute until current beomes NULL. When current is NULL, Figure 7-19
results.

7

current

stack

stackTop5first 10 15

FIGURE 7-17 List after the statement current = first; executes

 5
current

stack

stackTop5first 10 15

FIGURE 7-18 List and stack after the statements stack.push(current); and current =
current->link; execute

 5

current

stack

stackTop5first 10 15
 15

 10

FIGURE 7-19 List and stack after the while statement executes

Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward | 439

After the statement in Line 4 executes, the loop condition, in Line 2, is evaluated again.
Because current is NULL, the loop condition evaluates to false and the while loop, in
Line 2, terminates. From Figure 7-19, it follows that a pointer to each node in the linked
list is saved in the stack. The top element of the stack contains a pointer to the last node in
the list, and so on. Let us now execute the following statements:

while (!stack.isEmptyStack()) //Line 7
{ //Line 8

current = stack.top(); //Line 9
stack.pop(); //Line 10
cout << current->info << " "; //Line 11

} //Line 12

The loop condition in Line 7 evaluates to true because the stack is nonempty. There-
fore, the statements in Lines 9, 10, and 11 execute. After the statement in Line 9 executes,
current points to the last node. The statement in Line 10 removes the top element of
the stack; see Figure 7-20.

The statement in Line 11 outputs current->info, which is 15.

Because stack is nonempty, the body of the while loop executes again. In fact, for the linked
list in Figure 7-20, the body of the while loop executes twomore times; the first time it prints
10, and the second time it prints 5. Ater printing 5, the stack becomes empty and the while
loop terminates. It follows that the while loop in Line 7 produces the following output:

15 10 5

STL class stack
The previous sections discussed the data structure stack in detail. Because a stack is an
important data structure, the Standard Template Library (STL) provides a class to imple-
ment a stack in a program. The name of the class defining a stack is stack; the name of

 5

stack

stackTop
5first 10 15

 10current

FIGURE 7-20 List and stack after the statements current = stack.top(); and stack.pop();
execute

440 | Chapter 7: Stacks

the header file containing the definition of the class stack is stack. The implementa-
tion of the class stack provided by the STL is similar to the one described in this
chapter. Table 7-3 defines the various operations supported by the stack container class.

In addition to the operations size, empty, push, top, and pop, the stack container
class provides relational operators to compare two stacks. For example, the relational
operator == can be used to determine whether two stacks are identical.

The program in Example 7-5 illustrates how to use the stack container class.

EXAMPLE 7-5

//***
// Author: D.S. Malik
//
// This program illustrates how to use the STL class stack in
// a program.
//***

#include <iostream> //Line 1
#include <stack> //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

stack<int> intStack; //Line 6

7

TABLE 7-3 Operations on a stack object

Operation Effect

size
Returns the actual number of elements in
the stack.

empty
Returns true if the stack is empty, and
false otherwise.

push(item) Inserts a copy of item into the stack.

top

Returns the top element of the stack, but
does not remove the top element from the
stack. This operation is implemented as a
value-returning function.

pop Removes the top element of the stack.

STL class stack | 441

intStack.push(16); //Line 7
intStack.push(8); //Line 8
intStack.push(20); //Line 9
intStack.push(3); //Line 10

cout << "Line 11: The top element of intStack: "
<< intStack.top() << endl; //Line 11

intStack.pop(); //Line 12

cout << "Line 13: After the pop operation, the "
<< " top element of intStack: "
<< intStack.top() << endl; //Line 13

cout << "Line 14: intStack elements: "; //Line 14

while (!intStack.empty()) //Line 15
{ //Line 16

cout << intStack.top() << " "; //Line 17
intStack.pop(); //Line 18

} //Line 19

cout << endl; //Line 20

return 0; //Line 21
} //Line 22

Sample Run:

Line 11: The top element of intStack: 3
Line 13: After the pop operation, the top element of intStack: 20
Line 14: intStack elements: 20 8 16

The preceding output is self-explanatory. The details are left as an exercise for you.

QUICK REVIEW

1. A stack is a data structure in which the items are added and deleted from one
end only.

2. A stack is a Last In First Out (LIFO) data structure.

3. The basic operations on a stack are as follows: Push an item onto the stack,
pop an item from the stack, retrieve the top element of the stack, initialize the
stack, check whether the stack is empty, and check whether the stack is full.

4. A stack can be implemented as an array or a linked list.

5. The middle elements of a stack should not be accessed directly.

6. Stacks are restricted versions of arrays and linked lists.

442 | Chapter 7: Stacks

7. Postfix notation does not require the use of parentheses to enforce operator
precedence.

8. In postfix notation, the operators are written after the operands.

9. Postfix expressions are evaluated according to the following rules:

a. Scan the expression from left to right.

b. If an operator is found, back up to get the required number of
operands, evaluate the operator, and continue.

10. The STL class stack can be used to implement a stack in a program.

EXERCISES

1. Consider the following statements:

stackType<int> stack;
int x, y;

Show what is output by the following segment of code:

x = 4;
y = 0;
stack.push(7);
stack.push(x);
stack.push(x + 5);
y = stack.top();
stack.pop();
stack.push(x + y);
stack.push(y - 2);
stack.push(3);
x = stack.top();
stack.pop();

cout << "x = " << x << endl;
cout << "y = " << y << endl;

while (!stack.isEmptyStack())
{

cout << stack.top() << endl;
stack.pop();

}

2. Consider the following statements:

stackType<int> stack;
int x;

Suppose that the input is:

14 45 34 23 10 5 -999

Show what is output by the following segment of code:

7

Exercises | 443

stack.push(5);

cin >> x;

while (x != -999)
{

if (x % 2 == 0)
{

if (!stack.isFullStack())
stack.push(x);

}
else

cout << "x = " << x << endl;
cin >> x;

}

cout << "Stack Elements: ";

while (!stack.isEmptyStack())
{

cout << " " << stack.top();
stack.pop();

}
cout << endl;

3. Evaluate the following postfix expressions:

a. 8 2 + 3 * 16 4 / - =

b. 12 25 5 1 / / * 8 7 + - =

c. 70 14 4 5 15 3 / * - - / 6 + =

d. 3 5 6 * + 13 - 18 2 / + =

4. Convert the following infix expressions to postfix notations:

a. (A + B) * (C + D) - E

b. A - (B + C) * D + E / F

c. ((A + B) / (C - D) + E) * F - G

d. A + B * (C + D) - E / F * G + H

5. Write the equivalent infix expression for the following postfix expressions:

a. A B * C +

b. A B + C D - *

c. A B – C – D *

6. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

444 | Chapter 7: Stacks

7

template <class Type>
void mystery(stackType<Type>& s, stackType<Type>& t);

int main()
{

stackType<string> s1;
stackType<string> s2;

string list[] = {"Winter", "Spring", "Summer", "Fall",
"Cold", "Warm", "Hot"};

for (int i = 0; i < 7; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

template <class Type>
void mystery(stackType<Type>& s, stackType<Type>& t)
{

while (!s.isEmptyStack())
{

t.push(s.top());
s.pop();

}
}

7. What is the effect of the following statements? If a statement is invalid, explain
why it is invalid. The classes stackADT, stackType, and linkedStackType
are as defined in this chapter.

a. stackADT<int> newStack;

b. stackType<double> sales(-10);

c. stackType<string> names;

d. linkedStackType<int> numStack(50);

8. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

void mystery(stackType<int>& s, stackType<int>& t);

Exercises | 445

int main()
{

int list[] = {5, 10, 15, 20, 25};

stackType<int> s1;
stackType<int> s2;

for (int i = 0; i < 5; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

void mystery(stackType<int>& s, stackType<int>& t)
{

while (!s.isEmptyStack())
{

t.push(2 * s.top());
s.pop();

}
}

9. What is the output of the following program segment?

linkedStackType<int> myStack;

myStack.push(10);
myStack.push(20);
myStack.pop();
cout << myStack.top() << endl;
myStack.push(25);
myStack.push(2 * myStack.top());
myStack.push(-10);
myStack.pop();

linkedStackType<int> tempStack;

tempStack = myStack;

while (!tempStack.isEmptyStack())
{

cout << tempStack.top() << " ";
tempStack.pop();

}

cout << endl;

cout << myStack.top() << endl;

446 | Chapter 7: Stacks

10. Write the definition of the function template printListReverse that uses
a stack to print a linked list in reverse order. Assume that this function is a
member of the class linkedListType, designed in Chapter 5.

11. Write the definition of the function template second that takes as a
parameter a stack object and returns the second element of the stack. The
original stack remains unchanged.

12. Draw the UML class diagram of the class linkedStackType.

13. Write the definition of the function template clear that takes as a para-
meter a stack object of the type stack (STL class) and removes all the
elements from the stack.

PROGRAMMING EXERCISES

1. Two stacks of the same type are the same if they have the same number of
elements and their elements at the corresponding positions are the same.
Overload the relational operator == for the class stackType that returns
true if two stacks of the same type are the same, false otherwise. Also,
write the definition of the function template to overload this operator.

2. Repeat Exercise 1 for the class linkedStackType.

3. a. Add the following operation to the class stackType:

void reverseStack(stackType<Type> &otherStack);

This operation copies the elements of a stack in reverse order onto
another stack.

Consider the following statements:

stackType<int> stack1;
stackType<int> stack2;

The statement

stack1.reverseStack(stack2);

copies the elements of stack1 onto stack2 in reverse order. That is,
the top element of stack1 is the bottom element of stack2, and so on.
The old contents of stack2 are destroyed and stack1 is unchanged.

b. Write the definition of the function template to implement the opera-
tion reverseStack.

4. Repeat Exercises 3a and 3b for the class linkedStackType.

5. Write a program that takes as input an arithmetic expression. The program
outputs whether the expression contains matching grouping symbols. For
example, the arithmetic expressions {25 + (3 – 6) * 8} and 7 + 8 * 2 contains
matching grouping symbols. However, the expression 5 + {(13 + 7) / 8 - 2 * 9
does not contain matching grouping symbols.

7

Programming Exercises | 447

6. Write a program that uses a stack to print the prime factors of a positive
integer in descending order.

7. (Converting a Number from Binary to Decimal) The language of a
computer, called machine language, is a sequence of 0s and 1s. When you
press the key A on the keyboard, 01000001 is stored in the computer. Also,
the collating sequence of A in the ASCII character set is 65. In fact, the binary
representation of A is 01000001 and the decimal representation of A is 65.

The numbering system we use is called the decimal system, or base 10
system. The numbering system that the computer uses is called the binary

system, or base 2 system. The purpose of this exercise is to write a
function to convert a number from base 2 to base 10.

To convert a number from base 2 to base 10, we first find the weight of each
bit in the binary number. The weight of each bit in the binary number is
assigned from right to left. The weight of the rightmost bit is 0. The weight
of the bit immediately to the left of the rightmost bit is 1, the weight of the
bit immediately to the left of it is 2, and so on. Consider the binary number
1001101. The weight of each bit is as follows:

weight 6 5 4 3 2 1 0

1 0 0 1 1 0 1

We use the weight of each bit to find the equivalent decimal number. For
each bit, we multiply the bit by 2 to the power of its weight, and then we
add all of the numbers. For the binary number 1001101, the equivalent
decimal number is

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1 ¼ 77

To write a program that converts a binary number into the equivalent
decimal number, we note two things: (1) The weight of each bit in the
binary number must be known, and (2) the weight is assigned from right to
left. Because we do not know in advance how many bits are in the binary
number, we must process the bits from right to left. After processing a bit,
we can add 1 to its weight, giving the weight of the bit immediately to its
left. Also, each bit must be extracted from the binary number and multiplied
by 2 to the power of its weight. To extract a bit, you can use the mod
operator. Write a program that uses a stack to convert a binary number into
an equivalent decimal number and test your function for the following
values: 11000101, 10101010, 11111111, 10000000, 1111100000.

8. Chapter 6 described how to use recursion to convert a decimal number into
an equivalent binary number. Write a program that uses a stack to convert a
decimal number into an equivalent binary number.

448 | Chapter 7: Stacks

9. (Infix to Postfix) Write a program that converts an infix expression into an
equivalent postfix expression.

The rules to convert an infix expression into an equivalent postfix expression
are as follows:

Suppose infx represents the infix expression and pfx represents the postfix
expression. The rules to convert infx into pfx are as follows:

a. Initialize pfx to an empty expression and also initialize the stack.

b. Get the next symbol, sym, from infx.

b.1. If sym is an operand, append sym to pfx.

b.2. If sym is (, push sym into the stack.

b.3. If sym is), pop and append all the symbols from the stack until the
most recent left parenthesis. Pop and discard the left parenthesis.

b.4. If sym is an operator:

b.4.1. Pop and append all the operators from the stack to pfx that
are above the most recent left parenthesis and have pre-
cedence greater than or equal to sym.

b.4.2. Push sym onto the stack.

c. After processing infx, some operators might be left in the stack. Pop
and append to pfx everything from the stack.

In this program, you will consider the following (binary) arithmetic opera-
tors: +, -, *, and /. You may assume that the expressions you will process are
error free.

Design a class that stores the infix and postfix strings. The class must include
the following operations:

• getInfix—Stores the infix expression

• showInfix—Outputs the infix expression

• showPostfix—Outputs the postfix expression

Some other operations that you might need are the following:

• convertToPostfix—Converts the infix expression into a postfix
expression. The resulting postfix expression is stored in pfx.

• precedence—Determines the precedence between two operators. If the
first operator is of higher or equal precedence than the second operator, it
returns the value true; otherwise, it returns the value false.

Include the constructors and destructors for automatic initialization and
dynamic memory deallocation.

7

Programming Exercises | 449

Test your program on the following five expressions:

A + B - C;
(A + B) * C;
(A + B) * (C - D);
A + ((B + C) * (E - F) - G) / (H - I);
A + B * (C + D) - E / F * G + H;

For each expression, your answer must be in the following form:

Infix Expression: A + B - C;
Postfix Expression: A B + C -

10. Redo the program in the section ‘‘Application of Stacks: Postfix Expressions
Calculator’’ of this chapter so that it uses the STL class stack to evaluate
the postfix expressions.

11. Redo Programming Exercise 9 so that it uses the STL class stack to
convert the infix expressions to postfix expressions.

450 | Chapter 7: Stacks

QUEUES
IN THIS CHAPTER , YOU WILL :

. Learn about queues

. Examine various queue operations

. Learn how to implement a queue as an array

. Learn how to implement a queue as a linked list

. Discover queue applications

. Become aware of the STL class queue

8C H A P T E R

This chapter discusses another important data structure, called a queue. The notion of a
queue in computer science is the same as the notion of the queues to which you are
accustomed in everyday life. There are queues of customers in a bank or in a grocery store
and queues of cars waiting to pass through a tollbooth. Similarly, because a computer can
send a print request faster than a printer can print, a queue of documents is often waiting to
be printed at a printer. The general rule to process elements in a queue is that the customer
at the front of the queue is served next and that when a new customer arrives, he or she
stands at the end of the queue. That is, a queue is a First In First Out data structure.

Queues have numerous applications in computer science. Whenever a system is modeled
on the First In First Out principle, queues are used. At the end of this section, we will
discuss one of the most widely used applications of queues, computer simulation. First,
however, we need to develop the tools necessary to implement a queue. The next few
sections discuss how to design classes to implement queues as an ADT.

A queue is a set of elements of the same type in which the elements are added at one end,
called the back or rear, and deleted from the other end, called the front. For example,
consider a line of customers in a bank, wherein the customers are waiting to withdraw/deposit
money or to conduct some other business. Each new customer gets in the line at the rear.
Whenever a teller is ready for a new customer, the customer at the front of the line is served.

The rear of the queue is accessed whenever a new element is added to the queue, and the
front of the queue is accessed whenever an element is deleted from the queue. As in a
stack, the middle elements of the queue are inaccessible, even if the queue elements are
stored in an array.

Queue: A data structure in which the elements are added at one end, called the rear, and
deleted from the other end, called the front; a First In First Out (FIFO) data structure.

Queue Operations
From the definition of queues, we see that the two key operations are add and delete. We
call the add operation addQueue and the delete operation deleteQueue. Because
elements can be neither deleted from an empty queue nor added to a full queue, we
need two more operations to successfully implement the addQueue and deleteQueue
operations: isEmptyQueue (checks whether the queue is empty) and isFullQueue
(checks whether a queue is full).

We also need an operation, initializeQueue, to initialize the queue to an empty state.
Moreover, to retrieve the first and last elements of the queue, we include the operations front
and back as described in the following list. Some of the queue operations are as follows:

• initializeQueue—Initializes the queue to an empty state.

• isEmptyQueue—Determines whether the queue is empty. If the queue
is empty, it returns the value true; otherwise, it returns the value false.

452 | Chapter 8: Queues

• isFullQueue—Determines whether the queue is full. If the queue is
full, it returns the value true; otherwise, it returns the value false.

• front—Returns the front, that is, the first element of the queue. Prior
to this operation, the queue must exist and must not be empty.

• back—Returns the last element of the queue. Prior to this operation, the
queue must exist and must not be empty.

• addQueue—Adds a new element to the rear of the queue. Prior to this
operation, the queue must exist and must not be full.

• deleteQueue—Removes the front element from the queue. Prior to
this operation, the queue must exist and must not be empty.

As in the case of a stack, a queue can be stored in an array or in a linked structure. We will
consider both implementations. Because elements are added at one end and removed
from the other end, we need two pointers to keep track of the front and rear of the
queue, called queueFront and queueRear.

The following abstract class queueADT defines these operations as an ADT:

//***
// Author: D.S. Malik
//
// This class specifies the basic operations on a queue.
//***

template <class Type>
class queueADT
{
public:

virtual bool isEmptyQueue() const = 0;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

virtual bool isFullQueue() const = 0;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

virtual void initializeQueue() = 0;
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

virtual Type front() const = 0;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first element of the queue
// is returned.

8

Queue Operations | 453

virtual Type back() const = 0;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last element of the queue
// is returned.

virtual void addQueue(const Type& queueElement) = 0;
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement is
// added to the queue.

virtual void deleteQueue() = 0;
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first element
// is removed from the queue.

};

We leave it as an exercise for you to draw the UML diagram of the class queueADT.

Implementation of Queues as Arrays
Before giving the definition of the class to implement a queue as an ADT, we need to
decide how many member variables are needed to implement the queue. Of course, we
need an array to store the queue elements, the variables queueFront and queueRear to
keep track of the first and last elements of the queue, and the variable maxQueueSize to
specify the maximum size of the queue. Thus, we need at least four member variables.

Before writing the algorithms to implement the queue operations, we need to decide how
to use queueFront and queueRear to access the queue elements. How do queueFront

and queueRear indicate that the queue is empty or full? Suppose that queueFront gives
the index of the first element of the queue, and queueRear gives the index of the last
element of the queue. To add an element to the queue, first we advance queueRear to the
next array position and then add the element to the position that queueRear is pointing to.
To delete an element from the queue, first we retrieve the element that queueFront is
pointing to and then advance queueFront to the next element of the queue. Thus,
queueFront changes after each deleteQueue operation and queueRear changes after
each addQueue operation.

Let us see what happens when queueFront changes after a deleteQueue operation and
queueRear changes after an addQueue operation. Assume that the array to hold the
queue elements is of size 100.

Initially, the queue is empty. After the operation:

addQueue(Queue,'A');

454 | Chapter 8: Queues

the array is as shown in Figure 8-1.

After two more addQueue operations:

addQueue(Queue,'B');
addQueue(Queue,'C');

the array is as shown in Figure 8-2.

Now consider the deleteQueue operation:

deleteQueue();

After this operation, the array containing the queue is as shown in Figure 8-3.

Will this queue design work? Suppose A stands for adding (that is, addQueue) an element
to the queue, and D stands for deleting (that is, deleteQueue) an element from the
queue. Consider the following sequence of operations:

AAADADADADADADADA...

8

[0]

queueFront queueRear

A
[1]

.....
[98][99]

0 0

FIGURE 8-1 Queue after the first addQueue operation

[0]

queueFront queueRear

A B
[1]

.....
[98][99]

0 2

C
[2] [3]

FIGURE 8-2 Queue after two more addQueue operations

[0]

queueFront queueRear

A B
[1]

.....
[98][99]

1 2

C
[2] [3]

FIGURE 8-3 Queue after the deleteQueue operation

Implementation of Queues as Arrays | 455

This sequence of operations would eventually set the index queueRear to point
to the last array position, giving the impression that the queue is full. However, the
queue has only two or three elements and the front of the array is empty. (See
Figure 8-4.)

One solution to this problem is that when the queue overflows to the rear (that is,
queueRear points to the last array position), we can check the value of the index
queueFront. If the value of queueFront indicates that there is room in the front of the
array, then when queueRear gets to the last array position, we can slide all of the queue
elements toward the first array position. This solution is good if the queue size is very small;
otherwise, the program might execute more slowly.

Another solution to this problem is to assume that the array is circular—that is, the first
array position immediately follows the last array position. (See Figure 8-5.)

We will consider the array containing the queue to be circular, although we will draw the
figures of the array holding the queue elements as before.

[0]

queueFront queueRear

[1]
.....

[98][99]

97 99

[2] [97]

FIGURE 8-4 Queue after the sequence of operations AAADADADADADA...

[0][99]

FIGURE 8-5 Circular queue

456 | Chapter 8: Queues

Suppose that we have the queue as shown in Figure 8-6(a).

After the operation addQueue(Queue,'Z');, the queue is as shown in Figure 8-6(b).

Because the array containing the queue is circular, we can use the following statement to
advance queueRear (queueFront) to the next array position:

queueRear = (queueRear + 1) % maxQueueSize;

If queueRear < maxQueueSize - 1, then queueRear + 1 <= maxQueueSize - 1, so
(queueRear + 1) % maxQueueSize = queueRear + 1. If queueRear == maxQueueSize

- 1 (that is, queueRear points to the last array position), queueRear + 1 ==
maxQueueSize, so (queueRear + 1) % maxQueueSize = 0. In this case, queueRear

will be set to 0, which is the first array position.

This queue design seems to work well. Before we write the algorithms to implement the
queue operations, consider the following two cases.

Case 1: Suppose that after certain operations, the array containing the queue is as shown
in Figure 8-7(a).

After the operation deleteQueue();, the resulting array is as shown in Figure 8-7(b).

8

[0]

queueFront queueRear

[1]
..... X Y

98 99

[0]

queueFront queueRear

Z
[1]

..... X Y
[98][99] [98][99]

98 0

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

FIGURE 8-6 Queue before and after the add operation

[0]

queueFront queueRear

[97]
..... X

[98][99]

98 98 queueFront queueRear99 98

(b) After deleteQueue();

[0] [97]
.....

[98][99]

(a) Before deleteQueue();

FIGURE 8-7 Queue before and after the delete operation

Implementation of Queues as Arrays | 457

Case 2: Let us now consider the queue shown in Figure 8-8(a).

After the operation addQueue(Queue,'Z');, the resulting array is as shown in Figure 8-8(b).

The arrays in Figures 8-7(b) and 8-8(b) have identical values for queueFront and
queueRear. However, the resulting array in Figure 8-7(b) represents an empty queue,
whereas the resulting array in Figure 8-8(b) represents a full queue. This latest queue design
has brought up another problem of distinguishing between an empty and a full queue.

This problem has several solutions. One solution is to keep a count. In addition to the member
variables queueFront and queueRear, we need another variable, count, to implement the
queue. The value of count is incremented whenever a new element is added to the queue,
and it is decremented whenever an element is removed from the queue. In this case, the
function initializeQueue initializes count to 0. This solution is very useful if the user of
the queue frequently needs to know the number of elements in the queue.

Another solution is to let queueFront indicate the index of the array position preceding the
first element of the queue, rather than the index of the (actual) first element itself. In this
case, assuming queueRear still indicates the index of the last element in the queue, the
queue is empty if queueFront == queueRear. In this solution, the slot indicated by the
index queueFront (that is, the slot preceding the first true element) is reserved. The queue
will be full if the next available space is the special reserved slot indicated by queueFront.
Finally, because the array position indicated by queueFront is to be kept empty, if the
array size is, say, 100, then 99 elements can be stored in the queue. (See Figure 8-9.)

[0]

queueFront queueRear

[97]
.....

[98][99]

99 97 queueFront queueRear99 98

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

queue
elements

[0] [97]
..... Z

[98][99]

queue elements

FIGURE 8-8 Queue before and after the add operation

queueFront queueRear1 97

[2] [97]
.....

[98][99]

queue
elements

[0] [1]

reserved slot

FIGURE 8-9 Array to store the queue elements with a reserved slot

458 | Chapter 8: Queues

Let us implement the queue using the first solution. That is, we use the variable count to
indicate whether the queue is empty or full.

The following class implements the functions of the abstract class queueADT. Because
arrays can be allocated dynamically, we will leave it for the user to specify the size of the
array to implement the queue. The default size of the array is 100.

//***
// Author: D.S. Malik
//
// This class specifies the basic operation on a queue as an
// array.
//***

template <class Type>
class queueType: public queueADT<Type>
{
public:

const queueType<Type>& operator=(const queueType<Type>&);
//Overload the assignment operator.

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first element of the
// queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last element of the queue
// is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.

8

Implementation of Queues as Arrays | 459

//Postcondition: The queue is changed and queueElement is
// added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first element
// is removed from the queue.

queueType(int queueSize = 100);
//Constructor

queueType(const queueType<Type>& otherQueue);
//Copy constructor

~queueType();
//Destructor

private:
int maxQueueSize; //variable to store the maximum queue size
int count; //variable to store the number of

//elements in the queue
int queueFront; //variable to point to the first

//element of the queue
int queueRear; //variable to point to the last

//element of the queue
Type *list; //pointer to the array that holds

//the queue elements
};

We leave the UML diagram of the class queueType as an exercise for you. (See
Exercise 15 at the end of this chapter.)

Next, we consider the implementation of the queue operations.

Empty Queue and Full Queue
As discussed earlier, the queue is empty if count == 0, and the queue is full if count ==
maxQueueSize. So the functions to implement these operations are as follows:

template <class Type>
bool queueType<Type>::isEmptyQueue() const
{

return (count == 0);
} //end isEmptyQueue

template <class Type>
bool queueType<Type>::isFullQueue() const
{

return (count == maxQueueSize);
} //end isFullQueue

460 | Chapter 8: Queues

8

Initialize Queue
This operation initializes a queue to an empty state. The first element is added at the first
array position. Therefore, we initialize queueFront to 0, queueRear to maxQueueSize - 1,
and count to 0. See Figure 8-10.

The definition of the function initializeQueue is as follows:

template <class Type>
void queueType<Type>::initializeQueue()
{

queueFront = 0;
queueRear = maxQueueSize - 1;
count = 0;

} //end initializeQueue

Front
This operation returns the first element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueFront is returned; otherwise, the
program terminates.

template <class Type>
Type queueType<Type>::front() const
{

assert(!isEmptyQueue());
return list[queueFront];

} //end front

Back
This operation returns the last element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueRear is returned; otherwise, the
program terminates.

template <class Type>
Type queueType<Type>::back() const
{

assert(!isEmptyQueue());
return list[queueRear];

} //end back

[0]

queueFront queueRear

[1]
.....

[97]

0 99

[2]

count 0

[98][99]

FIGURE 8-10 Empty queue

Implementation of Queues as Arrays | 461

Add Queue
Next, we implement the addQueue operation. Because queueRear points to the last
element of the queue, to add a new element to the queue, we first advance queueRear to
the next array position, and then add the new element to the array position indicated by
queueRear. We also increment count by 1. So the function addQueue is as follows:

template <class Type>
void queueType<Type>::addQueue(const Type& newElement)
{

if (!isFullQueue())
{

queueRear = (queueRear + 1) % maxQueueSize; //use the
//mod operator to advance queueRear
//because the array is circular

count++;
list[queueRear] = newElement;

}
else

cout << "Cannot add to a full queue." << endl;
} //end addQueue

Delete Queue
To implement the deleteQueue operation, we access the index queueFront. Because
queueFront points to the array position containing the first element of the queue, to
remove the first queue element, we decrement count by 1 and advance queueFront to
the next queue element. So the function deleteQueue is as follows:

template <class Type>
void queueType<Type>::deleteQueue()
{

if (!isEmptyQueue())
{

count--;
queueFront = (queueFront + 1) % maxQueueSize; //use the

//mod operator to advance queueFront
//because the array is circular

}
else

cout << "Cannot remove from an empty queue" << endl;
} //end deleteQueue

Constructors and Destructors
To complete the implementation of the queue operations, we next consider the imple-
mentation of the constructor and the destructor. The constructor gets the maxQueueSize

from the user, sets the variable maxQueueSize to the value specified by the user, and
creates an array of size maxQueueSize. If the user does not specify the queue size, the
constructor uses the default value, which is 100, to create an array of size 100. The

462 | Chapter 8: Queues

constructor also initializes queueFront and queueRear to indicate that the queue is
empty. The definition of the function to implement the constructor is as follows:

template <class Type>
queueType<Type>::queueType(int queueSize)
{

if (queueSize <= 0)
{

cout << "Size of the array to hold the queue must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxQueueSize = 100;
}
else

maxQueueSize = queueSize; //set maxQueueSize to
//queueSize

queueFront = 0; //initialize queueFront
queueRear = maxQueueSize - 1; //initialize queueRear
count = 0;
list = new Type[maxQueueSize]; //create the array to

//hold the queue elements
} //end constructor

The array to store the queue elements is created dynamically. Therefore, when the queue
object goes out of scope, the destructor simply deallocates the memory occupied by the
array that stores the queue elements. The definition of the function to implement the
destructor is as follows:

template <class Type>
queueType<Type>::~queueType()
{

delete [] list;
}

The implementation of the copy constructor and overloading the assignment operator are
left as exercises for you, (see Programming Exercise 1 at the end of this chapter). (The
definitions of these functions are similar to those discussed for array-based lists and stacks.)

Linked Implementation of Queues
Because the size of the array to store the queue elements is fixed, only a finite number of
queue elements can be stored in the array. Also, the array implementation of the queue
requires the array to be treated in a special way together with the values of the indices
queueFront and queueRear. The linked implementation of a queue simplifies many of
the special cases of the array implementation and, because the memory to store a queue
element is allocated dynamically, the queue is never full. This section discusses the linked
implementation of a queue.

8

Linked Implementation of Queues | 463

Because elements are added at one end, queueRear, and removed from the other end,
queueFront, we need to know the front of the queue and the rear of the queue. Thus, we
need two pointers, queueFront and queueRear, to maintain the queue. The following
class implements the functions of the abstract class queueADT:

//***
// Author: D.S. Malik
//
// This class specifies the basic operations on a queue as a
// linked list.
//***

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

template <class Type>
class linkedQueueType: public queueADT<Type>
{
public:

const linkedQueueType<Type>& operator=
(const linkedQueueType<Type>&);

//Overload the assignment operator.

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: queueFront = NULL; queueRear = NULL

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first element of the
// queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.

464 | Chapter 8: Queues

8

//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last element of the
// queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement is
// added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first element
// is removed from the queue.

linkedQueueType();
//Default constructor

linkedQueueType(const linkedQueueType<Type>& otherQueue);
//Copy constructor

~linkedQueueType();
//Destructor

private:
nodeType<Type> *queueFront; //pointer to the front of the queue
nodeType<Type> *queueRear; //pointer to the rear of the queue

};

The UML diagram of the class linkedQueueType is left as an exercise for you. (See
Exercise 16 at the end of this chapter.)

Next, we write the definitions of the functions of the class linkedQueueType.

Empty and Full Queue
The queue is empty if queueFront is NULL. Memory to store the queue elements is
allocated dynamically. Therefore, the queue is never full and so the function to imple-
ment the isFullQueue operation returns the value false. (The queue is full only if the
program runs out of memory.)

template <class Type>
bool linkedQueueType<Type>::isEmptyQueue() const
{

return(queueFront == NULL);
} //end

template <class Type>
bool linkedQueueType<Type>::isFullQueue() const
{

return false;
} //end isFullQueue

Linked Implementation of Queues | 465

Note that in reality, in the linked implementation of queues, the function isFullQueue

does not apply because logically the queue is never full. However, you must provide its
definition because it is included as an abstract function in the parent class queueADT.

Initialize Queue
The operation initializeQueue initializes the queue to an empty state. The queue is
empty if there are no elements in the queue. Note that the constructor initializes the
queue when the queue object is declared. So this operation must remove all the elements,
if any, from the queue. Therefore, this operation traverses the list containing the queue
starting at the first node, and it deallocates the memory occupied by the queue elements.
The definition of this function is as follows:

template <class Type>
void linkedQueueType<Type>::initializeQueue()
{

nodeType<Type> *temp;

while (queueFront!= NULL) //while there are elements left
//in the queue

{
temp = queueFront; //set temp to point to the current node
queueFront = queueFront->link; //advance first to

//the next node
delete temp; //deallocate memory occupied by temp

}

queueRear = NULL; //set rear to NULL
} //end initializeQueue

addQueue, front, back, and deleteQueue Operations
The addQueue operation adds a new element at the end of the queue. To implement this
operation, we access the pointer queueRear.

If the queue is nonempty, the operation front returns the first element of the queue and
so the element of the queue indicated by the pointer queueFront is returned. If the
queue is empty, the function front terminates the program.

If the queue is nonempty, the operation back returns the last element of the queue and so
the element of the queue indicated by the pointer queueRear is returned. If the queue is
empty, the function back terminates the program. Similarly, if the queue is nonempty,
the operation deleteQueue removes the first element of the queue, and so we access the
pointer queueFront.

The definitions of the functions to implement these operations are as follows:

template <class Type>
void linkedQueueType<Type>::addQueue(const Type& newElement)

466 | Chapter 8: Queues

8

{
nodeType<Type> *newNode;

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store the info
newNode->link = NULL; //initialize the link field to NULL

if (queueFront == NULL) //if initially the queue is empty
{

queueFront = newNode;
queueRear = newNode;

}
else //add newNode at the end
{

queueRear->link = newNode;
queueRear = queueRear->link;

}
}//end addQueue

template <class Type>
Type linkedQueueType<Type>::front() const
{

assert(queueFront != NULL);
return queueFront->info;

} //end front

template <class Type>
Type linkedQueueType<Type>::back() const
{

assert(queueRear!= NULL);
return queueRear->info;

} //end back

template <class Type>
void linkedQueueType<Type>::deleteQueue()
{

nodeType<Type> *temp;

if (!isEmptyQueue())
{

temp = queueFront; //make temp point to the first node
queueFront = queueFront->link; //advance queueFront

delete temp; //delete the first node

if (queueFront == NULL) //if after deletion the
//queue is empty

queueRear = NULL; //set queueRear to NULL
}
else

cout << "Cannot remove from an empty queue" << endl;
}//end deleteQueue

Linked Implementation of Queues | 467

The definition of the default constructor is as follows:

template<class Type>
linkedQueueType<Type>::linkedQueueType()
{

queueFront = NULL; //set front to null
queueRear = NULL; //set rear to null

} //end default constructor

When the queue object goes out of scope, the destructor destroys the queue; that is, it
deallocates the memory occupied by the elements of the queue. The definition of the function
to implement the destructor is similar to the definition of the function initializeQueue.
Also, the functions to implement the copy constructor and overload the assignment opera-
tors are similar to the corresponding functions for stacks. Implementing these operations is
left as an exercise for you, (see Programming Exercise 2 at the end of this chapter).

EXAMPLE 8-1

The following program tests various operations on a queue. It uses the class

linkedQueueType to implement a queue.

//***
// Author: D.S. Malik
//
// This program illustrates how to use the class linkedQueueType
// in a program.
//***

#include <iostream>
#include "linkedQueue.h"

using namespace std;

int main()
{

linkedQueueType<int> queue;
int x, y;

queue.initializeQueue();
x = 4;
y = 5;
queue.addQueue(x);
queue.addQueue(y);
x = queue.front();
queue.deleteQueue();
queue.addQueue(x + 5);
queue.addQueue(16);
queue.addQueue(x);
queue.addQueue(y - 3);

cout << "Queue Elements: ";

468 | Chapter 8: Queues

while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}

cout << endl;

return 0;
}

Sample Run:

Queue Elements: 5 9 16 4 2

Queue Derived from the class unorderedLinkedList
From the definitions of the functions to implement the queue operations, it is clear that the
linked implementation of a queue is similar to the implementation of a linked list created in
a forward manner (see Chapter 5). The addQueue operation is similar to the operation
insertFirst. Likewise, the operations initializeQueue and initializeList,
isEmptyQueue, and isEmptyList are similar. The deleteQueue operation can be
implemented as before. The pointer queueFront is the same as the pointer first, and
the pointer queueRear is the same as the pointer last. This correspondence suggests that
we can derive the class to implement the queue from the class linkedListType (see
Chapter 5). Note that the class linkedListType is an abstract and does not implement
all the operations. However, the class unorderedLinkedList is derived from the
the class linkedListType and provides the definitions of the abstract functions of the
the class linkedListType. Therefore, we can derive the class linkedQueueType

from the class unorderedLinkedList.

We leave it as an exercise for you to write the definition of the class linkedQueueType
that is derived from the class unorderedLinkedList (see Programming Exercise 7
at the end of this chapter).

STL class queue (Queue Container Adapter)
The preceding sections discussed the data structure queue in detail. Because a queue is an
important data structure, the Standard Template Library (STL) provides a class to imple-
ment queues in a program. The name of the class defining the queue is queue, and the
name of the header file containing the definition of the class queue is queue. The
class queue provided by the STL is implemented similar to the classes discussed in this
chapter. Table 8-1 defines various operations supported by the queue container class.

8

STL class queue (Queue Container Adapter) | 469

In addition to the operations size, empty, push, front, back, and pop, the queue
container class provides relational operators to compare two queues. For example, the
relational operator == can be used to determine whether two queues are identical.

The program in Example 8-2 illustrates how to use the queue container class.

EXAMPLE 8-2

//***
// Author: D.S. Malik
//
// This program illustrates how to use the STL class queue in a
// program.
//***

#include <iostream> //Line 1
#include <queue> //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

queue<int> intQueue; //Line 6

intQueue.push(26); //Line 7
intQueue.push(18); //Line 8
intQueue.push(50); //Line 9
intQueue.push(33); //Line 10

TABLE 8-1 Operations on a queue object

Operation Effect

size Returns the actual number of elements in the queue.

empty Returns true if the queue is empty, and false otherwise.

push(item) Inserts a copy of item into the queue.

front
Returns the next—that is, first—element in the queue, but
does not remove the element from the queue. This operation
is implemented as a value-returning function.

back
Returns the last element in the queue, but does not remove
the element from the queue. This operation is implemented as
a value-returning function.

pop Removes the next element in the queue.

470 | Chapter 8: Queues

cout << "Line 11: The front element of intQueue: "
<< intQueue.front() << endl; //Line 11

cout << "Line 12: The last element of intQueue: "
<< intQueue.back() << endl; //Line 12

intQueue.pop(); //Line 13

cout << "Line 14: After the pop operation, the "
<< "front element of intQueue: "
<< intQueue.front() << endl; //Line 14

cout << "Line 15: intQueue elements: "; //Line 15

while (!intQueue.empty()) //Line 16
{ //Line 17

cout << intQueue.front() << " "; //Line 18
intQueue.pop(); //Line 19

} //Line 20

cout << endl; //Line 21

return 0; //Line 22
} //Line 23

Sample Run:

Line 11: The front element of intQueue: 26
Line 12: The last element of intQueue: 33
Line 14: After the pop operation, the front element of intQueue: 18
Line 15: intQueue elements: 18 50 33

The preceding output is self-explanatory. The details are left as an exercise for you.

Priority Queues
The preceding sections describe how to implement a queue in a program. The use of a
queue structure ensures that the items are processed in the order they are received. For
example, in a banking environment, the customers who arrive first are served first.
However, there are certain situations when this First In First Out rule needs to be relaxed
somewhat. In a hospital environment, patients are, usually, seen in the order they arrive.
Therefore, you could use a queue to ensure that the patients are seen in the order they
arrive. However, if a patient arrives with severe or life-threatening symptoms, they are
treated first. In other words, these patients take priority over the patients who can wait to
be seen, such as those awaiting their routine annual checkup. For another example, in a
shared environment, when print requests are sent to the printer, interactive programs take
priority over batch-processing programs.

8

Priority Queues | 471

There are many other situations where some priority is assigned to the customers. To
implement such a data structure in a program, we use a special type of queue, called priority
queues. In a priority queue, customers or jobs with higher priority are pushed to the front
of the queue.

One way to implement a priority queue is to use an ordinary linked list, which keeps the
items in order from the highest to lowest priority. However, an effective way to imple-
ment a priority queue is to use a treelike structure. In Chapter 10, we discuss a special type
of sorting algorithm, called the heapsort, which uses a treelike structure to sort a list. After
describing this algorithm, we discuss how to effectively implement a priority queue.

STL class priority_queue
The STL provides the class template priority_queue<elemType>, where the data
type of the queue elements is specified by elemType. This class template is contained in
the STL header file queue. You can specify the priority of the elements of a priority
queue in various ways. The default priority criteria for the queue elements uses the less-
than operator, <. For example, a program that implements a priority queue of numbers
could use the operator < to assign the priority to the numbers so that larger numbers are
always at the front of the queue. If you design your own class to implement the queue
elements, you can specify your priority rule by overloading the less-than operator, <, to
compare the elements. You could also define a comparison function to specify the
priority. The implementation of comparison functions is discussed in Chapter 13.

Application of Queues: Simulation
A technique in which one system models the behavior of another system is called
simulation. For example, physical simulators include wind tunnels used to experiment
with the design of car bodies and flight simulators are used to train airline pilots. Simulation
techniques are used when it is too expensive or dangerous to experiment with real systems.
You can also design computer models to study the behavior of real systems. (We will
describe some real systems modeled by computers shortly.) Simulating the behavior of an
expensive or dangerous experiment using a computer model is usually less expensive than
using the real system, and a good way to gain insight without putting human life in danger.
Moreover, computer simulations are particularly useful for complex systems where it is
difficult to construct a mathematical model. For such systems, computer models can retain
descriptive accuracy. In mathematical simulations, the steps of a program are used to model
the behavior of a real system. Let us consider one such problem.

The manager of a local movie theater is hearing complaints from customers about the
time they have to wait in line to buy tickets. The theater currently has only one cashier.
Another theater is preparing to open in the neighborhood and the manager is afraid of
losing customers. The manager wants to hire enough cashiers so that a customer does not
have to wait too long to buy a ticket, but does not want to hire extra cashiers on a trial
basis and potentially waste time and money. One thing that the manager would like to

472 | Chapter 8: Queues

know is the average time a customer has to wait for service. The manager wants someone
to write a program to simulate the behavior of the theater.

In computer simulation, the objects being studied are usually represented as data. For the
theater problem, some of the objects are the customers and the cashier. The cashier serves
the customers and we want to determine a customer’s average waiting time. Actions are
implemented by writing algorithms, which in a programming language are implemented
with the help of functions. Thus, functions are used to implement the actions of the
objects. In C++, we can combine the data and the operations on that data into a single unit
with the help of classes. Thus, objects can be represented as classes. The member variables
of the class describe the properties of the objects, and the function members describe the
actions on that data. This change in simulation results can also occur if we change the
values of the data or modify the definitions of the functions (that is, modify the algorithms
implementing the actions). The main goal of a computer simulation is to either generate
results showing the performance of an existing system or predict the performance of a
proposed system.

In the theater problem, when the cashier is serving a customer, the other customers must
wait. Because customers are served on a first-come, first-served basis and queues are an
effective way to implement a First In First Out system, queues are important data
structures for use in computer simulations. This section examines computer simulations
in which queues are the basic data structure. These simulations model the behavior of
systems, called queuing systems, in which queues of objects are waiting to be served by
various servers. In other words, a queuing system consists of servers and queues of objects
waiting to be served. We deal with a variety of queuing systems on a daily basis. For
example, a grocery store and a banking system are both queuing systems. Furthermore,
when you send a print request to a networked printer that is shared by many people, your
print request goes in a queue. Print requests that arrived before your print request are
usually completed before yours. Thus, the printer acts as the server when a queue of
documents is waiting to be printed.

Designing a Queuing System
In this section, we describe a queuing system that can be used in a variety of applications,
such as a bank, grocery store, movie theater, printer, or mainframe environment in which
several people are trying to use the same processors to execute their programs. To describe
a queuing system, we use the term server for the object that provides the service. For
example, in a bank, a teller is a server; in a grocery store or movie theater, a cashier is a
server. We will call the object receiving the service the customer, and the service time—
the time it takes to serve a customer—the transaction time.

Because a queuing system consists of servers and a queue of waiting objects, we will
model a system that consists of a list of servers and a waiting queue holding the customers
to be served. The customer at the front of the queue waits for the next available server.
When a server becomes free, the customer at the front of the queue moves to the free
server to be served.

8

Application of Queues: Simulation | 473

When the first customer arrives, all servers are free and the customer moves to the first
server. When the next customer arrives, if a server is available, the customer immediately
moves to the available server; otherwise, the customer waits in the queue. To model a
queuing system, we need to know the number of servers, the expected arrival time of a
customer, the time between the arrivals of customers, and the number of events affecting
the system.

Let us again consider the movie theater system. The performance of the system depends
on how many servers are available, how long it takes to serve a customer, and how often a
customer arrives. If it takes too long to serve a customer and customers arrive frequently,
then more servers are needed. This system can be modeled as a time-driven simulation. In
a time-driven simulation, the clock is implemented as a counter and the passage of,
say, 1 minute can be implemented by incrementing the counter by 1. The simulation is
run for a fixed amount of time. If the simulation needs to be run for 100 minutes, the
counter starts at 1 and goes up to 100, which can be implemented by using a loop.

For the simulation described in this section, we want to determine the average wait time
for a customer. To calculate the average wait time for a customer, we need to add the
waiting time of each customer, and then divide the sum by the number of customers who
have arrived. When a customer arrives, he or she goes to the end of the queue and the
customer’s waiting time starts. If the queue is empty and a server is free, the customer is
served immediately and so this customer’s waiting time is zero. On the other hand, if when
the customer arrives and either the queue is nonempty or all the servers are busy, the
customer must wait for the next available server and, therefore, this customer’s waiting
time starts. We can keep track of the customer’s waiting time by using a timer for each
customer. When a customer arrives, the timer is set to 0, which is incremented after each
clock unit.

Suppose that, on average, it takes five minutes for a server to serve a customer. When a
server becomes free and the waiting customer’s queue is nonempty, the customer at the
front of the queue proceeds to begin the transaction. Thus, we must keep track of the time
a customer is with a server. When the customer arrives at a server, the transaction time is set
to five and is decremented after each clock unit. When the transaction time becomes zero,
the server is marked free. Hence, the two objects needed to implement a time-driven
computer simulation of a queuing system are the customer and the server.

Before designing the main algorithm to implement the simulation, we design classes to
implement each of the two objects: customer and server.

Customer
Every customer has a customer number, arrival time, waiting time, transaction time, and
departure time. If we know the arrival time, waiting time, and transaction time, we can
determine the departure time by adding these three times. Let us call the class to implement the
customer object customerType. It follows that the class customerType has four member
variables: the customerNumber, arrivalTime, waitingTime, and transactionTime,

474 | Chapter 8: Queues

each of type int. The basic operations that must be performed on an object of type
customerType are as follows: Set the customer’s number, arrival time, and waiting time;
increment the waiting time by one clock unit; return the waiting time; return the arrival time;
return the transaction time; and return the customer number. The following class,
customerType, implements the customer as an ADT:

//**
// Author: D.S. Malik
//
// class customerType
// This class specifies the members to implement a customer.
//**

class customerType
{
public:

customerType(int cN = 0, int arrvTime = 0, int wTime = 0,
int tTime = 0);

//Constructor to initialize the instance variables
//according to the parameters
//If no value is specified in the object declaration,
//the default values are assigned.
//Postcondition: customerNumber = cN; arrivalTime = arrvTime;
// waitingTime = wTime; transactionTime = tTime

void setCustomerInfo(int cN = 0, int inTime = 0,
int wTime = 0, int tTime = 0);

//Function to initialize the instance variables.
//Instance variables are set according to the parameters.
//Postcondition: customerNumber = cN; arrivalTime = arrvTime;
// waitingTime = wTime; transactionTime = tTime;

int getWaitingTime() const;
//Function to return the waiting time of a customer.
//Postcondition: The value of waitingTime is returned.

void setWaitingTime(int time);
//Function to set the waiting time of a customer.
//Postcondition: waitingTime = time;

void incrementWaitingTime();
//Function to increment the waiting time by one time unit.
//Postcondition: waitingTime++;

int getArrivalTime() const;
//Function to return the arrival time of a customer.
//Postcondition: The value of arrivalTime is returned.

int getTransactionTime() const;
//Function to return the transaction time of a customer.
//Postcondition: The value of transactionTime is returned.

8

Application of Queues: Simulation | 475

int getCustomerNumber() const;
//Function to return the customer number.
//Postcondition: The value of customerNumber is returned.

private:
int customerNumber;
int arrivalTime;
int waitingTime;
int transactionTime;

};

Figure 8-11 shows the UML diagram of the class customerType.

The definitions of the member functions of the class customerType follow easily from
their descriptions. Next, we give the definitions of the member functions of the class

customerType.

The function setCustomerInfo uses the values of the parameters to initialize
customerNumber, arrivalTime, waitingTime, and transactionTime. Its definition
is as follows:

void customerType::setCustomerInfo(int cN, int arrvTime,
int wTime, int tTime)

{
customerNumber = cN;
arrivalTime = arrvTime;
waitingTime = wTime;
transactionTime = tTime;

}

The definition of the constructor is similar to the definition of the function
setCustomerInfo. It uses the values of the parameters to initialize customerNumber,

customerType

-customerNumber: int
-arrivalTime: int
-waitingTime: int
-transactionTime: int

+setCustomerInfo(int = 0, int = 0, int = 0, int = 0): void
+getWaitingTime() const: int
+setWaitingTime(int): void
+incrementWaitingTime(): void
+getArrivalTime() const: int
+getTransactionTime() const: int
+getCustomerNumber() const: int
+customerType(int = 0, int = 0, int = 0, int = 0)

FIGURE 8-11 UML diagram of the class customerType

476 | Chapter 8: Queues

arrivalTime, waitingTime, and transactionTime. To make debugging easier, we
use the function setCustomerInfo to write the definition of the constructor, which is
given next.

customerType::customerType(int cN, int arrvTime,
int wTime, int tTime)

{
setCustomerInfo(cN, arrvTime, wTime, tTime);

}

The function getWaitingTime returns the current waiting time. The definition of the
function getWaitingTime is as follows:

int customerType::getWaitingTime() const
{

return waitingTime;
}

The function incrementWaitingTime increments the value of waitingTime. Its defi-
nition is as follows:

void customerType::incrementWaitingTime()
{

waitingTime++;
}

The definitions of the functions setWaitingTime, getArrivalTime, getTransactionTime,
and getCustomerNumber are left as an exercise for you, (see Programming Exercise 8 a the
end of this chapter).

Server
At any given time unit, the server is either busy serving a customer or is free.We use a string
variable to set the status of the server. Every server has a timer and because the programmight
need to knowwhich customer is served by which server, the server also stores the information
of the customer being served. Thus, three member variables are associated with a server: the
status, the transactionTime, and the currentCustomer. Some of the basic operations
that must be performed on a server are as follows: Check whether the server is free; set the
server as free; set the server as busy; set the transaction time (that is, how long it takes to serve
the customer); return the remaining transaction time (to determine whether the server should
be set to free); if the server is busy after each time unit, decrement the transaction time by one
time unit; and so on. The following class, serverType, implements the server as an ADT:

//**
// Author: D.S. Malik
//
// class serverType
// This class specifies the members to implement a server.
//**

8

Application of Queues: Simulation | 477

class serverType
{
public:

serverType();
//Default constructor
//Sets the values of the instance variables to their default
//values.
//Postcondition: currentCustomer is initialized by its
// default constructor; status = "free"; and the
// transaction time is initialized to 0.

bool isFree() const;
//Function to determine if the server is free.
//Postcondition: Returns true if the server is free,
// otherwise returns false.

void setBusy();
//Function to set the status of the server to busy.
//Postcondition: status = "busy";

void setFree();
//Function to set the status of the server to "free."
//Postcondition: status = "free";

void setTransactionTime(int t);
//Function to set the transaction time according to the
//parameter t.
//Postcondition: transactionTime = t;

void setTransactionTime();
//Function to set the transaction time according to
//the transaction time of the current customer.
//Postcondition:
// transactionTime = currentCustomer.transactionTime;

int getRemainingTransactionTime() const;
//Function to return the remaining transaction time.
//Postcondition: The value of transactionTime is returned.

void decreaseTransactionTime();
//Function to decrease the transactionTime by 1 unit.
//Postcondition: transactionTime--;

void setCurrentCustomer(customerType cCustomer);
//Function to set the info of the current customer
//according to the parameter cCustomer.
//Postcondition: currentCustomer = cCustomer;

int getCurrentCustomerNumber() const;
//Function to return the customer number of the current
//customer.
//Postcondition: The value of customerNumber of the
// current customer is returned.

478 | Chapter 8: Queues

int getCurrentCustomerArrivalTime() const;
//Function to return the arrival time of the current
//customer.
//Postcondition: The value of arrivalTime of the current
// customer is returned.

int getCurrentCustomerWaitingTime() const;
//Function to return the current waiting time of the
//current customer.
//Postcondition: The value of transactionTime is returned.

int getCurrentCustomerTransactionTime() const;
//Function to return the transaction time of the
//current customer.
//Postcondition: The value of transactionTime of the
// current customer is returned.

private:
customerType currentCustomer;
string status;
int transactionTime;

};

Figure 8-12 shows the UML diagram of the class serverType.

The definitions of some of the member functions of the class serverType are as
follows:

8
serverType

-currentCustomer: customerType
-status: string
-transactionTime: int

+isFree() const: bool
+setBusy(): void
+setFree(): void
+setTransactionTime(int): void
+setTransactionTime(): void
+getRemainingTransactionTime() const: int
+decreaseTransactionTime(): void
+setCurrentCustomer(customerType): void
+getCurrentCustomerNumber() const: int
+getCurrentCustomerArrivalTime() const: int
+getCurrentCustomerWaitingTime() const: int
+getCurrentCustomerTransactionTime() const: int
+serverType()

FIGURE 8-12 UML diagram of the class serverType

Application of Queues: Simulation | 479

serverType::serverType()
{

status = "free";
transactionTime = 0;

}

bool serverType::isFree() const
{

return (status == "free");
}

void serverType::setBusy()
{

status = "busy";
}

void serverType::setFree()
{

status = "free";
}

void serverType::setTransactionTime(int t)
{

transactionTime = t;
}

void serverType::setTransactionTime()
{

int time;

time = currentCustomer.getTransactionTime();

transactionTime = time;
}

void serverType::decreaseTransactionTime()
{

transactionTime--;
}

We leave the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber, getCurrentCustomerArrivalTime,
getCurrentCustomerWaitingTime, and getCurrentCustomerTransactionTime as an
exercise for you, (see Programming Exercise 8 at the end of this chapter).

Because we are designing a simulation program that can be used in a variety of applica-
tions, we need to design two more classes: a class to create and process a list of servers and
a class to create and process a queue of waiting customers. The next two sections describe
each of these classes.

480 | Chapter 8: Queues

Server List
A server list is a set of servers. At any given time, a server is either free or busy. For the
customer at the front of the queue, we need to find a server in the list that is free. If all
the servers are busy, the customer must wait until one of the servers becomes free. Thus,
the class that implements a list of servers has two member variables: one to store the
number of servers and one to maintain a list of servers. Using dynamic arrays, depending
on the number of servers specified by the user, a list of servers is created during program
execution. Some of the operations that must be performed on a server list are as follows:
Return the server number of a free server; when a customer gets ready to do business and
a server is available, set the server to busy; when the simulation ends, some of the servers
might still be busy, so return the number of busy servers; after each time unit, reduce the
transactionTime of each busy server by one time unit; and if the transactionTime
of a server becomes zero, set the server to free. The following class, serverListType,
implements the list of servers as an ADT:

//**
// Author: D.S. Malik
//
// class serverListType
// This class specifies the members to implement a list of
// servers.
//**

class serverListType
{
public:

serverListType(int num = 1);
//Constructor to initialize a list of servers
//Postcondition: numOfServers = num
// A list of servers, specified by num, is created and
// each server is initialized to "free".

~serverListType();
//Destructor
//Postcondition: The list of servers is destroyed.

int getFreeServerID() const;
//Function to search the list of servers.
//Postcondition: If a free server is found, returns its ID;
// otherwise, returns -1.

int getNumberOfBusyServers() const;
//Function to return the number of busy servers.
//Postcondition: The number of busy servers is returned.

void setServerBusy(int serverID, customerType cCustomer,
int tTime);

//Function to set a server busy.

8

Application of Queues: Simulation | 481

//Postcondition: The server specified by serverID is set to
// "busy", to serve the customer specified by cCustomer,
// and the transaction time is set according to the
// parameter tTime.

void setServerBusy(int serverID, customerType cCustomer);
//Function to set a server busy.
//Postcondition: The server specified by serverID is set to
// "busy", to serve the customer specified by cCustomer.

void updateServers(ostream& outFile);
//Function to update the status of a server.
//Postcondition: The transaction time of each busy server
// is decremented by one unit. If the transaction time of
// a busy server is reduced to zero, the server is set to
// "free". Moreover, if the actual parameter corresponding
// to outFile is cout, a message indicating which customer
// has been served is printed on the screen, together with the
// customer's departing time. Otherwise, the output is sent
// to a file specified by the user.

private:
int numOfServers;
serverType *servers;

};

Figure 8-13 shows the UML diagram of the class serverListType.

Following are the definitions of the member functions of the class serverListType.
The definitions of the constructor and destructor are straightforward.

serverListType::serverListType(int num)
{

numOfServers = num;
servers = new serverType[num];

}

serverListType

-numOfServers: int
-*servers: serverType

+getFreeServerID() const: int
+getNumberOfBusyServers() const: int
+setServerBusy(int, customerType, int): void
+setServerBusy(int, customerType): void
+updateServers(ostream&): void
+serverListType(int = 1)
+~serverListType()

FIGURE 8-13 UML diagram of the class serverListType

482 | Chapter 8: Queues

8

serverListType::~serverListType()
{

delete [] servers;
}

The function getFreeServerID searches the list of servers. If a free server is found, it
returns the server’s ID; otherwise, the value -1 is returned, which indicates that all the
servers are busy. The definition of this function is as follows:

int serverListType::getFreeServerID() const
{

int serverID = -1;

for (int i = 0; i < numOfServers; i++)
if (servers[i].isFree())
{

serverID = i;
break;

}

return serverID;
}

The function getNumberOfBusyServers searches the list of servers and determines the
number of busy servers. The number of busy servers is returned. The definition of this
function is as follows:

int serverListType::getNumberOfBusyServers() const
{

int busyServers = 0;

for (int i = 0; i < numOfServers; i++)
if (!servers[i].isFree())

busyServers++;

return busyServers;
}

The function setServerBusy sets a server to busy. This function is overloaded. The
serverID of the server that is set to busy is passed as a parameter to this function. One
function sets the server’s transaction time according to the parameter tTime; the other
function sets it by using the transaction time stored in the object cCustomer. The
transaction time is later needed to determine the average waiting time. The definitions
of these functions are as follows:

void serverListType::setServerBusy(int serverID,
customerType cCustomer, int tTime)

{
servers[serverID].setBusy();
servers[serverID].setTransactionTime(tTime);
servers[serverID].setCurrentCustomer(cCustomer);

}

Application of Queues: Simulation | 483

void serverListType::setServerBusy(int serverID,
customerType cCustomer)

{
int time = cCustomer.getTransactionTime();

servers[serverID].setBusy();
servers[serverID].setTransactionTime(time);
servers[serverID].setCurrentCustomer(cCustomer);

}

The definition of the function updateServers is quite straightforward. Starting at the
first server, it searches the list of servers for busy servers. When a busy server is found, its
transactionTime is decremented by 1. If the transactionTime reduces to zero, the
server is set to free. If the transactionTime of a busy server reduces to zero, the
transaction of the customer being served by the server is complete. If the actual parameter
corresponding to outFile is cout, a message indicating which customer has been served
is printed on the screen, together with the customer’s departing time. Otherwise, the
output is sent to a file specified by the user. The definition of this function is as follows:

void serverListType::updateServers(ostream& outF)
{

for (int i = 0; i < numOfServers; i++)
if (!servers[i].isFree())
{

servers[i].decreaseTransactionTime();

if (servers[i].getRemainingTransactionTime() == 0)
{

outF << "From server number " << (i + 1)
<< " customer number "
<< servers[i].getCurrentCustomerNumber()
<< "\n departed at clock unit "
<< servers[i].getCurrentCustomerArrivalTime()
+ servers[i].getCurrentCustomerWaitingTime()
+ servers[i].getCurrentCustomerTransactionTime()
<< endl;

servers[i].setFree();
}

}
}

Waiting Customers Queue
When a customer arrives, he or she goes to the end of the queue. When a server becomes
available, the customer at the front of the queue leaves to conduct the transaction. After
each time unit, the waiting time of each customer in the queue is incremented by 1. The
ADT queueType designed in this chapter has all the operations needed to implement a
queue, except the operation of incrementing the waiting time of each customer in the
queue by one time unit. We will derive a class, waitingCustomerQueueType, from
the class queueType and add the additional operations to implement the customer
queue. The definition of the class waitingCustomerQueueType is as follows:

484 | Chapter 8: Queues

8

//**
// Author: D.S. Malik
//
// class waitingCustomerQueueType
// This class extends the class queueType to implement a list
// of waiting customers.
//**

class waitingCustomerQueueType: public queueType<customerType>
{
public:

waitingCustomerQueueType(int size = 100);
//Constructor
//Postcondition: The queue is initialized according to the
// parameter size. The value of size is passed to the
// constructor of queueType.

void updateWaitingQueue();
//Function to increment the waiting time of each
//customer in the queue by one time unit.

};

Notice that the class waitingCustomerQueueType is derived from the class

queueType, which implements the queue in an array. You can also derive it from the

class linkedQueueType, which implements the queue in a linked list. We leave

the details as an exercise for you.

The definitions of the member functions are given next. The definition of the constructor
is as follows:

waitingCustomerQueueType::waitingCustomerQueueType(int size)
:queueType<customerType>(size)

{
}

The function updateWaitingQueue increments the waiting time of each customer
in the queue by one time unit. The class waitingCustomerQueueType is derived
from the class queueType. Because the member variables of queueType are private,
the function updateWaitingQueue cannot directly access the elements of the queue.
The only way to access the elements of the queue is to use the deleteQueue operation.
After incrementing the waiting time, the element can be put back into the queue by
using the addQueue operation.

The addQueue operation inserts the element at the end of the queue. If we perform the
deleteQueue operation followed by the addQueue operation for each element of the
queue, eventually the front element again becomes the front element. Given that each
deleteQueue operation is followed by an addQueue operation, how do we determine that
all the elements of the queue have been processed? We cannot use the isEmptyQueue or
isFullQueue operations on the queue because the queue will never be empty or full.

Application of Queues: Simulation | 485

One solution to this problem is to create a temporary queue. Every element of the
original queue is removed, processed, and inserted into the temporary queue. When the
original queue becomes empty, all of the elements in the queue are processed. We can
then copy the elements from the temporary queue back into the original queue. How-
ever, this solution requires us to use extra memory space, which could be significant.
Also, if the queue is large, extra computer time is needed to copy the elements from the
temporary queue back into the original queue. Let us look into another solution.

In the second solution, before starting to update the elements of the queue, we can insert a
dummy customer with a waiting time of, say -1. During the update process, when we
arrive at the customer with the waiting time of -1, we can stop the update process without
processing the customer with the waiting time of -1. If we do not process the customer
with the waiting time -1, this customer is removed from the queue and after processing all
the elements of the queue, the queue will contain no extra elements. This solution does
not require us to create a temporary queue, so we do not need extra computer time to copy
the elements back into the original queue. We will use this solution to update the queue.
Therefore, the definition of the function updateWaitingQueue is as follows:

void waitingCustomerQueueType::updateWaitingQueue()
{

customerType cust;

cust.setWaitingTime(-1);
int wTime = 0;

addQueue(cust);

while (wTime != -1)
{

cust = front();
deleteQueue();

wTime = cust.getWaitingTime();
if (wTime == -1)

break;
cust.incrementWaitingTime();
addQueue(cust);

}
}

Main Program
To run the simulation, we first need to get the following information:

• The number of time units the simulation should run. Assume that each
time unit is one minute.

• The number of servers.

• The amount of time it takes to serve a customer—that is, the transaction time.

• The approximate time between customer arrivals.

486 | Chapter 8: Queues

8

These pieces of information are called simulation parameters. By changing the values of
these parameters, we can observe the changes in the performance of the system. We can
write a function, setSimulationParameters, to prompt the user to specify these
values. The definition of this function is as follows:

void setSimulationParameters(int& sTime, int& numOfServers,
int& transTime, int& tBetweenCArrival)

{
cout << "Enter the simulation time: ";
cin >> sTime;
cout << endl;

cout << "Enter the number of servers: ";
cin >> numOfServers;
cout << endl;

cout << "Enter the transaction time: ";
cin >> transTime;
cout << endl;

cout << "Enter the time between customers arrival: ";
cin >> tBetweenCArrival;
cout << endl;

}

When a server becomes free and the customer queue is nonempty, we can move the
customer at the front of the queue to the free server to be served. Moreover, when a
customer starts the transaction, the waiting time ends. The waiting time of the customer
is added to the total waiting time. The general algorithm to start the transaction
(supposing that serverID denotes the ID of the free server) is as follows:

1. Remove the customer from the front of the queue.

customer = customerQueue.front();
customerQueue.deleteQueue();

2. Update the total waiting time by adding the current customer’s waiting
time to the previous total waiting time.

totalWait = totalWait + customer.getWaitingTime();

3. Set the free server to begin the transaction.

serverList.setServerBusy(serverID, customer, transTime);

To run the simulation, we need to know the number of customers arriving at a given
time unit and how long it takes to serve the customer. We use the Poisson distribution
from statistics, which says that the probability of y events occurring at a given time is
given by the formula:

P ðyÞ ¼ lye�l

y!
; y ¼ 0; 1; 2; . . . ;

Application of Queues: Simulation | 487

where l is the expected value that y events occur at that time. Suppose that, on average, a
customer arrives every four minutes. During this four-minute period, the customer can arrive
at any one of the four minutes. Assuming an equal likelihood of each of the four minutes, the
expected value that a customer arrives in each of the four minutes is, therefore, 1 / 4¼ 0.25.
Next, we need to determine whether the customer actually arrives at a given minute.

Now P(0) ¼ e-l is the probability that no event occurs at a given time. One of the basic
assumptions of the Poisson distribution is that the probability of more than one outcome
occurring in a short time interval is negligible. For simplicity, we assume that only one
customer arrives at a given time unit. Thus, we use e-l as the cutoff point to determine
whether a customer arrives at a given time unit. Suppose that, on average, a customer arrives
every four minutes. Then l¼ 0.25.We can use an algorithm to generate a number between
0 and 1. If the value of the number generated is > e-0.25, we can assume that the customer
arrived at a particular time unit. For example, suppose that rNum is a random number such
that 0 � rNum � 1. If rNum> e-0.25, the customer arrived at the given time unit.

We now describe the function runSimulation to implement the simulation. Suppose
that we run the simulation for 100 time units and customers arrive at time units 93, 96,
and 100. The average transaction time is 5 minutes—that is, 5 time units. For simplicity,
assume that we have only one server and the server becomes free at time unit 97, and that
all customers arriving before time unit 93 have been served. When the server becomes
free at time unit 97, the customer arriving at time unit 93 starts the transaction. Because the
transaction of the customer arriving at time unit 93 starts at time unit 97 and it takes 5
minutes to complete a transaction, when the simulation loop ends, the customer arriving at
time unit 93 is still at the server. Moreover, customers arriving at time units 96 and 100 are
in the queue. For simplicity, we assume that when the simulation loop ends, the customers
at the servers are considered served. The general algorithm for this function is as follows:

1. Declare and initialize the variables such as the simulation parameters,
customer number, clock, total and average waiting times, number of
customers arrived, number of customers served, number of customers
left in the waiting queue, number of customers left with the servers,
waitingCustomersQueue, and a list of servers.

2. The main loop is as follows:

for (clock = 1; clock <= simulationTime; clock++)
{

2.1. Update the server list to decrement the transaction time of
each busy server by one time unit.

2.2. If the customer’s queue is nonempty, increment the waiting
time of each customer by one time unit.

2.3. If a customer arrives, increment the number of customers by 1
and add the new customer to the queue.

2.4. If a server is free and the customer’s queue is nonempty,
remove a customer from the front of the queue and send
the customer to the free server.

}

488 | Chapter 8: Queues

3. Print the appropriate results. Your results must include the number of
customers left in the queue, the number of customers still with servers,
the number of customers arrived, and the number of customers who
actually completed a transaction.

Once you have designed the function runSimulation, the definition of the function
main is simple and straightforward because the function main calls only the function
runSimulation. (See Programming Exercise 8 at the end of this chapter.)

When we tested our version of the simulation program, we generated the following
results. We assumed that the average transaction time is 5 minutes and that on average a
customer arrives every 4 minutes, and we used a random number generator to generate a
number between 0 and 1 to decide whether a customer arrived at a given time unit.

Sample Run:

Customer number 1 arrived at time unit 4
Customer number 2 arrived at time unit 8
From server number 1 customer number 1

departed at clock unit 9
Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 1 customer number 2

departed at clock unit 14
From server number 1 customer number 3

departed at clock unit 19
Customer number 5 arrived at time unit 21
From server number 1 customer number 4

departed at clock unit 24
From server number 1 customer number 5

departed at clock unit 29
Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at clock unit 42
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 7

departed at clock unit 47
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 8

departed at clock unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
Customer number 15 arrived at time unit 54
From server number 1 customer number 9

departed at clock unit 57
Customer number 16 arrived at time unit 59
From server number 1 customer number 10

departed at clock unit 62

8

Application of Queues: Simulation | 489

Customer number 17 arrived at time unit 66
From server number 1 customer number 11

departed at clock unit 67
Customer number 18 arrived at time unit 71
From server number 1 customer number 12

departed at clock unit 72
From server number 1 customer number 13

departed at clock unit 77
Customer number 19 arrived at time unit 78
From server number 1 customer number 14

departed at clock unit 82
From server number 1 customer number 15

departed at clock unit 87
Customer number 20 arrived at time unit 90
From server number 1 customer number 16

departed at clock unit 92
Customer number 21 arrived at time unit 92
From server number 1 customer number 17

departed at clock unit 97

The simulation ran for 100 time units
Number of servers: 1
Average transaction time: 5
Average arrival time difference between customers: 4
Total waiting time: 269
Number of customers that completed a transaction: 17
Number of customers left in the servers: 1
The number of customers left in queue: 3
Average waiting time: 12.81
************** END SIMULATION *************

QUICK REVIEW

1. A queue is a data structure in which the items are added at one end and
removed from the other end.

2. A queue is a First In First Out (FIFO) data structure.

3. The basic operations on a queue are as follows: Add an item to the queue,
remove an item from the queue, retrieve the first and last element of the
queue, initialize the queue, check whether the queue is empty, and check
whether the queue is full.

4. A queue can be implemented as an array or a linked list.

5. The middle elements of a queue should not be accessed directly.

6. If the queue is nonempty, the function front returns the front element of
the queue and the function back returns the last element in the queue.

7. Queues are restricted versions of arrays and linked lists.

490 | Chapter 8: Queues

8

EXERCISES

1. Consider the following statements:

queueType<int> queue;
int x, y;

Show what is output by the following segment of code:

x = 4;
y = 5;
queue.addQueue(x);
queue.addQueue(y);
x = queue.front();
queue.deleteQueue();
queue.addQueue(x + 5);
queue.addQueue(16);
queue.addQueue(x);
queue.addQueue(y - 3);

cout << "Queue Elements: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

2. Consider the following statements:

stackType<int> stack;
queueType<int> queue;
int x;

Suppose the input is:

15 28 14 22 64 35 19 32 7 11 13 30 -999

Show what is written by the following segment of code:

stack.push(0);
queue.addQueue(0);
cin >> x;

while (x != -999)
{

switch (x % 4)
{
case 0:

stack.push(x);
break;

case 1:
if (!stack.isEmptyStack())
{

cout << "Stack Element = " << stack.top()
<< endl;

stack.pop();
}

Exercises | 491

else
cout << "Sorry, the stack is empty." << endl;
break;

case 2:
queue.addQueue(x);
break;

case 3:
if (!queue.isEmptyQueue())
{

cout << "Queue Element = " << queue.front()
<< endl;

queue.deleteQueue();
}
else

cout << "Sorry, the queue is empty." << endl;
break;

} //end switch

cin >> x;
} //end while

cout << "Stack Elements: ";
while (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}

cout << endl;

cout << "Queue Elements: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

3. What does the following function do?

void mystery(queueType<int>& q)
{

stackType<int> s;

while (!q.isEmptyQueue())
{

s.push(q.front());
q.deleteQueue();

}

while (!s.isEmptyStack())
{

q.addQueue(2 * s.top());
s.pop();

}
}

492 | Chapter 8: Queues

4. What is the effect of the following statements? If a statement is invalid, explain
why it is invalid. The classes queueADT, queueType, and linkedQueueType

are as defined in this chapter.

a. queueADT<int> newQueue;

b. queueType <double> sales(-10);

c. queueType <string> names;

d. linkedQueueType <int> numQueue(50);

5. What is the output of the following program segment?

linkedQueueType<int> queue;

queue.addQueue(10);
queue.addQueue(20);
cout << queue.front() << endl;
queue.deleteQueue();
queue.addQueue(2 * queue.back());
queue.addQueue(queue.front());
queue.addQueue(5);
queue.addQueue(queue.back() - 2);

linkedQueueType<int> tempQueue;

tempQueue = queue;

while (!tempQueue.isEmptyQueue())
{

cout << tempQueue.front() << " ";
tempQueue.deleteQueue();

}

cout << endl;

cout << queue.front() << " " << queue.back() << endl;

6. Suppose that queue is a queueType object and the size of the array imple-
menting queue is 100. Also, suppose that the value of queueFront is 50
and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

7. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 25.

8

Exercises | 493

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

8. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 25 and the value of queueRear is 75.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

9. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

10. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Also, suppose that the size of the array
implementing queue is 100. If the value of queueFront is 50, what is the
position of the first queue element?

11. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Suppose that the size of the array imple-
menting queue is 100. Also, suppose that the value of queueFront is 74
and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue? Also, what is the position of the removed queue
element?

12. Write a function template, reverseQueue, that takes as a parameter a
queue object and uses a stack object to reverse the elements of the queue.

13. Add the operation queueCount to the class queueType (the array imple-
mentation of queues), which returns the number of elements in the queue.
Write the definition of the function template to implement this operation.

14. Draw the UML diagram of the class queueADT.

15. Draw the UML diagram of the class queueType.

16. Draw the UML diagram of the class linkedQueueType.

494 | Chapter 8: Queues

PROGRAMMING EXERCISES

1. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class queueType. Also, write a program to
test these operations.

2. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class linkedQueueType. Also, write a
program to test these operations.

3. This chapter described the array implementation of queues that use a special
array slot, called the reserved slot, to distinguish between an empty and a full
queue. Write the definition of the class and the definitions of the function
members of this queue design. Also, write a test program to test various
operations on a queue.

4. Write the definition of the function moveNthFront that takes as a parameter
a positive integer, n. The function moves the nth element of the queue to
the front. The order of the remaining elements remains unchanged. For
example, suppose

queue = {5, 11, 34, 67, 43, 55} and n = 3.

After a call to the function moveNthFront,

queue = {34, 5, 11, 67, 43, 55}.

Add this function to the class queueType. Also write a program to test
your method.

5. Write a program that reads a line of text, changes each uppercase letter to
lowercase, and places each letter both in a queue and onto a stack. The
program should then verify whether the line of text is a palindrome (a set of
letters or numbers that is the same whether read forward or backward).

6. The implementation of a queue in an array, as given in this chapter, uses the
variable count to determine whether the queue is empty or full. You can
also use the variable count to return the number of elements in the queue.
(See Exercise 13.) On the other hand, class linkedQueueType does not
use such a variable to keep track of the number of elements in the queue.
Redefine the class linkedQueueType by addding the variable count to
keep track of the number of elements in the queue. Modify the definitions of
the functions addQueue and deleteQueue as necessary. Add the function
queueCount to return the number of elements in the queue. Also, write a
program to test various operations of the class you defined.

7. Write the definition of the class linkedQueueType, which is derived
from the class unorderedLinkedList, as explained in this chapter. Also
write a program to test various operations of this class.

8

Programming Exercises | 495

8. a. Write the definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber of the class

customerType defined in the section, ‘‘Application of Queues:
Simulation.’’

b. Write the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber, getCurrentCustomerArrivalTime,
getCurrentCustomerWaitingTime, and getCurrentCustomerTransactionTime of the
class serverType defined in the section, ‘‘Application of Queues:
Simulation.’’

c. Write the definition of the function runSimulation to complete the
design of the computer simulation program (see the section, ‘‘Applica-
tion of Queues: Simulation’’). Test run your program for a variety of
data. Moreover, use a random number generator to decide whether a
customer arrived at a given time unit.

9. Redo the simulation program of this chapter so that it uses the STL class
queue to maintain the list of waiting customers.

496 | Chapter 8: Queues

SEARCHING AND HASHING

ALGORITHMS
IN THIS CHAPTER , YOU WILL :

. Learn the various search algorithms

. Explore how to implement the sequential and binary search algorithms

. Discover how the sequential and binary search algorithms perform

. Become aware of the lower bound on comparison-based search algorithms

. Learn about hashing

9C H A P T E R

Chapter 3 described how to organize data into computer memory using an array and how
to perform basic operations on that data. Chapter 5 then described how to organize data
using linked lists. The most important operation performed on a list is the search
algorithm. Using the search algorithm, you can do the following:

• Determine whether a particular item is in the list.

• If the data is specially organized (for example, sorted), find the location in
the list where a new item can be inserted.

• Find the location of an item to be deleted.

The search algorithm’s performance, therefore, is crucial. If the search is slow, it takes a
large amount of computer time to accomplish your task; if the search is fast, you can
accomplish your task quickly.

Search Algorithms
Chapters 3 and 5 described how to implement the sequential search algorithm. This
chapter discusses other search algorithms and analyzes them. The analysis of algorithms
enables programmers to decide which algorithm to use for a specific application. Before
describing these algorithms, let us make the following observations.

Associated with each item in a data set is a special member that uniquely identifies the
item in the data set. For example, if you have a data set consisting of student records, then
the student ID uniquely identifies each student in a particular school. This unique
member of the item is called the key of the item. The keys of the items in the data set
are used in such operations as searching, sorting, insertion, and deletion. For instance,
when we search the data set for a particular item, we compare the key of the item for
which we are searching with the keys of the items in the data set.

As previously remarked, in addition to describing searching algorithms, this chapter analyzes
these algorithms. In the analysis of an algorithm, the key comparisons refer to comparing
the key of the search item with the key of an item in the list. Moreover, the number of key
comparisons refers to the number of times the key of the item (in algorithms such as
searching and sorting) is compared with the keys of the items in the list.

In Chapter 3, we designed and implemented the class arrayListType to implement a
list and the basic operations in an array. Because this chapter refers to this class, for easy
reference we give its definition, without documentation to save space, here:

template <class elemType>
class arrayListType
{
public:

const arrayListType<elemType>& operator=
(const arrayListType<elemType>&);

498 | Chapter 9: Searching and Hashing Algorithms

bool isEmpty() const;
bool isFull() const;
int listSize() const;
int maxListSize() const;
void print() const;
bool isItemAtEqual(int location, const elemType& item) const;
void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void removeAt(int location);
void retrieveAt(int location, elemType& retItem) const;
void replaceAt(int location, const elemType& repItem);
void clearList();
int seqSearch(const elemType& item) const;
void insert(const elemType& insertItem);
void remove(const elemType& removeItem);

arrayListType(int size = 100);

arrayListType(const arrayListType<elemType>& otherList);

~arrayListType();

protected:
elemType *list; //array to hold the list elements
int length; //to store the length of the list
int maxSize; //to store the maximum size of the list

};

Sequential Search
The sequential search (also called linear search) on array-based lists was described in
Chapter 3, and the sequential search on linked lists was covered in Chapter 5. The
sequential search works the same for both array-based and linked lists. The search always
starts at the first element in the list and continues until either the item is found in the list
or the entire list is searched.

Because we are interested in the performance of the sequential search (that is, the analysis
of this type of search), for easy reference and for the sake of completeness, we give the
sequential search algorithm for array-based lists (as described in Chapter 3). If the search
item is found, its index (that is, its location in the array) is returned. If the search is
unsuccessful, -1 is returned. Note that the following sequential search does not require
the list elements to be in any particular order.

template <class elemType>
int arrayListType<elemType>::seqSearch(const elemType& item) const
{

int loc;
bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] == item)

9

Search Algorithms | 499

{
found = true;
break;

}

if (found)
return loc;

else
return -1;

} //end seqSearch

You can also write a recursive algorithm to implement the sequential search algorithm.

(See Programming Exercise 1 at the end of this chapter.)

SEQUENTIAL SEARCH ANALYSIS

This section analyzes the performance of the sequential search algorithm in both the
worst case and the average case.

The statements before and after the loop are executed only once and, hence, require very
little computer time. The statements in the for loop are the ones that are repeated several
times. For each iteration of the loop, the search item is compared with an element in the list,
and a few other statements are executed, including some other comparisons. Clearly, the loop
terminates as soon as the search item is found in the list. Therefore, the execution of the other
statements in the loop is directly related to the outcome of the key comparison. Also,
different programmers might implement the same algorithm differently, although the num-
ber of key comparisons would typically be the same. The speed of a computer can also easily
affect the time an algorithm takes to perform, but not the number of key comparisons.

Therefore, when analyzing a search algorithm, we count the number of key comparisons
because this number gives us the most useful information. Furthermore, the criteria for
counting the number of key comparisons can be applied equally well to other search
algorithms.

Suppose that L is list of length n. We want to determine the number of key comparisons
made by the sequential search when the L is searched for a given item.

If the search item is not in the list, we then compare the search item with every element
in the list, making n comparisons. This is an unsuccessful case.

Suppose that the search item is in the list. Then the number of key comparisons depends
on where in the list the search item is located. If the search item is the first element of L,
we make only one key comparison. This is the best case. On the other hand, if the search
item is the last element in the list, the algorithm makes n comparisons. This is the worst
case. The best and worst cases are not likely to occur every time we apply the sequential
search on L, so it would be more helpful if we could determine the average behavior of
the algorithm. That is, we need to determine the average number of key comparisons the
sequential search algorithm makes in the successful case.

500 | Chapter 9: Searching and Hashing Algorithms

To determine the average number of comparisons in the successful case of the sequential
search algorithm:

1. Consider all possible cases.

2. Find the number of comparisons for each case.

3. Add the number of comparisons and divide by the number of cases.

If the search item, called the target, is the first element in the list, one comparison is
required. If the target is the second element in the list, two comparisons are required.
Similarly, if the target is the kth element in the list, k comparisons are required. We
assume that the target can be any element in the list; that is, all list elements are equally
likely to be the target. Suppose that there are n elements in the list. The following
expression gives the average number of comparisons:

1þ 2þ . . .þ n

n

It is known that

1þ 2þ � � � þ n ¼ nðnþ 1Þ
2

Therefore, the following expression gives the average number of comparisons made by
the sequential search in the successful case:

1þ 2þ . . .þ n

n
¼ 1

n

nðnþ 1Þ
2

¼ nþ 1

2

This expression shows that, on average, the sequential search searches half the list. It, thus,
follows that if the list size is 1,000,000, on average, the sequential search makes 500,000
comparisons. As a result, the sequential search is not efficient for large lists.

Ordered Lists
A list is ordered if its elements are ordered according to some criteria. The elements of a
list are usually in ascending order. Several operations that can be performed on an ordered
list are similar to the operations performed on an arbitrary list. For example, determining
whether the list is empty or full, determining the length of the list, printing the list, and
clearing the list for an ordered list are the same operations as those on an unordered list.
Therefore, to define an ordered list as an abstract data type (ADT), by using the
mechanism of inheritance, we can derive the class to implement the ordered lists from
the class arrayListType discussed in the previous section. Depending on whether
a specific application of a list can be stored in either an array or a linked list, we define
two classes.

9

Search Algorithms | 501

The following class, orderedArrayListType, defines an ordered list stored in an
array as an ADT:

template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public:

orderedArrayListType(int size = 100);
//constructor

...
//We will add the necessary members as needed.

private:
//We will add the necessary members as needed.

}

Chapter 5 defined the following class to implement ordered linked lists:

template <class elemType>
class orderedLinkedListType: public linkedListType<elemType>
{
public:

...
}

Binary Search
As you can see, the sequential search is not efficient for large lists because, on average, the
sequential search searches half the list. We therefore describe another search algorithm,
called the binary search, which is very fast. However, a binary search can be performed
only on ordered lists. We, therefore, assume that the list is ordered. In the next chapter,
we describe several sorting algorithms.

The binary search algorithm uses the divide-and-conquer technique to search the list.
First, the search item is compared with the middle element of the list. If the search item is
found, the search terminates. If the search item is less than the middle element of the list,
we restrict the search to the first half of the list; otherwise, we search the second half of
the list.

Consider the sorted list of length = 12 in Figure 9-1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11]
list 4 8 19 25 34 39 45 48 66 75 89 95

FIGURE 9-1 List of length 12

502 | Chapter 9: Searching and Hashing Algorithms

9

Suppose that we want to determine whether 75 is in the list. Initially, the entire list is the
search list (see Figure 9-2).

First, we compare 75 with the middle element in this list, list[5] (which is 39).
Because 75 6¼ list[5] and 75 > list[5], we restrict our search to the list
list[6]...list[11], as shown in Figure 9-3.

This process is now repeated on the list list[6]...list[11], which is a list of
length = 6.

Because we need to determine the middle element of the list frequently, the binary search
algorithm is typically implemented for array-based lists. To determine the middle element
of the list, we add the starting index, first, and the ending index, last, of the search list
and then divide by 2 to calculate its index. That is, mid = (first + last) / 2.

Initially, first = 0 and last = length – 1 (this is because an array index in C++ starts
at 0 and length denotes the number of elements in the list).

The following C++ function implements the binary search algorithm. If the item is
found in the list, its location is returned; if the search item is not in the list, -1 is returned.

template<class elemType>
int orderedArrayListType<elemType>::binarySearch

(const elemType& item) const
{

int first = 0;
int last = length - 1;
int mid;

bool found = false;

search list

mid

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
list 4 8 19 25 34 39 45 48 66 75 89 95

FIGURE 9-2 Search list, list[0]...list[11]

search list
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

list 4 8 19 25 34 39 45 48 66 75 89 95

FIGURE 9-3 Search list, list[6]...list[11]

Search Algorithms | 503

while (first <= last && !found)
{

mid = (first + last) / 2;

if (list[mid] == item)
found = true;

else if (list[mid] > item)
last = mid - 1;

else
first = mid + 1;

}

if (found)
return mid;

else
return -1;

}//end binarySearch

In the binary search algorithm, each time through the loop we make two key compar-
isons. The only exception is in the successful case; the last time through the loop only one
key comparison is made.

The binary search algorithm, as given in this chapter, uses an iterative control structure

(the while loop) to compare the search item with the list elements. You can also write

a recursive algorithm to implement the binary search algorithm. (See Programming

Exercise 2 at the end of this chapter.)

Example 9-1 further illustrates how the binary search algorithm works.

EXAMPLE 9-1

Consider the list given in Figure 9-4.

The number of elements in this list is 12, so length = 12. Suppose that we are searching
for item 89. Table 9-1 shows the values of first, last, and mid each time through the
loop. It also shows the number of times the item is compared with an element in the list
each time through the loop.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
4 8 19 25 34 39 45 48 66 75 89 95list

FIGURE 9-4 Sorted list for a binary search

504 | Chapter 9: Searching and Hashing Algorithms

9

The item is found at location 10, and the total number of comparisons is 5.

Next, let us search the list for item 34. Table 9-2 shows the values of first, last, and
mid each time through the loop. It also shows the number of times the item is compared
with an element in the list each time through the loop.

The item is found at location 4, and the total number of comparisons is 7.

Let us now search for item 22, as shown in Table 9-3.

This is an unsuccessful search. The total number of comparisons is 6.

TABLE 9-1 Values of first, last, and mid and the number of comparisons for
search item 89

Iteration first last Mid list[mid] Number of comparisons

1 0 11 5 39 2

2 6 11 8 66 2

3 9 11 10 89 1(found is true)

TABLE 9-2 Values of first, last, and mid and the number of comparisons for search
item 34

Iteration first last mid list[mid] Number of comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 4 4 4 34 1 (found is true)

TABLE 9-3 Values of first, last, and mid and the number of comparisons for search
item 22

Iteration first last mid list[mid] Number of comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 3 2 The loop stops (because first > last)

Search Algorithms | 505

PERFORMANCE OF BINARY SEARCH

Suppose that L is a sorted list of size 1024 and we want to determine if an item x is in L.
From the binary search algorithm, it follows that every iteration of the while loop cuts the
size of the search list by half. (For example, see Figures 9-2 and 9-3.) Because 1024 ¼ 210,
the while loop will have, at most, 11 iterations to determine whether x is in L. Because
every iteration of the while loop makes two item (key) comparisons, that is, x is compared
twice with the elements of L, the binary search will make, at most, 22 comparisons to
determine whether x is in L. On the other hand, recall that a sequential search on average
will make 512 comparisons to determine whether x is in L.

To better understand how fast binary search is compared with sequential search, suppose that
L is of size 1048576. Because 1048576 ¼ 220, it follows that the while loop in a binary
search will have at most 21 iterations to determine whether an element is in L. Every
iteration of the while loop makes two key (that is, item) comparisons. Therefore, to
determine whether an element is in L, a binary search makes at most 42 item comparisons.

Note that 40 ¼ 2 * 20 ¼ 2 * log22
20 ¼ 2 * log2(1048576).

In general, suppose that L is a sorted list of size n. Moreover, suppose that n is a power of
2, that is, n ¼ 2m, for some nonnegative integer m. After each iteration of the for loop,
about half the elements are left to search, that is, the search sublist for the next iteration is
half the size of the current sublist. For example, after the first iteration, the search sublist is
of size about n /2 ¼ 2m-1. It is easy to see that the maximum number of the iteration of
the for loop is about m + 1. Also m ¼ log2n. Each iteration makes 2 key comparisons.
Thus, the maximum number of comparisons to determine whether an element x is in L is
2(m + 1) ¼ 2(log2n + 1) ¼ 2log2n + 2.

In the case of a successful search, it can be shown that for a list of length n, on average, a
binary search makes 2log2n – 3 key comparisons. In the case of an unsuccessful search, it
can be shown that for a list of length n, a binary search makes approximately 2log2(n+1)
key comparisons.

Now that we know how to effectively search an ordered list stored in an array, let us
discuss how to insert an item into an ordered list.

Insertion into an Ordered List
Suppose that you have an ordered list and want to insert an item in the list. After
insertion, the resulting list must also be ordered. Chapter 5 described how to insert an
item into an ordered linked list. This section describes how to insert an item into an
ordered list stored in an array.

To store the item in the ordered list, first we must find the place in the list where the item
is to be inserted. Then we slide the list elements one array position down to make room
for the item to be inserted, and then we insert the item. Because the list is sorted and
stored in an array, we can use an algorithm similar to the binary search algorithm to find
the place in the list where the item is to be inserted. We can then use the function

506 | Chapter 9: Searching and Hashing Algorithms

insertAt (of the class arrayListType) to insert the item. (Note that we cannot use
the binary search algorithm as designed previously because it returns –1 if the item is not
in the list. Of course, we can write another function using the binary search technique to
find the position in the array where the item is to be inserted.) Therefore, the algorithm
to insert the item is: (The special cases, such as inserting an item in an empty list or in a
full list, are handled separately.)

1. Use an algorithm similar to the binary search algorithm to find the place
where the item is to be inserted.

2. if the item is already in this list
output an appropriate message

else

use the function insertAt to insert the item in the list.

The following function, insertOrd, implements this algorithm.

template <class elemType>
void orderedArrayListType<elemType>::insertOrd(const elemType& item)
{

int first = 0;
int last = length - 1;
int mid;

bool found = false;

if (length == 0) //the list is empty
{

list[0] = item;
length++;

}
else if (length == maxSize)

cerr << "Cannot insert into a full list." << endl;
else
{

while (first <= last && !found)
{

mid = (first + last) / 2;

if (list[mid] == item)
found = true;

else if (list[mid] > item)
last = mid - 1;

else
first = mid + 1;

}//end while

if (found)
cerr << "The insert item is already in the list. "

<< "Duplicates are not allowed." << endl;
else

9

Search Algorithms | 507

{
if (list[mid] < item)

mid++;

insertAt(mid, item);
}

}
}//end insertOrd

Similarly, you can write a function to remove an element from an ordered list; see
Programming Exercise 6 at the end of this chapter.

If we add the binary search algorithm and the insertOrd algorithm to the class

orderedArrayListType, the definition of this class is as follows:

template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public:

void insertOrd(const elemType&);
int binarySearch(const elemType& item) const;
orderedArrayListType(int size = 100);

};

Because the class orderedArrayListType is derived from the class arrayListType,
and the list elements of an orderedArrayListType are ordered, we must override the
functions insertAt and insertEnd of the class arrayListType in the class
orderedArrayListType. We do this so that if these functions are used by an object of
type orderedArrayListType, then after using these functions, the list elements of the
object are still in order. We leave the details of these functions as an exercise for you.
Furthermore, you can also override the function seqSearch so that while performing a
sequential search on an ordered list, it takes into account that the elements are in order. We
leave the details of this function also as an exercise.

Table 9-4 summarizes the algorithm analysis of the search algorithms discussed earlier.

Lower Bound on Comparison-Based
Search Algorithms
Sequential and binary search algorithms search the list by comparing the target element
with the list elements. For this reason, these algorithms are called comparison-based

search algorithms. Earlier sections of this chapter showed that a sequential search is of

TABLE 9-4 Number of comparisons for a list of length n

Algorithm Successful search Unsuccessful search

Sequential search (n + 1) / 2 ¼ O (n) n ¼ O (n)

Binary search 2log2n – 3 ¼ O (log2n) 2log2(n+1) ¼ O (log2n)

508 | Chapter 9: Searching and Hashing Algorithms

9

the order n, and a binary search is of the order log2n, where n is the size of the list. The
obvious question is: Can we devise a search algorithm that has an order less than log2n?
Before we answer this question, first we obtain the lower bound on the number of
comparisons for the comparison-based search algorithms.

Theorem: Let L be a list of size n > 1. Suppose that the elements of L are sorted. If
SRH(n) denotes the minimum number of comparisons needed, in the worst case, by
using a comparison-based algorithm to recognize whether an element x is in L, then
SRH(n) � log2(n + 1).

Corollary: The binary search algorithm is the optimal worst-case algorithm for solving
search problems by the comparison method.

From these results, it follows that if we want to design a search algorithm that is of an
order less than log2n, it cannot be comparison based.

Hashing
Previous sections of this chapter discussed two search algorithms: sequential and binary.
In a binary search, the data must be sorted; in a sequential search, the data does not need
to be in any particular order. We also analyzed both these algorithms and showed that a
sequential search is of order n, and a binary search is of order log2n, where n is the length
of the list. The obvious question is: Can we construct a search algorithm that is of order
less than log2n? Recall that both search algorithms, sequential and binary, are comparison-
based algorithms. We obtained a lower bound on comparison-based search algorithms,
which shows that comparison-based search algorithms are at least of order log2n. There-
fore, if we want to construct a search algorithm that is of order less than log2n, it cannot
be comparison based. This section describes an algorithm that, on average, is of order 1.

The previous section showed that for comparison-based algorithms, a binary search
achieves the lower bound. However, a binary search requires the data to be specially
organized, that is, the data must be sorted. The search algorithm that we now describe,
called hashing, also requires the data to be specially organized.

In hashing, the data is organized with the help of a table, called the hash table, denoted by
HT, and the hash table is stored in an array. To determine whether a particular item with a
key, sayX, is in the table, we apply a function h, called the hash function, to the keyX; that
is, we compute h(X), read as h of X. The function h is typically an arithmetic function and
h(X) gives the address of the item in the hash table. Suppose that the size of the hash table,
HT, is m. Then 0 � h(X) < m. Thus, to determine whether the item with key X is in the
table, we look at the entry HT [h(X)] in the hash table. Because the address of an item is
computed with the help of a function, it follows that the items are stored in no particular
order. Before continuing with this discussion, let us consider the following questions:

• How do we choose a hash function?

• How do we organize the data with the help of the hash table?

Hashing | 509

First, we discuss how to organize the data in the hash table.

There are two ways that data is organized with the help of the hash table. In the first
approach, the data is stored within the hash table, that is, in an array. In the second
approach, the data is stored in linked lists and the hash table is an array of pointers to those
linked lists. Each approach has its own advantages and disadvantages, and we discuss both
approaches in detail. However, first we introduce some more terminology that is used in
this section.

The hash table HT is, usually, divided into, say b buckets HT [0], HT [1], . . ., HT [b – 1].
Each bucket is capable of holding, say r items. Thus, it follows that br ¼ m, where m is the
size of HT. Generally, r ¼ 1 and so each bucket can hold one item.

The hash function h maps the key X onto an integer t, that is, h(X) ¼ t, such that 0 �
h(X) � b – 1.

EXAMPLE 9-2

Suppose there are six students a1, a2, a3, a4, a5, a6 in the Data Structures class and their IDs
are a1: 197354863; a2: 933185952; a3: 132489973; a4: 134152056; a5: 216500306; and a6:
106500306.

Let k1 ¼ 197354863, k2¼ 933185952, k3 ¼ 132489973, k4 ¼ 134152056, k5 ¼
216500306, and k6 ¼ 106500306.

Suppose that HT denotes the hash table and HT is of size 13 indexed 0, 1, 2, . . ., 12.

Define the function h: {k1, k2, k3, k4, k5, k6} ! {0, 1, 2, . . ., 12} by h(ki) ¼ ki % 13.
(Note that % denotes the mod operator.)

Now

h (k1) ¼ h(197354863) ¼ 197354863 % 13 ¼ 4 h (k4) ¼ h(134152056) ¼ 134152056 % 13 ¼ 12

h (k2) ¼ h(933185952) ¼ 933185952 % 13 ¼ 10 h (k5) ¼ h(216500306) ¼ 216500306 % 13 ¼ 9

h (k3) ¼ h(132489973) ¼ 132489973 % 13 ¼ 5 h (k6) ¼ h(106500306) ¼ 106500306 % 13 ¼ 3

Suppose HT [b] ‹ a means ‘‘store the data of the student with ID a into HT [b].’’ Then

HT [4] ‹ 197354863 HT [5] ‹ 132489973 HT [9] ‹ 216500306

HT [10] ‹ 933185952 HT [12] ‹ 134152056 HT [3] ‹ 106500306

510 | Chapter 9: Searching and Hashing Algorithms

9

We consider now a slight variation of Example 9-2.

EXAMPLE 9-3

Suppose there are eight students in the class in a college and their IDs are 197354864,
933185952, 132489973, 134152056, 216500306, 106500306, 216510306, and 197354865.
We want to store each student’s data into HT in this order.

Let k1 ¼ 197354864, k2 ¼ 933185952, k3 ¼ 132489973, k4 ¼ 134152056, k5 ¼
216500306, k6 ¼ 106500306, k7 ¼ 216510306, and k8 ¼ 197354865.

Suppose that HT denotes the hash table and HT is of size 13 indexed 0, 1, 2, . . ., 12.

Define the function h: {k1, k2, k3, k4, k5, k6, k7, k8}! {0, 1, 2, . . ., 12} by h(ki)¼ ki% 13. Now

h (k1) ¼197354864 % 13 ¼ 5 h (k4) ¼ 134152056 % 13 ¼ 12 h (k7) ¼ 216510306 % 13 ¼ 12

h (k2) ¼ 933185952 % 13 ¼ 10 h (k5) ¼ 216500306 % 13 ¼ 9 h (k8) ¼ 197354865 % 13 ¼ 6

h (k3) ¼ 132489973 % 13 ¼ 5 h (k6) ¼ 106500306 % 13 ¼ 3

As before, suppose HT [b] ‹ a means ‘‘store the data of the student with ID a into
HT [b].’’ Then

HT [5] ‹ 197354864 HT [12] ‹ 134152056 HT [12] ‹ 216510306

HT [10] ‹ 933185952 HT [9] ‹ 216500306 HT [6] ‹ 197354865

HT [5] ‹ 132489973 HT [3] ‹ 106500306

It follows that the data of the student with ID 132489973 is to be stored in HT [5].
However, HT [5] is already occupied by the data of the student with ID 197354864. In
such a situation, we say that a collision has occurred. Later in this section, we discuss some
ways to handle collisions.

Two keys, X1 and X2, such that X1 6¼ X2, are called synonyms if h(X1) ¼ h(X2). Let X be
a key and h(X) ¼ t. If bucket t is full, we say that an overflow occurs. Let X1 and X2 be
two nonidentical keys. If h(X1) = h(X2), we say that a collision occurs. If r ¼ 1, that is, the
bucket size is 1, an overflow and a collision occur at the same time.

When choosing a hash function, the main objectives are to:

• Choose a hash function that is easy to compute.

• Minimize the number of collisions.

Next, we consider some examples of hash functions.

Suppose that HTSize denotes the size of the hash table, that is, the size of the array
holding the hash table. We assume that the bucket size is 1. Thus, each bucket can hold
one item and, therefore, overflow and collision occur simultaneously.

Hashing | 511

Hash Functions: Some Examples
Several hash functions are described in the literature. Here we describe some of the
commonly used hash functions.

Mid-Square: In this method, the hash function, h, is computed by squaring the
identifier, and then using the appropriate number of bits from the middle of the square
to obtain the bucket address. Because the middle bits of a square usually depend on all the
characters, it is expected that different keys will yield different hash addresses with high
probability, even if some of the characters are the same.

Folding: In folding, the key X is partitioned into parts such that all the parts, except
possibly the last parts, are of equal length. The parts are then added, in some convenient
way, to obtain the hash address.

Division (Modular arithmetic): In this method, the key X is converted into an integer
iX. This integer is then divided by the size of the hash table to get the remainder, giving
the address of X in HT. That is, (in C++)

h(X) ¼ iX % HTSize;

Suppose that each key is a string. The following C++ function uses the division method
to compute the address of the key.

int hashFunction(char *insertKey, int keyLength)
{

int sum = 0;

for (int j = 0; j < keyLength; j++)
sum = sum + static_cast<int>(insertKey[j]);

return (sum % HTSize);
} // end hashFunction

Collision Resolution
As noted previously, the hash function that we choose not only should be easy to
compute, but it is most desirable that the number of collisions is minimized. However,
in reality, collisions are unavoidable because usually a hash function always maps a larger
domain onto a smaller range. Thus, in hashing, we must include algorithms to handle
collisions. Collision resolution techniques are classified into two categories: open

addressing (also called closed hashing), and chaining (also called open hashing). In
open addressing, the data is stored within the hash table. In chaining, the data is organized
in linked lists and the hash table is an array of pointers to the linked lists. First we discuss
collision resolution by open addressing.

Open Addressing
As described previously, in open addressing, the data is stored within the hash table.
Therefore, for each key X, h(X) gives the index in the array where the item with key X is

512 | Chapter 9: Searching and Hashing Algorithms

likely to be stored. Open addressing can be implemented in several ways. Next, we
describe some of the common ways to implement it.

LINEAR PROBING

Suppose that an item with key X is to be inserted in HT. We use the hash function to
compute the index h(X) of this item in HT. Suppose that h(X) ¼ t. Then 0 � h(X) �
HTSize – 1. If HT[t] is empty, we store this item into this array slot. Suppose that HT[t]
is already occupied by another item; we have a collision. In linear probing, starting at
location t, we search the array sequentially to find the next available array slot.

In linear probing, we assume that the array is circular so that if the lower portion of the
array is full, we can continue the search in the top portion of the array. This can be easily
accomplished by using the mod operator. That is, starting at t, we check the array
locations t, (t + 1) % HTSize, (t + 2) % HTSize, . . ., (t + j) % HTSize. This is called
the probe sequence.

The next array slot is given by

(h(X) + j) % HTSize

where j is the jth probe.

EXAMPLE 9-4

Consider the students’ IDs and the hash function given in Example 9-3. Then we know that

h (197354864) ¼ 5 ¼ h (132489973) h (134152056) ¼ 12 ¼ h (216510306) h (106500306) ¼ 3

h (933185952) ¼ 10 h (216500306) ¼ 9 h (197354865) ¼ 6

Using the linear probing, the array position where each student’s data is stored is:

ID h(ID) (h(ID) + 1) % 13 (h(ID) + 2) % 13

197354864 5

933185952 10

132489973 5 6

134152056 12

216500306 9

106500306 3

216510306 12 0

197354865 6 7

9

Hashing | 513

As before, suppose HT [b] ‹ a means ‘‘store the data of the student with ID a into
HT [b].’’ Then

HT [5] ‹ 197354864 HT [12] ‹ 134152056 HT [0] ‹ 216510306

HT [10] ‹ 933185952 HT [9] ‹ 216500306 HT [7] ‹ 197354865

HT [6] ‹ 132489973 HT [3] ‹ 106500306

The following C++ code implements linear probing:

hIndex = hashFunction(insertKey);
found = false;

while (HT[hIndex] != emptyKey && !found)
if (HT[hIndex].key == key)

found = true;
else

hIndex = (hIndex + 1) % HTSize;

if (found)
cerr << "Duplicate items are not allowed." << endl;

else
HT[hIndex] = newItem;

From the definition of linear probing, we see that linear probing is easy to implement.
However, linear probing causes clustering; that is, more and more new keys would
likely be hashed to the array slots that are already occupied. For example, consider the
hash table of size 20, as shown in Figure 9-5.

Initially, all the array positions are available. Because all the array positions are available,
the probability of any position being probed is (1/20). Suppose that after storing some of
the items, the hash table is as shown in Figure 9-6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIGURE 9-6 Hash table of size 20 with certain positions occupied

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIGURE 9-5 Hash table of size 20

514 | Chapter 9: Searching and Hashing Algorithms

In Figure 9-6, a cross indicates that this array slot is occupied. Slot 9 will be occupied next
if, for the next key, the hash address is 6, 7, 8, or 9. Thus, the probability that slot 9 will
be occupied next is 4/20. Similarly, in this hash table, the probability that array position
14 will be occupied next is 5/20.

Now consider the hash table of Figure 9-7.

In this hash table, the probability that the array position 14 will be occupied next is 9/20,
whereas the probability that the array positions 15, 16, or 17 will be occupied next is 1/20.
We see that items tend to cluster, which would increase the search length. Linear probing,
therefore, causes clustering. This clustering is called primary clustering.

One way to improve linear probing is to skip array positions by a fixed constant, say c,
rather than 1. In this case, the hash address is as follows:

(h(X) + i * c) % HTSize

If c ¼ 2 and h(X) ¼ 2k, that is, h(X) is even, only the even-numbered array positions are
visited. Similarly, if c ¼ 2 and h(X) ¼ 2k + 1, that is, h(X) is odd, only the odd-numbered
array positions are visited. To visit all the array positions, the constant c must be relatively
prime to HTSize.

RANDOM PROBING

This method uses a random number generator to find the next available slot. The ith slot
in the probe sequence is

(h(X) + ri) % HTSize

where ri is the ith value in a random permutation of the numbers 1 to HTSize – 1. All
insertions and searches use the same sequence of random numbers.

EXAMPLE 9-5

Suppose that the size of the hash table is 101, and for the keys X1 and X2, h(X1) ¼ 26 and
h(X2) ¼ 35. Also suppose that r1 ¼ 2, r2 ¼ 5, and r3 ¼ 8. Then the probe sequence of X1

has the elements 26, 28, 31, and 34. Similarly, the probe sequence of X2 has the elements
35, 37, 40, and 43.

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIGURE 9-7 Hash table of size 20 with certain positions occupied

Hashing | 515

REHASHING

In this method, if a collision occurs with the hash function h, we use a series of hash
functions, h1, h2, . . ., hs. That is, if the collision occurs at h(X), the array slots hi(X), 1 �
hi(X) � s are examined.

QUADRATIC PROBING

Suppose that an item with key X is hashed at t, that is, h(X) ¼ t and 0 � t � HTSize – 1.
Further suppose that position t is already occupied. In quadratic probing, starting at position
t, we linearly search the array at locations (t + 1) % HTSize, (t + 22) % HTSize ¼ (t + 4) %
HTSize, (t + 32) % HTSize ¼ (t + 9) % HTSize, . . ., (t + i2) % HTSize. That is, the probe
sequence is: t, (t + 1) %HTSize (t + 22) %HTSize, (t + 32) %HTSize, . . ., (t + i2) %HTSize.

EXAMPLE 9-6

Suppose that the size of the hash table is 101 and for the keys X1, X2, and X3, h(X1) ¼ 25,
h(X2) ¼ 96, and h(X3) ¼ 34. Then the probe sequence for X1 is 25, 26, 29, 34, 41, and so
on. The probe sequence for X2 is 96, 97, 100, 4, 11, and so on. (Notice that (96 + 32) %
101 ¼ 105 % 101 ¼ 4.)

The probe sequence for X3 is 34, 35, 38, 43, 50, 59, and so on. Even though element 34
of the probe sequence of X3 is the same as the fourth element of the probe sequence of
X1, both probe sequences after 34 are different.

Although quadratic probing reduces primary clustering, we do not know if it probes all
the positions in the table. In fact, it does not probe all the positions in the table. However,
when HTSize is a prime, quadratic probing probes about half the table before repeating
the probe sequence. Let us prove this observation.

Suppose that HTSize is a prime and for 0 � i < j � HTSize,

ðt þ i2Þ%HTSize ¼ ðt þ j2Þ%HTSize:

This implies that HTSize divides (j2 – i2), that is, HTSize divides (j – i) (j + i). Because
HTSize is a prime, we get HTSize divides (j – i) or HTSize divides (j + i).

Now because 0 < j � i < HTSize, it follows that HTSize does not divide (j � i). Hence,
HTSize divides (j + i). This implies that j + i � HTSize, so j � (HTSize / 2).

Hence, quadratic probing probes half the table before repeating the probe sequence.
Thus, it follows that if the size of HTSize is a prime at least twice the number of items, we
can resolve all the collisions.

Because probing half the table is already a considerable number of probes, after making
these many probes we assume that the table is full and stop the insertion (and search).
(This can occur when the table is actually half full; in practice, it seldom happens unless
the table is nearly full.)

Next we describe how to generate the probe sequence.

516 | Chapter 9: Searching and Hashing Algorithms

9

Note that

22 ¼ 1þ ð2 � 2� 1Þ
32 ¼ 1þ 3þ ð2 � 3� 1Þ
42 ¼ 1þ 3þ 5þ ð2 � 4� 1Þ

..

.

i2 ¼ 1þ 3þ 5þ 7þ . . .þ ð2 � i� 1Þ; i � 1:

Thus, it follows that

ðt þ i2Þ%HTSize ¼ ðt þ 1þ 3þ 5þ 7þ . . .þ ð2 � i� 1ÞÞ%HTSize

Consider the probe sequence t, t þ 1, t þ 22, t þ 32, . . . , (t þ i2) % HTSize. The
following C++ code computes the ith probe, that is, (t + i2) % HTSize:

int inc = 1;
int pCount = 0;

while (p < i)
{

t = (t + inc) % HTSize;
inc = inc + 2;
pCount++;

}

The following pseudocode implements quadratic probing (assume that HTSize is a
prime):

int pCount;
int inc;
int hIndex;

hIndex = hashFunction(insertKey);

pCount = 0;
inc = 1;

while (HT[hIndex] is not empty
&& HT[hIndex] is not the same as the insert item
&& pCount < HTSize / 2)

{
pCount++;
hIndex = (hIndex + inc) % HTSize;
inc = inc + 2;

}

if (HT[hIndex] is empty)
HT[hIndex] = newItem;

else if (HT[hIndex] is the same as the insert item)
cerr << "Error: No duplicates are allowed." << endl;

Hashing | 517

else
cerr << "Error: The table is full. "

<< "Unable to resolve the collisions." << endl;

Both randomand quadratic probings eliminate primary clustering.However, if two nonidentical
keys, sayX1 andX2, are hashed to the same home position, that is, h(X1)¼ h(X2), then the same
probe sequence is followed for both keys. The same probe sequence is used for both keys
because random probing and quadratic probing are functions of the home positions, not
the original key. It follows that if the hash function causes a cluster at a particular home
position, the cluster remains under these probings. This is called secondary clustering.

One way to solve secondary clustering is to use linear probing, with the increment value
a function of the key. This is called double hashing. In double hashing, if a collision
occurs at h(X), the probe sequence is generated by using the rule:

(h(X) + i * g (X)) % HTSize

where g is the second hash function, and i ¼ 0, 1, 2, 3,

If the size of the hash table is a prime p, then we can define g as follows:

g(k) ¼ 1+(k % (p – 2))

EXAMPLE 9-7

Suppose that the size of the hash table is 101 and for the keys X1 and X2, h(X1) ¼ 35 and
h(X2) ¼ 83. Also suppose that g(X1) ¼ 3 and g(X2) ¼ 6. Then the probe sequence for X1

is 35, 38, 41, 44, 47, and so on. The probe sequence for X2 is 83, 89, 95, 0, 6, and so on.
(Notice that (83 + 3 * 6) % 101 ¼ 101 % 101 ¼ 0.)

EXAMPLE 9-8

Suppose there are six students in the Data Structures class and their IDs are 115, 153, 586,
206, 985, and 111, respectively. We want to store each student’s data in this order.
Suppose HT is of the size 19 indexed 0,1,2,3, . . ., 18. Consider the prime number p ¼ 19.
Then p – 2 ¼ 17. For the ID k, we define the hashing functions:

h(k) ¼ k % 19 and g(k) ¼ 1 + (k % (p – 2)) ¼ 1 + (k % 17)

Let k ¼ 115. Now h(115) ¼ 115 % 19 ¼ 1. So the data of the student with ID 115 is
stored in HT [1].

Next consider k ¼ 153. Now h(153) ¼ 153 % 19 ¼ 1. However, HT [1] is already
occupied. So we first calculate g(153), to find the probe sequence of 153. Now g(153) ¼
1 + (153 % 17)¼ 1 + 0¼ 1. Thus, h(153)¼ 1 and g(153)¼ 1. Therefore, probe sequence
of 153 is given by (h(153) + i � g(153)) % 19 ¼ (1 + i � 1) % 19, i ¼ 0, 1, 2, 3, Hence,

518 | Chapter 9: Searching and Hashing Algorithms

9

the probe sequence of 153 is 1, 2, 3, Because HT [2] is empty, the data of the student
with ID 153 is stored in HT[2].

Consider k ¼ 586. Now h(586) ¼ 586 % 19 ¼ 16. Because HT [16] is empty, we store
the data of the student with ID 586 in HT [16].

Consider k ¼ 206. Now h(206) ¼ 206 % 19 ¼ 16. Because HT [16] is already occupied,
we compute g(206). Now g(206) ¼ 1 + (206 % 17) ¼ 1 + 2 ¼ 3. So the probe sequence
of 206 is, 16, 0, 3, 6, Note that (16 + 3) % 19 ¼ 0. Because HT [0] is empty, the data
of the student with ID 206 is stored in HT [0].

We apply this process and find the array position to store the data of each student. If a
collision occurs for an ID, then the following table shows the probe sequence of that ID.

ID h(ID) g(ID) Probe sequence

115 1

153 1 1 1, 2, 3, 4, 5, . . .

586 16

206 16 3 16, 0, 3, 6, 9, Note that (16 + 3) % 19 ¼ 0

985 16 17 16, 14, 12, 10, . . . Note that (16 + 17) % 19 ¼ 14

111 16 10 16, 7, 17, 8, . . .

As before, suppose HT [b] ‹ a means ‘‘store the data of the student with ID a into
HT [b].’’ Then

HT [1] ‹ 115 HT [16] ‹ 586 HT [14] ‹ 985

HT [2] ‹ 153 HT [0] ‹ 206 HT [7] ‹ 111

Deletion: Open Addressing
Suppose that an item, say R, is to be deleted from the hash table, HT. Clearly, we first
must find the index of R in HT. To find the index of R, we apply the same criteria we
applied to R when R was inserted in HT. Let us further assume that after inserting R,
another item, R0, was inserted in HT, and the home position of R and R0 is the same. The
probe sequence of R is contained in the probe sequence of R0 because R0 was inserted in
the hash table after R. Suppose that we delete R simply by marking the array slot
containing R as empty. If this array position stays empty, then while searching for R0
and following its probe sequence, the search terminates at this empty array position. This
gives the impression that R0 is not in the table, which, of course, is incorrect. The item R
cannot be deleted simply by marking its position as empty from the hash table.

One way to solve this problem is to create a special key to be stored in the key of the
items to be deleted. The special key in any slot indicates that this array slot is available for

Hashing | 519

a new item to be inserted. However, during the search, the search should not terminate at
this location. This, unfortunately, makes the deletion algorithm slow and complicated.

Another solution is to use another array, say indexStatusList of int, of the same size
as the hash table as follows: Initialize each position of indexStatusList to 0, indicating
that the corresponding position in the hash table is empty. When an item is added to the
hash table at position, say i, we set indexStatusList[i] to 1. When an item is deleted
from the hash table at position, say k, we set indexStatusList[k] to -1. Therefore,
each entry in the array indexStatusList is -1, 0, or 1.

For example, suppose that you have the hash table as shown in Figure 9-8.

In Figure 9-8, the hash table positions 0, 1, 3, 5, 6, and 8 are occupied. Suppose that the
entries at positions 3 and 6 are removed. To remove these entries from the hash table, we
store -1 at positions 3 and 6 in the array indexStatusList (see Figure 9-9).

1 Mike[0]

1 Gina[1]

0[2]

1 Goldy[3]

0[4]

1 Ravi[5]
1 Danny[6]

0[7]

1 Sheila[8]

0[9]

indexStatusList HashTable

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

FIGURE 9-8 Hash table and indexStatusList

1 Mike[0]

1 Gina[1]

0[2]

-1 Goldy[3]

0[4]

1 Ravi[5]

-1 Danny[6]

0[7]

1 Sheila[8]

0[9]

indexStatusList HashTable
[0]

[1]

[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]

FIGURE 9-9 Hash table and indexStatusList after removing the entries at positions 3 and 6

520 | Chapter 9: Searching and Hashing Algorithms

Hashing: Implementation Using Quadratic Probing
This section briefly describes how to design a class, as an ADT, to implement hashing
using quadratic probing. To implement hashing, we use two arrays. One is used to store
the data, and the other, indexStatusList as described in the previous section, is used to
indicate whether a position in the hash table is free, occupied, or used previously. The
following class template implements hashing as an ADT:

//**
// Author: D.S. Malik
//
// This class specifies the members to implement a hash table as
// an ADT. It uses quadratic probing to resolve collisions.
//**

template <class elemType>
class hashT
{
public:

void insert(int hashIndex, const elemType& rec);
//Function to insert an item in the hash table. The first
//parameter specifies the initial hash index of the item to
//be inserted. The item to be inserted is specified by the
//parameter rec.
//Postcondition: If an empty position is found in the hash
// table, rec is inserted and the length is incremented by
// one; otherwise, an appropriate error message is
// displayed.

void search(int& hashIndex, const elemType& rec, bool& found) const;
//Function to determine whether the item specified by the
//parameter rec is in the hash table. The parameter hashIndex
//specifies the initial hash index of rec.
//Postcondition: If rec is found, found is set to true and
// hashIndex specifies the position where rec is found;
// otherwise, found is set to false.

bool isItemAtEqual(int hashIndex, const elemType& rec) const;
//Function to determine whether the item specified by the
//parameter rec is the same as the item in the hash table
//at position hashIndex.
//Postcondition: Returns true if HTable[hashIndex] == rec;
// otherwise, returns false.

void retrieve(int hashIndex, elemType& rec) const;
//Function to retrieve the item at position hashIndex.
//Postcondition: If the table has an item at position
// hashIndex, it is copied into rec.

void remove(int hashIndex, const elemType& rec);
//Function to remove an item from the hash table.
//Postcondition: Given the initial hashIndex, if rec is found

9

Hashing | 521

// in the table it is removed; otherwise, an appropriate
// error message is displayed.

void print() const;
//Function to output the data.

hashT(int size = 101);
//constructor
//Postcondition: Create the arrays HTTable and indexStatusList;
// initialize the array indexStatusList to 0; length = 0;
// HTSize = size; and the default array size is 101.

~hashT();
//destructor
//Postcondition: Array HTable and indexStatusList are deleted.

private:
elemType *HTable; //pointer to the hash table
int *indexStatusList; //pointer to the array indicating the

//status of a position in the hash table
int length; //number of items in the hash table
int HTSize; //maximum size of the hash table

};

We give the definition of only the function insert and leave the others as an exercise
for you.

The definition of the function insert using quadratic probing is as follows:

template <class elemType>
void hashT<elemType>::insert(int hashIndex, const elemType& rec)
{

int pCount;
int inc;

pCount = 0;
inc = 1;

while (indexStatusList[hashIndex] == 1
&& HTable[hashIndex] != rec && pCount < HTSize / 2)

{
pCount++;
hashIndex = (hashIndex + inc) % HTSize;
inc = inc + 2;

}

if (indexStatusList[hashIndex] != 1)
{

HTable[hashIndex] = rec;
indexStatusList[hashIndex] = 1;
length++;

}

522 | Chapter 9: Searching and Hashing Algorithms

else if(HTable[hashIndex] == rec)
cerr << "Error: No duplicates are allowed." << endl;

else
cerr << "Error: The table is full. "

<< "Unable to resolve the collision." << endl;
}

Chaining
In chaining, the hash table, HT, is an array of pointers (see Figure 9-10). Therefore, for
each j, where 0 � j � HTSize – 1, HT [j] is a pointer to a linked list. The size of the hash
table, HTSize, is less than or equal to the number of items.

ITEM INSERTION AND COLLISION

For each key X (in the item), we first find h(X) ¼ t, where 0 � t � HTSize – 1. The item
with this key is then inserted in the linked list (which might be empty) pointed to by
HT [t]. It then follows that for nonidentical keys X1 and X2, if h(X1) ¼ h(X2), the items
with keys X1 and X2 are inserted in the same linked list and so collision is handled quickly
and effectively. (A new item can be inserted at the beginning of the linked list because the
data in a linked list is in no particular order.)

SEARCH

Suppose that we want to determine whether an item R with key X is in the hash table. As
usual, first we calculate h(X). Suppose h(X) ¼ t. Then the linked list pointed to by HT [t]
is searched sequentially.

9

.

.

.

FIGURE 9-10 Linked hash table

Hashing | 523

DELETION

To delete an item, say R, from the hash table, first we search the hash table to find where
in a linked list R exists. We then adjust the pointers at the appropriate locations and
deallocate the memory occupied by R.

OVERFLOW

Because data is stored in linked lists, overflow is no longer a concern because memory
space to store the data is allocated dynamically. Furthermore, the size of the hash table no
longer needs to be greater than the number of items. If the size of the hash table is less
than the number of items, some of the linked lists contain more than one item. However,
with a good hash function, the average length of a linked list is still small and so the search
is efficient.

ADVANTAGES OF CHAINING

From the construction of the hash table using chaining, we see that item insertion and
deletion are straightforward. If the hash function is efficient, few keys are hashed to the
same home position. Thus, on average, a linked list is short, which results in a shorter
search length. If the item size is large, it saves a considerable amount of space. For
example, suppose there are 1000 items and each item requires 10 words of storage.
Further suppose that each pointer requires one word of storage. We then need 1000
words for the hash table, 10,000 words for the items, and 1000 words for the link in each
node. A total of 12,000 words of storage space, therefore, is required to implement
chaining. On the other hand, if we use quadratic probing, if the hash table size is twice
the number of items, we need 20,000 words of storage.

DISADVANTAGES OF CHAINING

If the item size is small, a considerable amount of space is wasted. For example, suppose
there are 1000 items, each requiring 1 word of storage. Chaining then requires a total of
3000 words of storage. On the other hand, with quadratic probing, if the hash table size is
twice the number of items, only 2000 words are required for the hash table. Also, if the
table size is three times the number of items, then in quadratic probing the keys are
reasonably spread out. This results in fewer collisions and so the search is fast.

Hashing Analysis
Let

� ¼ Number of records in the table

HTSize

The parameter a is called the load factor.

The average number of comparisons for a successful search and an unsuccessful search are
given in Table 9-5.

524 | Chapter 9: Searching and Hashing Algorithms

QUICK REVIEW

1. A list is a set of elements of the same type.

2. The length of a list is the number of elements in the list.

3. A one-dimensional array is a convenient place to store and process lists.

4. The sequential search algorithm searches the list for a given item, starting
with the first element in the list. It continues to compare the search item
with the elements in the list until either the item is found or no more
elements are left in the list with which it can be compared.

5. On average, the sequential search algorithm searches half the list.

6. For a list of length n, in a successful search, on average, the sequential search
makes (n + 1) / 2 ¼ O(n) comparisons.

7. A sequential search is not efficient for large lists.

8. A binary search is much faster than a sequential search.

9. A binary search requires the list elements to be in order—that is, sorted.

10. For a list of length n, in a successful search, on average, the binary search
makes 2 log2n – 3 ¼ O(log2n) key comparisons.

11. Let L be a list of size n > 1. Suppose that the elements of L are sorted. If
SRH(n) is the minimum number of comparisons needed, in the worst case,
by using a comparison-based algorithm to recognize whether an element x
is in L, then SRH(n) � log2(n + 1).

12. The binary search algorithm is the optimal worst-case algorithm for solving
search problems by using the comparison method.

13. To construct a search algorithm of the order less than log2n, it cannot be
comparison based.

14. In hashing, the data is organized with the help of a table, called the hash
table, denoted by HT. The hash table is stored in an array.

9

TABLE 9-5 Number of comparisons in hashing

Successful search Unsuccessful search

Linear probing
1

2
1þ 1

1� �

� �
1

2
1þ 1

ð1� �Þ2
()

Quadratic probing
� log

2
ð1� �Þ
�

1

1� �

Chaining 1þ �

2
�

Quick Review | 525

15. To determine whether a particular item with the key, say X, is in the hash
table, we apply a function h, called the hash function, to the key X; that is,
we compute h(X), read as h of X. The function h is an arithmetic function,
and h(X) gives the address of the item in the hash table.

16. In hashing, because the address of an item is computed with the help of a
function, it follows that the items are stored in no particular order.

17. Two keysX1 andX2, such thatX1 6¼ X2, are called synonyms if h(X1)¼ h(X2).

18. Let X be a key and h(X) ¼ t. If bucket t is full, we say that an overflow has
occurred.

19. Let X1 and X2 be two nonidentical keys. If h(X1) ¼ h(X2), we say that a
collision has occurred. If r ¼ 1, that is, the bucket size is 1, an overflow and
a collision occurs at the same time.

20. Collision resolution techniques are classified into two categories: open addres-
sing (also called closed hashing) and chaining (also called open hashing).

21. In open addressing, data is stored within the hash table.

22. In chaining, the data is organized in linked lists, and the hash table is an
array of pointers to the linked lists.

23. In linear probing, if a collision occurs at location t, then, starting at location
t, we search the array sequentially to find the next available array slot.

24. In linear probing, we assume that the array is circular so that if the lower
portion of the array is full, we can continue the search in the top portion of the
array. If a collision occurs at location t, then starting at t, we check the array
locations t, t+ 1, t+ 2, . . ., (t+ j) %HTSize. This is called the probe sequence.

25. Linear probing causes clustering, called primary clustering.

26. In random probing, a random number generator is used to find the next
available slot.

27. In rehashing, if a collision occurs with the hash function h, we use a series
of hash functions.

28. In quadratic probing, if a collision occurs at position t, then starting at position
twe linearly search the array at locations (t + 1) %HTSize, (t + 22) %HTSize
¼ (t + 4) % HTSize, (t + 32) % HTSize ¼ (t + 9) % HTSize, . . ., (t + i2) %
HTSize. The probe sequence is: t, (t + 1) % HTSize, (t + 22) % HTSize,
(t + 32) % HTSize, . . ., (t + i2) % HTSize.

29. Both random and quadratic probing eliminate primary clustering. However,
if two nonidentical keys, say X1 and X2, are hashed to the same home
position, that is, h(X1) ¼ h(X2), the same probe sequence is followed for
both keys. This is because random probing and quadratic probing are
functions of the home positions, not the original key. If the hash function
causes a cluster at a particular home position, the cluster remains under these
probings. This is called secondary clustering.

526 | Chapter 9: Searching and Hashing Algorithms

9

30. One way to solve secondary clustering is to use linear probing, wherein the
increment value is a function of the key. This is called double hashing. In
double hashing, if a collision occurs at h(X), the probe sequence is gener-
ated by using the rule: (h(X) + i * g (X)) % HTSize, where g is the second
hash function.

31. In open addressing, when an item is deleted, its position in the array cannot
be marked as empty.

32. In chaining, for each key X (in the item), first we find h(X) ¼ t, where 0 � t
� HTSize – 1. The item with this key is then inserted in the linked list
(which might be empty) pointed to by HT [t].

33. In chaining, for nonidentical keys X1 and X2, if h(X1) ¼ h(X2), the items
with keys X1 and X2 are inserted in the same linked list.

34. In chaining, to delete an item, say R, from the hash table, first we search the
hash table to find where in the linked list R exists. Then we adjust the pointers
at the appropriate locations and deallocate the memory occupied by R.

35. Let a ¼ (Number of records in the table / HTSize). The parameter a is
called the load factor.

36. In linear probing, the average number of comparisons in a successful search is
(1/2){1 + (1 / (1 – a))} and in an unsuccessful search is (1/2){1 + (1 / (1 – a)2)}.

37. In quadratic probing, the average number of comparisons in a successful
search is (–log2(1 – a)) / a and in an unsuccessful search is 1 / (1 – a).

38. In chaining, the average number of comparisons in a successful search is
(1 + a / 2) and in an unsuccessful search is a.

EXERCISES

1. Mark the following statements as true or false.

a. A sequential search of a list assumes that the list is in ascending order.

b. A binary search of a list assumes that the list is sorted.

c. A binary search is faster on ordered lists and slower on unordered lists.

d. A binary search is faster on large lists, but a sequential search is faster on
small lists.

2. Consider the following list: 63, 45, 32, 98, 46, 57, 28, 100

Using the sequential search as described in this chapter, how many compar-
isons are required to find whether the following items are in the list? (Recall
that by comparisons we mean item comparisons, not index comparisons.)

a. 90

b. 57

c. 63

d. 120

Exercises | 527

3. Write the definition of the class orderedArrayListType that imple-
ments the search algorithms for array-based lists as discussed in this chapter.

4. Consider the following list: 2, 10, 17, 45, 49, 55, 68, 85, 92, 98, 110

Using the binary search as described in this chapter, how many comparisons
are required to find whether the following items are in the list? Show the
values of first, last, and mid and the number of comparisons after each
iteration of the loop.

a. 15

b. 49

c. 98

d. 99

5. Suppose that the size of the hash table is 150 and the bucket size is 5. How
many buckets are in the hash table, and how many items can a bucket hold?

6. Explain how collision is resolved using linear probing.

7. Explain how collision is resolved using quadratic probing.

8. What is double hashing?

9. Suppose that the size of the hash table is 101 and items are inserted in the
table using quadratic probing. Also, suppose that a new item is to be
inserted in the table and its hash address is 30. If position 30 in the hash
table is occupied and the next four positions given by the probe sequence
are also occupied, determine where in the table the item will be inserted.

10. Suppose that the size of the hash table is 101. Further suppose that certain
keys with the indices 15, 101, 116, 0, and 217 are to be inserted in this
order into an initially empty hash table. Using modular arithmetic, find the
indices in the hash table if:

a. Linear probing is used.

b. Quadratic probing is used.

11. Suppose that 50 keys are to be inserted into an initially empty hash table
using quadratic probing. What should be the size of the hash table to
guarantee that all the collisions are resolved?

12. Suppose there are eight students with IDs 907354877, 193318608, 132489986,
134052069, 316500320, 106500319, 116510320, and 107354878. Suppose
hash table, HT, is of the size 13, indexed 0,1,2, . . ., 12. Show how these
students’ IDs, in the order given, are inserted in HT using the hashing function
h(k) ¼ k % 13, where k is a student ID.

13. Suppose there are eight teachers with IDs 2733, 1409, 2731, 1541, 2004,
2101, 2168, and 1863. Suppose hash table, HT, is of the size 15, indexed 0,
1, 2, . . ., 12. Show how these IDs are inserted in HT using the hashing
function h(k) ¼ k % 13, where k is an ID.

528 | Chapter 9: Searching and Hashing Algorithms

14. Suppose there are eight students with IDs 197354883, 933185971, 132489992,
134152075, 216500325, 106500325, 216510325, 197354884. Suppose hash
table, HT, is of the size 19, indexed 0, 1, 2, . . ., 18. Show how these students’
IDs, in the order given, are inserted inHT using the hashing function h(k)¼ k%
19. Use linear probing to resolve collision.

15. Suppose there are six workers, in a workshop, with IDs 147, 169, 580, 216,
974, and 124. Suppose hash table,HT, is of the size 13, indexed 0, 1, 2, . . ., 12.
Show how these workers’ IDs, in the order given, are inserted inHT using the
hashing function h(k) ¼ k % 13. Use linear probing to resolve collision.

16. Suppose there are five workers, in a shop, with IDs 909, 185, 657, 116, and
150. Suppose hash table, HT, is of the size 7, indexed 0, 1, 2, . . ., 6. Show
how these workers’ IDs, in the order given, are inserted in HT using the
hashing function h(k) ¼ k % 7. Use linear probing to resolve collision.

17. Suppose there are seven students with IDs 5701, 9302, 4210, 9015, 1553,
9902, and 2104. Suppose hash table,HT, is of the size 19, indexed 0,1,2, . . .,
18. Show how these students’ IDs, in the order given, are inserted in HT
using the hashing function h(k) ¼ k % 19. Use double hashing to resolve
collision, where the second hash function is given by g(k) ¼ (k+1) % 17.

18. Suppose that an item is to be removed from a hash table that was imple-
mented using linear or quadratic probing. Why wouldn’t you mark the
position of the item to be deleted as empty?

19. What are the advantages of open hashing?

20. Give a numerical example to show that collision resolution by quadratic
probing is better than chaining.

21. Give a numerical example to show that collision resolution by chaining is
better than quadratic probing.

22. Suppose that the size of the hash table is 1001 and the table has 850 items.
What is the load factor?

23. Suppose that the size of the hash table is 1001 and the table has 750 items.
On average, how many comparisons are made to determine whether an
item is in the list if:

a. Linear probing is used.

b. Quadratic probing is used.

c. Chaining is used.

24. Suppose that 550 items are to be stored in a hash table. If, on average, three
key comparisons are needed to determine whether an item is in the table,
what should be the size of the hash table if:

a. Linear probing is used.

b. Quadratic probing is used.

c. Chaining is used.

9

Exercises | 529

PROGRAMMING EXERCISES

1. (Recursive sequential search) The sequential search algorithm given in
Chapter 3 is nonrecursive. Write and implement a recursive version of the
sequential search algorithm.

2. (Recursive binary search) The binary search algorithm given in this chapter
is nonrecursive. Write and implement a recursive version of the binary
search algorithm. Also, write a version of the sequential search algorithm
that can be applied to sorted lists. Add this operation to the class
orderedArrayListType for array-based lists. Moreover, write a test program
to test your algorithm.

3. The sequential search algorithm as given in this chapter does not assume that the
list is in order. Therefore, it usually works the same for both sorted and unsorted
lists. However, if the elements of the list are sorted, you can somewhat improve
the performance of the sequential search algorithm. For example, if the search
item is not in the list, you can stop the search as soon as you find an element in
the list that is larger than the search item. Write the function seqOrdSearch to
implement a version of the sequential search algorithm for sorted lists. Add this
function to the class orderedArrayListType and write a program to test it.

4. Write a program to find the number of comparisons using the binary search
and sequential search algorithms as follows:

Suppose list is an array of 1000 elements.

a. Use a random number generator to fill list.

b. Use any sorting algorithm to sort list. Alternatively, you can use the
function insertOrd to initially insert all the elements in the list.

c. Search the list for some items, as follows:

i. Use the binary search algorithm to search the list. (You might need
to modify the algorithm given in this chapter to count the number
of comparisons.)

ii. Use the binary search algorithm to search the list, switching to a
sequential search when the size of the search list reduces to less than
15. (Use the sequential search algorithm for a sorted list.)

d. Print the number of comparisons for Steps c.i and c.ii. If the item is
found in the list, then print its position.

5. Write a program to test the function insertOrd that inserts an item into an
array-based ordered list.

6. Write the function removeOrd that removes an item from an array-based
ordered list. The item to be removed is passed as a parameter to this function.
After removing the item, the resulting list must be ordered with no empty
array positions between the elements. Add this function to the class

orderedArrayListType and write a program to test it.

530 | Chapter 9: Searching and Hashing Algorithms

7. Write the definitions of the functions search, isItemAtEqual, retrieve,
remove, and print, the constructor, and the destructor for the class

hashT, as described in the section, ‘‘Hashing: Implementation Using Quad-
ratic Probing,’’ of this chapter. Also, write a program to test various hashing
operations.

8. a. Some of the attributes of a state in the United States are its name, capital,
area, year of admission to the union, and the order of admission to the
union. Design the class stateData to keep track of the information for
a state. Your class must include appropriate functions to manipulate the
state’s data, such as the functions setStateInfo, getStateInfo, and so
on. Also, overload the relational operators to compare two states by their
name. For easy input and output, overload the stream operators.

b. Use the class hashT as described in the section, ‘‘Hashing: Implemen-
tation Using Quadratic Probing,’’ which uses quadratic probing to
resolve collision, to create a hash table to keep track of each state’s
information. Use the state’s name as the key to determine the hash
address. You may assume that a state’s name is a string of no more than
15 characters.

Test your program by searching for and removing certain states from the
hash table.

You may use the following hash function to determine the hash address
of an item:

int hashFunc(string name)
{

int i, sum;
int len;

i = 0;
sum = 0;

len = name.length();

for (int k = 0; k < 15 - len; k++)
name = name + ' '; //increase the length of the name

//to 15 characters

for (int k = 0; k < 5; k++)
{

sum = sum + static_cast<int>(name[i]) * 128 * 128
+ static_cast<int>(name[i + 1]) * 128
+ static_cast<int>(name[i + 2]);

i = i + 3;
}

return sum % HTSize;
}

9

Programming Exercises | 531

This page intentionally left blank

SORTING ALGORITHMS
IN THIS CHAPTER , YOU WILL :

. Learn the various sorting algorithms

. Explore how to implement selection sort, insertion sort, Shellsort, quicksort, mergesort,
and heapsort

. Discover how the sorting algorithms discussed in this chapter perform

. Learn how priority queues are implemented

10C H A P T E R

Chapter 9 discussed the search algorithms on lists. A sequential search does not assume
that the data is in any particular order; however, as noted, this search does not work
efficiently for large lists. By contrast, a binary search is very fast for array-based lists, but
it requires the data to be in order. Because a binary search requires the data to be in
order and its performance is good for array-based lists, this chapter focuses on sorting
algorithms.

Sorting Algorithms
There are several sorting algorithms in the literature. In this chapter, we discuss some of the
most commonly used sorting algorithms. To compare the performance of these algorithms,
we also provide the analysis of these algorithms. These sorting algorithms can be applied to
either array-based lists or linked lists. We will specify whether the algorithm being developed
is for array-based lists or linked lists.

The functions implementing these sorting algorithms are included as public members
of the related class. (For example, for an array-based list, these are the members of the
class arrayListType.) By doing so, the algorithms have direct access to the list
elements.

Suppose that the sorting algorithm selection sort (described in the next section) is to be
applied to array-based lists. The following statements show how to include selection sort
as a member of the class arrayListType:

template <class elemType>
class arrayListType
{
public:

void selectionSort();
...

};

Selection Sort: Array-Based Lists
In selection sort, a list is sorted by selecting elements in the list, one at a time, and moving
them to their proper positions. This algorithm finds the location of the smallest element
in the unsorted portion of the list and moves it to the top of the unsorted portion (that is,
the whole list) of the list. The first time we locate the smallest item in the entire list, the
second time we locate the smallest item in the list starting from the second element in the
list, and so on. Selection sort described here is designed for array-based lists.

534 | Chapter 10: Sorting Algorithms

Suppose you have the list shown in Figure 10-1.

Figure 10-2 shows the elements of list in the first iteration.

Initially, the entire list is unsorted. So we find the smallest item in the list. The smallest
item is at position 6, as shown in Figure 10-2(a). Because this is the smallest item, it must
be moved to position 0. So we swap 16 (that is, list[0]) with 5 (that is, list[6]), as
shown in Figure 10-2(b). After swapping these elements, the resulting list is as shown in
Figure 10-2(c).

Figure 10-3 shows the elements of list in the second iteration.

1
0

16[0]
[1]

[3]
[2]

[4]
[5]

[7]
[6]

30
24
7
62
45
5
55

smallest

unsorted
list

list

16
30
24
7
62
45
5
55

swap

5
30
24
7
62
45
16
55

unsorted
list

(a) (b) (c)

FIGURE 10-2 Elements of list during the first iteration

16

[0] [1] [3][2] [4] [5] [7][6]

30 24 7 62 45 5 55list

FIGURE 10-1 List of 8 elements

[0]
[1]

[3]
[2]

[4]
[5]

[7]
[6]

smallest

list
5
30
24
7
62
45
16
55

unsorted
list

(a) (b) (c)

5
30
24
7
62
45
16
55

swap

5
7
24
30
62
45
16
55

unsorted
list

FIGURE 10-3 Elements of list during the second iteration

Selection Sort: Array-Based Lists | 535

Now the unsorted list is list[1]...list[7]. So we find the smallest element in
the unsorted list. The smallest element is at position 3, as shown in Figure 10-3(a).
Because the smallest element in the unsorted list is at position 3, it must be moved to
position 1. So we swap 7 (that is, list[3]) with 30 (that is, list[1]), as shown in
Figure 10-3(b). After swapping list[1] with list[3], the resulting list is as shown
in Figure 10-3(c).

Now the unsorted list is list[2]...list[7]. So we repeat the preceding process of
finding the (position of the) smallest element in the unsorted portion of the list and
moving it to the beginning of the unsorted portion of the list. Selection sort, thus,
involves the following steps.

In the unsorted portion of the list:

1. Find the location of the smallest element.

2. Move the smallest element to the beginning of the unsorted list.

Initially, the entire list, list[0]...list[length-1], is the unsorted list. After executing
Steps 1 and 2 once, the unsorted list is list[1]...list[length-1]. After executing
Steps 1 and 2 a second time, the unsorted list is list[2]...list[length-1], and so on.
We can keep track of the unsorted portion of the list and repeat Steps a and b with the help
of a for loop as follows:

for (index = 0; index < length - 1; index++)
{

1. Find the location, smallestIndex, of the smallest element in
list[index]...list[length - 1].

2. Swap the smallest element with list[index]. That is, swap
list[smallestIndex] with list[index].

}

The first time through the loop, we locate the smallest element in
list[0]...list[length-1] and swap this smallest element with list[0]. The
second time through the loop, we locate the smallest element in
list[1]...list[length-1] and swap this smallest element with list[1], and so
on. This process continues until the length of the unsorted list is 1. (Note that a list
of length 1 is sorted.) It, therefore, follows that to implement selection sort, we need to
implement Steps 1 and 2.

Given the starting index, first, and the ending index, last, of the list, the
following C++ function returns the index of the smallest element in
list[first]...list[last]:

template <class elemType>
int arrayListType<elemType>::minLocation(int first, int last)
{

int minIndex;

minIndex = first;

536 | Chapter 10: Sorting Algorithms

for (int loc = first + 1; loc <= last; loc++)
if(list[loc] < list[minIndex])

minIndex = loc;

return minIndex;
} //end minLocation

Given the locations in the list of the elements to be swapped, the following C++
function, swap, swaps those elements:

template <class elemType>
void arrayListType<elemType>::swap(int first, int second)
{

elemType temp;

temp = list[first];
list[first] = list[second];
list[second] = temp;

}//end swap

We can now complete the definition of the function selectionSort:

template <class elemType>
void arrayListType<elemType>::selectionSort()
{

int minIndex;

for (int loc = 0; loc < length - 1; loc++)
{

minIndex = minLocation(loc, length - 1);
swap(loc, minIndex);

}
}

You can add the functions to implement selection sort in the definition of the
class arrayListType as follows:

template<class elemType>
class arrayListType
{
public:

//Place the definitions of the function given earlier here.

void selectionSort();
...

private:
//Place the definitions of the members given earlier here.

void swap(int first, int second);
int minLocation(int first, int last);

};

1
0

Selection Sort: Array-Based Lists | 537

EXAMPLE 10-1

The following program tests selection sort:

//**
// Author: D.S. Malik
//
// This program illustrates how to use selection sort in a
// program.
//**

#include <iostream> //Line 1
#include "arrayListType.h" //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

arrayListType<int> list; //Line 6
int num; //Line 7

cout << "Line 8: Enter numbers ending with -999"
<< endl; //Line 8

cin >> num; //Line 9

while (num != -999) //Line 10
{ //Line 11

list.insert(num); //Line 12
cin >> num; //Line 13

} //Line 14

cout << "Line 15: The list before sorting:" << endl; //Line 15
list.print(); //Line 16
cout << endl; //Line 17

list.selectionSort(); //Line 18

cout << "Line 19: The list after sorting:" << endl; //Line 19
list.print(); //Line 20
cout << endl; //Line 21

return 0; //Line 22
} //Line 23

Sample Run: In this sample run, the user input is shaded.

Line 8: Enter numbers ending with -999
34 67 23 12 78 56 36 79 5 32 66 -999
Line 15: The list before sorting:
34 67 23 12 78 56 36 79 5 32 66

538 | Chapter 10: Sorting Algorithms

Line 19: The list after sorting:
5 12 23 32 34 36 56 66 67 78 79

For the most part, the preceding output is self-explanatory. Notice that the statement in
Line 12 calls the function insert of the class arrayListType. Similarly, the state-
ments in Lines 16 and 20 call the function print of the class arrayListType. The
statement in Line 18 calls the function selectionSort to sort the list.

1. Selection sort can also be implemented by selecting the largest element in the

(unsorted portion of the) list and moving it to the bottom of the list. You can

easily implement this form of selection sort by altering the if statement in the

function minLocation, and passing the appropriate parameters to the corre-

sponding function and the function swap, when these functions are called in

the function selectionSort.

2. Selection sort can also be applied to linked lists. The general algorithm is the

same, and the details are left as an exercise for you. See Programming Exercise

1 at the end of this chapter.

Analysis: Selection Sort
In the case of search algorithms (Chapter 9), our only concern was with the number of
key (item) comparisons. A sorting algorithm makes key comparisons and also moves
the data. Therefore, in analyzing the sorting algorithm, we look at the number of key
comparisons as well as the number of data movements. Let us look at the performance of
selection sort.

Suppose that the length of the list is n. The function swap does three item assignments
and is executed n � 1 times. Hence, the number of item assignments is 3(n � 1).

The key comparisons are made by the function minLocation. For a list of length k, the
function minLocation makes k � 1 key comparisons. Also, the function minLocation
is executed n � 1 times (by the function selectionSort). The first time, the function
minLocation finds the index of the smallest key item in the entire list and so makes n� 1

comparisons. The second time, the function minLocation finds the index of the smallest
element in the sublist of length n � 1 and so makes n � 2 comparisons, and so on. Hence
the number of key comparisons is as follows:

ðn�1Þ þ ðn�2Þ þ : : : þ 2þ 1 ¼ ð1=2Þnðn�1Þ ¼ ð1=2Þn2�ð1=2Þn¼ Oðn2Þ
Thus, it follows that if n ¼ 1000, the number of key comparisons the selection sort makes
is 1/2(10002) � 1/2(1000) ¼ 499500 » 500000.

1
0

Selection Sort: Array-Based Lists | 539

Insertion Sort: Array-Based Lists
The previous section described and analyzed the selection sort algorithm. It was shown
that if n ¼ 1000, the number of key comparisons is approximately 500,000, which is quite
high. This section describes the sorting algorithm called insertion sort, which tries to
improve—that is, reduce—the number of key comparisons.

Insertion sort sorts the list by moving each element to its proper place. Consider the list
given in Figure 10-4.

The length of the list is 8. In this list, the elements list[0], list[1], list[2],
and list[3] are in order. That is, list[0]...list[3] is sorted, as shown in Figure 10-5(a).

Next, we consider the element list[4], the first element of the unsorted list. Because
list[4] < list[3], we need to move the element list[4] to its proper location. It
follows that element list[4] should be moved to list[2], as shown in Figure 10-5(b).
To move list[4] into list[2], first we copy list[4] into temp, a temporary
memory space—see Figure 10-5(c).

Next, we copy list[3] into list[4], and then list[2] into list[3], as shown in
Figure 10-5(d). After copying list[3] into list[4] and list[2] into list[3], the
list is as shown in Figure 10-5(e). Next we copy temp into list[2]. Figure 10-5(f)
shows the resulting list.

Now list[0]...list[4] is sorted and list[5]...list[7] is unsorted. We repeat
this process on the resulting list by moving the first element of the unsorted list into the
sorted list in the proper place.

list 10 18 25 30 23 17 45 35
[0] [1] [2] [3] [4] [5] [6] [7]

FIGURE 10-4 list

unsorted
list

list
10
18
25
30
23
17
45
35

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

sorted
list

10
18
25
30
23
17
45
35

move

10
18
25
30
23
17
45
35 temp

23

copy

10
18
25
30
23
17
45
35 temp

23

copy

copy

10
18
25
25
30
17
45
35 temp

23

10
18
23
25
30
17
45
35 temp

23

copy

(a) (b) (c) (d) (e) (f)

FIGURE 10-5 list elements while moving list[4] to its proper place

540 | Chapter 10: Sorting Algorithms

From this discussion, we see that during the sorting phase the array containing the list
is divided into two sublists, upper and lower. Elements in the upper sublist are
sorted; elements in the lower sublist are to be moved to the upper sublist in their
proper places one at a time. We use an index—say, firstOutOfOrder—to point to
the first element in the lower sublist; that is, firstOutOfOrder gives the index of
the first element in the unsorted portion of the array. Initially, firstOutOfOrder is
initialized to 1.

This discussion translates into the following pseudoalgorithm:

for (firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++)
if (list[firstOutOfOrder] is less than list[firstOutOfOrder - 1])
{

copy list[firstOutOfOrder] into temp

initialize location to firstOutOfOrder

do
{

a. move list[location - 1] one array slot down
b. decrement location by 1 to consider the next element

sorted of the portion of the array
}
while (location > 0 && the element in the upper list at

location - 1 is greater than temp)
}

copy temp into list[location]

The length of this list is 8; that is, length = 8. We initialize firstOutOfOrder to 1

(see Figure 10-6).

Now list[firstOutOfOrder] = 7, list[firstOutOfOrder - 1] = 13 and 7 < 13,
and the expression in the if statement evaluates to true, so we execute the body of the
if statement.

temp = list[firstOutOfOrder] = 7
location = firstOutOfOrder = 1

Next, we execute the do...while loop.

1
0[0] [1] [2] [3] [4] [5] [6] [7]

list 13 7 15 8 12 30 3 20

firstOutOfOrder

firstOutOfOrder 1

FIGURE 10-6 firstOutOfOrder = 1

Insertion Sort: Array-Based Lists | 541

list[1] = list[0] = 13 (copy list[0] into list[1])
location = 0 (decrement location)

The do...while loop terminates because location = 0. We copy temp into
list[location]—that is, into list[0]. Figure 10-7 shows the resulting list.

Now suppose that we have the list given in Figure 10-8(a).

Here list[0]...list[3], or the elements list[0], list[1], list[2], and
list[3], are in order. Now firstOutOfOrder = 4. Because list[4] < list[3],
the element list[4], which is 12, needs to be moved to its proper location.

As before:

temp = list[firstOutOfOrder] = 12
location = firstOutOfOrder = 4

First, we copy list[3] into list[4] and decrement location by 1. Then we copy
list[2] into list[3] and again decrement location by 1. Now the value of
location is 2. At this point, the list is as shown in Figure 10-8(b).

[0] [1] [2] [3] [4] [5] [6] [7]
list 7 13 15 8 12 30 3 20

firstOutOfOrder
firstOutOfOrder 1 temp 7

FIGURE 10-7 list after the first iteration of insertion sort

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

list

7

8

13

15

12

30

3

20

firstOutOfOrder
4

7

8

13

13

15

30

3

20

firstOutOfOrder
4

temp 12

7

8

12

13

15

30

3

20

firstOutOfOrder
4

temp 12

(c)(b)(a)

FIGURE 10-8 list elements while moving list[4] to its proper place

542 | Chapter 10: Sorting Algorithms

Next, because list[1] < temp, the do...while loop terminates. At this point, location
is 2, so we copy temp into list[2]. That is, list[2] = temp = 12. Figure 10-8(c) shows
the resulting list.

Suppose that we have the list given in Figure 10-9.

Here list[0]...list[4], or the elements list[0], list[1], list[2], list[3], and
list[4], are in order. Now firstOutOfOrder = 5. Because list[5] > list[4], the if
statement evaluates to false. So the body of the if statement does not execute and
the next iteration of the for loop, if any, takes place. Note that this is the case when the
firstOutOfOrder element is already at the proper place. So we simply need to advance
firstOutOfOrder to the next array element, if any.

We can repeat this process for the remaining elements of list to sort list.

The following C++ function implements the previous algorithm:

template <class elemType>
void arrayListType<elemType>::insertionSort()
{

int firstOutOfOrder, location;
elemType temp;

for (firstOutOfOrder = 1; firstOutOfOrder < length;
firstOutOfOrder++)

if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])
{

temp = list[firstOutOfOrder];
location = firstOutOfOrder;

do
{

list[location] = list[location - 1];
location--;

}
while (location > 0 && list[location - 1] > temp);

list[location] = temp;
}

} //end insertionSort

1
0

[0] [1] [2] [3] [4] [5] [6] [7]
list 7 8 13 15 22 30 4 25

firstOutOfOrderfirstOutOfOrder 5

FIGURE 10-9 First out-of-order element is at position 5

Insertion Sort: Array-Based Lists | 543

Insertion Sort: Linked List-Based Lists
Insertion sort can also be applied to linked lists. Therefore, this section describes insertion
sort for linked lists. Consider the linked list shown in Figure 10-10.

In Figure 10-10, first is a pointer to the first node of the linked list.

If the list is stored in an array, we can traverse the list in either direction using an index
variable. However, if the list is stored in a linked list, we can traverse the list in only
one direction starting at the first node because the links are only in one direction, as
shown in Figure 10-10. Therefore, in the case of a linked list, to find the location of
the node to be inserted, we do the following. Suppose that firstOutOfOrder is a
pointer to the node that is to be moved to its proper location, and lastInOrder is a
pointer to the last node of the sorted portion of the list. For example, see the linked list
in Figure 10-11. (We assume that the nodes are in the usual info-link form as
described in Chapter 5.)

First, we compare the info of firstOutOfOrder with the info of the first node. If the
info of firstOutOfOrder is smaller than the info of first, then the node
firstOutOfOrder is to be moved before the first node of the list; otherwise, we search
the list starting at the second node to find the location where to move
firstOutOfOrder. As usual, we search the list using two pointers, for example
current and trailCurrent. The pointer trailCurrent points to the node just before
current. In this case, the node firstOutOfOrder is to be moved between
trailCurrent and current. Of course, we also handle any special cases such as an
empty list, a list with only one node, or a list in which the node firstOutOfOrder is
already in the proper place.

first

10 7 25 8 12 20

FIGURE 10-10 Linked list

lastInOrder

first

8 10 20 30 15 18

firstOutOfOrder

FIGURE 10-11 Linked list and pointers lastInOrder and firstOutOfOrder

544 | Chapter 10: Sorting Algorithms

This discussion translates into the following algorithm:

if (firstOutOfOrder->info is less than first->info)
move firstOutOfOrder before first

else
{

set trailCurrent to first
set current to the second node in the list first->link;

//search the list
while (current->info is less than firstOutOfOrder->info)
{

advance trailCurrent;
advance current;

}

if (current is not equal to firstOutOfOrder)
{ //insert firstOutOfOrder between current and trailCurrent

lastInOrder->link = firstOutOfOrder->link;
firstOutOfOrder->link = current;
trailCurrent->link = firstOutOfOrder;

}
else //firstOutOfOrder is already at the first place

lastInOrder = lastInOrder->link;
}

Let us illustrate this algorithm on the list shown in Figure 10-12. We consider several
cases.

Case 1: Because firstOutOfOrder->info is less than first->info, the node
firstOutOfOrder is to be moved before first. So we adjust the necessary links, and
Figure 10-13 shows the resulting list.

1
0lastInOrder

first

10 15 25 8 12 20

firstOutOfOrder

FIGURE 10-12 Linked list and pointers lastInOrder and firstOutOfOrder

lastInOrder

first

8 10 15 25 12 20

FIGURE 10-13 Linked list after moving the node with info 8 to the beginning

Insertion Sort: Linked List-Based Lists | 545

Case 2: Consider the list shown in Figure 10-14.

Because firstOutOfOrder->info is greater than first->info, we search the list to
find the place where firstOutOfOrder is to be moved. As explained previously, we use
the pointers trailCurrent and current to traverse the list. For this list, these pointers
end up at the nodes as shown in Figure 10-15.

Because current is the same as firstOutOfOrder, the node firstOutOfOrder is in
the right place. So no adjustment of the links is necessary.

Case 3: Consider the list in Figure 10-16.

Because firstOutOfOrder->info is greater than first->info, we search the list to
find the place where firstOutOfOrder is to be moved. As in Case 2, we use the
pointers trailCurrent and current to traverse the list. For this list, these pointers end
up at the nodes as shown in Figure 10-17.

lastInOrder

first

8 10 20 30 15 18

firstOutOfOrder

FIGURE 10-14 Linked list and pointers lastInOrder and firstOutOfOrder

lastInOrder

first

8 10 20 30 15 18

firstOutOfOrder

currenttrailCurrent

FIGURE 10-15 Linked list and pointers trailCurrent and current

lastInOrder

first

8 10 20 30 15 18

firstOutOfOrder

FIGURE 10-16 Linked list and pointers lastInOrder and firstOutOfOrder

546 | Chapter 10: Sorting Algorithms

1
0

Now, firstOutOfOrder is to be moved between trailCurrent and current. So we
adjust the necessary links and obtain the list as shown in Figure 10-18.

We now write the C++ function, linkedInsertionSort, to implement the previous
algorithm:

template <class elemType>
void unorderedLinkedList<elemType>::linkedInsertionSort()
{

nodeType<elemType> *lastInOrder;
nodeType<elemType> *firstOutOfOrder;
nodeType<elemType> *current;
nodeType<elemType> *trailCurrent;

lastInOrder = first;

if (first == NULL)
cerr << "Cannot sort an empty list." << endl;

else if (first->link == NULL)
cout << "The list is of length 1. "

<< "It is already in order." << endl;
else

while (lastInOrder->link != NULL)
{

firstOutOfOrder = lastInOrder->link;

if (firstOutOfOrder->info < first->info)
{

lastInOrder->link = firstOutOfOrder->link;
firstOutOfOrder->link = first;
first = firstOutOfOrder;

}

lastInOrder

first

8 10 20 30 15 18

firstOutOfOrder

currenttrailCurrent

FIGURE 10-17 Linked list and pointers trailCurrent and current

lastInOrder

first

8 10 15 20 30 18

firstOutOfOrder

currenttrailCurrent

FIGURE 10-18 Linked list after moving firstOutOfOrder between trailCurrent and current

Insertion Sort: Linked List-Based Lists | 547

else
{

trailCurrent = first;
current = first->link;

while (current->info < firstOutOfOrder->info)
{

trailCurrent = current;
current = current->link;

}

if (current != firstOutOfOrder)
{

lastInOrder->link = firstOutOfOrder->link;
firstOutOfOrder->link = current;
trailCurrent->link = firstOutOfOrder;

}
else

lastInOrder = lastInOrder->link;
}

} //end while
} //end linkedInsertionSort

We leave it as exercise for you to write a program to test insertion sort. See Programming
Exercises 2 and 3 at the end of this chapter.

Analysis: Insertion Sort
Suppose that the list is of length n. If the list is sorted, the number of comparisons is (n – 1)
and the number of item assignments is 0. This is the best case. (See Exercise 15 at the end
of this chapter.) Now suppose that the list is sorted, but in the reverse order. In this case, it
can be checked that the number of comparisons is (1/2)(n2 – n) and the number of item
assignments is (1/2)(n2 +3n) – 2. This is the worst case. (See Exercise 14 at the end of this
chapter.)

Table 10-1 summarizes the average-case behavior of selection and insertion sort. The
proofs of the results of insertion sort are given in Appendix F.

TABLE 10-1 Average-case behavior of the selection sort and insertion sort for a list of
length n

Algorithm Number of comparisons
Number of swaps/item
assignments

Selection sort (1/2)n (n – 1) = O(n2) 3(n – 1) ¼ O(n)

Insertion sort (1/4)n2 + O(n) ¼ O(n2) (1/4)n2 + O(n) ¼ O(n2)

548 | Chapter 10: Sorting Algorithms

Shellsort
In the previous sections, we described selection sort and insertion sort. We noticed that
selection sort makes more comparisons and less item movements than insertion sort.
Selection sort makes more comparisons because it makes many redundant comparisons.
The number of item movements in selection sort is less because each item is moved at
most one time. In fact, the number of item movements in insertion sort is considerably
more than selection sort because it moves items one position at a time, so to move an
item to its final position, it might require many movements.

We can reduce the number of item movements in insertion sort by modifying it. The
modified insertion sort that we present next was introduced in 1959 by D. E. Shell and is
known as the Shellsort algorithm. This sort is also known as diminishing-increment sort.

In Shellsort, the elements of the list are viewed as sublists at a particular distance. Each
sublist is sorted, so that elements that are far apart move closer to their final position. For
example, suppose that you have a list of 15 elements, as shown in Figure 10-19. First we
view the list as 7 sublists, that is, we sort the elements at a distance of 7. Note that several
elements have moved closer to their final position. For example, 2, 19, and 60 are closer to
their final position. In the next iteration, we sort the elements at a distance of 4, as shown in
Figure 10-19(b). Finally, we sort the elements at a distance of 1, that is, the entire list is
sorted. Figure 10-19(c) shows the elements before and after the final sorting phase.

1
0

10
20
15
45
36
48
7
60
18
50
2
19
43
30
55

10
20

15
45

36
48

7
60

18
50

2
19

43
30

55

10
18

15
2

19
43

7
55

20
50

45
36

48
30

60

Sorted sublists at a distance of 7

Sublists at a distance of 4

list
10
18
15
2
19
43
7
55
20
50
45
36
48
30
60

list

(a)

10
18

15
2

19
43

7
55

20
50

45
36

48
30

60

list
10

18
15
2
19
43
7
55
20
50
45
36
48
30
60

18
7

2
19

30
15

36
20

43
45

55
48

50
60

10
Sorted sublists at a

distance of 4
18
7
2
19
30
15
36
20
43
45
55
48
50
60

10
list

18

7
2

19

30

15

36

20

43
45

55

48
50

60

10

Sorted list

(b) (c)

Sublists at a distance of 7

FIGURE 10-19 Lists during Shellsort

Shellsort | 549

In Figure 10-19, we sorted the elements at a distance of 7, 4, and then 1. The sequence 1,
4, 7 is called the increment sequence. How do we choose an increment sequence? In
general, this question cannot be answered satisfactorily. The literature provides a discussion
of various increment sequences, and some have been found to be useful. Typically, the
increment sequences are chosen to decrease roughly geometrically so that the number of
increments is logarithmic in the size of the list. For example, if the number of increments is
about one-half of the previous increment, then we need at most 20 increments to sort a list
of 1 million elements. However, using as few increments as possible is desirable.

D. E. Knuth recommended the increment sequence 1, 4, 13, 40, 121, 364, 1093, 3280,
The ratio between successive increments is about one-third. In fact, the ith increment ¼
3 • (i – 1)th increment + 1. There are many other increment sequences that could lead
to more efficient sorts. However, for large lists, it is difficult to get a better performance
by more than 20% than the increment sequence recommended by Knuth.

There are certain increment sequences that must be avoided. For example, the increment
sequence, 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . , is likely to lead to a bad performance because
elements at odd positions are not compared with the elements at even positions until the
final pass. We will use the increment sequence suggested by Knuth in the Shellsort
algorithm we implement.

This following function implements the Shellsort algorithm:

template <class elemType>
void arrayListType<elemType>::shellSort()
{

int inc;

for (inc = 1; inc < (length - 1) / 9; inc = 3 * inc + 1);

do
{

for (int begin = 0; begin < inc; begin++)
intervalInsertionSort(begin, inc);

inc = inc / 3;
}
while (inc > 0);

} //end shellSort

In the function shellSort, we use the function intervalInsertionSort, which is a
modified version of insertion sort for array-based lists, discussed earlier in this chapter. In
the intervalInsertionSort, the sublist starts at the variable begin, and the increment
between successive elements is given by the variable inc instead of 1. We leave the details
of the function intervalInsertionSort as an exercise for you.

The analysis of the Shellsort is difficult to obtain. In fact, to date, good estimates of the
number of comparisons and item movements have been obtained only under special
conditions depending on the increment sequence. Empirical studies suggest that for large
lists of size n, the number of moves is in the range of n1.25 to 1.6n1.25, which is a
considerable improvement over insertion sort.

550 | Chapter 10: Sorting Algorithms

Lower Bound on Comparison-Based
Sort Algorithms
The previous sections discussed selection sort and insertion sort, and noted that the average-
case behavior of these algorithms is O(n2). Both of these algorithms are comparison-based
algorithms; that is, the lists are sorted by comparing their respective keys. Before discussing
any additional sorting algorithms, let us discuss the best-case scenario for the comparison-
based sorting algorithms.

We can trace the execution of a comparison-based algorithm using a graph called a
comparison tree. Let L be a list of n distinct elements, where n> 0. For any j and k,
where 1 � j, k � n, either L[j] < L[k] or L[j] > L[k]. Because each comparison of the keys
has two outcomes, the comparison tree is a binary tree. While drawing this figure, we draw
each comparison as a circle, called a node. The node is labeled as j:k, representing the
comparison of L[j] with L[k]. If L[j] < L[k], follow the left branch; otherwise, follow the
right branch. Figure 10-20 shows the comparison tree for a list of length 3. (In Figure 10-20,
the rectangle, called leaf, represents the final ordering of the nodes.)

We call the top node in the figure the root node. The straight line that connects the two
nodes is called a branch. A sequence of branches from a node, x, to another node, y, is
called a path from x to y.

Associated with each path from the root to a leaf is a unique permutation of the elements
of L. This uniqueness follows because the sort algorithm only moves the data and makes
comparisons. Furthermore, the data movement on any path from the root to a leaf is the
same regardless of the initial inputs. For a list of n elements, n> 0, there are n! different
permutations. Any one of these n! permutations might be the correct ordering of L. Thus,
the comparison tree must have at least n! leaves.

1
0

1:2

2:3 2:3

1:3 1:31,2,3

1,3,2 3,1,2 2,1,3 2,3,1

3,2,1

L[1]<L[2]

L[2]<L[3] L[2]>L[3]

L[1]>L[2]

L[1]<L[3] L[1]<L[3]]3[L>]1[L]3[L>]1[L

L[2]<L[3] L[2]>L[3]

FIGURE 10-20 Comparison tree for sorting three items

Lower Bound on Comparison-Based Sort Algorithms | 551

Let us consider the worst case for all comparison-based sorting algorithms. We state the
following result without proof.

Theorem: Let L be a list of n distinct elements. Any sorting algorithm that sorts L by
comparison of the keys only, in its worst case, makes at least O(nlog2n) key comparisons.

As analyzed in the previous sections, both selection sort and insertion sort are of the order
O(n2). The remainder of this chapter discusses sorting algorithms that, on average, are of
the order O(nlog2n).

Quicksort: Array-Based Lists
In the previous section, we noted that the lower bound on comparison-based algorithms
is O(nlog2n). The sorting algorithms selection sort and insertion sort, discussed earlier in
this chapter, are O(n2). In this and the next two sections, we discuss sorting algorithms
that are usually of the order O(nlog2n). The first algorithm is quicksort.

Quicksort uses the divide-and-conquer technique to sort a list. The list is partitioned into
two sublists, and the two sublists are then sorted and combined into one list in such a way
so that the combined list is sorted. Thus, the general algorithm is as follows:

if (the list size is greater than 1)
{

a. Partition the list into two sublists, say lowerSublist and upperSublist.
b. Quicksort lowerSublist.
c. Quicksort upperSublist.
d. Combine the sorted lowerSublist and sorted upperSublist.

}

After partitioning the list into two sublists—lowerSublist and upperSublist—these
two sublists are sorted using quicksort. In other words, we use recursion to implement
quicksort.

Quicksort described here is for array-based lists. The algorithm for linked lists can be
developed in a similar manner and is left as an exercise for you. See Programming
Exercise 7 at the end of this chapter.

In quicksort, the list is partitioned in such a way that combining the sorted
lowerSublist and upperSublist is trivial. Therefore, in quicksort, all the sorting
work is done in partitioning the list. Because all the sorting work occurs during the
partition, we first describe the partition procedure in detail.

To partition the list into two sublists, first we choose an element of the list called the
pivot. The pivot is used to divide the list into two sublists: the lowerSublist and
the upperSublist. The elements in the lowerSublist are smaller than the pivot, and
the elements in the upperSublist are greater than the pivot. For example, consider the
list in Figure 10-21.

552 | Chapter 10: Sorting Algorithms

There are several ways to determine the pivot. However, the pivot is chosen so that, it
is hoped, the lowerSublist and upperSublist are of nearly equal size. For illustration
purposes, let us choose the middle element of the list as the pivot. The partition
procedure that we describe partitions this list using the pivot as the middle element,
in our case 50, as shown in Figure 10-22.

From Figure 10-22, it follows that after partitioning list into lowerSublist and
upperSublist, the pivot is in the right place. Thus, after sorting lowerSublist and
upperSublist, combining the two sorted sublists is trivial.

The partition algorithm is as follows: (We assume that pivot is chosen as the middle
element of the list.)

1. Determine the pivot, and swap the pivot with the first element of
the list.

Suppose that the index smallIndex points to the last element smaller
than the pivot. The index smallIndex is initialized to the first element
of the list.

2. For the remaining elements in the list (starting at the second element)
If the current element is smaller than the pivot

a. Increment smallIndex.

b. Swap the current element with the array element pointed to by
smallIndex.

3. Swap the first element, that is, the pivot, with the array element
pointed to by smallIndex.

Step 2 can be implemented using a for loop, with the loop starting at the second element
of the list.

1
0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

list 45 82 25 94 50 60 78 32 92

FIGURE 10-21 list before the partition

[0] [1] [2] [3] [4] [5] [6] [7] [8]
list 32 25 45 50 82 60 78 94 92

upperSublistlowerSublist

FIGURE 10-22 list after the partition

Quicksort: Array-Based Lists | 553

Step 1 determines the pivot and moves the pivot in the first array position. During the
execution of Step 2, the elements of the list get arranged as shown in Figure 10-23.
(Suppose the name of the array containing the list elements is list.)

As shown in Figure 10-23, the pivot is in the first array position, elements in
lowerSublist are less than the pivot, and elements in the upperSublist are greater
than or equal to the pivot. The variable smallIndex contains the index of the last element
of lowerSublist and the variable index contains the index of the next element that
needs to be moved either in lowerSublist or in upperSublist. As explained in Step 2, if
the next element of the list (that is, list[index]) is less than the pivot, we advance
smallIndex to the next array position and swap list[index] with list[smallIndex].
Next we illustrate Step 2.

Suppose that list is as given in Figure 10-24.

For the list in Figure 10-24, the pivot is at position 6. After moving the pivot at the
first array position, the list is shown in Figure 10-25. (Notice that in Figure 10-25, 52 is
swapped with 32.)

< pivotpivot >= pivot

smallIndex index

lower
Sublist

upper
Sublist

elements to
be moved

in a sublist

FIGURE 10-23 List during the execution of Step 2

88
[0]

4532 87 13 96 1155 52 48 22 58 6678
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

pivot

FIGURE 10-24 list before sorting

pivot
88

[0]
4552 87 13 96 1155 32 48 22 58 6678

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

FIGURE 10-25 List after moving pivot at the first array position

554 | Chapter 10: Sorting Algorithms

Suppose that after executing Step 2 a few times, the list is as shown in Figure 10-26.

As shown in Figure 10-26, the next element of the list that needs to be moved in a sublist
is indicated by index. Because list[index] < pivot, we need to move the element
list[index] in lowerSublist. To do so, we first advance smallIndex to the next
array position and then swap list[smallIndex] with list[index]. The resulting list
is shown in Figure 10-27. (Notice that 11 is swapped with 96.)

Now consider the list in Figure 10-28.

For the list in Figure 10-28, list[index] is 58, which is greater than the pivot.
Therefore, list[index] is to be moved in upperSublist. This is accomplished
by leaving 58 at its position and increasing the size of upperSublist, by one, to the
next array position. After moving 58 into upperSublist, the list is as shown in
Figure 10-29.

1
0

88 4552 32 48 96 1113 87 55 78 58 6622

smallIndex index
pivot

lower
Sublist

upper
Sublist

FIGURE 10-26 List after a few iterations of Step 2

88 4552 32 48 11 9613 87 55 78 58 6622

smallIndex
pivot

lower
Sublist

upper
Sublist

FIGURE 10-27 List after moving 11 into lowerSublist

88 4552 32 48 11 9613 87 55 78 58 6622

smallIndex
pivot

lower
Sublist

upper
Sublist

index

FIGURE 10-28 List before moving 58 into a sublist

Quicksort: Array-Based Lists | 555

After moving the elements that are less than the pivot into lowerSublist and elements
that are greater than the pivot into upperSublist (that is, after completely executing
Step 2), the resulting list is as shown in Figure 10-30.

Next, we execute Step 3 and move 52, the pivot, to the proper position in the list. This
is accomplished by swapping 52 with 45. The resulting list is shown in Figure 10-31.

As shown in Figure 10-31, the preceding algorithm, Steps 1, 2, and 3, partitions the list
into two sublists such that the elements less than the pivot are in lowerSublist and
elements greater than or equal to the pivot are in upperSublist.

To partition the list into the lower and upper sublists, we only need to keep track of the
last element of the lowerSublist and the next element of the list that needs to be
moved either in lowerSublist or in upperSublist. In fact, upperSublist is
between the two indices smallIndex and index.

We now write the function, partition, to implement the preceding partition algo-
rithm. After rearranging the elements of the list, the function returns the location of the

88 4552 32 48 11 9613 87 55 78 58 6622

smallIndex
pivot

lower
Sublist

upper
Sublist

FIGURE 10-29 List after moving 58 into upperSublist

88 8752 32 48 11 9613 45 55 78 58 6622

smallIndex
pivot

lowerSublist upperSublist

FIGURE 10-30 List elements after arranging into lowerSublist and upperSublist

88 8745 32 48 11 9613 52 55 78 58 6622

pivot

lowerSublist upperSublist

FIGURE 10-31 List after swapping 52 with 45

556 | Chapter 10: Sorting Algorithms

pivot so that we can determine the starting and ending locations of the sublists. Also,
because the function partition will be a member of the class, it has direct access to the
array containing the list. Thus, to partition a list, we need to pass only the starting and
ending indices of the list.

template <class elemType>
int arrayListType<elemType>::partition(int first, int last)
{

elemType pivot;

int index, smallIndex;

swap(first, (first + last) / 2);

pivot = list[first];
smallIndex = first;

for (index = first + 1; index <= last; index++)
if (list[index] < pivot)
{

smallIndex++;
swap(smallIndex, index);

}

swap(first, smallIndex);

return smallIndex;
}

As you can see from the definition of the function partition, certain elements of the list
need to be swapped. The following function, swap, accomplishes this task:

template <class elemType>
void arrayListType<elemType>::swap(int first, int second)
{

elemType temp;

temp = list[first];
list[first] = list[second];
list[second] = temp;

}

Once the list is partitioned into lowerSublist and upperSublist, we again apply the
quicksort method to sort the two sublists. Because both sublists are sorted using the same
quicksort algorithm, the easiest way to implement this algorithm is to use recursion.
Therefore, this section gives the recursive version of quicksort. As explained previously,
after rearranging the elements of the list, the function partition returns the index of the
pivot so that the starting and ending indices of the sublists can be determined.

Given the starting and ending indices of a list, the following function, recQuickSort,
implements the recursive version of quicksort:

1
0

Quicksort: Array-Based Lists | 557

template <class elemType>
void arrayListType<elemType>::recQuickSort(int first, int last)
{

int pivotLocation;

if (first < last)
{

pivotLocation = partition(first, last);
recQuickSort(first, pivotLocation - 1);
recQuickSort(pivotLocation + 1, last);

}
}

Finally, we write the quicksort function, quickSort, that calls the function
recQuickSort of the original list:

template <class elemType>
void arrayListType<elemType>::quickSort()
{

recQuickSort(0, length -1);
}

We leave it as an exercise for you to write a program to test quicksort. See Programming
Exercise 7 at the end of this chapter.

Analysis: Quicksort
Table 10-2 summarizes the behavior of quicksort for a list of length n. (The proofs of
these results are given in Appendix F.)

Mergesort: Linked List-Based Lists
In the previous section, we described quicksort and stated that the average-case behavior
of quicksort is O(nlog2n). However, the worst-case behavior of quicksort is O(n2). This
section describes a sorting algorithm whose behavior is always O(nlog2n).

Like quicksort, mergesort uses the divide-and-conquer technique to sort a list. Mergesort
also partitions the list into two sublists, sorts the sublists, and then combines the sorted
sublists into one sorted list. This section describes mergesort for linked list-based lists.

TABLE 10-2 Analysis of quicksort for a list of length n

Number of comparisons Number of swaps

Average case 1.39nlog2n + O(n) ¼ O(nlog2n) 0.69nlog2n + O(n) ¼ O(nlog2n)

Worst case (1/2)(n2 – n) ¼ O(n2) (1/2)n2 + (3/2)n – 2 ¼ O(n2)

558 | Chapter 10: Sorting Algorithms

We leave it for you to develop mergesort for array-based lists, which can be done by
using the techniques described for linked lists.

Mergesort and quicksort differ in how they partition the list. As discussed earlier,
quicksort first selects an element in the list, called pivot, and then partitions the list so
that the elements in one sublist are less than pivot and the elements in the other sublist
are greater than or equal to pivot. By contrast, mergesort divides the list into two sublists
of nearly equal size. For example, consider the list whose elements are as follows:

list: 35 28 18 45 62 48 30 38

Mergesort partitions this list into two sublists as follows:

first sublist: 35 28 18 45
second sublist: 62 48 30 38

The two sublists are sorted using the same algorithm (that is, mergesort) used on the
original list. Suppose that we have sorted the two sublists. That is, suppose that the lists
are now as follows:

first sublist: 18 28 35 45
second sublist: 30 38 48 62

Next, mergesort combines, that is, merges, the two sorted sublists into one sorted list.

Figure 10-32 further illustrates the mergesort process.

1
0

35

divide

divide divide

divide divide divide

merge merge merge merge

merge merge

merge

35 28 18 45 62 48 30 38

35 28 18 45 62 48 30 38

35 28 18 45

28 18 45
divide

62 48 30 38

62 48 30 38

28 35 18 45 48 62 30 38

18 28 35 45 30 38 48 62

18 28 30 35 38 45 48 62

FIGURE 10-32 Mergesort algorithm

Mergesort: Linked List-Based Lists | 559

From Figure 10-32, it is clear that in mergesort, most of the sorting work is done in
merging the sorted sublists.

The general algorithm for mergesort is as follows:

if the list is of a size greater than 1
{

1. Divide the list into two sublists.
2. Mergesort the first sublist.
3. Mergesort the second sublist.
4. Merge the first sublist and the second sublist.

}

As remarked previously, after dividing the list into two sublists—the first sublist and the
second sublist—these two sublists are sorted using mergesort. In other words, we use
recursion to implement mergesort.

We next describe the necessary algorithm to:

• Divide the list into two sublists of nearly equal size.

• Mergesort both sublists.

• Merge the sorted sublists.

Divide
Because data is stored in a linked list, we do not know the length of the list. Furthermore,
a linked list is not a random access data structure. Therefore, to divide the list into two
sublists, we need to find the middle node of the list.

Consider the list in Figure 10-33.

To find the middle of the list, we traverse the list with two pointers—say, middle and
current. The pointer middle is initialized to the first node of the list. Because this list
has more than two nodes, we initialize current to the third node. (Recall that we
sort the list only if it has more than one element because a list of size 1 is already sorted.
Also, if the list has only two nodes, we set current to NULL.) Consider the list shown in
Figure 10-34.

head
65 18 85 95 25 3020 45 75

FIGURE 10-33 Unsorted linked list

560 | Chapter 10: Sorting Algorithms

1
0

Every time we advance middle by one node, we advance current by one node. After
advancing current by one node, if current is not NULL, we again advance current by
one node. That is, for the most part, every time middle advances by one node, current
advances by two nodes. Eventually, current becomes NULL and middle points to the
last node of the first sublist. For example, for the list in Figure 10-34, when current

becomes NULL, middle points to the node with info 25 (see Figure 10-35).

It is now easy to divide the list into two sublists. First, using the link of middle, we assign
a pointer to the node following middle. Then we set the link of middle to NULL. Figure
10-36 shows the resulting sublists.

This discussion translates into the following C++ function, divideList:

template <class Type>
void unorderedLinkedList<Type>::

divideList(nodeType<Type>* first1,
nodeType<Type>* &first2)

head

65 18 85 95 25 3020 45 75

middle

FIGURE 10-35 middle after traversing the list

head

65 18 85 95 25 3020 45 75

middle current

FIGURE 10-34 middle and current before traversing the list

head

65 18 85 95 25

3020 45 75

middle

otherHead

FIGURE 10-36 List after dividing it into two lists

Mergesort: Linked List-Based Lists | 561

{
nodeType<Type>* middle;
nodeType<Type>* current;

if (first1 == NULL) //list is empty
first2 = NULL;

else if (first1->link == NULL) //list has only one node
first2 = NULL;

else
{

middle = first1;
current = first1->link;

if (current != NULL) //list has more than two nodes
current = current->link;

while (current != NULL)
{

middle = middle->link;
current = current->link;
if (current != NULL)

current = current->link;
} //end while

first2 = middle->link; //first2 points to the first
//node of the second sublist

middle->link = NULL; //set the link of the last node
//of the first sublist to NULL

} //end else
} //end divideList

Now that we know how to divide a list into two sublists of nearly equal size, next we
focus on merging the sorted sublists. Recall that, in mergesort, most of the sorting work is
done in merging the sorted sublists.

Merge
Once the sublists are sorted, the next step in mergesort is to merge the sorted sublists.
Sorted sublists are merged into a sorted list by comparing the elements of the sublists, and
then adjusting the references of the nodes with the smaller info. Let us illustrate this
procedure on the sublists shown in Figure 10-37. Suppose that first1 points to the first
node of the first sublist, and first2 points to the first node of the second sublist.

18 25 65 85 95

7520 30 45

first1

first2

FIGURE 10-37 Sublists before merging

562 | Chapter 10: Sorting Algorithms

We first compare the info of the first node of each of the two sublists to determine the
first node of the merged list. We set newHead to point to the first node of the merged list.
We also use the pointer lastMerged to keep track of the last node of the merged list.
The pointer of the first node of the sublist with the smaller node then advances to the
next node of that sublist. Figure 10-38 shows the sublist of Figure 10-37 after setting
newHead and lastMerged and advancing first1.

In Figure 10-38, first1 points to the first node of the first sublist that is yet to be
merged with the second sublist. So we again compare the nodes pointed to by first1

and first2, and adjust the link of the smaller node and the last node of the merged list so
as to move the smaller node to the end of the merged list. For the sublists shown in Figure
10-38, after adjusting the necessary links, we have Figure 10-39.

We continue this process for the remaining elements of both sublists. Every time we
move a node to the merged list, we advance either first1 or first2 to the next node.
Eventually, either first1 or first2 becomes NULL. If first1 becomes NULL, the first
sublist is exhausted first, so we attach the remaining nodes of the second sublist at the
end of the partially merged list. If first2 becomes NULL, the second sublist is exhausted
first, so we attach the remaining nodes of the first sublist at the end of the partially
merged list.

1
0

first1

18 25 65 85 95

7520 30 45

lastMerged

first2

newHead

FIGURE 10-38 Sublists after setting newHead and lastMerged and advancing first1

lastMerged

first1

18 25 65 85 95

7520 30 45

first2

newHead

FIGURE 10-39 Merged list after putting the node with info 20 at the end of the merged list

Mergesort: Linked List-Based Lists | 563

Following this discussion, we can now write the C++ function, mergeList, to merge
the two sorted sublists. The references (that is, addresses) of the first nodes of the sublists
are passed as parameters to the function mergeList.

template <class Type>
nodeType<Type>* unorderedLinkedList<Type>::

mergeList(nodeType<Type>* first1,
nodeType<Type>* first2)

{
nodeType<Type> *lastSmall; //pointer to the last node of

//the merged list
nodeType<Type> *newHead; //pointer to the merged list

if (first1 == NULL) //the first sublist is empty
return first2;

else if (first2 == NULL) //the second sublist is empty
return first1;

else
{

if (first1->info < first2->info) //compare the first nodes
{

newHead = first1;
first1 = first1->link;
lastSmall = newHead;

}
else
{

newHead = first2;
first2 = first2->link;
lastSmall = newHead;

}

while (first1 != NULL && first2 != NULL)
{

if (first1->info < first2->info)
{

lastSmall->link = first1;
lastSmall = lastSmall->link;
first1 = first1->link;

}
else
{

lastSmall->link = first2;
lastSmall = lastSmall->link;
first2 = first2->link;

}
} //end while

if (first1 == NULL) //first sublist is exhausted first
lastSmall->link = first2;

564 | Chapter 10: Sorting Algorithms

else //second sublist is exhausted first
lastSmall->link = first1;

return newHead;
}

}//end mergeList

Finally, we write the recursive mergesort function, recMergeSort, which uses the
divideList and mergeList functions to sort a list. The reference of the first node of
the list to be sorted is passed as a parameter to the function recMergeSort.

template <class Type>
void unorderedLinkedList<Type>::recMergeSort(nodeType<Type>* &head)
{

nodeType<Type> *otherHead;

if (head != NULL) //if the list is not empty
if (head->link != NULL) //if the list has more than one node
{

divideList(head, otherHead);
recMergeSort(head);
recMergeSort(otherHead);
head = mergeList(head, otherHead);

}
} //end recMergeSort

We can now give the definition of the function mergeSort, which should be included as
a public member of the class unorderedLinkedList. (Note that the functions
divideList, merge, and recMergeSort can be included as private members of the
class unorderedLinkedList because these functions are used only to implement the
function mergeSort.) The function mergeSort calls the function recMergeSort and
passes first to this function. It also sets last to point to the last node of the list. The
definition of the function mergeSort is as follows:

template<class Type>
void unorderedLinkedList<Type>::mergeSort()
{

recMergeSort(first);

if (first == NULL)
last = NULL;

else
{

last = first;
while (last->link != NULL)

last = last->link;
}

} //end mergeSort

We leave it as an exercise for you to write a program to test mergesort. See Programming
Exercise 10 at the end of this chapter.

1
0

Mergesort: Linked List-Based Lists | 565

Analysis: Mergesort
Suppose that L is a list of n elements, where n> 0. Suppose that n is a power of 2, that is,
n¼ 2m for some nonnegative integer m, so that we can divide the list into two sublists, each
of size n / 2¼ 2m / 2¼ 2m-1. Moreover, each sublist can also be divided into two sublists of
the same size. Each call to the function recMergeSort makes two recursive calls to the
function recMergeSort and each call divides the sublist into two sublists of the same size.
Suppose that m¼ 3, that is, n¼ 23¼ 8. So the length of the original list is 8. The first call to
the function recMergeSort divides the original list into two sublists, each of size 4. The
first call then makes two recursive calls to the function recMergeSort. Each of these
recursive calls divides each sublist, of size 4, into two sublists, each of size 2. We now have
4 sublists, each of size 2. The next set of recursive calls divides each sublist, of size 2, into
sublists of size 1. So we now have 8 sublists, each of size 1. It follows that the exponent 3 in
23 indicates the level of the recursion, as shown in Figure 10-40.

Let us consider the general case when n ¼ 2m. Note that the number of recursion levels is
m. Also, note that to merge a sorted list of size s with a sorted list of size t, the maximum
number of comparisons is s + t � 1.

Consider the function mergeList, which merges two sorted lists into a sorted list. Note
that this is where the actual work, comparisons and assignments, is done. The initial call
to the function recMergeSort, at level 0, produces two sublists, each of size n / 2. To
merge these two lists, after they are sorted, the maximum number of comparisons is n / 2 +
n / 2 – 1 ¼ n – 1¼O(n). At level 1, we merge two sets of sorted lists, where each sublist is
of size n / 4. To merge two sorted sublists, each of size n / 4, we need at most n / 4 + n / 4 –
1 ¼ n / 2 – 1 comparisons. Thus, at level 1 of the recursion, the number of comparisons is
2(n / 2 – 1)¼ n – 2¼O(n). In general, at level k of the recursion, there are a total of 2k calls

8

44

22 2

1

2

Recursion Level: 0
Number of calls to recMergeSort: 1
Each call: recMergeSort 8 elements

Recursion Level: 1
Number of calls to recMergeSort: 2
Each call: recMergeSort 4 elements

Recursion Level: 2
Number of calls to recMergeSort: 4
Each call: recMergeSort 2 elements

Recursion Level: 3
Number of calls to recMergeSort: 8
Each call: recMergeSort 1 elements

1 1 11 1 1 1

FIGURE 10-40 Levels of recursion levels to recMergeSort for a list of length 8

566 | Chapter 10: Sorting Algorithms

to the function mergeList. Each of these calls merge two sublists, each of size n / 2k + 1,
which requires a maximum of n / 2k� 1 comparisons. Thus, at level k of the recursion, the
maximum number of comparisons is 2k (n / 2k � 1) ¼ n � 2k ¼ O(n). It now follows that
the maximum number of comparisons at each level of the recursion is O(n). Because the
number of levels of the recursion is m, the maximum number of comparisons made by
mergesort isO(nm). Now n¼ 2m implies that m¼ log2n. Hence, the maximum number of
comparisons made by mergesort is O(n log2n).

If W(n) denotes the number of key comparisons in the worst case to sort L, then W(n) ¼
O(n log2n).

Let A(n) denote the number of key comparisons in the average case. In the average case,
during the merge process one of the sublists will exhaust before the other list. From this, it
follows that on average merging of two sorted sublists of combined size n, the number of
comparisons will be less than n � 1. On average, it can be shown that the number of
comparisons for mergesort is given by the following equation: If n is a power of 2, A(n) ¼
n log2n� 1.25n¼ O(n log2n). This is also a good approximation when n is not a power of 2.

We can also obtain an analysis of mergesort by constructing and solving certain equations

as follows. As noted before, in mergesort, all the comparisons are made in the method

mergeList, which merges two sorted sublists. If one sublist is of size s and the other

sublist is of size t, merging these lists would require at most s + t � 1 comparisons in the

worst case. Hence,

W (n) ¼ W (s) + W (t) + s + t � 1

Note that s ¼ n / 2 and t ¼ n / 2. Suppose that n ¼ 2m. Then s ¼ 2m�1 and t ¼ 2m�1.
It follows that s + t ¼ n. Hence,

W (n) ¼ W (n / 2) + W (n / 2) + n – 1 ¼ 2 W (n / 2) + n – 1, n > 0

Also,

W (1) ¼ 0

It is known that when n is a power of 2, W (n) is given by the following equation:

W (n) ¼ n log2n � (n � 1) ¼ O (n log2n)

Heapsort: Array-Based Lists
In an earlier section, we described the quicksort algorithm for contiguous lists, that is,
array-based lists. We remarked that, on average, quicksort is of the order O(nlog2n).
However, in the worst case, quicksort is of the orderO(n2). This section describes another
algorithm, the heapsort, for array-based lists. This algorithm is of orderO(n log2n) even in
the worst case, therefore overcoming the worst case of the quicksort.

1
0

Heapsort: Array-Based Lists | 567

Definition: A heap is a list in which each element contains a key, such that the key in
the element at position k in the list is at least as large as the key in the element at position
2k + 1 (if it exists) and 2k + 2 (if it exists).

Recall that, in C++ the array index starts at 0. Therefore, the element at position k is in
fact the k + 1th element of the list.

Consider the list in Figure 10-41.

It can be checked that the list in Figure 10-41 is in a heap. For example, consider
list[3], which is 50. The elements at position list[7] and list[8] are 20 and 10,
respectively. Clearly, list[3] is larger than list[7] and list[8].

In heapsort, elements at position k, 2k + 1, and 2k + 2, if they exist, are accessed
frequently. Therefore, to facilitate the discussion of heapsort, we typically view data in
the form of a complete binary tree as described next. For example, the data given in
Figure 10-41 can be viewed in a complete binary tree, as shown in Figure 10-42.

In Figure 10-42, the first element of the list, which is 85, is the root node of the tree. The
second element of the list, which is 70, is the left child of the root node; the third element
of the list, which is 80, is the right child of the root node. Thus, in general, for the node k,
which is the k � 1th element of the list, its left child is the 2kth (if it exists) element of the
list, which is at position 2k � 1 in the list, and the right child is the 2k + 1st (if it exists)
element of the list, which is at position 2k in the list. Note that Figure 10-42 clearly
shows that the list in Figure 10-41 is in a heap. Also note that in Figure 10-42, the
elements 20, 10, 35, 15, 62, 58, and 30 are called leaves as they have no children.

As remarked earlier, to demonstrate the heapsort algorithm, we will draw the complete
binary tree corresponding to a list. Note that even though we will draw a complete binary

85
[0]

70
[1]

80
[2]

50
[3]

40
[4]

75
[5]

30
[6]

20
[7]

10
[8]

35
[9]

15
[10]

62
[11]

58
[12]

FIGURE 10-41 A heap

85

70 80

50 40 75 30

20 10 35 15 62 58

FIGURE 10-42 Complete binary tree corresponding to the list in Figure 10-41

568 | Chapter 10: Sorting Algorithms

tree to illustrate heapsort, the data gets manipulated in an array. We now describe
heapsort.

The first step in heapsort is to convert the list into a heap, called buildHeap. After we
convert the array into a heap, the sorting phase begins.

Build Heap
This section describes the build heap algorithm.

The general algorithm is as follows: Suppose length denotes the length of the list. Let
index = length / 2 – 1. Then list[index] is the last element in the list which is not
a leaf; that is, this element has at least one child. Thus, elements list[index + 1]
...list[length – 1] are leaves.

First, we convert the subtree with the root node list[index] into a heap. Note that
this subtree has at most three nodes. We then convert the subtree with the root node
list[index - 1] into a heap, and so on.

To convert a subtree into a heap, we perform the following steps: Suppose that list[a]
is the root node of the subtree, list[b] is the left child, and list[c], if it exists, is the
right child of list[a].

Compare list[b] with list[c] to determine the larger child. If list[c] does not
exist, then list[b] is the larger child. Suppose that largerIndex indicates the larger
child. (Notice that, largerIndex is either b or c.)

Compare list[a] with list[largerIndex]. If list[a] < list[largerIndex],
then swap list[a] with list[largerIndex]; otherwise, the subtree with root node
list[a] is already in a heap.

Suppose that list[a] < list[largerIndex] and we swap the elements list[a] with
list[largerIndex]. After making this swap, the subtree with root node
list[largerIndex] might not be in a heap. If this is the case, then we repeat Steps 1
and 2 at the subtree with root node list[largerIndex] and continue this process until
either the heap in the subtrees is restored or we arrive at an empty subtree. This step is
implemented using a loop, which will be described when we write the algorithm.

Consider the list in Figure 10-43. Let us call this list.

1
0

15
[0]

60
[1]

72
[2]

70
[3]

56
[4]

32
[5]

62
[6]

92
[7]

45
[8]

30
[9]

65
[10]

list

FIGURE 10-43 Array list

Heapsort: Array-Based Lists | 569

Figure 10-44 shows the complete binary tree corresponding to the list in Figure 10-43.

To facilitate this discussion, when we say node 56, we mean the node with info 56.

This list has 11 elements, so the length of the list is 11. To convert the array into a heap, we
start at the list element n/2 - 1 = 11/2 – 1 = 5 – 1 = 4, which is the fifth element of the list.

Now list[4] = 56. The children of list[4] are list[4 * 2 + 1] and list[4 * 2 + 2],
that is, list[9] and list[10]. In the previous list, both list[9] and list[10] exist.
To convert the tree with root node list[4], we perform the previous hree steps:

1. Find the larger of list[9] and list[10], that is, the largest child of
list[4]. In this case, list[10] is larger than list[9].

2. Compare the larger child with the parent node. If the larger child is
larger than the parent, swap the larger child with the parent. Because
list[4] < list[10], we swap list[4] with list[10].

3. Because list[10] does not have a subtree, Step 3 does not execute.

Figure 10-45(a) shows the resulting binary tree.

Next, we consider the subtree with root node list[3], that is, 70 and repeat the three
steps given earlier, to obtain the complete binary tree as given in Figure 10-45(b). (Notice
that Step 3 does not execute here either.)

Now we consider the subtree with the root node list[2], that is, 72, and apply the
three steps given earlier. Figure 10-45(c) shows the resulting binary tree. (Note that in
this case, because the parent is larger than both children, this subtree is already in a heap.)

15

60 72

70 65 32 62

92 45 30 56

15

60 72

92 65 32 62

70 45 30 56

15

60 72

92 65 32 62

70 45 30 56

(a) (b) (c)

FIGURE 10-45 Binary tree while building heaps at list[4], list[3], and list[2]

15

60 72

70 56 32 62

92 45 30 65

FIGURE 10-44 Complete binary tree corresponding to the list in Figure 10-43

570 | Chapter 10: Sorting Algorithms

Next, we consider the subtree with the root node list[1], that is, 60, see 10-45(c).
First, we apply Steps 1 and 2. Because list[1] = 60 < list[3] = 92 (the larger child),
we swap list[1] with list[3], to obtain the tree as given in Figure 10-46(a).

However, after swapping list[1] with list[3], the subtree with the root node
list[3], that is, 60, is no longer a heap. Thus, we must restore the heap in this subtree.
To do this, we apply Step 3 and find the larger child of 60 and swap it with 60. We then
obtain the binary tree as given in Figure 10-46(b).

Once again, the subtree with the root node list[1], that is, 92, is in a heap (see Figure
10-46(b)).

Finally, we consider the tree with the root node list[0], that is, 15. We repeat the
previous three steps to obtain the binary tree as given in Figure 10-47(a).

We see that the subtree with the root node list[1], that is, 15, is no longer in a heap.
So we must apply Step 3 to restore the heap in this subtree. (This requires us to repeat
Steps 1 and 2 at the subtree with root node list[1].) We swap list[1] with
the larger child, which is list[3] (that is, 70). We then get the binary tree of
Figure 10-47(b).

1
0

15

92 72

60 65 32 62

70 45 30 56

15

92 72

70 65 32 62

60 45 30 56

(a) Binary tree after swapping

list[1] with list[3]

(b) Binary tree after restoring
the heap at list[3]

FIGURE 10-46 Binary tree while building heap at list[1]

92

15 72

70 65 32 62

60 45 30 56

92

70 72

15 65 32 62

60 45 30 56

92

70 72

60 65 32 62

15 45 30 56

(a) Binary tree after applying
Steps 1 and 2 at list[0]

(b) Binary tree after applying
Steps 1 and 2 at list[1]

(c) Binary tree after restoring
the heap at list[3]

FIGURE 10-47 Binary tree while building heap at list[0]

Heapsort: Array-Based Lists | 571

The subtree with the root node list[3] = 15 is not in a heap, and so we must restore the
heap in this subtree. To do so, we apply Steps 1 and 2 at the subtree with root node
list[3]. We swap list[3] with the larger child, which is list[7] (that is, 60).
Figure 10-47(c) shows the resulting binary tree.

The resulting binary tree in Figure 10-47(c) is in a heap, and so the list corresponding to
this complete binary tree is in a heap.

Thus, in general, starting at the lowest level from right to left, we look at a subtree and
convert the subtree into a heap as follows: If the root node of the subtree is smaller than
the larger child, we swap the root node with the larger child. After swapping the root
node with the larger child, we must restore the heap in the subtree whose root node was
swapped.

Suppose low contains the index of the root node of the subtree and high contains the
index of the last item in the list. The heap is to be restored in the subtree rooted at
list[low]. The preceding discussion translates into the following C++ algorithm:

int largeIndex = 2 * low + 1; //index of the left child

while (largeIndex <= high)
{

if (largeIndex < high)
if (list[largeIndex] < list[largeIndex + 1])

largeIndex = largeIndex + 1; //index of the larger child
if (list[low] > list[largeIndex]) //the subtree is already in

//a heap
break;

else
{

swap(list[low], list[largeIndex]); //Line swap**
low = largeIndex; //go to the subtree to further

//restore the heap
largeIndex = 2 * low + 1;

} //end else
}//end while

The swap statement at the line marked Line swap** swaps the parent with the larger
child. Because a swap statement makes three item assignments to swap the contents of
two variables, each time through the loop three item assignments are made. The while

loop moves the parent node to a place in the tree so that the resulting subtree with the
root node list[low] is in a heap. We can easily reduce the number of assignments each
time through the loop from three to one by first storing the root node in a temporary
location, say temp. Then each time through the loop, the larger child is compared with
temp. If the larger child is larger than temp, we move the larger child to the root node of
the subtree under consideration.

Next, we describe the function heapify, which restores the heap in a subtree by
making one item assignment each time through the loop. The index of the root node

572 | Chapter 10: Sorting Algorithms

of the list and the index of the last element of the list are passed as parameters to this
function.

template<class elemType>
void arrayListType<elemType>::heapify(int low, int high)
{

int largeIndex;

elemType temp = list[low]; //copy the root node of the subtree

largeIndex = 2 * low + 1; //index of the left child

while (largeIndex <= high)
{

if (largeIndex < high)
if (list[largeIndex] < list[largeIndex + 1])

largeIndex = largeIndex + 1; //index of the largest
//child

if (temp > list[largeIndex]) //subtree is already in a heap
break;

else
{

list[low] = list[largeIndex]; //move the larger child
//to the root

low = largeIndex; //go to the subtree to restore the heap
largeIndex = 2 * low + 1;

}
}//end while

list[low] = temp; //insert temp into the tree, that is, list

} //end heapify

Next, we use the function heapify to implement the buildHeap function to convert
the list into a heap.

template <class elemType>
void arrayListType<elemType>::buildHeap()
{

for (int index = length / 2 - 1; index >= 0; index--)
heapify(index, length - 1);

}

We now describe heapsort.

Suppose the list is in a heap. Consider the complete binary tree representing the list as
given in Figure 10-48(a).

1
0

Heapsort: Array-Based Lists | 573

Because this is a heap, the root node is the largest element of the tree, that is, the largest
element of the list. So it must be moved to the end of the list. We swap the root node of
the tree, that is, the first element of the list, with the last node in the tree (which is the last
element of the list). We then obtain the binary tree as shown in Figure 10-48(b).

Because the largest element is now in its proper place, we consider the remaining elements of
the list, that is, elements list[0]...list[9]. The complete binary tree representing this
list is no longer a heap, and so wemust restore the heap in this portion of the complete binary
tree. We use the function heapify to restore the heap. A call to this function is as follows:

heapify(list, 0, 9);

We thus obtain the binary tree as shown in Figure 10-48(c).

We repeat this process for the complete binary tree corresponding to the list elements
list[0]...list[9]. We swap list[0] with list[9] and then restore the heap in
the complete binary tree corresponding to the list elements list[0]...list[8]. We
continue this process.

The following C++ function describes this algorithm:

template <class elemType>
void arrayListType<elemType>::heapSort()
{

elemType temp;

buildHeap();

for (int lastOutOfOrder = length - 1; lastOutOfOrder >= 0;
lastOutOfOrder--)

{
temp = list[lastOutOfOrder];
list[lastOutOfOrder] = list[0];
list[0] = temp;
heapify(0, lastOutOfOrder - 1);

}//end for
}//end heapSort

92

70 72

60 65 32 62

15 45 30 56

(a) A heap (b) Binary tree after moving
the root node to the end

(c) Binary tree after the statement
heapify(list, 0, 9);

executes

56

70 72

60 65 32 62

15 45 30 92

72

70 62

60 65 32 56

15 45 30 92

FIGURE 10-48 Heapsort

574 | Chapter 10: Sorting Algorithms

We leave as an exercise for you to write a program to test heapsort; see Programming
Exercise 11 at the end of this chapter.

Analysis: Heapsort
Suppose that L is a list of n elements, where n> 0. In the worst case, the number of key
comparisons in heapsort to sort L (the number of comparisons in heapSort and the
number of comparisons in buildHeap) is 2nlog2n + O(n). Also, in the worst case, the
number of item assignments in heapsort to sort L is nlog2n+O(n). On average, the number
of comparisons made by heapsort to sort L is of O(nlog2n).

In the average case of quicksort, the number of key comparisons is 1.39nlog2n + O(n) and
the number of swaps is 0.69nlog2n + O(n). Because each swap is three assignments, the
number of item assignments in the average case of quicksort is at least 1.39nlog2n + O(n).
It now follows that for the key comparisons, the average case of quicksort is somewhat
better than the worst case of heapsort. On the other hand, for the item assignments, the
average case of quicksort is somewhat poorer than the worst case of heapsort. However,
the worst case of quicksort is of O(n2). Empirical studies have shown that heapsort usually
takes twice as long as quicksort, but avoids the slight possibility of poor performance.

Priority Queues (Revisited)
Chapter 8 introduced priority queues. Recall that in a priority queue, customers or jobs
with higher priorities are pushed to the front of the queue. Chapter 8 stated that we would
discuss the implementation of priority queues after describing heapsort. For simplicity, we
assume that the priority of the queue elements is assigned using the relational operators.

In a heap, the largest element of the list is always the first element of the list. After
removing the largest element of the list, the function heapify restores the heap in the
list. To ensure that the largest element of the priority queue is always the first element of
the queue, we can implement priority queues as heaps. We can write algorithms similar
to the ones used in the function heapify to insert an element in the priority queue
(addQueue operation), and remove an element from the queue (deleteQueue opera-
tion). The next two sections describe these algorithms.

INSERT AN ELEMENT IN THE PRIORITY QUEUE

Assuming the priority queue is implemented as a heap, we perform the following steps:

1. Insert the new element in the first available position in the list. (This
ensures that the array holding the list is a complete binary tree.)

2. After inserting the new element in the heap, the list might no longer be
a heap. So to restore the heap:

while (the parent of the new entry is smaller than the new entry)
swap the parent with the new entry.

1
0

Priority Queues (Revisited) | 575

Notice that restoring the heap might result in moving the new entry to the root node.

REMOVE AN ELEMENT FROM THE PRIORITY QUEUE

Assuming the priority queue is implemented as a heap, to remove the first element of the
priority queue, we perform the following steps:

1. Copy the last element of the list into the first array position.

2. Reduce the length of the list by 1.

3. Restore the heap in the list.

The other operations for priority queues can be implemented in the same way as
implemented for queues. We leave the implementation of the priority queues as an
exercise for you; see Programming Exercise 12 at the end of this chapter.

PROGRAMMING EXAMPLE: Election Results
The presidential election for the student council of your local university is about to
be held. The chair of the election committee wants to computerize the voting and
has asked you to write a program to analyze the data and report the winner.

The university has four major divisions, and each division has several departments.
For the election, the four divisions are labeled as region 1, region 2, region 3, and
region 4. Each department in each division handles its own voting and reports the
votes received by each candidate to the election committee. The voting is reported in
the following form:

firstName lastName regionNumber numberOfVotes

The election committee wants the output in the following tabular form:

--------------------Election Results--------------------

Votes
Candidate Name Region1 Region2 Region3 Region4 Total

------------------ ------- ------- ------- ------- ------
Sheila Bower 23 70 133 267 493
Danny Dillion 25 71 156 97 349
Lisa Fisher 110 158 0 0 268
Greg Goldy 75 34 134 0 243
Peter Lamba 285 56 0 46 387
Mickey Miller 112 141 156 67 476

Winner: Sheila Bower, Votes Received: 493

Total votes polled: 2216

576 | Chapter 10: Sorting Algorithms

1
0

The names of the candidates must be in alphabetical order in the output.

For this program, we assume that six candidates are seeking the student council’s
president post. This program can be enhanced to handle any number of candidates.

The data are provided in two files. One file, candData.txt, consists of the names of
the candidates seeking the president’s post. The names of the candidates in this file are
in no particular order. In the second file, voteData.txt, each line consists of the
voting results in the following form:

firstName lastName regionNumber numberOfVotes

Each line in the file voteData.txt consists of the candidate’s name, the region
number, and the number of votes received by the candidate in that region. There is
one entry per line. For example, the input file containing the voting data looks like
the following:

Greg Goldy 2 34
Mickey Miller 1 56
Lisa Fisher 2 56
.
.
.

The first line indicates that Greg Goldy received 34 votes from region 2.

Input Two files: one containing the candidates’ names and the other containing the
voting data as described previously.

Output The election results in a tabular form, as described previously, and the winner.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

From the output, it is clear that the program must organize the voting data by
region and calculate the total votes both received by each candidate and polled for
the election. Furthermore, the names of the candidates must appear in alphabetical
order.

The main component of this program is a candidate. Therefore, first we design a
class candidateType to implement a candidate object. Every candidate has a name
and receives votes. Because there are four regions, we can use an array of four
components. In Example 1-12 (Chapter 1), we designed the class personType to
implement the name of a person. Recall that an object of the type personType can
store the first name and the last name. Now that we have discussed operator over-
loading (see Chapter 2), we can redesign the class personType and define the
relational operators so that the names of two people can be compared. We can also
overload the assignment operator for easy assignment, and use the stream insertion and
extraction operators for input/output. Because every candidate is a person, we derive
the class candidateType from the class personType.

Programming Example: Election Results | 577

personType The class personType implements the first name and last name of a person.
Therefore, the class personType has two data members: a data member,
firstName, to store the first name and a data member, lastName, to store the
last name. We declare these as protected so that the definition of the class

personType can be easily extended to accommodate the requirements of a specific
application needed to implement a person’s name. The definition of the class
personType is given next:

//***
// Author: D.S. Malik
//
// This class specifies the members to implement a person's
// name.
//***

#include <iostream>
#include <string>

using namespace std;

class personType
{

//Overload the stream insertion and extraction operators.
friend istream& operator>>(istream&, personType&);
friend ostream& operator<<(ostream&, const personType&);

public:
const personType& operator=(const personType&);

//Overload the assignment operator.

void setName(string first, string last);
//Function to set firstName and lastName according to
//the parameters.
//Postcondition: firstName = first; lastName = last

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//constructor with parameters
//Set firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last

//Overload the relational operators.
bool operator==(const personType& right) const;
bool operator!=(const personType& right) const;
bool operator<=(const personType& right) const;

578 | Chapter 10: Sorting Algorithms

1
0

bool operator<(const personType& right) const;
bool operator>=(const personType& right) const;
bool operator>(const personType& right) const;

protected:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

We only give the definitions of the functions to overload the operators == and >> and
leave others as an exercise for you; see Programming Exercise 13 at the end of this
chapter.

//overload the operator ==
bool personType::operator==(const personType& right) const
{

return (firstName == right.firstName
&& lastName == right.lastName);

}

//overload the stream insertion operator
istream& operator>>(istream& isObject, personType& pName)
{

isObject >> pName.firstName >> pName.lastName;

return isObject;
}

candidateType The main component of this program is the candidate, which is described and
implemented in this section. Every candidate has a first and a last name, and receives
votes. Because there are four regions, we declare an array of four components to keep
track of the votes for each region. We also need a data member to store the total
number of votes received by each candidate. Because every candidate is a person and
we have designed a class to implement the first and last name, we derive the class

candidateType from the class personType. Because the data members of the
class personType are protected, these data members can be accessed directly in
the class candidateType.

There are six candidates. Therefore, we declare a list of six candidates of type
candidateType. This chapter discussed sorting algorithms and added these algo-
rithms to the class arrayListType. In Chapter 9, we derived the class

orderedArrayList from the class arrayListType and included the binary search
algorithm. We will use this class to maintain the list of candidates. This list of
candidates will be sorted and searched. Therefore, we must define (that is, overload)
the assignment and relational operators for the class candidateType because these
operators are used by the searching and sorting algorithms.

Data in the file containing the candidates’ data consists of only the names of the
candidates. Therefore, in addition to overloading the assignment operator so that the

Programming Example: Election Results | 579

value of one object can be assigned to another object, we also overload the assignment
operator for the class candidateType, so that only the name (of the personType)
of the candidate can be assigned to a candidate object. That is, we overload the
assignment operator twice: once for objects of the type candidateType, and another
for objects of the types candidateType and personType.

//***
// Author: D.S. Malik
//
// This class specifies the members to implement a candidate.
//***

#include <string>
#include "personType.h"

using namespace std;

const int NO_OF_REGIONS = 4;

class candidateType: public personType
{
public:

const candidateType& operator=(const candidateType&);
//Overload the assignment operator for objects of the
//type candidateType

const candidateType& operator=(const personType&);
//Overload the assignment operator for objects so that
//the value of an object of type personType can be
//assigned to an object of type candidateType

void updateVotesByRegion(int region, int votes);
//Function to update the votes of a candidate for a
//particular region.
//Postcondition: Votes for the region specified by the
// parameter are updated by adding the votes specified
// by the parameter votes.

void setVotes(int region, int votes);
//Function to set the votes of a candidate for a
//particular region.
//Postcondition: Votes for the region specified by the
// parameter are set to the votes specified by the
// parameter votes.

void calculateTotalVotes();
//Function to calculate the total votes received by a
//candidate.
//Postcondition: The votes in each region are added and
// assigned to totalVotes.

580 | Chapter 10: Sorting Algorithms

1
0

int getTotalVotes() const;
//Function to return the total votes received by a
//candidate.
//Postcondition: The value of totalVotes is returned.

void printData() const;
//Function to output the candidate's name, the votes
//received in each region, and the total votes received.

candidateType();
//Default constructor.
//Postcondition: Candidate's name is initialized to blanks,
// the number of votes in each region, and the total
// votes are initialized to 0.

//Overload the relational operators.
bool operator==(const candidateType& right) const;
bool operator!=(const candidateType& right) const;
bool operator<=(const candidateType& right) const;
bool operator<(const candidateType& right) const;
bool operator>=(const candidateType& right) const;
bool operator>(const candidateType& right) const;

private:
int votesByRegion[NO_OF_REGIONS]; //array to store the votes

// received in each region
int totalVotes; //variable to store the total votes

};

The definitions of the member functions of the class candidateType are given
next.

To set the votes of a particular region, the region number and the number of votes are
passed as parameters to the function setVotes. Because an array index starts at 0,
region 1 corresponds to the array component at position 0, and so on. Therefore, to
set the value of the correct array component, 1 is subtracted from the region. The
definition of the function setVotes is as follows:

void candidateType::setVotes(int region, int votes)
{

votesByRegion[region - 1] = votes;
}

To update the votes for a particular region, the region number and the number of
votes for that region are passed as parameters. The votes are then added to the region’s
previous value. The definition of the function updateVotesByRegion is as follows:

void candidateType::updateVotesByRegion(int region, int votes)
{

votesByRegion[region - 1] = votesByRegion[region - 1] + votes;
}

Programming Example: Election Results | 581

The definitions of the functions calculateTotalVotes, getTotalVotes,
printData, the default constructor, and getName are given next:

void candidateType::calculateTotalVotes()
{

totalVotes = 0;

for (int i = 0; i < NO_OF_REGIONS; i++)
totalVotes += votesByRegion[i];

}

int candidateType::getTotalVotes() const
{

return totalVotes;
}

void candidateType::printData() const
{

cout << left
<< setw(10) << firstName << " "
<< setw(10) << lastName << " ";

cout << right;

for (int i = 0; i < NO_OF_REGIONS; i++)
cout << setw(7) << votesByRegion[i] << " ";

cout << setw(7) << totalVotes << endl;
}

candidateType::candidateType()
{

for (int i = 0; i < NO_OF_REGIONS; i++)
votesByRegion[i] = 0;

totalVotes = 0;
}

To overload the relational operators for the class candidateType, the names of
the candidates are compared. For example, two candidates are the same if they have
the same name. The definitions of these functions are similar to the definitions of the
functions to overload the relational operators for the class personType. We only
give the definition of the function to overload the operator == and leave others as an
exercise for you; see Programming Exercise 13.

bool candidateType::operator==(const candidateType& right) const
{

return (firstName == right.firstName
&& lastName == right.lastName);

}

The definitions of the functions to overload the assignment operators for the class

candidateType are also left as an exercise for you; see Programming Exercise 13.

582 | Chapter 10: Sorting Algorithms

1
0

MAIN

PROGRAM

Now that the class candidateType has been designed, we focus on designing the
main program.

Because there are six candidates, we create a list, candidateList, containing six
components of the type candidateType. The first thing that the program should
do is read each candidate’s name from the file candData.txt into the list
candidateList. Next, we sort candidateList.

The next step is to process the voting data from the file voteData.txt, which holds
the voting data. After processing the voting data, the program should calculate the
total votes received by each candidate and then print the data as shown previously.
Thus, the general algorithm is as follows:

1. Read each candidate’s name into candidateList.

2. Sort candidateList.

3. Process the voting data.

4. Calculate the total votes received by each candidate.

5. Print the results.

The following statement creates the object candidateList of type
orderedArrayListType.

orderedArrayListType<candidateType> candidateList(NO_OF_CANDIDATES);

Figure 10-49 shows the object candidateList. Every component of the array list

is an object of the type candidateType.

In Figure 10-49, the array votesByRegion and the variable totalVotes are
initialized to 0 by the default constructor of the class candidateType. To save

candidateList

length
maxSize

6
6

list

firstName

lastName

votesByRegion 0
totalVotes 0

list[0]
list[1]

list[2]

list[3]

list[4]

list[5]

list[0]

0 0 0

FIGURE 10-49 candidateList

Programming Example: Election Results | 583

space, whenever needed, we will draw the object candidateList as shown in
Figure 10-50.

fillNames The first thing that the program must do is to read the candidates’ names into
candidateList. Therefore, we write a function to accomplish this task. The
file candData.txt is opened in the function main. The name of the input file
and candidateList are therefore passed as parameters to the function fillNames.
Because the data member list of the object candidateList is a protected data
member, it cannot be accessed directly. We, therefore, create an object, temp, of
the type candidateType, to store the candidates’ names, and use the function
insertAt (of list) to store each candidate’s name in the object candidateList.
The definition of the function fillNames is as follows:

void fillNames(ifstream& inFile,
orderedArrayListType<candidateType>& cList)

{
string firstN;
string lastN;

candidateType temp;

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

6

FIGURE 10-50 Object candidateList

584 | Chapter 10: Sorting Algorithms

1
0

for (int i = 0; i < NO_OF_CANDIDATES; i++)
{

inFile >> firstN >> lastN;
temp.setName(firstN, lastN);
cList.insertAt(i, temp);

}
}

After a call to the function fillNames, Figure 10-51 shows the object
candidateList.

Sort Names After reading the candidates’ names, next we sort the array list of the object
candidateList using any of the (array-based) sorting algorithms discussed in this
chapter. Because candidateList is an object of the type orderedArrayListType,
all sorting algorithms discussed in this chapter are available to it. For illustration
purposes, we use a selection sort. The following statement accomplishes this task:

candidateList.selectionSort();

After this statement executes, candidateList is as shown in Figure 10-52.

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

Greg Goldy 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Mickey Miller

Lisa Fisher

Peter Lamba

Danny Dillion

Sheila Bower

6

FIGURE 10-51 Object candidateList after a call to the function fillNames

Programming Example: Election Results | 585

Process

Voting

Data

We now discuss how to process the voting data. Each entry in the file
voteData.txt is of the form

firstName lastName regionNumber numberOfVotes

After reading an entry from the file voteData.txt, we locate the row in the array
list (of the object candidateList) corresponding to the specific candidate, and
update the entry specified by regionNumber.

The component votesByRegion is a private data member of each component of
the array list. Moreover, list is a private data member of candidateList. The
only way that we can update the votes of a candidate is to make a copy of that
candidate’s record into a temporary object, update the object, and then copy the
temporary object back into list by replacing the old value with the new value of
the temporary object. We can use the member function retrieveAt to make a copy
of the candidate whose votes need to be updated. After updating the temporary
object, we can use the member function replaceAt to copy the temporary object
back into the list. Suppose the next entry read is

Lisa Fisher 2 35

This entry says that Lisa Fisher received 35 votes from region 2. Suppose that
before processing this entry, candidateList is as shown in Figure 10-53.

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

Sheila Bower 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

6

FIGURE 10-52 Object candidateList after the statement candidateList.
selectionSort(); executes

586 | Chapter 10: Sorting Algorithms

1
0

We make a copy of the row corresponding to Lisa Fisher (see Figure 10-54).

Next, the following statement updates the voting data for region 2. (Here region = 2

and votes = 35.)

temp.updateVotesByRegion(region, votes);

After this statement executes, the object temp is as shown in Figure 10-55.

temp

region

76 48 0 0 0Lisa Fisher

FIGURE 10-55 Object temp after the statement temp.updateVotesByRegion(region,
votes); executes

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

Sheila Bower 0 0 50 0 0

10 0 56 0 0

76 13 0 0 0

0 45 0 0 0

80 0 0 0 0

100 0 0 20 0

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

6

FIGURE 10-53 Object candidateList before processing the entry Lisa Fisher 2 35

temp

region

76 13 0 0 0Lisa Fisher

FIGURE 10-54 Object temp

Programming Example: Election Results | 587

Now we copy the object temp into list (see Figure 10-56).

Because the member list of candidateList is sorted, we can use the binary search
algorithm to find the row position in list corresponding to the candidate whose
votes need to be updated. Also, the function binarySearch is a member of the
class orderedArrayListType, so we can use this function to search the array
list. We leave the definition of the function processVotes to process the voting
data as an exercise for you; see Programming Exercise 13 at the end of this chapter.

Add Votes After processing the voting data, the next step is to find the total votes received by
each candidate. This is done by adding the votes received in each region. Now
votesByRegion is a private data member of candidateType and list is a
protected data member of candidateList. Therefore, to add the votes for each
candidate, we use the retrieveAt function to make a temporary copy of each
candidate’s data, add the votes in the temporary object, and then copy the temporary
object back into candidateList. The following function does this:

void addVotes(orderedArrayListType<candidateType>& cList)
{

candidateType temp;

for (int i = 0; i < NO_OF_CANDIDATES; i++)

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

Sheila Bower 0 0 50 0 0

10 0 56 0 0

76 48 0 0 0

0 45 0 0 0

80 0 0 0 0

100 0 0 20 0

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

6

FIGURE 10-56 candidateList after copying temp

588 | Chapter 10: Sorting Algorithms

1
0

{
cList.retrieveAt(i, temp);
temp.calculateTotalVotes();
cList.replaceAt(i, temp);

}
}

Figure 10-57 shows candidateList after adding the votes for each candidate—that
is, after a call to the function addVotes.

Print

Heading

and Print

Results

To complete the program, we include a function to print the heading, the first four
lines of the output. The following function accomplishes this task:

void printHeading()
{

cout << " --------------------Election Results---------"
<< "-----------" << endl << endl;

cout << " Votes" << endl;
cout << " Candidate Name Region1 Region2 Region3 "

<<"Region4 Total" << endl;
cout << "--------------------- ------- ------- "

<< "------- ------- ----–" << endl;
}

candidateList

length
maxSize

6

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

Sheila Bower 23 70 133 267 493

25 71 156 97 349

110 158 0 0 268

75 34 134 0 243

285 56 0 46 387

120 141 156 67 476

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

6

FIGURE 10-57 candidateList after a call to the function addVotes

Programming Example: Election Results | 589

We now describe the function printResults, which prints the results. Suppose that
the variable sumVotes holds the total votes polled for the election, the variable
largestVotes holds the largest number of votes received by a candidate, and the
variable winLoc holds the index of the winning candidate in the array list. Further
suppose that temp is an object of the type candidateType. The algorithm for this
function is as follows:

1. Initialize sumVotes, largestVotes, and winLoc to 0.

2. For each candidate

a. Retrieve the candidate’s data into temp.

b. Print the candidate’s name and relevant data.

c. Retrieve the total votes received by the candidate and update
sumVotes.

if (largestVotes < temp.getTotalVotes())
{

largestVotes = temp.getTotalVotes();
winLoc = i; //this is the ith candidate

}

3. Output the final lines of the output.

We leave the definition of the function printResults to print the results as an
exercise for you; see Programming Exercise 13 at the end of this chapter.

PROGRAM LISTING (MAIN PROGRAM)

//**
// Author: D.S. Malik
//
// Program: Election Results
// Given candidates' voting this program determines the winner
// of the election. The program outputs the votes received by
// each candidate and the winner.
//**

#include <iostream>
#include <string>
#include <fstream>
#include "candidateType.h"
#include "orderedArrayListType.h"

using namespace std;

const int NO_OF_CANDIDATES = 6;

590 | Chapter 10: Sorting Algorithms

1
0

void fillNames(ifstream& inFile,
orderedArrayListType<candidateType>& cList);

void processVotes(ifstream& inFile,
orderedArrayListType<candidateType>& cList);

void addVotes(orderedArrayListType<candidateType>& cList);

void printHeading();

void printResults(orderedArrayListType<candidateType>& cList);

int main()
{

orderedArrayListType<candidateType>
candidateList(NO_OF_CANDIDATES);

ifstream inFile;

inFile.open("candData.txt");

fillNames(inFile, candidateList);

candidateList.selectionSort();

inFile.close();

inFile.open("voteData.txt");

processVotes(inFile, candidateList);

addVotes(candidateList);

printHeading();

printResults(candidateList);

return 0;
}

//Place the definitions of the functions fillNames, addVotes,
//printHeading here. Also write and place the definitions
//of the functions processVotes and printResults here.

Sample Output (After you have written the definitions of the functions of the
classes personType and candidateType, and the definitions of the function
processVotes and printResults, and run your program, it should produce the
following output; see Programming Exercise 13.)

Programming Example: Election Results | 591

--------------------Election Results--------------------

Votes
Candidate Name Region1 Region2 Region3 Region4 Total

------------------ ------- ------- ------- ------- ------
Sheila Bower 23 70 133 267 493
Danny Dillion 25 71 156 97 349
Lisa Fisher 110 158 0 0 268
Greg Goldy 75 34 134 0 243
Peter Lamba 285 56 0 46 387
Mickey Miller 112 141 156 67 476

Winner: Sheila Bower, Votes Received: 493

Total votes polled: 2216

Input Files

candData.txt

Greg Goldy
Mickey Miller
Lisa Fisher
Peter Lamba
Danny Dillion
Sheila Bower

voteData.txt

Greg Goldy 2 34
Mickey Miller 1 56
Lisa Fisher 2 56
Peter Lamba 1 78
Danny Dillion 4 29
Sheila Bower 4 78
Mickey Miller 2 63
Lisa Fisher 1 23
Peter Lamba 2 56
Danny Dillion 1 25
Sheila Bower 2 70
Peter Lamba 4 23
Danny Dillion 4 12
Greg Goldy 3 134
Sheila Bower 4 100
Mickey Miller 3 67
Lisa Fisher 2 67
Danny Dillion 3 67
Sheila Bower 1 23
Mickey Miller 1 56
Lisa Fisher 2 35
Sheila Bower 3 78
Peter Lamba 1 27

592 | Chapter 10: Sorting Algorithms

QUICK REVIEW

1. Selection sort sorts a list by finding the smallest (or equivalently, the largest)
element in the list, and moving it to the beginning (or the end) of the list.

2. For a list of length n, where n> 0, selection sort makes (1/2)n(n – 1) key
comparisons and 3(n – 1) item assignments.

3. For a list of length n, where n> 0, on average, insertion sort makes
(1/4)n2 + O(n) ¼ O(n2) key comparisons and (1/4)n2 + O(n) ¼ O(n2)
item assignments.

4. Empirical studies suggest that for large lists of size n, the number of moves
in Shellsort is in the range of n1.25 to 1.6n1.25.

5. Let L be a list of n distinct elements. Any sorting algorithm that sorts L by
comparison of the keys only, in its worst case, makes at least O(nlog2n) key
comparisons.

6. Both quicksort and mergesort sort a list by partitioning the list.

7. To partition a list, quicksort first selects an item from the list, called the
pivot. The algorithm then rearranges the elements so that the elements in
one of the sublists are less than the pivot, and the elements in the second
sublist are greater than or equal to the pivot.

8. In a quicksort, the sorting work is done in partitioning the list.

9. On average, the number of key comparisons in quicksort is O(nlog2n). In
the worst case, the number of key comparisons in quicksort is O(n2).

10. Mergesort partitions the list by dividing it in the middle.

11. In mergesort, the sorting work is done in merging the list.

12. The number of key comparisons in mergesort is O(nlog2n).

1
0

Danny Dillion 2 34
Greg Goldy 1 75
Peter Lamba 4 23
Sheila Bower 3 55
Mickey Miller 4 67
Peter Lamba 1 23
Danny Dillion 3 89
Mickey Miller 3 89
Peter Lamba 1 67
Danny Dillion 2 37
Sheila Bower 4 89
Mickey Miller 2 78
Lisa Fisher 1 87
Peter Lamba 1 90
Danny Dillion 4 56

Quick Review | 593

13. A heap is a list in which each element contains a key, such that the key in
the element at position k in the list is at least as large as the key in the
element at position 2k + 1 (if it exists) and 2k + 2 (if it exists).

14. The first step in the heapsort algorithm is to convert the list into a heap,
called buildHeap. After we convert the array into a heap, the sorting phase
begins.

15. Suppose that L is a list of n elements, where n> 0. In the worst case, the
number of key comparisons in heapsort to sort L is 2nlog2n + O(n). Also, in
the worst case, the number of item assignments in heapsort to sort L is
nlog2n + O(n).

EXERCISES

1. Sort the following list using selection sort as discussed in this chapter. Show
the list after each iteration of the outer for loop.

26, 45, 17, 65, 33, 55, 12, 18

2. Sort the following list using selection sort as discussed in this chapter. Show
the list after each iteration of the outer for loop.

36, 55, 17, 35, 63, 85, 12, 48, 3, 66

3. Assume the following list of keys: 5, 18, 21, 10, 55, 20
The first three keys are in order. To move 10 to its proper position using
insertion sort as described in this chapter, exactly how many key compar-
isons are executed?

4. Assume the following list of keys: 7, 28, 31, 40, 5, 20

The first four keys are in order. To move 5 to its proper position using
insertion sort as described in this chapter, exactly how many key compar-
isons are executed?

5. Assume the following list of keys: 28, 18, 21, 10, 25, 30, 12, 71, 32, 58, 15
This list is to be sorted using insertion sort as described in this chapter for
array-based lists. Show the resulting list after six passes of the sorting
phase—that is, after six iterations of the for loop.

6. Recall insertion sort for array-based lists as discussed in this chapter. Assume
the following list of keys: 18, 8, 11, 9, 15, 20, 32, 61, 22, 48, 75, 83, 35, 3

Exactly how many key comparisons are executed to sort this list using
insertion sort?

7. Explain why the number of item movements in Shellsort is less than the
number of item movements in insertion sort.

8. Consider the following list of keys: 80, 57, 65, 30, 45, 77, 27, 4, 90, 54, 45,
2, 63, 38, 81, 28, 62. Suppose that this list is to be sorted using Shellsort.
Show the list during each increment, as in this chapter.

594 | Chapter 10: Sorting Algorithms

a. Use the increment sequence 1, 3, 5

b. Use the increment sequence 1, 4, 7.

9. Both mergesort and quicksort sort a list by partitioning the list. Explain how
mergesort differs from quicksort in partitioning the list.

10. Assume the following list of keys: 16, 38, 54, 80, 22, 65, 55, 48, 64, 95, 5,
100, 58, 25, 36

This list is to be sorted using quicksort as discussed in this chapter. Use
pivot as the middle element of the list.

a. Give the resulting list after one call to the partition procedure.

b. Give the resulting list after two calls to the partition procedure.

11. Assume the following list of keys: 18, 40, 16, 82, 64, 67, 57, 50, 37, 47, 72,
14, 17, 27, 35

This list is to be sorted using quicksort as discussed in this chapter. Use
pivot as the median of the first, last, and middle elements of the list.

a. What is the pivot?

b. Give the resulting list after one call to the partition procedure.

12. Using the function buildHeap as given in this chapter, convert the follow-
ing array into a heap. Show the final form of the array.

47, 78, 81, 52, 50, 82, 58, 42, 65, 80, 92, 53, 63, 87, 95, 59, 34, 37, 7, 20

13. Suppose that the following list was created by the function buildHeap
during the heap creation phase of heapsort.

100, 85, 94, 47, 72, 82, 76, 30, 20, 60, 65, 50, 45, 17, 35, 14, 28, 5

Show the resulting array after two passes of heapsort. (Use the heapify

procedure as given in this chapter.) Exactly how many key comparisons are
executed during the first pass?

14. Suppose that L is a list is of length n and it is sorted using insertion sort. If L
is already sorted in the reverse order, show that the number of comparisons
is (1/2)(n2 – n) and the number of item assignments is (1/2)(n2 +3n) – 2.

15. Suppose that L is a list is of length n and it is sorted using insertion sort. If L
is already sorted, show that the number of comparisons is (n – 1) and the
number of item assignments is 0.

16. Write the definition of the class arrayListType that implements the
sorting algorithms for array-based lists as discussed in this chapter.

17. Write the definition of the class unorderedLinkedList that implements
the searching (described in Chapter 5) and sorting algorithms for linked lists
as discussed in this chapter.

1
0

Exercises | 595

PROGRAMMING EXERCISES

1. Write and test a version of selection sort for linked lists.

2. Write a program to test insertion sort for array-based lists as given in this
chapter.

3. Write a program to test insertion sort for linked lists as given in this chapter.

4. Write the definition of the function intervalInsertionSort described in
Shellsort. Also write a program to test Shellsort given in this chapter.

5. Write a program to sort an array as follows.

a. Use insertion sort to sort the array. Print the number of comparisons and
the number of item movements.

b. Use Shellsort to sort the array using the function shellSort given in
this chapter. Print the number of comparisons and the number of item
movements.

c. Test your program on a list of 1,000 elements and on a list of 10,000
elements.

6. Write a program to test quicksort for array-based lists as given in this chapter.

7. Write and test a version of quicksort for linked lists.

8. (C. A. R. Hoare) Let L be a list of size n. Quicksort can be used to find the
kth smallest item in L, where 0 � k � n � 1, without completely sorting L.
Write and implement a C++ function, kThSmallestItem, that uses a
version of quicksort to determine the kth smallest item in L without
completely sorting L.

9. Sort an array of 10,000 elements using quicksort as follows:

a. Sort the array using pivot as the middle element of the array.

b. Sort the array using pivot as the median of the first, last, and middle
elements of the array.

c. Sort the array using pivot as the middle element of the array. However,
when the size of any sublist reduces to less than 20, sort the sublist using
insertion sort.

d. Sort the array using pivot as the median of the first, last, and middle
elements of the array. When the size of any sublist reduces to less than
20, sort the sublist using insertion sort.

e. Calculate and print the CPU time for each of the preceding four steps.

10. Write a program to test mergesort for linked lists as given in this chapter.

11. Write a program to test heapsort for array-based lists as given in this chapter.

12. a. Write the definition of the class template to define the priority queues,
as discussed in this chapter as an abstract data type (ADT).

596 | Chapter 10: Sorting Algorithms

b. Write the definitions of the function templates to implement the
operations of the priority queues as defined in part (a).

c. Write a program to test various operations of the priority queues.

13. a. Write the definitions of the functions of the class personType, of the
Programming Example Election Results, not given in the programming
example.

b. Write the definitions of the functions of the class candidateType, of
the Programming Example Election Results, not given in the program-
ming example.

c. Write the definitions of the function processVotes and printResults,
of the Programming Example Election Results.

d. After completing parts a, b, and c, write a program to produce the
output shown in the Sample Run of the Programming Example Elec-
tion Results.

14. In the Programming Example Election Results, the class candidateType

contains the function calculateTotalVotes. After processing the voting
data, this function calculates the total number of votes received by a candidate.
The function updateVotesByRegion (of the class candidateType)
updates only the number of votes for a particular region. Modify the definition
of this function so that it also updates the total number of votes received by the
candidate. By doing so, the function addVotes in the main program is no
longer needed. Modify and run your program with the modified definition of
the function updateVotesByRegion.

15. In the Programming Example Election Results, the object candidateList
of the type orderedArrayListType is declared to process the voting data.
The operations of inserting a candidate’s data and updating and retrieving
the votes were somewhat complicated. To update the candidate’s votes, we
copied each candidate’s data from candidateList into a temporary object
of the type candidateType, updated the temporary object, and then
replaced the candidate’s data with the temporary object. This is because
the data member’s list is a protected member of candidateList, and
each component of list is a private data member. In this exercise, you
are to modify the Programming Example Election Results to simplify
the accessing of a candidate’s data as follows: Derive a class

candidateListType from the class orderedArrayListType.

class candidateListType: public orderedArrayListType<candidateType>
{
public:

candidateListType();
//default constructor

candidateListType(int size);
//constructor

1
0

Programming Exercises | 597

void processVotes(string fName, string lName, int region,
int votes);

//Function to update the number of votes for a
//particular candidate for a particular region.
//Postcondition: The name of the candidate, the region,
//and the number of votes are passed as parameters.

void addVotes();
//Function to find the total number of votes received by
//each candidate.

void printResult() const;
//Function to output the voting data.

};

Because the class candidateListType is derived from the class

orderedArrayListType, and list is a protected data member of
the class orderedArrayListType (inherited from the class

arrayListType), list can be directly accessed by a member of the
class candidateListType.

Write the definitions of the member functions of the class
candidateListType. Rewrite and run your program using the class

candidateListType.

598 | Chapter 10: Sorting Algorithms

BINARY TREES AND B-TREES
IN THIS CHAPTER , YOU WILL :

. Learn about binary trees

. Explore various binary tree traversal algorithms

. Learn how to organize data in a binary search tree

. Discover how to insert and delete items in a binary search tree

. Explore nonrecursive binary tree traversal algorithms

. Learn about AVL (height-balanced) trees

. Learn about B-trees

11C H A P T E R

When data is being organized, a programmer’s highest priority is to organize it in such a
way that item insertion, deletion, and lookups (searches) are fast. You have already seen
how to store and process data in an array. Because an array is a random access data structure, if
the data is properly organized (for example, sorted), we can use a search algorithm, such as a
binary search, to effectively find and retrieve an item from the list. However, we know that
storing data in an array has its limitations. For example, item insertion (especially if the array is
sorted) and item deletion can be very time consuming, especially if the list size is very large,
because each of these operations requires data movement. To speed up item insertion
and deletion, we can use linked lists. Item insertion and deletion in a linked list do not
require any data movement; we simply adjust some of the pointers in the list. However, one
of the drawbacks of linked lists is that they must be processed sequentially. That is, to insert or
delete an item, or simply search the list for a particular item, we must begin our search at
the first node in the list. As you know, a sequential search is good only for very small lists
because the average search length of a sequential search is half the size of the list.

Binary Trees
This chapter discusses how to dynamically organize data so that item insertion, deletion,
and lookups are more efficient.

We first introduce some definitions to facilitate our discussion.

Definition: A binary tree, T, is either empty or such that

i. T has a special node called the root node.

ii. T has two sets of nodes, LT and RT, called the left subtree and right

subtree of T, respectively.

iii. LT and RT are binary trees.

A binary tree can be shown pictorially. Suppose that T is a binary tree with a root node
A. Let LA denote the left subtree of A and RA denote the right subtree of A. Now LA and
RA are binary trees. Suppose that B is the root node of LA and C is the root node of RA. B
is called the left child of A; C is called the right child of A. Furthermore, A is called the
parent of B and C.

In the diagram of a binary tree, each node of the binary tree is represented as a circle and
the circle is labeled by the node. The root node of the binary tree is drawn at the top. The
left child of the root node (if any) is drawn below and to the left of the root node.
Similarly, the right child of the root node (if any) is drawn below and to the right of the
root node. Children are connected to the parent by an arrow from the parent to the child.
An arrow is usually called a directed edge or a directed branch (or simply a branch).
Because the root node, B, of LA is already drawn, we apply the same procedure to draw
the remaining parts of LA. RA is drawn similarly. If a node has no left child, for example,
when we draw an arrow from the node to the left child, we end the arrow with three
lines. That is, three lines at the end of an arrow indicate that the subtree is empty.

600 | Chapter 11: Binary Trees and B-Trees

1
1

The diagram in Figure 11-1 is an example of a binary tree. The root node of this binary
tree is A. The left subtree of the root node, which we denoted by LA, is the set LA ¼ {B,
D, E, G} and the right subtree of the root node, which we denote by RA, is the set RA ¼
{C, F, H}. The root node of the left subtree of A—that is, the root node of LA—is node
B. The root node of RA is C, and so on. Clearly, LA and RA are binary trees. Because
three lines at the end of an arrow mean that the subtree is empty, it follows that the left
subtree of D is empty.

In Figure 11-1, the left child of A is B and the right child of A is C. Similarly, for node F,
the left child is H and node F has no right child.

Example 11-1 shows nonempty binary trees.

EXAMPLE 11-1

Figure 11-2 shows binary trees with one, two, or three nodes.

In the binary tree of Figure 11-2(a), the root node is A, LA ¼ empty, and RA ¼ empty.

In the binary tree of Figure 11-2(b), the root node is A, LA ¼ {B}, and RA ¼ empty. The
root node of LA ¼ B, LB ¼ empty, and RB ¼ empty.

A A

B

A

C

(a) Binary tree
with one node

A

B C

(b) Binary tree
with two nodes

(c) Binary tree
with two nodes

(d) Binary tree
with three nodes

FIGURE 11-2 Binary tree with one, two, or three nodes

A

B C

D E

G

F

H

FIGURE 11-1 Binary tree

Binary Trees | 601

In the binary tree of Figure 11-2(c), the root node is A, LA ¼ empty, RA ¼ {C}. The
root node of RA ¼ C, LC ¼ empty, and RC ¼ empty.

In the binary tree of Figure 11-2(d), the root node is A, LA ¼ {B}, RA ¼ {C}. The root
node of LA ¼ B, LB ¼ empty, RB ¼ empty. The root node of RA ¼ C, LC ¼ empty,
RC ¼ empty.

EXAMPLE 11-2

This example shows other cases of nonempty binary trees with three nodes. See Figure 11-3.

As you can see from the preceding examples, every node in a binary tree has at most two
children. Thus, every node, other than storing its own information, must keep track of its
left subtree and right subtree. This implies that every node has two pointers, llink and
rlink. The pointer llink points to the root node of the left subtree; the pointer rlink
points to the root node of the right subtree.

The following struct defines the node of a binary tree:

template <class elemType>
struct binaryTreeNode
{

elemType info;
binaryTreeNode<elemType> *llink;
binaryTreeNode<elemType> *rlink;

};

From the definition of the node, it is clear that for each node,

• The data is stored in info.

• A pointer to the left child is stored in llink.

• A pointer to the right child is stored in rlink.

A

B

D

A

B

E

A

C

G

A

C

F

(a) (b) (c) (d)

FIGURE 11-3 Various binary trees with three nodes

602 | Chapter 11: Binary Trees and B-Trees

1
1

Furthermore, a pointer to the root node of the binary tree is stored outside the binary tree
in a pointer variable, usually called the root, of type binaryTreeNode. Thus, in general,
a binary tree looks like the diagram in Figure 11-4.

For simplicity, we will continue to draw binary trees as before. That is, we use circles to
represent nodes, and left and right arrows to represent links. As before, three lines at the
end of an arrow mean that the subtree is empty.

Before we leave this section, let us define a few more terms.

A node in the binary tree is called a leaf if it has no left and right children. LetU andV be two
nodes in the binary tree T. U is called a parent of V if there is a branch from U to V. A path

from a node X to a node Y in the binary tree is a sequence of nodes X0, X1, . . . , Xn such that

i. X ¼ X0, Xn ¼ Y

ii. Xi-1 is the parent of Xi for all i ¼ 1, 2, . . . , n. That is, there is a branch
from X0 to X1, X1 to X2, . . . , Xi-1 to Xi, . . . , Xn-1 to Xn.

Because the branches go only from a parent to its children, from the previous discussion it is
clear that in a binary tree, there is a unique path from the root to every node in the binary tree.

Definition: The level of a node in a binary tree is the number of branches on the path
from the root to the node.

Clearly, the level of the root node of a binary tree is 0, and the level of the children of the
root node is 1.

Definition: The height of a binary tree is the number of nodes on the longest path
from the root to a leaf.

Suppose that a pointer p to the root node of a binary tree is given. We next describe the
C++ function height to find the height of the binary tree. The pointer to the root node is
passed as a parameter to the function height.

root

A

B C

D FE

G H

FIGURE 11-4 Binary tree

Binary Trees | 603

If the binary tree is empty, the height is 0. Suppose that the binary tree is nonempty. To
find the height of the binary tree, we first find the height of the left subtree and the height
of the right subtree. We then take the maximum of these two heights and add 1 to find
the height of the binary tree. To find the height of the left (right) subtree, we apply the
same procedure because the left (right) subtree is a binary tree. Therefore, the general
algorithm to find the height of a binary tree is as follows. Suppose height(p) denotes the
height of the binary tree with root p.

if (p is NULL)
height(p) = 0

else
height(p) = 1 + max(height(p->llink), height(p->rlink))

Clearly, this is a recursive algorithm. The following function implements this algorithm:

template <class elemType>
int height(binaryTreeNode<elemType> *p) const
{

if (p == NULL)
return 0;

else
return 1 + max(height(p->llink), height(p->rlink));

}

The definition of the function height uses the function max to determine the larger of
two integers. The function max can be easily implemented.

Similarly, we can implement algorithms to find the number of nodes and number of leaves
in a binary tree.

Copy Tree
One useful operation on binary trees is to make an identical copy of a binary tree. A
binary tree is a dynamic data structure; that is, memory for its nodes is allocated and
deallocated during program execution. Therefore, if we use just the value of the pointer
of the root node to make a copy of a binary tree, we get a shallow copy of the data. To
make an identical copy of a binary tree, we need to create as many nodes as there are in
the binary tree to be copied. Moreover, in the copied tree, these nodes must appear in the
same order as they are in the original binary tree.

Given a pointer to the root node of a binary tree, we next describe the function copyTree,
which makes a copy of a given binary tree. This function is also useful in implementing the
copy constructor and overloading the assignment operator, as described later in this chapter
(see the section, ‘‘Implementing Binary Trees’’).

template <class elemType>
void copyTree(binaryTreeNode<elemType>* &copiedTreeRoot,

binaryTreeNode<elemType>* otherTreeRoot)
{

if (otherTreeRoot == NULL)
copiedTreeRoot = NULL;

604 | Chapter 11: Binary Trees and B-Trees

else
{

copiedTreeRoot = new binaryTreeNode<elemType>;
copiedTreeRoot->info = otherTreeRoot->info;
copyTree(copiedTreeRoot->llink, otherTreeRoot->llink);
copyTree(copiedTreeRoot->rlink, otherTreeRoot->rlink);

}
}//end copyTree

Binary Tree Traversal
The item insertion, deletion, and lookup operations require that the binary tree be
traversed. Thus, the most common operation performed on a binary tree is to traverse
the binary tree, or visit each node of the binary tree. As you can see from the diagram of a
binary tree, the traversal must start at the root node because there is a pointer to the root
node. For each node, we have two choices:

• Visit the node first.

• Visit the subtrees first.

These choices lead to three different traversals of a binary tree—Inorder, preorder, and
postorder.

Inorder Traversal
In an inorder traversal, the binary tree is traversed as follows:

1. Traverse the left subtree.

2. Visit the node.

3. Traverse the right subtree.

Preorder Traversal
In a preorder traversal, the binary tree is traversed as follows:

1. Visit the node.

2. Traverse the left subtree.

3. Traverse the right subtree.

Postorder Traversal
In a postorder traversal, the binary tree is traversed as follows:

1. Traverse the left subtree.

2. Traverse the right subtree.

3. Visit the node.

1
1

Binary Tree Traversal | 605

Clearly, each of these traversal algorithms is recursive.

The listing of the nodes produced by the inorder traversal of a binary tree is called the
inorder sequence. The listing of the nodes produced by the preorder traversal of a
binary tree is called the preorder sequence. The listing of the nodes produced by the
postorder traversal of a binary tree is called the postorder sequence.

Before giving the C++ code for each of these traversals, let us illustrate the inorder
traversal of the binary tree in Figure 11-5. For simplicity, we assume that visiting a node
means to output the data stored in the node. The section, ‘‘Binary Tree Traversal and
Functions as Parameters,’’ located later in this chapter, explains how to modify the binary
tree traversal algorithms so that by using a function, the user can specify the action to be
performed on a node when the node is visited.

A pointer to the binary tree in Figure 11-5 is stored in the pointer variable root (which
points to the node with info A). Therefore, we start the traversal at A.

1. Traverse the left subtree of A; that is, traverse LA ¼ {B, D}.

2. Visit A.

3. Traverse the right subtree of A; that is, traverse RA ¼ {C}.

Now, we cannot do Step 2 until we have finished Step 1.

1. Traverse the left subtree of A; that is, traverse LA ¼ {B, D}. Now LA is a
binary tree with the root node B. Because LA is a binary tree, we apply
the inorder traversal criteria to LA.

1.1. Traverse the left subtree of B; that is, traverse LB ¼ empty.

1.2. Visit B.

1.3. Traverse the right subtree of B; that is, traverse RB ¼ {D}.

As before, first we complete Step 1.1 before going to Step 1.2.

1.1. Because the left subtree of B is empty, there is nothing to traverse.
Step 1.1 is completed, so we proceed to Step 1.2.

1.2. Visit B. That is, output B on an output device. Clearly, the first node
printed is B. This completes Step 1.2, so we proceed to Step 1.3.

D

A

B C

FIGURE 11-5 Binary tree for an inorder traversal

606 | Chapter 11: Binary Trees and B-Trees

1.3. Traverse the right subtree of B; that is, traverse RB ¼ {D}. Now
RB is a binary tree with the root node D. Because RB is a binary
tree, we apply the inorder traversal criteria to RB.

1.3.1. Traverse the left subtree ofD; that is, traverse LD¼ empty.

1.3.2. Visit D.

1.3.3. Traverse the right subtree ofD; that is, traverseRD¼ empty.

1.3.1. Because the left subtree of D is empty, there is nothing to
traverse. Step 1.3.1 is completed, so we proceed to Step
1.3.2.

1.3.2. Visit D. That is, output D on an output device. This
completes Step 1.3.2, so we proceed to Step 1.3.3.

1.3.3. Because the right subtree of D is empty, there is nothing
to traverse. Step 1.3.3 is completed.

This completes Step 1.3. Because Steps 1.1, 1.2, and 1.3 are completed, Step 1 is
completed, and so we go to Step 2.

2. Visit A. That is, output A on an output device. This completes Step 2,
so we proceed to Step 3.

3. Traverse the right subtree of A; that is, traverse RA ¼ {C}. Now RA is a
binary tree with the root node C. Because RA is a binary tree, we apply
the inorder traversal criteria to RA.

3.1. Traverse the left subtree of C; that is, traverse LC ¼ empty.

3.2. Visit C.

3.3. Traverse the right subtree of C; that is, traverse RC ¼ empty.

3.1. Because the left subtree of C is empty, there is nothing to traverse.
Step 3.1 is completed.

3.2. Visit C. That is, output C on an output device. This completes
Step 3.2, so we proceed to Step 3.3.

3.3. Because the right subtree of C is empty, there is nothing to
traverse. Step 3.3 is completed.

This completes Step 3, which in turn completes the traversal of the binary tree.

Clearly, the inorder traversal of the previous binary tree outputs the nodes in the
following order:

Inorder sequence: B D A C

Similarly, the preorder and postorder traversals output the nodes in the following order:

Preorder sequence: A B D C

Postorder sequence: D B C A

1
1

Binary Tree Traversal | 607

As you can see from the walk-through of the inorder traversal, after visiting the left
subtree of a node we must come back to the node itself. The links are only in one
direction; that is, the parent node points to the left and right children, but there is no
pointer from each child to the parent. Therefore, before going to a child, we must
somehow save a pointer to the parent node. A convenient way to do this is to write a
recursive inorder function because in a recursive call after completing a particular call, the
control goes back to the caller. (Later we discuss how to write nonrecursive traversal
functions.) The recursive definition of the function to implement the inorder traversal
algorithms is as follows:

template <class elemType>
void inorder(binaryTreeNode<elemType> *p) const
{

if (p != NULL)
{

inorder(p->llink);
cout << p->info << " ";
inorder(p->rlink);

}
}

To do the inorder traversal of a binary tree, the root node of the binary tree is passed as a
parameter to the function inorder. For example, if the root points to the root node of the
binary tree, a call to the function inorder is as follows:

inorder(root);

Similarly, we can write the functions to implement the preorder and postorder traversals.
The definitions of these functions are given next.

template <class elemType>
void preorder(binaryTreeNode<elemType> *p) const
{

if (p != NULL)
{

cout << p->info << " ";
preorder(p->llink);
preorder(p->rlink);

}
}

template <class elemType>
void postorder(binaryTreeNode<elemType> *p) const
{

if (p != NULL)
{

postorder(p->llink);
postorder(p->rlink);
cout << p->info << " ";

}
}

608 | Chapter 11: Binary Trees and B-Trees

Implementing Binary Trees
The previous sections described various operations that can be performed on a binary
tree, as well as the functions to implement these operations. This section describes binary
trees as an abstract data type (ADT). Before designing the class to implement a binary tree
as an ADT, let us list various operations that are typically performed on a binary tree:

• Determine whether the binary tree is empty.

• Search the binary tree for a particular item.

• Insert an item in the binary tree.

• Delete an item from the binary tree.

• Find the height of the binary tree.

• Find the number of nodes in the binary tree.

• Find the number of leaves in the binary tree.

• Traverse the binary tree.

• Copy the binary tree.

The item search, insertion, and deletion operations all require the binary tree to be
traversed. However, because the nodes of a binary tree are in no particular order, these
algorithms are not very efficient on arbitrary binary trees. That is, no criteria exist to
guide the search on these binary trees, as we will see in the next section. Therefore, we
will discuss these algorithms when we discuss special binary trees.

Other than for the search, insertion, and deletion operations, the following class defines
binary trees as an ADT. The definition of the node is the same as before. However, for
the sake of completeness and easy reference, we give the definition of the node followed
by the definition of the class.

//***
// Author: D.S. Malik
//
// class binaryTreeType
// This class specifies the basic operations to implement a
// binary tree.
//***

//Definition of the node
template <class elemType>
struct binaryTreeNode
{

elemType info;
binaryTreeNode<elemType> *llink;
binaryTreeNode<elemType> *rlink;

};

//Definition of the class
template <class elemType>
class binaryTreeType

1
1

Binary Tree Traversal | 609

{
public:

const binaryTreeType<elemType>& operator=
(const binaryTreeType<elemType>&);

//Overload the assignment operator.
bool isEmpty() const;

//Returns true if the binary tree is empty;
//otherwise, returns false.

void inorderTraversal() const;
//Function to do an inorder traversal of the binary tree.

void preorderTraversal() const;
//Function to do a preorder traversal of the binary tree.

void postorderTraversal() const;
//Function to do a postorder traversal of the binary tree.

int treeHeight() const;
//Returns the height of the binary tree.

int treeNodeCount() const;
//Returns the number of nodes in the binary tree.

int treeLeavesCount() const;
//Returns the number of leaves in the binary tree.

void destroyTree();
//Deallocates the memory space occupied by the binary tree.
//Postcondition: root = NULL;

binaryTreeType(const binaryTreeType<elemType>& otherTree);
//copy constructor

binaryTreeType();
//default constructor

~binaryTreeType();
//destructor

protected:
binaryTreeNode<elemType> *root;

private:
void copyTree(binaryTreeNode<elemType>* &copiedTreeRoot,

binaryTreeNode<elemType>* otherTreeRoot);
//Makes a copy of the binary tree to which
//otherTreeRoot points. The pointer copiedTreeRoot
//points to the root of the copied binary tree.

void destroy(binaryTreeNode<elemType>* &p);
//Function to destroy the binary tree to which p points.
//Postcondition: p = NULL

void inorder(binaryTreeNode<elemType> *p) const;
//Function to do an inorder traversal of the binary
//tree to which p points.

610 | Chapter 11: Binary Trees and B-Trees

void preorder(binaryTreeNode<elemType> *p) const;
//Function to do a preorder traversal of the binary
//tree to which p points.

void postorder(binaryTreeNode<elemType> *p) const;
//Function to do a postorder traversal of the binary
//tree to which p points.

int height(binaryTreeNode<elemType> *p) const;
//Function to return the height of the binary tree
//to which p points.

int max(int x, int y) const;
//Returns the larger of x and y.

int nodeCount(binaryTreeNode<elemType> *p) const;
//Function to return the number of nodes in the binary
//tree to which p points

int leavesCount(binaryTreeNode<elemType> *p) const;
//Function to return the number of leaves in the binary
//tree to which p points

};

Notice that the definition of the class binaryTreeType contains the statement to
overload the assignment operator, copy constructor, and destructor. This is because the
class binaryTreeType contains pointer data members. Recall that for classes with
pointer data members, the three things that we must do are explicitly overload the
assignment operator, include the copy constructor, and include the destructor.

The definition of the class binaryTreeType contains several member functions that
are private members of the class. These functions are used to implement the public
member functions of the class and the user need not know their existence. For example,
to do an inorder traversal, the function inorderTraversal calls the function inorder

and passes the pointer root as a parameter to this function. Suppose that you have the
following statement:

binaryTreeType<int> myTree;

The following statement does an inorder traversal of myTree:

myTree.inorder();

Also, note that in the definition of the class binaryTreeType, the pointer root is
declared as a protected member so that we can later derive special binary trees.

Next, we give the definitions of the member functions of the class binaryTreeType.

The binary tree is empty if root is NULL. So the definition of the function isEmpty is as
follows:

template <class elemType>
bool binaryTreeType<elemType>::isEmpty() const
{

return (root == NULL);
}

1
1

Binary Tree Traversal | 611

The default constructor initializes the binary tree to an empty state; that is, it sets
the pointer root to NULL. Therefore, the definition of the default constructor is as
follows:

template <class elemType>
binaryTreeType<elemType>::binaryTreeType()
{

root = NULL;
}

The definitions of the other functions are as follows:

template <class elemType>
void binaryTreeType<elemType>::inorderTraversal() const
{

inorder(root);
}

template <class elemType>
void binaryTreeType<elemType>::preorderTraversal() const
{

preorder(root);
}

template <class elemType>
void binaryTreeType<elemType>::postorderTraversal() const
{

postorder(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeHeight() const
{

return height(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeNodeCount() const
{

return nodeCount(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeLeavesCount() const
{

return leavesCount(root);
}

template <class elemType>
void binaryTreeType<elemType>::

inorder(binaryTreeNode<elemType> *p) const

612 | Chapter 11: Binary Trees and B-Trees

1
1

{
if (p != NULL)
{

inorder(p->llink);
cout << p->info << " ";
inorder(p->rlink);

}
}

template <class elemType>
void binaryTreeType<elemType>::

preorder(binaryTreeNode<elemType> *p) const
{

if (p != NULL)
{

cout << p->info << " ";
preorder(p->llink);
preorder(p->rlink);

}
}

template <class elemType>
void binaryTreeType<elemType>::

postorder(binaryTreeNode<elemType> *p) const
{

if (p != NULL)
{

postorder(p->llink);
postorder(p->rlink);
cout << p->info << " ";

}
}

template <class elemType>
int binaryTreeType<elemType>::

height(binaryTreeNode<elemType> *p) const
{

if (p == NULL)
return 0;

else
return 1 + max(height(p->llink), height(p->rlink));

}

template <class elemType>
int binaryTreeType<elemType>::max(int x, int y) const
{

if (x >= y)
return x;

else
return y;

}

The definitions of the functions nodeCount and leavesCount are left as exercises for
you. See Programming Exercises 1 and 2 at the end of this chapter.

Binary Tree Traversal | 613

Next, we give the definitions of the functions copyTree, destroy, and destroyTree,
as well as the definitions of the copy constructor and the destructor, and overload the
assignment operator.

The definition of the function copyTree is the same as before; here this function is a
member of the class binaryTreeType:

template <class elemType>
void binaryTreeType<elemType>::copyTree

(binaryTreeNode<elemType>* &copiedTreeRoot,
binaryTreeNode<elemType>* otherTreeRoot)

{
if (otherTreeRoot == NULL)

copiedTreeRoot = NULL;
else
{

copiedTreeRoot = new binaryTreeNode<elemType>;
copiedTreeRoot->info = otherTreeRoot->info;
copyTree(copiedTreeRoot->llink, otherTreeRoot->llink);
copyTree(copiedTreeRoot->rlink, otherTreeRoot->rlink);

}
} //end copyTree

To destroy a binary tree, for each node, first we destroy its left subtree, then its right subtree,
and then the node itself. We must use the operator delete to deallocate the memory
occupied by each node. The definition of the function destroy is as follows:

template <class elemType>
void binaryTreeType<elemType>::destroy(binaryTreeNode<elemType>* &p)
{

if (p != NULL)
{

destroy(p->llink);
destroy(p->rlink);
delete p;
p = NULL;

}
}

To implement the function destroyTree, we use the function destroy and pass the
root node of the binary tree to the function destroy. The definition of the function
destroyTree is as follows:

template <class elemType>
void binaryTreeType<elemType>::destroyTree()
{

destroy(root);
}

Recall that when a class object is passed by value, the copy constructor copies the value of
the actual parameters into the formal parameters. Because the class binaryTreeType has
pointer data members, which creates dynamic memory, we must provide the definition

614 | Chapter 11: Binary Trees and B-Trees

of the copy constructor to avoid the shallow copying of data. The definition of the copy
constructor, given next, uses the function copyTree to make an identical copy of the
binary tree that is passed as a parameter.

//copy constructor
template <class elemType>
binaryTreeType<elemType>::binaryTreeType

(const binaryTreeType<elemType>& otherTree)
{

if (otherTree.root == NULL) //otherTree is empty
root = NULL;

else
copyTree(root, otherTree.root);

}

The definition of the destructor is quite straightforward. When an object of type
binaryTreeType goes out of scope, the destructor deallocates the memory occupied by
the nodes of the binary tree. The definition of the destructor uses the function destroy to
accomplish this task.

//destructor
template <class elemType>
binaryTreeType<elemType>::~binaryTreeType()
{

destroy(root);
}

Next, we discuss the function to overload the assignment operator. To assign the value of
one binary tree to another binary tree, we make an identical copy of the binary tree to be
assigned by using the function copyTree. The definition of the function to overload the
assignment operator is as follows:

//overloading the assignment operator
template <class elemType>
const binaryTreeType<elemType>& binaryTreeType<elemType>::operator=

(const binaryTreeType<elemType>& otherTree)
{

if (this != &otherTree) //avoid self-copy
{

if (root != NULL) //if the binary tree is not empty,
//destroy the binary tree

destroy(root);

if (otherTree.root == NULL) //otherTree is empty
root = NULL;

else
copyTree(root, otherTree.root);

}//end else

return *this;
}

1
1

Binary Tree Traversal | 615

Binary Search Trees
Now that you know the basic operations on a binary tree, this section discusses a special
type of binary tree, called a binary search tree.

Consider the binary tree in Figure 11-6.

Suppose that we want to determine whether 50 is in the binary tree. To do so, we can
use any of the previous traversal algorithms to visit each node and compare the search
item with the data stored in the node. However, this could require us to traverse a large
part of the binary tree, so the search would be slow. We need to visit each node in the
binary tree until either the item is found or we have traversed the entire binary tree
because no criteria exist to guide our search. This case is like an arbitrary linked list where
we must start our search at the first node, and continue looking at each node until either
the item is found or the entire list is searched.

On the other hand, consider the binary tree in Figure 11-7.

78

32 60

89 46 98

5328

root

FIGURE 11-6 Arbitrary binary tree

60

50 70

30 58 80

7746

root

FIGURE 11-7 Binary search tree

616 | Chapter 11: Binary Trees and B-Trees

In the binary tree in Figure 11-7, the data in each node is

• Larger than the data in its left subtree

• Smaller than the data in its right subtree

The binary tree in Figure 11-7 has some structure. Suppose that we want to determine
whether 58 is in this binary tree. As before, we must start our search at the root node. We
compare 58with the data in the root node; that is, we compare 58with 60. Because 58 6¼ 60
and 58 < 60, it is guaranteed that 58 will not be in the right subtree of the root node.
Therefore, if 58 is in the binary tree, it must be in the left subtree of the root node. We
follow the left pointer of the root node and go to the node with info 50. We now apply the
same criteria at this node. Because 58 > 50, we must follow the right pointer of this node and
go to the node with info 58. At this node we find item 58.

This example shows that every time we move down to a child, we eliminate one of the
subtrees of the node from our search. If the binary tree is nicely constructed, the search is
very similar to the binary search on arrays.

The binary tree given in Figure 11-7 is a special type of binary tree, called a binary search
tree. (In the following definition, by the term key of the node we mean the key of the data
item that uniquely identifies the item.)

Definition: A binary search tree, T, is either empty or the following is true:

i. T has a special node called the root node.

ii. T has two sets of nodes, LT and RT, called the left subtree and right
subtree of T, respectively.

iii. The key in the root node is larger than every key in the left subtree
and smaller than every key in the right subtree.

iv. LT and RT are binary search trees.

The following operations are typically performed on a binary search tree:

• Search the binary search tree for a particular item.

• Insert an item in the binary search tree.

• Delete an item from the binary search tree.

• Find the height of the binary search tree.

• Find the number of nodes in the binary search tree.

• Find the number of leaves in the binary search tree.

• Traverse the binary search tree.

• Copy the binary search tree.

Clearly, every binary search tree is a binary tree. The height of a binary search tree is
determined the same way as the height of a binary tree. Similarly, the operations to find the
number of nodes, to find the number of leaves, and to do inorder, preorder, and postorder
traversals of a binary search tree are the same as those for a binary tree. Therefore, we can

1
1

Binary Search Trees | 617

inherit all of these operations from the binary tree. That is, we can extend the definition of
the binary tree by using the principle of inheritance and, hence, define the binary search tree.

The following class defines a binary search tree as an ADT by extending the definition of
the binary tree:

//***
// Author: D.S. Malik
//
// This class specifies the basic operations to implement a
// binary search tree.
//***

template <class elemType>
class bSearchTreeType: public binaryTreeType<elemType>
{
public:

bool search(const elemType& searchItem) const;
//Function to determine if searchItem is in the binary
//search tree.
//Postcondition: Returns true if searchItem is found in the
// binary search tree; otherwise, returns false.

void insert(const elemType& insertItem);
//Function to insert insertItem in the binary search tree.
//Postcondition: If no node in the binary search tree has the
// same info as insertItem, a node with the info insertItem
// is created and inserted in the binary search tree.

void deleteNode(const elemType& deleteItem);
//Function to delete deleteItem from the binary search tree.
//Postcondition: If a node with the same info as deleteItem
// is found, it is deleted from the binary search tree.

private:
void deleteFromTree(binaryTreeNode<elemType>* &p);

//Function to delete the node to which p points is deleted
//from the binary search tree.
//Postcondition: The node to which p points is deleted from
// the binary search tree.

};

Next, we describe each of these operations.

Search
The function search searches the binary search tree for a given item. If the item is found
in the binary search tree, it returns true; otherwise, it returns false. Because the pointer
root points to the root node of the binary search tree, we must begin our search at the
root node. Furthermore, because root must always point to the root node, we need a
pointer, say current, to traverse the binary search tree. The pointer current is
initialized to root.

618 | Chapter 11: Binary Trees and B-Trees

1
1

If the binary search tree is nonempty, we first compare the search itemwith the info in the root
node. If they are the same, we stop the search and return true. Otherwise, if the search item is
smaller than the info in the node, we follow llink to go to the left subtree; otherwise, we
follow rlink to go to the right subtree. We repeat this process for the next node. If the search
item is in the binary search tree, our search ends at the node containing the search item;
otherwise, the search ends at an empty subtree. Thus, the general algorithm is as follows:

if root is NULL
Cannot search an empty tree, returns false.

else

{

current = root;

while (current is not NULL and not found)
if (current->info is the same as the search item)

set found to true;
else if(current->info is greater than the search item)

follow the llink of current
else

follow the rlink of current
}

This pseudocode algorithm translates into the following C++ function:

template <class elemType>
bool bSearchTreeType<elemType>::

search(const elemType& searchItem) const
{

binaryTreeNode<elemType> *current;
bool found = false;

if (root == NULL)
cerr << "Cannot search the empty tree." << endl;

else
{

current = root;

while (current != NULL && !found)
{

if (current->info == searchItem)
found = true;

else if (current->info > searchItem)
current = current->llink;

else
current = current->rlink;

}//end while
}//end else

return found;
}//end search

Binary Search Trees | 619

Insert
After inserting an item in a binary search tree, the resulting binary tree must also be a binary
search tree. To insert a new item, first we search the binary search tree and find the
place where the new item is to be inserted. The search algorithm is similar to the
search algorithm of the function search. Here we traverse the binary search tree with
two pointers—a pointer, say current, to check the current node and a pointer, say
trailCurrent, pointing to the parent of current. Because duplicate items are not allowed,
our search must end at an empty subtree. We can then use the pointer trailCurrent to
insert the new item at the proper place. The item to be inserted, insertItem, is passed as a
parameter to the function insert. The general algorithm is as follows:

a. Create a new node and copy insertItem into the new node. Also set llink and
rlink of the new node to NULL.

b. if the root is NULL, the tree is empty so make root point to the new node.
else

{
current = root;

while (current is not NULL) //search the binary tree

{
trailCurrent = current;

if (current->info is the same as the insertItem)
Error: Cannot insert duplicate
exit

else if(current->info > insertItem)
Follow llink of current

else

Follow rlink of current
}

//insert the new node in the binary tree

if (trailCurrent->info > insertItem)
make the new node the left child of trailCurrent

else

make the new node the right child of trailCurrent
}

This pseudocode algorithm translates into the following C++ function:

template <class elemType>
void bSearchTreeType<elemType>::insert(const elemType& insertItem)
{

binaryTreeNode<elemType> *current; //pointer to traverse the tree
binaryTreeNode<elemType> *trailCurrent; //pointer behind current
binaryTreeNode<elemType> *newNode; //pointer to create the node

620 | Chapter 11: Binary Trees and B-Trees

newNode = new binaryTreeNode<elemType>;
assert(newNode != NULL);
newNode->info = insertItem;
newNode->llink = NULL;
newNode->rlink = NULL;

if (root == NULL)
root = newNode;

else
{

current = root;

while (current != NULL)
{

trailCurrent = current;

if (current->info == insertItem)
{

cerr << "The insert item is already in the list-";
cerr << "duplicates are not allowed."

<< insertItem << endl;
return;

}
else if (current->info > insertItem)

current = current->llink;
else

current = current->rlink;
}//end while

if (trailCurrent->info > insertItem)
trailCurrent->llink = newNode;

else
trailCurrent->rlink = newNode;

}
}//end insert

Delete
As before, first we search the binary search tree to find the node to be deleted. To
help you better understand the delete operation, before describing the function to
delete an item from the binary search tree, let us consider the binary search tree
given in Figure 11-8.

1
1

Binary Search Trees | 621

After deleting the desired item (if it exists in the binary search tree), the resulting tree
must be a binary search tree. The delete operation has four cases, as follows:

Case 1: The node to be deleted has no left and right subtrees; that is, the node to be
deleted is a leaf. For example, the node with info 45 is a leaf.

Case 2: The node to be deleted has no left subtree; that is, the left subtree is empty, but it
has a nonempty right subtree. For example, the left subtree of node with info 40 is
empty and its right subtree is nonempty.

Case 3: The node to be deleted has no right subtree; that is, the right subtree is empty,
but it has a nonempty left subtree. For example, the left subtree of node with info 80 is
empty and its right subtree is nonempty.

Case 4: The node to be deleted has nonempty left and right subtrees. For example, the
left and the right subtrees of node with info 50 are nonempty.

60

50 70

30 53 80

7535

root

4032 77

57

48

45

FIGURE 11-8 Binary search tree before deleting a node

622 | Chapter 11: Binary Trees and B-Trees

1
1

Figure 11-9 illustrates these four cases.

Case 1: Suppose that we want to delete 45 from the binary search tree in Figure 11-8. We
search the binary tree and arrive at the node containing 45. Because this node is a leaf and is
the left child of its parent, we can simply set the llink of the parent node to NULL and
deallocate the memory occupied by this node. After deleting this node, Figure 11-9(a)
shows the resulting binary search tree.

60

50 70

30 53
80

7535

root

4032 77

57

48

60

50 70

53 80

75

root

77

57

35

4032

48

45

(a) Delete 45 (b) Delete 30

60

50 70

30 53 75

35

root

4032

7757

48

45

60

48 70

30 53 80

7535

root

4032 77

57

45

(c) Delete 80 (d) Delete 50

FIGURE 11-9 The binary tree of Figure 11-8 after deleting various items

Binary Search Trees | 623

Case 2: Suppose that we want to delete 30 from the binary search tree in Figure 11-8. In
this case, the node to be deleted has no left subtree. Because 30 is the left child of its parent
node, we make the llink of the parent node point to the right child of 30 and then
deallocate the memory occupied by 30. Figure 11-9(b) shows the resulting binary tree.

Case 3: Suppose that we want to delete 80 from the binary search tree of Figure 11-8. The
node containing 80 has no right child and is the right child of its parent. Thus, we make the
rlink of the parent of 80—that is, 70—point to the left child of 80. Figure 11-9(c) shows
the resulting binary tree.

Case 4: Suppose that we want to delete 50 from the binary search tree in Figure 11-8.
The node with info 50 has a nonempty left subtree and a nonempty right subtree. Here,
we first reduce this case to either Case 2 or Case 3 as follows. To be specific, suppose that
we reduce it to Case 3—that is, the node to be deleted has no right subtree. For this case,
we find the immediate predecessor of 50 in this binary tree, which is 48. This is done by
first going to the left child of 50 and then locating the rightmost node of the left subtree
of 50. To do so, we follow the rlink of the nodes. Because the binary search tree is
finite, we eventually arrive at a node that has no right subtree. Next, we swap the info in
the node to be deleted with the info of its immediate predecessor. In this case, we swap
48 with 50. This reduces to the case wherein the node to be deleted has no right subtree.
We now apply Case 3 to delete the node. (Note that because we will delete the
immediate predecessor from the binary tree, we, in fact, copy only the info of the
immediate predecessor into the node to be deleted.) After deleting 50 from the binary
search tree in Figure 11-8, the resulting binary tree is as shown in Figure 11-9(d).

In each case, we see that the resulting binary tree is again a binary search tree.

From this discussion, it follows that to delete an item from a binary search tree, we must
do the following:

1. Find the node containing the item (if any) to be deleted.

2. Delete the node.

We accomplish the second step by a separate function, which we will call deleteFromTree.
Given a pointer to the node to be deleted, this function deletes the node by taking into
account the previous four cases.

The preceding examples show that whenever we delete a node from a binary tree, we adjust
one of the pointers of the parent node. Because the adjustment has to be made in the parent
node, we must call the function deleteFromTree by using an appropriate pointer of the
parent node. For example, suppose that the node to be deleted is 35, which is the right child
of its parent node. Further suppose that trailCurrent points to the node containing 30,
the parent node of 35. A call to the function deleteFromTree is as follows:

deleteFromTree(trailCurrent->rlink);

Of course, if the node to be deleted is the root node, then the call to the function
deleteFromTree is as follows:

deleteFromTree(root);

624 | Chapter 11: Binary Trees and B-Trees

We now define the C++ function deleteFromTree:

template <class elemType>
void bSearchTreeType<elemType>::deleteFromTree

(binaryTreeNode<elemType>* &p)
{

binaryTreeNode<elemType> *current;//pointer to traverse the tree
binaryTreeNode<elemType> *trailCurrent; //pointer behind current
binaryTreeNode<elemType> *temp; //pointer to delete the node

if (p == NULL)
cerr << "Error: The node to be deleted is NULL." << endl;

else if(p->llink == NULL && p->rlink == NULL)
{

temp = p;
p = NULL;
delete temp;

}
else if(p->llink == NULL)
{

temp = p;
p = temp->rlink;
delete temp;

}
else if(p->rlink == NULL)
{

temp = p;
p = temp->llink;
delete temp;

}
else
{

current = p->llink;
trailCurrent = NULL;

while (current->rlink != NULL)
{

trailCurrent = current;
current = current->rlink;

}//end while

p->info = current->info;

if (trailCurrent == NULL) //current did not move;
//current == p->llink; adjust p

p->llink = current->llink;
else

trailCurrent->rlink = current->llink;

delete current;
}//end else

}//end deleteFromTree

1
1

Binary Search Trees | 625

Next, we describe the function deleteNode. The function deleteNode first searches
the binary search tree to find the node containing the item to be deleted. The item to
be deleted, deleteItem, is passed as a parameter to the function. If the node containing
deleteItem is found in the binary search tree, the function deleteNode calls the
function deleteFromTree to delete the node. The definition of the function deleteNode

is given next.

template <class elemType>
void bSearchTreeType<elemType>::deleteNode(const elemType& deleteItem)
{

binaryTreeNode<elemType> *current; //pointer to traverse the tree
binaryTreeNode<elemType> *trailCurrent; //pointer behind current
bool found = false;

if (root == NULL)
cout << "Cannot delete from the empty tree." << endl;

else
{

current = root;
trailCurrent = root;

while (current != NULL && !found)
{

if (current->info == deleteItem)
found = true;

else
{

trailCurrent = current;

if (current->info > deleteItem)
current = current->llink;

else
current = current->rlink;

}
}//end while

if (current == NULL)
cout << "The delete item is not in the tree." << endl;

else if (found)
{

if (current == root)
deleteFromTree(root);

else if (trailCurrent->info > deleteItem)
deleteFromTree(trailCurrent->llink);

else
deleteFromTree(trailCurrent->rlink);

}//end if
}

}//end deleteNode

626 | Chapter 11: Binary Trees and B-Trees

1
1

Binary Search Tree: Analysis
This section provides an analysis of the performance of binary search trees. Let T be a binary
search tree with n nodes, where n> 0. Suppose that we want to determine whether an item,
x, is in T. The performance of the search algorithm depends on the shape of T. Let us first
consider the worst case. In the worst case, T is linear. That is, T is one of the forms shown in
Figure 11-10.

BecauseT is linear, the performance of the search algorithm onT is the same as its performance
on a linear list. Therefore, in the successful case, on average, the search algorithm makes
(n + 1) / 2 key comparisons. In the unsuccessful case, it makes n comparisons.

Let us now consider the average-case behavior. In the successful case, the search would
end at a node. Because there are n items, there are n! possible orderings of the keys. We
assume that all n! orderings of the keys are possible. Let S(n) denote the number of
comparisons in the average successful case, and U(n) denote the number of comparisons
in the average unsuccessful case.

The number of comparisons required to determine whether x is in T is one more than the
number of comparisons required to insert x in T. Furthermore, the number of comparisons
required to insert x in T is the same as the number of comparisons made in the unsuccessful
search, reflecting that x is not in T. From this, it follows that

SðnÞ ¼ 1þ Uð0Þ þ Uð1Þ þ . . .þ Uðn� 1Þ
n

ðEquation 11-1Þ

It is also known that

SðnÞ ¼ 1þ 1

n

� �
UðnÞ � 3 ðEquation 11-2Þ

a1

a2

an

.
 .

 .

a1

a2

an

 .
 .

.

(a)
(b)

FIGURE 11-10 Linear binary trees

Binary Search Tree: Analysis | 627

Solving Equations (11-1) and (11-2), it can be shown that U(n) � 2.77log2n and S(n) �
1.39log2n.

We can now formulate the following result.

Theorem: Let T be a binary search tree with n nodes, where n> 0. The average number
of nodes visited in a search of T is approximately 1.39log2n ¼ O(log2n) and the number
of key comparisons is approximately 2.77 log2n ¼ O(log2n).

Nonrecursive Binary Tree Traversal Algorithms
The previous sections described how to do the following:

• Traverse a binary tree using the inorder, preorder, and postorder methods.

• Construct a binary tree.

• Insert an item in a binary tree.

• Delete an item from a binary tree.

The traversal algorithms—inorder, preorder, and postorder—discussed earlier are recursive.
Because traversing a binary tree is a fundamental operation and recursive functions are
somewhat less efficient then their iterative versions, this section discusses the nonrecursive
inorder, preorder, and postorder traversal algorithms.

Nonrecursive Inorder Traversal
In the inorder traversal of a binary tree, for each node, the left subtree is visited first, then the
node, and then the right subtree. It follows that in an inorder traversal, the first node visited is
the leftmost node of the binary tree. For example, in the binary tree in Figure 11-11, the
leftmost node is the node with info 28.

60

70 90

20 55 88

28

FIGURE 11-11 Binary tree; leftmost node is 28

628 | Chapter 11: Binary Trees and B-Trees

To get to the leftmost node of the binary tree, we start by traversing the binary tree at the
root node and then follow the left link of each node until the left link of a node becomes
null. We then back up to the parent node, visit the node, and then move to the right
node. Because links go in only one direction, to get back to a node, we must save a
pointer to the node before moving to the child node. Moreover, the nodes must be
backtracked in the order they were traversed. It follows that while backtracking, the
nodes must be visited in a last-in, first-out manner. This can be done by using a stack.
We, therefore, save a pointer to a node in a stack. The general algorithm is as follows:

1. current = root; //start traversing the binary tree at the root node

2. while (current is not NULL or stack is nonempty)
if (current is not NULL)
{

push current into the stack;
current = current->llink;

}

else

{
pop stack into current;
visit current; //visit the node

current = current->rlink; //move to the right child
}

The following function implements the nonrecursive inorder traversal of a binary tree:

template <class elemType>
void binaryTreeType<elemType>::nonRecursiveInTraversal() const
{

stackType<binaryTreeNode<elemType>* > stack;
binaryTreeNode<elemType> *current;
current = root;

while ((current != NULL) || (!stack.isEmptyStack()))
if (current != NULL)
{

stack.push(current);
current = current->llink;

}
else
{

current = stack.top();
stack.pop();
cout << current->info << " ";
current = current->rlink;

}

cout << endl;
}

1
1

Nonrecursive Binary Tree Traversal Algorithms | 629

Nonrecursive Preorder Traversal
In a preorder traversal of a binary tree, for each node, first the node is visited, then the left
subtree is visited, and then the right subtree is visited. As in the case of an inorder
traversal, after visiting a node and before moving to the left subtree, we must save a
pointer to the node so that after visiting the left subtree, we can visit the right subtree.
The general algorithm is as follows:

1. current = root; //start the traversal at the root node

2. while (current is not NULL or stack is nonempty)
if (current is not NULL)
{

visit current node;
push current into stack;
current = current->llink;

}
else
{

pop stack into current;
current = current->rlink; //prepare to visit the

//right subtree

}

The following function implements the nonrecursive preorder traversal algorithm:

template <class elemType>
void binaryTreeType<elemType>::nonRecursivePreTraversal() const
{

stackType<binaryTreeNode<elemType>*> stack;
binaryTreeNode<elemType> *current;

current = root;

while ((current != NULL) || (!stack.isEmptyStack()))
if (current != NULL)
{

cout << current->info << " ";
stack.push(current);
current = current->llink;

}
else
{

current = stack.top();
stack.pop();
current = current->rlink;

}

cout << endl;
}

630 | Chapter 11: Binary Trees and B-Trees

1
1

Nonrecursive Postorder Traversal
In a postorder traversal of a binary tree, for each node, first the left subtree is visited, then the
right subtree is visited, and then the node is visited. As in the case of an inorder traversal, in a
postorder traversal, the first node visited is the leftmost node of the binary tree. Because—for
each node—the left and right subtrees are visited before visiting the node, we must indicate
to the node whether the left and right subtrees have been visited. After visiting the left
subtree of a node and before visiting the node, wemust visit its right subtree. Therefore, after
returning from a left subtree, we must tell the node that the right subtree needs to be visited,
and after visiting the right subtree we must tell the node that it can now be visited. To do
this, other than saving a pointer to the node (to get back to the right subtree and to the node
itself), we also save an integer value of 1 before moving to the left subtree and an integer
value of 2 before moving to the right subtree. Whenever the stack is popped, the integer
value associated with that pointer is popped as well. This integer value tells whether the left
and right subtrees of a node have been visited.

The general algorithm is as follows:

1. current = root; //start the traversal at the root node

2. v = 0;

3. if (current is NULL)
the binary tree is empty

4. if (current is not NULL)

a. push current into stack;

b. push 1 into stack;

c. current = current->llink;

d. while (stack is not empty)
if (current is not NULL and v is 0)
{

push current and 1 into stack;
current = current->llink;

}

else
{

pop stack into current and v;
if (v == 1)
{

push current and 2 into stack;
current = current->rlink;
v = 0;

}

else
visit current;

}

We use two (parallel) stacks: one to save a pointer to a node and another to save the
integer value (1 or 2) associated with this pointer. We leave it as an exercise for you write

Nonrecursive Binary Tree Traversal Algorithms | 631

the definition of a C++ function to implement the preceding postorder traversal algo-
rithm; see Programming Exercise 6 at the end of this chapter.

Binary Tree Traversal and Functions
as Parameters
Suppose that you have stored employee data in a binary search tree, and at the end of the
year pay increases or bonuses are to be awarded to each employee. This task requires that
each node in the binary search tree be visited and that the salary of each employee be
updated. The preceding sections discussed various ways to traverse a binary tree. However,
in these traversal algorithms—inorder, preorder, and postorder—whenever we visited a
node, for simplicity and for illustration purposes, we only output the data contained in each
node. How do we use a traversal algorithm to visit each node and update the data in each
node? One way to do so is to first create another binary search tree in which the data in
each node is the updated data of the original binary search tree, and then destroy the old
binary search tree. This would require extra computer time and perhaps extra memory,
and, therefore, is not efficient. Another solution is to write separate traversal algorithms to
update the data. This solution requires you to frequently modify the definition of the class
implementing the binary search tree. However, if the user can write an appropriate
function to update the data of each employee and then pass this function as a parameter
to the traversal algorithms, we can considerably enhance the program’s flexibility. This
section describes how to pass functions as parameters to other functions.

In C++, a function name without any parentheses is considered a pointer to the function.
To specify a function as a formal parameter to another function, we specify the function
type, followed by the function name as a pointer, followed by the parameter types of the
function. For example, consider the following statements:

void fParamFunc1(void (*visit) (int)); //Line 1
void fParamFunc2(void (*visit) (elemType&)); //Line 2

The statement in Line 1 declares fParamFunc1 to be a function that takes as a parameter
any void function that has one value parameter of type int. The statement in Line 2
declares fParamFunc2 to be a function that takes as a parameter any void function that
has one reference parameter of type elemType.

We can now rewrite the inorder traversal function of the class binaryTreeType.
Alternatively, we can overload the existing inorder traversal functions. To further illustrate
function overloading, we will overload the inorder traversal functions. Therefore, we
include the following statements in the definition of the class binaryTreeType:

void inorderTraversal(void (*visit) (elemType&));
//Function to do an inorder traversal of the binary tree.
//The parameter visit, which is a function, specifies the
//action to be taken at each node.

632 | Chapter 11: Binary Trees and B-Trees

1
1

void inorder(binaryTreeNode<elemType> *p, void (*visit) (elemType&));
//Function to do an inorder traversal of the binary
//tree, starting at the node specified by the parameter p.
//The parameter visit, which is a function, specifies the
//action to be taken at each node.

The definitions of these functions are as follows:

template <class elemType>
void binaryTreeType<elemType>::inorderTraversal

(void (*visit) (elemType& item))
{

inorder(root, *visit);
}

template <class elemType>
void binaryTreeType<elemType>::inorder(binaryTreeNode<elemType>* p,

void (*visit) (elemType& item))
{

if (p != NULL)
{

inorder(p->llink, *visit);
(*visit)(p->info);
inorder(p->rlink, *visit);

}
}

The statement

(*visit)(p->info);

in the definition of the function inorder makes a call to the function with one reference
parameter of the type elemType pointed to by the pointer visit.

Example 11-3 further illustrates how functions are passed as parameters to other functions.

EXAMPLE 11-3

This example shows how to pass a user-defined function as a parameter to the binary tree
traversal algorithms. For illustration purposes, we show how to use only the inorder
traversal function.

The following program uses the class bSearchTreeType, which is derived from the
class binaryTreeType, to build the binary tree. The traversal functions are included in
the class binaryTreeType, which are then inherited by the class bSearchTreeType.

//**
// Author: D.S. Malik
//
// This program illustrates how to pass a user-defined function
// as a parameter to the binary tree traversal algorithms.
//**

Binary Tree Traversal and Functions as Parameters | 633

#include <iostream> //Line 1
#include "binarySearchTree.h" //Line 2

using namespace std; //Line 3

void print(int& x); //Line 4
void update(int& x); //Line 5

int main() //Line 6
{ //Line 7

bSearchTreeType<int> treeRoot; //Line 8

int num; //Line 9

cout << "Line 10: Enter numbers ending with -999"
<< endl; //Line 10

cin >> num; //Line 11

while (num != -999) //Line 12
{ //Line 13

treeRoot.insert(num); //Line 14
cin >> num; //Line 15

} //Line 16

cout << endl << "Line 17: Tree nodes in inorder: "; //Line 17
treeRoot.inorderTraversal(print); //Line 18
cout << endl << "Line 19: Tree Height: "

<< treeRoot.treeHeight()
<< endl << endl; //Line 19

cout << "Line 20: ******* Update Nodes *******"
<< endl; //Line 20

treeRoot.inorderTraversal(update); //Line 21

cout << "Line 22: Tree nodes in inorder after "
<< "the update: " << endl << " "; //Line 22

treeRoot.inorderTraversal(print); //Line 23
cout << endl <<"Line 24: Tree Height: "

<< treeRoot.treeHeight() << endl; //Line 24

return 0; //Line 25
} //Line 26

void print(int& x) //Line 27
{ //Line 28

cout << x << " "; //Line 29
} //Line 30

void update(int& x) //Line 31
{ //Line 32

x = 2 * x; //Line 33
} //Line 34

634 | Chapter 11: Binary Trees and B-Trees

1
1

Sample Run: In this sample run, the user input is shaded.

Line 10: Enter numbers ending with -999
56 87 23 65 34 45 12 90 66 -999

Line 17: Tree nodes in inorder: 12 23 34 45 56 65 66 87 90
Line 19: Tree Height: 4

Line 20: ******* Update Notes *******
Line 22: Tree nodes in inorder after the update:

24 46 68 90 112 130 132 174 180
Line 24: Tree Height: 4

This program works as follows. The statement in Line 8 declares treeRoot to be a binary
search tree object, in which the data in each node is of type int. The statements in Lines
11 through 16 build the binary search tree. The statement in Line 18 uses the member
function inorderTraversal of treeRoot to traverse the binary search tree treeRoot.
The parameter to the function inorderTraversal, in Line 18, is the function print
(defined at Line 27). Because the function print outputs the value of its argument, the
statement in Line 18 outputs the data of the nodes of the binary search tree treeNode.
The statement in Line 19 outputs the height of the binary search tree.

The statement in Line 21 uses the member function inorderTraversal to traverse the binary
search tree treeRoot. In Line 21, the actual parameter of the function inorderTraversal

is the function update (defined at Line 31). The function update doubles the value of its
argument. Therefore, the statement in Line 21 updates the data of each node of the binary
search tree by doubling the value. The statements in Lines 23 and 24 output the nodes and the
height of the binary search tree.

AVL (Height-Balanced) Trees
In the previous sections, you learned how to build and manipulate a binary search tree. The
performance of the search algorithm on a binary search tree depends on how the binary tree is
built. The shape of the binary search tree depends on the data set. If the data set is sorted, the
binary search tree is linear and so the search algorithm would not be efficient. On the other
hand, if the tree is nicely built, the search would be fast. In fact, the smaller the height of the
tree, the faster the search. Therefore, we want the height of the binary search tree to be as small
as possible. This section describes a special type of binary search tree, called theAVL tree (also
called the height-balanced tree) in which the resulting binary search is nearly balanced. AVL
trees are due to the mathematicians G. M. Adeĺson-Veĺskii and E. M. Landis and are so named
in their honor. The methods of building such binary trees were given by them in 1962.

We begin by defining the following terms.

Definition: A perfectly balanced binary tree is a binary tree such that

i. The heights of the left and right subtrees of the root are equal.

ii. The left and right subtrees of the root are perfectly balanced binary trees.

AVL (Height-Balanced) Trees | 635

Figure 11-12 shows a perfectly balanced binary tree.

Let T be a binary tree and x be a node in T. If T is perfectly balanced, then from the
definition of the perfectly balanced tree, it follows that the height of the left subtree of x is
the same as the height of the right subtree of x.

It can be proved that, if T is a perfectly balanced binary tree of height h, then the number of
nodes in T is 2h �1. From this, it follows that if the number of items in the data set is not
equal to 2h�1 for some nonnegative integer h, then we cannot construct a perfectly balanced
binary tree. Moreover, perfectly balanced binary trees are a too stringent refinement.

Definition: An AVL tree (or height-balanced tree) is a binary search tree such that

i. The heights of the left and right subtrees of the root differ by at most 1.

ii. The left and right subtrees of the root are AVL trees.

Figure 11-13 gives examples of AVL and non-AVL trees.

Let x be a node in a binary tree. Let xl denote the height of the left subtree of x, and xh
denote the height of the right subtree of x.

FIGURE 11-12 Perfectly balanced binary tree

(a) AVL trees

(b) Non-AVL trees

FIGURE 11-13 AVL and non-AVL trees

636 | Chapter 11: Binary Trees and B-Trees

Proposition: Let T be an AVL tree and x be a node in T. Then |xh� xl| � 1, where
|xh� xl| denotes the absolute value of xh� xl.

Let x be a node in the AVL tree T.

1. If xl > xh, we say that x is left high. In this case, xl = xh + 1.

2. If xl = xh, we say that x is equal high.

3. If xh > xl, we say that x is right high. In this case, xh = xl + 1.

Definition: The balance factor of x, written bf(x), is defined by bf(x) ¼ xh� xl.

Let x be a node in the AVL tree T. Then,

1. If x is left high, bf(x) ¼ �1.
2. If x is equal high, bf(x) ¼ 0.

3. If x is right high, bf(x) ¼ 1.

Definition: Let x be a node in a binary tree. We say that the node x violates the

balance criteria if |xh� xl| > 1, that is, the heights of the left and right subtrees of x
differ by more than 1.

From the preceding discussion, it follows that in addition to the data and pointers to the
left and right subtrees, one more thing is associated with each node x in the AVL tree T,
which is the balance factor of x. Thus, every node must keep track of its balance factor.
To make the algorithms efficient, we store the balance factor of each node in the node
itself. Hence, the definition of a node in the AVL tree is as follows:

template<class elemType>
struct AVLNode
{

elemType info;
int bfactor; //balance factor
AVLNode<elemType> *llink;
AVLNode<elemType> *rlink;

};

Because an AVL tree is a binary search tree, the search algorithm for an AVL tree is the
same as the search algorithm for a binary search tree. Other operations, such as finding the
height, determining the number of nodes, checking whether the tree is empty, tree
traversal, and so on, on AVL trees can be implemented exactly the same way they are
implemented on binary trees. However, item insertion and deletion operations on AVL
trees are somewhat different from the ones discussed for binary search trees. This is
because after inserting (or deleting) a node from an AVL tree, the resulting binary tree
must be an AVL tree. Next, we describe these operations.

Insertion
To insert an item in an AVL tree, first we search the tree and find the place where the
new item is to be inserted. Because an AVL tree is a binary search tree, to find the place

1
1

AVL (Height-Balanced) Trees | 637

for the new item we can search the AVL tree using a search algorithm similar to the
search algorithm designed for binary search trees. If the item to be inserted is already in
the tree, the search ends at a nonempty subtree. Because duplicates are not allowed, in
this case we can output an appropriate error message. Suppose that the item to be
inserted is not in the AVL tree. Then, the search ends at an empty subtree and we insert
the item in that subtree. After inserting the new item in the tree, the resulting tree
might not be an AVL tree. Thus, we must restore the tree’s balance criteria. This is
accomplished by traveling the same path, back to the root node, which was followed
when the new item was inserted in the AVL tree. The nodes on this path (back to the
root node) are visited and either their balance factor is changed, or we might have to
reconstruct part of the tree. We illustrate these cases with the help of the following
examples.

In Figures 11-14 to 11-17, for each node, we show only the data stored in the node.

Furthermore, an equal sign, =, on the top of a node indicates that the balance

factor of this node is 0, the less-than sign, <, indicates that the balance factor of this

node is –1, and the greater-than sign, >, indicates that the balance factor of this

node is 1.

Consider the AVL tree of Figure 11-14 (a). Let us insert 90 into this AVL tree.

We search the tree starting at the root node to find the place for 90. The dotted arrow
shows the path. We insert a node with info 90 and obtain the tree of Figure 11-14(b).
The binary tree of Figure 11-14(b) is not an AVL tree. So we backtrack and go to node
80. Prior to insertion, bf(80) was 0. Because the new node was inserted into the
(empty) right subtree of 80, we change its balance factor to 1 (not shown in the figure).
Now we go back to node 70. Prior to insertion, bf(70) was 1. Because after insertion
the height of the right subtree of 70 is increased, we see that the subtree with root node

50

40 70

80

>
50

40 70

80

>

>=

=

50

40 80

70 90

>

= =

==

(a) (b) (c)

Insert 90 50

40 70

80

90

>

= >

=

Balance
criteria
violated
here

=

FIGURE 11-14 AVL tree before and after inserting 90

638 | Chapter 11: Binary Trees and B-Trees

70 is not an AVL tree. In this case, we reconstruct this subtree (this is called rotating the
tree at root node 70). Therefore, we obtain the tree shown in Figure 11-14(c). The
binary tree of Figure 11-14 is an AVL tree.

Now consider the AVL tree of Figure 11-15(a). Let us insert 75 into the AVL tree of
Figure 11-15(a).

As before, we search the tree starting at the root node. The dotted arrows show the
path traversed. After inserting 75, the resulting tree is shown in Figure 11-15(b).
After inserting 75, we backtrack. First we go to node 80 and change its balance
factor to -1. The subtree with root node 80 is an AVL tree. Now we go back to 70.
Clearly, the subtree with root node 70 is not an AVL tree. So we construct this
subtree. In this case, we first reconstruct the subtree at root node 80, and then
reconstruct the subtree at root node 70 to obtain the tree shown in Figure 11-15(c).
(These constructions, that is, rotations, are explained in the next section, ‘‘AVL Tree
Rotations.’’)

Notice that in Figures 11-14(c) and 11-15(c), after reconstructing the subtree at the node,
the subtree no longer grew in height. At this point, we usually send the message that
overall the tree did not gain any height to the remaining nodes on the path back to the
root node of the tree, and so the remaining nodes on the path do not need to do
anything.

1
1

50

40 70

80

>

>

=

=

Insert 75 50

40 70

80

75

>

>=

=

=

Balance
criteria
violated
here

50

40 75

70 80
==

==

>

(a)

(b)

(c)

FIGURE 11-15 AVL tree before and after inserting 75

AVL (Height-Balanced) Trees | 639

Next, consider the AVL tree of Figure 11-16. Let us insert 95 into this AVL tree.

We search the tree and insert 95, as shown in Figure 11-16(b). After inserting 95, we see that
the subtrees with root nodes 90, 80, and 75 are still AVL trees. When backtracking the path,
we simply adjust the balance factor of these nodes (if needed). However, when we backtrack
to the root node, we discover that the tree at this node is no longer an AVL tree. Prior to
insertion, bf(50) was 1, that is, its right subtree was higher than its left subtree. After
insertion, the subtree grew in height, thus violating the balance criteria at 50. So we construct
the tree at node 50. In this case, the tree will be reconstructed as shown in Figure 11-16(c).

Before discussing the general algorithms for reconstructing (rotating) a subtree, let us consider
onemore case. Consider the AVL tree as shown in Figure 11-17(a). Let us insert 88 in this tree.

50

40 75

8030 35 60

55 78 90

=

=

=

=

==

>

<

=

(a)

(b)
(c)

Insert 95

Balance criteria
violated at this
node50

40 75

8030 35 60

55 78 90

95

=

=

=

=

===

<

>

=

75

50 80

9040 60

30 45

78

9555

=

=

=

=

=

=

<

>

>

=

=

=

=

FIGURE 11-16 AVL tree before and after inserting 95

50

35 80

9030 70

85 98

>

><

= = =

==

Insert 88 50

35 80

9030 70

85 98

88

>

< >

==

==

=

=

Balance
criteria
violated

here
50

35 85

9030 80

88 9870

>

<

<

=

=

===

=

(a)

(b) (c)

FIGURE 11-17 AVL tree before and after inserting 88

640 | Chapter 11: Binary Trees and B-Trees

1
1

Following the insertion procedure as described previously, we obtain the tree as shown in
Figure 11-17(b). As before, we now backtrack to the root node. We adjust the balance
factor of nodes 85 and 90. When we visit node 80, we discover that at this node we
need to reconstruct the subtree. In this case, the subtree is reconstructed as shown in
Figure 11-17(c). As before, after reconstructing the subtree, the entire tree is balanced. So
for the remaining nodes on the path back to the root node, we would not do anything.

The examples described previously indicate that if part of the tree requires reconstruction,
then after reconstructing that part of the tree, we can ignore the remaining nodes on the
path back to the root node. (This is, indeed, the case.) Also, after inserting the node, the
reconstruction can occur at any node on the path back to the root node.

AVL Tree Rotations
We now describe the reconstruction procedure, called rotating the tree. There are two
types of rotations: left rotation and right rotation. Suppose the rotation occurs at a node x.
If it is a left rotation, then certain nodes from the right subtree of xmove to its left subtree; the
root of the right subtree of x becomes the new root of the reconstructed subtree. Similarly, if
it is a right rotation at x, certain nodes from the left subtree of xmove to its right subtree; the
root of the left subtree of x becomes the new root of the reconstructed subtree.

Case 1: Consider Figure 11-18.

In Figure 11-18, subtrees T1, T2, and T3 are of equal height, say h. The dotted rectangle
shows an item insertion in T1, causing the height of the subtree T1 to increase by 1. The
subtree at node a is still an AVL tree, but the balance criteria is violated at the root node.
We note the following in this tree. Because the tree is a binary search tree,

• Every key in subtree T1 is smaller than the key in node a.

• Every key in subtree T2 is larger than the key in node a.

• Every key in subtree T2 is smaller than the key in node b.

b

root

a

p

T1 T2

T3

b

a

T1

T2 T3

Rotate right at
root (node b)

h

h

h

h

hh

FIGURE 11-18 Right rotation at b

AVL (Height-Balanced) Trees | 641

Therefore,

1. We make T2 (the right subtree of node a) the left subtree of node b.

2. We make node b the right child of node a.

3. Node a becomes the root of the reconstructed tree, as shown in Figure 11-18.

Case 2: This case is a mirror image of Case 1. See Figure 11-19.

Case 3: Consider Figure 11-20.

b

root

a p

T1

T2 T3

Rotate left at
root (node a)

b

a

T1 T2

T3

h

h h h h

h

FIGURE 11-19 Left rotation at a

b

a

T1
T2 T3 T4

c

Double rotation
at root (node c)c

root

a

p

T1
T2 T3

T4
b

w

h

h

h-1h-1

h-1
h h

2

FIGURE 11-20 Double rotation: First rotate left at a and then right at c

642 | Chapter 11: Binary Trees and B-Trees

In Figure 11-20, the tree on the left is the tree prior to the reconstruction. The
heights of the subtrees are shown in the figure. The dotted rectangle shows that a
new item is inserted in the subtree, causing the subtree to grow in height. The new
item is inserted either in T2 or T3. We note the following (in the tree prior to
reconstruction):

• All keys in T3 are smaller than the key in node c.

• All keys in T3 are larger than the key in node b.

• All keys in T2 are smaller than the key in node b.

• All keys in T2 are larger than the key in node a.

• After insertion, the subtrees with root nodes a and b are still AVL trees.

• The balance criteria is violated at the root node, c, of the tree.

• The balance factors of node c, bf(c) ¼ �1, and node a, bf(a) ¼ 1 are
opposite.

This is an example of double rotation. One rotation is required at node a, and another
rotation is required at node c. If the balance factor of the node, where the tree is to be
reconstructed, and the balance factor of the higher subtree are opposite, that node
requires a double rotation. First, we rotate the tree at node a and then at node c. Now
the tree at node a is right high and so we make a left rotation at a. Next, because the tree
at node c is left high, we make a right rotation at c. Figure 11-20 shows the resulting tree
(which is to the right of the tree after insertion). Figure 11-21, however, shows both
rotations in sequence.

1
1

Rotate
right

at root
b

a

T1 T4

c

T2 T3

c

root

a

p

T1

T4

b

w

T2

T3

c

root

a

p

T1

T4
b

w

T3T2

Rotate
left
at p

FIGURE 11-21 Left rotation at a followed by a right rotation at c

AVL (Height-Balanced) Trees | 643

Case 4: This is a mirror image of Case 3. We illustrate this with the help of Figure 11-22.

Using these four cases, we now describe what type of rotation might be required at a node.

Suppose that the tree is to be reconstructed, by rotation, at node x. Then, the subtree
with root node x requires either a single or a double rotation.

1. Suppose that the balance factor of the node x and the balance factor of
the root node of the higher subtree of x have the same sign, that is, both
positive or both negative.

a. If these balance factors are positive, make a single left rotation at x.
(Prior to insertion, the right subtree of x was higher than its left
subtree. The new item was inserted in the right subtree of x, causing
the height of the right subtree to increase in height, which in turn
violated the balance criteria at x.)

b. If these balance factors are negative, make a single right rotation at x.
(Prior to insertion, the left right subtree of x was higher than its
right subtree. The new item was inserted in the left subtree of x,
causing the height of the left subtree to increase in height, which in
turn violated the balance criteria at x.)

2. Suppose that the balance factor of the node x and the balance factor of the
higher subtree of x are opposite in sign. To be specific, suppose that the
balance factor of node x prior to insertion was �1 and suppose that y is
the root node of the left subtree of x. After insertion, the balance factor of
node y is 1. That is, after insertion, the right subtree of node y grew in
height. In this case, we require a double rotation at x. First, we make a left
rotation at y (because y is right high). Then, we make a right rotation at x.
The other case, which is a mirror image of this case, is handled similarly.

b

a

T1

T2 T3
T4

c

Double
rotation
at root

c

root

a

T1

T4

b

T2 T3

p

w

h

h
hh

h-1

h-1

FIGURE 11-22 Double rotation: First rotate right at c, then rotate left at a

644 | Chapter 11: Binary Trees and B-Trees

1
1

The following C++ functions implement the left and right rotations of a node. The
pointer of the node requiring the rotation is passed as a parameter to the function.

template <class elemT>
void rotateToLeft(AVLNode<elemT>* &root)
{

AVLNode<elemT> *p; //pointer to the root of the
//right subtree of root

if (root == NULL)
cerr << "Error in the tree" << endl;

else if (root->rlink == NULL)
cerr << "Error in the tree:"

<<" No right subtree to rotate." << endl;
else
{

p = root->rlink;
root->rlink = p->llink; //the left subtree of p becomes

//the right subtree of root
p->llink = root;
root = p; //make p the new root node

}
}//rotateLeft

template <class elemT>
void rotateToRight(AVLNode<elemT>* &root)
{

AVLNode<elemT> *p; //pointer to the root of
//the left subtree of root

if (root == NULL)
cerr << "Error in the tree" << endl;

else if (root->llink == NULL)
cerr << "Error in the tree:"

<< " No left subtree to rotate." << endl;
else
{

p = root->llink;
root->llink = p->rlink; //the right subtree of p becomes

//the left subtree of root
p->rlink = root;
root = p; //make p the new root node

}
}//end rotateRight

Now that we know how to implement both rotations, we next write the C++ functions,
balanceFromLeft and balanceFromRight, which are used to reconstruct the tree at a
particular node. The pointer of the node where reconstruction occurs is passed as a
parameter to this function. These functions use the functions rotateToLeft and
rotateToRight to reconstruct the tree, and also adjust the balance factors of the nodes
affected by the reconstruction. The function balanceFromLeft is called when the

AVL (Height-Balanced) Trees | 645

subtree is left double high and certain nodes need to be moved to the right subtree. The
function balanceFromRight has similar conventions.

template <class elemT>
void balanceFromLeft(AVLNode<elemT>* &root)
{

AVLNode<elemT> *p;
AVLNode<elemT> *w;

p = root->llink; //p points to the left subtree of root

switch (p->bfactor)
{
case -1:

root->bfactor = 0;
p->bfactor = 0;
rotateToRight(root);
break;

case 0:
cerr << "Error: Cannot balance from the left." << endl;
break;

case 1:
w = p->rlink;
switch (w->bfactor) //adjust the balance factors
{
case -1:

root->bfactor = 1;
p->bfactor = 0;
break;

case 0:
root->bfactor = 0;
p->bfactor = 0;
break;

case 1:
root->bfactor = 0;
p->bfactor = -1;

}//end switch

w->bfactor = 0;
rotateToLeft(p);
root->llink = p;
rotateToRight(root);

}//end switch;
}//end balanceFromLeft

646 | Chapter 11: Binary Trees and B-Trees

For the sake of completeness, we also give the definition of the function balanceFromRight:

template <class elemT>
void balanceFromRight(AVLNode<elemT>* &root)
{

AVLNode<elemT> *p;
AVLNode<elemT> *w;

p = root->rlink; //p points to the left subtree of root

switch (p->bfactor)
{
case -1:

w = p->llink;
switch (w->bfactor) //adjust the balance factors
{
case -1:

root->bfactor = 0;
p->bfactor = 1;
break;

case 0:
root->bfactor = 0;
p->bfactor = 0;
break;

case 1:
root->bfactor = -1;
p->bfactor = 0;

}//end switch

w->bfactor = 0;
rotateToRight(p);
root->rlink = p;
rotateToLeft(root);
break;

case 0:
cerr << "Error: Cannot balance from the left." << endl;
break;

case 1:
root->bfactor = 0;
p->bfactor = 0;
rotateToLeft(root);

}//end switch;
}//end balanceFromRight

1
1

AVL (Height-Balanced) Trees | 647

Wenow focus our attention on the function insertIntoAVL. The function insertIntoAVL

inserts the new item in the AVL tree. The item to be inserted and the pointer of the root
node of the AVL tree are passed as parameters to this function.

The following steps describe the function insertIntoAVL:

1. Create a node and copy the item to be inserted into the newly created node.

2. Search the tree and find the place for the new node in the tree.

3. Insert the new node in the tree.

4. Backtrack the path, which was constructed to find the place for the new
node in the tree, to the root node. If necessary, adjust the balance factors
of the nodes, or reconstruct the tree at a node on the path.

Because Step 4 requires us to backtrack the path to the root node, and in the binary tree
we have links only from the parent to the children, the easiest way to implement the
function insertIntoAVL is to use recursion. (Recall that recursion automatically takes
care of the backtracking.) This is exactly what we do. The function insertIntoAVL also
uses a reference bool parameter, isTaller, to indicate to the parent whether the subtree
grew in height or not.

template <class elemT>
void insertIntoAVL(AVLNode<elemT>* &root,

AVLNode<elemT> *newNode, bool& isTaller)
{

if (root == NULL)
{

root = newNode;
isTaller = true;

}
else if (root->info == newNode->info)

cerr << "No duplicates are allowed." << endl;
else if (root->info > newNode->info) //newItem goes in

//the left subtree
{

insertIntoAVL(root->llink, newNode, isTaller);

if (isTaller) //after insertion, the subtree grew in height
switch (root->bfactor)
{
case -1:

balanceFromLeft(root);
isTaller = false;
break;

case 0:
root->bfactor = -1;
isTaller = true;
break;

648 | Chapter 11: Binary Trees and B-Trees

1
1

case 1:
root->bfactor = 0;
isTaller = false;

}//end switch
}//end if

else
{

insertIntoAVL(root->rlink, newNode, isTaller);

if (isTaller) //after insertion, the subtree grew in
//height

switch (root->bfactor)
{
case -1:

root->bfactor = 0;
isTaller = false;
break;

case 0:
root->bfactor = 1;
isTaller = true;
break;

case 1:
balanceFromRight(root);
isTaller = false;

}//end switch
}//end else

}//insertIntoAVL

Next, we illustrate the insertIntoAVL function and build an AVL tree from scratch.
Initially the tree is empty. Each figure shows the item to be inserted as well as the
balance factor of each node. An equal sign, =, on the top of a node indicates that the
balance factor of this node is 0, the less-than sign, <, indicates that the balance factor of
this node is –1, and the greater-than sign, >, indicates that the balance factor of this
node is 1.

AVL (Height-Balanced) Trees | 649

Figure 11-23 shows how items are inserted into an initially empty AVL tree.

Insert
40

40
= <

<

Insert
20

=

40

30

20

30

20 40

=

=

=

Insert
30 40

<

30
=

30
>

40
>

20
=

Insert
60

60
=

30
>

40
>

20
=

60
<

Insert
50

50
=

30

>

50
=

20
=

60

=

40
=

30
>

50
>

20
=

60
>

40
=

Insert
80

80
=

40
=

50
=

20
=

60

>

30
=

80

=

Insert
15

40
=

50
<

20
<

60

>

30

<

80
=

15
=

Insert
28

40
=

50
<

20
=

60

>

30

<

80
=

15
=

28
=

Insert
25

40
=

50
<

20
>

60
>

30
<

80
=

15
=

28
<

25
=

40
=

50
<

28

60
>

30
<

80
=

20
=

25
=

15
=

Rotate
left at

20

Rotate
right
at 30

30
>

50
<

20
=

60

>

28
=

80
=

15
=

25
=

40
=

(a)

(b)

(c)

(d)

(e)

(f) (g)

(h) (i)

FIGURE 11-23 Item insertion into an initially empty AVL tree

650 | Chapter 11: Binary Trees and B-Trees

First, we insert 40; see Figure 11-23(a). Next, we insert 30 into the AVL tree. Item 30 is
inserted into the left subtree of node 40, causing the left subtree of 40 to grow in height.
After insertion, the balance factor of node 40 is –1; see Figure 11-23(b).

Next, we insert 20 into the AVL tree. See Figure 11-23(c). The insertion of 20 violates
the balance criteria at node 40. The tree is reconstructed at node 40 by making a single
right rotation.

Next, we insert 60 into the AVL tree. See Figure 11-23(d). The insertion of 60 does not
require reconstruction; only the balance factor is adjusted at nodes 40 and 30.

Next, we insert 50. See Figure 11-23(e). The insertion of 50 requires the tree to be
reconstructed at 40. Notice that a double rotation is made at node 40.

Next, we insert 80; see Figure 11-23(f). The insertion of 80 requires the tree to be
reconstructed at node 30.

Next, we insert 15; see Figure 11-23(g). The insertion of node 15 does not require any
part of the tree to be reconstructed. We need to only adjust the balance factor of nodes
20, 30, and 50.

Next, we insert 28; see Figure 11-23(h). The insertion of node 28 also does not require
any part of the tree to be reconstructed. We need only to adjust the balance factor of
node 20.

Next, we insert 25. The insertion of 25 requires a double rotation at node 30. Figure 11-23(i)
shows both rotations in sequence. In Figure 11-23(i), the tree is first rotated left at node 20

and then right at node 30.

The following function creates a node, stores the info in the node, and calls the function
insertIntoAVL to insert the new node in the AVL tree:

template <class elemT>
void insert(const elemT &newItem)
{

bool isTaller = false;
AVLNode<elemT> *newNode;

newNode = new AVLNode<elemT>;
newNode->info = newItem;
newNode->bfactor = 0;
newNode->llink = NULL;
newNode->rlink = NULL;

insertIntoAVL(root, newNode, isTaller);
}

We leave it as an exercise for you to design the class to implement AVL trees as an ADT.
(Notice that because the structure of the node of an AVL tree is different from the structure
of the node of a binary tree discussed in the beginning of this chapter, you cannot use
inheritance to derive the class to implement AVL trees from the class binaryTreeType.)

1
1

AVL (Height-Balanced) Trees | 651

Deletion from AVL Trees
To delete an item from an AVL tree, first we find the node containing the item to be
deleted. The following four cases arise:

Case 1: The node to be deleted is a leaf.

Case 2: The node to be deleted has no right child, that is, its right subtree is empty.

Case 3: The node to be deleted has no left child, that is, its left subtree is empty.

Case 4: The node to be deleted has a left child and a right child.

Cases 1–3 are easier to handle than Case 4. Let us first discuss Case 4.

Suppose that the node to be deleted, say x, has a left and a right child. As in the case of
deletion from a binary search tree, we reduce Case 4 to Case 2. That is, we find the
immediate predecessor, say y of x. Then, the data of y is copied into x and now the node
to be deleted is y. Clearly, y has no right child.

To delete the node, we adjust one of the pointers of the parent node. After deleting the
node, the resulting tree might no longer be an AVL tree. As in the case of insertion into
an AVL tree, we traverse the path (from the parent node) back to the root node. For
each node on this path, sometimes we need to change only the balance factor, while
other times the tree at a particular node is reconstructed. The following steps describe
what to do to a node on the path back to the root node. (As in the case of insertion, we
use the bool variable shorter to indicate whether the height of the subtree is
reduced.) Let p be a node on the path back to the root node. We look at the current
balance factor of p.

1. If the current balance factor of p is equal high, the balance factor of p is
changed according to if the left subtree of p was shortened or the right
subtree of p was shortened. The variable shorter is set to false.

2. Suppose that the balance factor of p is not equal and the taller subtree of
p is shortened. The balance factor of p is changed to equal high, and the
variable shorter is left as true.

3. Suppose that the balance factor of p is not equal and the shorter subtree
of p is shortened. Further suppose that q points to the root of the taller
subtree of p.

a. If the balance factor of q is equal, a single rotation is required at p
and shorter is set to false.

b. If the balance factor of q is the same as p, a single rotation is required
at p and shorter is set to true.

c. Suppose that the balance factors of p and q are opposite. A double
rotation is required at p (a single rotation at q and then a single
rotation at p). We adjust the balance factors and set shorter to
true.

652 | Chapter 11: Binary Trees and B-Trees

1
1

Analysis: AVL Trees
Consider all possible AVL trees of height h. Let Th be an AVL tree of height h such that
Th has the fewest number of nodes. Let Thl denote the left subtree of Th and Thr denote
the right subtree of Th. Then

jThj ¼ jThlj þ jThr j þ 1;

where |Th| denotes the number of nodes in Th.

Because Th is an AVL tree of height h such that Th has the fewest number of nodes, it
follows that one of the subtrees of Th is of height h � 1 and the other is of height h � 2.
To be specific, suppose Thl is of height h � 1 and Thr is of height h � 2. From the
definition of Th, it follows that Thl is an AVL tree of height h � 1 such that Thl has the
fewest number of nodes among all AVL trees of height h � 1. Similarly, Thr is an AVL
tree of height h � 2 that has the fewest number of nodes among all AVL trees of height
h � 2. Thus, Thl is of the form Th-1 and Thr is of the form Th-2. Hence,

jThj ¼ jTh�1j þ jTh�2j þ 1:

Clearly,

jT0j ¼ 1

jT1j ¼ 2

Let Fh+2 ¼ |Th | + 1. Then,

Fhþ2 ¼ Fhþ1 þ Fh
F2 ¼ 2

F3 ¼ 3:

This is called a Fibonacci sequence. The solution to Fh is given by

Fh � �hffiffiffi
5
p ; where � ¼ 1þ ffiffiffi

5
p

2
:

Hence,

jThj � �hþ2ffiffiffi
5
p ¼ 1ffiffiffi

5
p 1þ ffiffiffi

5
p

2

� �hþ2
:

From this, it can be concluded that

h � ð1:44Þ log
2
jThj:

AVL (Height-Balanced) Trees | 653

This implies that, in the worst case, the height of an AVL tree with n nodes is
approximately (1.44)log2n. Because the height of a perfectly balanced binary tree with
n nodes is log2n, it follows that, in the worst case, the time to manipulate an AVL tree is
no more than 44% of the optimum time. However, in general, AVL trees are not as sparse
as in the worst case. It can be shown that the average search time of an AVL tree is about
4% more than the optimum.

PROGRAMMING EXAMPLE: Video Store (Revisited)
In Chapter 5, we designed a program to help a video store to automate its video
rental process. That program used an (unordered) linked list to keep track of the
video inventory in the store. Because the search algorithm on a linked list is
sequential and the list is fairly large, the search could be time consuming. In this
chapter, you learned how to organize data into a binary tree. If the binary tree is
nicely constructed (that is, it is not linear), the search algorithm can be improved
considerably. Moreover, in general, item insertion and deletion in a binary search
tree is faster than in a linked list. We will, therefore, redesign the video store program
so that the video inventory can be maintained in a binary tree. As in Chapter 5, we
leave the design of the customer list in a binary tree as an exercise for you.

VIDEO OBJECT In Chapter 5, a linked list was used to maintain a list of videos in the store. Because
the linked list was unordered, to see whether a particular video was in stock, the
sequential search algorithm used the equality operator for comparison. However, in
the case of a binary tree, we need other relational operators for the search, insertion,
and deletion operations. We, therefore, overload all of the relational operators. Other
than this difference, the class videoType is the same as before. However, we give
its definition, without the documentation, here for easy reference and for the sake of
completeness.

#include <iostream>
#include <string>

using namespace std;

class videoType
{

friend ostream& operator<<(ostream&, const videoType&);

public:
void setVideoInfo(string title, string star1,

string star2, string producer,
string director, string productionCo,
int setInStock);

654 | Chapter 11: Binary Trees and B-Trees

1
1

int getNoOfCopiesInStock() const;
void checkOut();
void checkIn();
void printTitle() const;
void printInfo() const;
bool checkTitle(string title);
void updateInStock(int num);
void setCopiesInStock(int num);
string getTitle();
videoType(string title = "", string star1 = "",

string star2 = "", string producer = "",
string director = "", string productionCo = "",
int setInStock = 0);

bool operator==(const videoType&) const;
bool operator!=(const videoType&) const;
bool operator<(const videoType&) const;
bool operator<=(const videoType&) const;
bool operator>(const videoType&) const;
bool operator>=(const videoType&) const;

private:
string videoTitle;
string movieStar1;
string movieStar2;
string movieProducer;
string movieDirector;
string movieProductionCo;
int copiesInStock;

};

The definitions of the member functions of the class videoType are the same as in
Chapter 5. Because here we are overloading all of the relational operators, we give
only the definitions of these member functions.

//Overload the relational operators.
bool videoType::operator==(const videoType& right) const
{

return (videoTitle == right.videoTitle);
}

bool videoType::operator!=(const videoType& right) const
{

return (videoTitle != right.videoTitle);
}

bool videoType::operator <(const videoType& right) const
{

return (videoTitle < right.videoTitle);
}

Programming Example: Video Store (Revisited) | 655

bool videoType::operator <=(const videoType& right) const
{

return (videoTitle <= right.videoTitle);
}

bool videoType::operator >(const videoType& right) const
{

return (videoTitle > right.videoTitle);
}

bool videoType::operator >=(const videoType& right) const
{

return (videoTitle >= right.videoTitle);
}

VIDEO LIST The video list is maintained in a binary search tree. Therefore, we derive the class

videoBinaryTree from the class bSearchTreeType. The definition of the
class videoBinaryTree is as follows:

#include <iostream>
#include <string>
#include "binarySearchTree.h"
#include "videoType.h"

using namespace std;

class videoBinaryTree:public bSearchTreeType<videoType>
{
public:

bool videoSearch(string title);
//Function to search the list to see whether a particular
//title, specified by the parameter title, is in stock.
//Postcondition: Returns true if the title is found,
// false otherwise.

bool isVideoAvailable(string title);
//Function to determine whether at least one copy of a
//particular video is in stock.
//Postcondition: Returns true if at least one copy is in
// stock, false otherwise.

void videoCheckOut(string title);
//Function to check out a video, that is, rent a video.
//Postcondition: copiesInStock is decremented by 1.

void videoCheckIn(string title);
//Function to check in a video returned by a customer.
//Postcondition: copiesInStock is incremented by 1.

bool videoCheckTitle(string title);
//Function to determine whether a particular video is in
//stock.
//Postcondition: Returns true if the video is in stock,
// false otherwise.

656 | Chapter 11: Binary Trees and B-Trees

1
1

void videoUpdateInStock(string title, int num);
//Function to update the number of copies of a video by
//adding the value of the parameter num. The parameter title
//specifies the name of the video for which the number of
//copies is to be updated.
//Postcondition: copiesInStock = copiesInStock + num

void videoSetCopiesInStock(string title, int num);
//Function to reset the number of copies of a video. The
//parameter title specifies the name of the video for which
//the number of copies is to be reset; the parameter num
//specifies the number of copies.
//Postcondition: copiesInStock = num

void videoPrintTitle();
//Function to print the titles of all the videos in stock.

private:
void searchVideoList(string title, bool& found,

binaryTreeNode<videoType>* ¤t);
//Function to search the video list for a particular video,
//specified by the parameter title.
//Postcondition: If the video is found, the parameter found
// is set to true, false otherwise. The parameter current
// points to the node containing the video.

void inorderTitle(binaryTreeNode<videoType> *p);
//Function to print the titles of all the videos in stock.

};

The definitions of the member functions of the class videoBinaryTree are similar to the
ones given in Chapter 5. We only give the definitions of the functions searchVideoList,
inorderTitle, and videoPrintTitle. (See Programming Exercise 12 at the end of
the chapter.)

The function searchVideoList uses a search algorithm similar to the search
algorithm for a binary search tree given earlier in this chapter. It returns true if the
search item is found in the list. It also returns a pointer to the node containing the
search item. Note that the function searchVideoList is a private member of the
class videoBinaryTree. So the user cannot directly use this function in a program.
Therefore, even though this function returns a pointer to a node in the tree, the user
cannot directly access the node. The function searchVideoList is used only to
implement other functions of the class videoBinaryTree. The definition of this
function is as follows:

void videoBinaryTree::searchVideoList(string title, bool& found,
binaryTreeNode<videoType>* ¤t)

{
found = false;

videoType temp;

Programming Example: Video Store (Revisited) | 657

temp.setVideoInfo(title, "", "", "", "", "", 0);

if (root == NULL) //the tree is empty
cout << "Cannot search an empty list. " << endl;

else
{

current = root; //set current point to the root node
//of the binary tree

found = false; //set found to false

while (!found && current != NULL) //search the tree
if (current->info == temp) //the item is found

found = true;
else if (current->info > temp)

current = current->llink;
else

current = current->rlink;
} //end else

}

Given a pointer to the root node of the binary tree containing the videos, the
function inorderTitle uses the inorder traversal algorithm to print the titles of the
videos. Notice that this function outputs only the video titles. The definition of this
function is as follows:

void videoBinaryTree::inorderTitle(binaryTreeNode<videoType> *p)
{

if (p != NULL)
{

inorderTitle(p->llink);
p->info.printTitle();
inorderTitle(p->rlink);

}
}

The function videoPrintTitle uses the function inorderTitle to print the titles
of all the videos in the store. The definition of this function is as follows:

void videoBinaryTree::videoPrintTitle()
{

inorderTitle(root);
}

MAIN

PROGRAM

The main program is the same as before. Here we give only the listing of this
program. We assume that the name of the header file containing the definition of
the class videoBinaryTree is videoBinaryTree.h, and so on.

658 | Chapter 11: Binary Trees and B-Trees

1
1

//**
// Author: D.S. Malik
//
// This program illustrates how to use the classes videoType
// and videoBinaryTree to create and process a list of videos.
//**

#include <iostream>
#include <fstream>
#include <string>
#include "binarySearchTree.h"
#include "videoType.h"
#include "videoBinaryTree.h"

using namespace std;

void createVideoList(ifstream& infile,
videoBinaryTree& videoList);

void displayMenu();

int main()
{

videoBinaryTree videoList;
int choice;
char ch;
string title;

ifstream infile;

infile.open("videoDat.txt");

if (!infile)
{

cout << "The input file does not exist" << endl;
return 1;

}

createVideoList(infile, videoList);
infile.close();

displayMenu();
cout << "Enter your choice: ";
cin >> choice; //get the request
cin.get(ch);
cout << endl;

//process the request
while (choice != 9)

Programming Example: Video Store (Revisited) | 659

{
switch(choice)
{
case 1:

cout << "Enter the title: ";
getline(cin, title);
cout << endl;
if (videoList.videoSearch(title))

cout << "Title found." << endl;
else

cout << "The store does not carry this title."
<< endl;

break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;
if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
{

videoList.videoCheckOut(title);
cout << "Enjoy your movie: " << title << endl;

}
else

cout << "The video is currently out of stock."
<< endl;

}
else

cout << "The video is not in the store." << endl;
break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;
if (videoList.videoSearch(title))
{

videoList.videoCheckIn(title);
cout << "Thanks for returning " << title << endl;

}
else

cout << "This video is not from our store." << endl;
break;

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

660 | Chapter 11: Binary Trees and B-Trees

1
1

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
cout << "The video is currently in stock."

<< endl;
else

cout << "The video is out of stock." << endl;
}
else

cout << "The video is not in the store." << endl;
break;

case 5:
videoList.videoPrintTitle();
break;

case 6:
videoList.inorderTraversal();
break;

default: cout << "Invalid selection." << endl;
}//end switch

displayMenu();
cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get(ch);
cout << endl;

}//end while

return 0;
}

void createVideoList(ifstream& infile, videoBinaryTree& videoList)
{

string title;
string star1;
string star2;
string producer;
string director;
string productionCo;
char ch;
int inStock;

videoType newVideo;

getline(infile, title);
while (infile)
{

getline(infile, star1);
getline(infile, star2);
getline(infile, producer);

Programming Example: Video Store (Revisited) | 661

B-Trees
In the previous sections of this chapter, we discussed how to build binary search trees and
in particular AVL trees to effectively organize data dynamically and effectively search the
data. However, the performance of the search depends on the height of the tree. In this
section, we discuss B-trees in which the leaves are on the same level and are not too far
from the root.

Definition: (m-way search tree) An m-way search tree is a tree in which each node has
at most m children, and if the tree is nonempty, it has the following properties:

1. Each node has the following form:

n P0 K1 P1 K2 K2 . . . Kn Pn

where P0, P1, P2, . . . , Pn are pointers to the subtrees of the node, K1,
K2, . . . , Kn are keys such that K1 < K2 < . . .< Kn, and n � m – 1.

2. All keys, if any, in the node to which Pi points are less than Ki + 1.

3. All keys, if any, in the node to which Pi points are greater than Ki.

4. The subtrees, if any, to which each Pi points are m-way search trees.

getline(infile, director);
getline(infile, productionCo);
infile >> inStock;
infile.get(ch);
newVideo.setVideoInfo(title, star1, star2, producer,

director, productionCo, inStock);
videoList.insert(newVideo);

getline(infile, title);
}//end while

}//end createVideoList

void displayMenu()
{

cout << "Select one of the following: " << endl;
cout << "1: To check whether a particular video is in "

<< "the store" << endl;
cout << "2: To check out a video" << endl;
cout << "3: To check in a video" << endl;
cout << "4: To see whether a particular video is in stock"

<< endl;
cout << "5: To print the titles of all the videos" << endl;
cout << "6: To print a list of all the videos" << endl;
cout << "9: To exit" << endl;

}

662 | Chapter 11: Binary Trees and B-Trees

Figure 11-24 shows a 5-way search tree.

Definition: (B-tree of order m) A B-tree of order m is an m-way search tree that is
either empty, or has the following properties:

1. All leaves are on the same level.

2. All internal nodes except the root have at most m (nonempty) children and
at least Øm/2ø children. (Note that Øm/2ø denotes the ceiling of m/2.)

3. The root has at least 2 children if it is not a leaf, and at most m children.

Figure 11-25 shows a B-tree of order 5.

Note that the 5-way search tree in Figure 11-24 is not a B-tree of order 5.

The basic operations performed on a B-tree are search the tree, insert an item in the tree,
delete an item from the tree, and traverse the tree. In the remainder of this section, we
discuss how to implement some of these operations.

Before discussing these properties and describing the structure of a node and the class to
implement the properties of a B-tree, we note the following: Until now, we have passed
only data types as parameters to templates. Just like types (data types), constant expressions

1
1

35

2 19

55

959040 50 6828 65 78 80

75

82 110

120 170

FIGURE 11-25 A B-tree of order 5

40

8 16

50

959281 85

80

90 125

130 1554845

FIGURE 11-24 A 5-way search tree

B-Trees | 663

can also be passed as parameters to templates. For example, consider the following class

template:

template<class elemType, int size>
class listType
{
public:

.

.

.
private:

int maxSize;
int length;
elemType listElem[size];

};

This class template contains an array data member. The array element type and the
size of the array are passed as parameters to the class template. To create a list of 100
components of int elements, we use the following statement:

listType<int, 100> intList;

Next, we give the definitions of the B-tree node and the class that implements the
properties of a B-tree.

Each node should store the number of keys in the node, the records, and the pointer to
subtrees. We use an array to store the records and an array to store the pointers to the
subtrees. Thus, the definition of a B-tree node is as follows:

template <class recType, int bTreeOrder>
struct bTreeNode
{

int recCount;
recType list[bTreeOrder - 1];
bTreeNode *children[bTreeOrder];

};

The class implementing the properties of a B-tree must, among others, implement the
search, traversal, insertion, and deletion algorithms. The following class implements the
basic properties of a B-tree as an ADT:

//***
// Author: D.S. Malik
//
// class bTree
// This class specifies the basic operations to implement a
// B-tree.
//***

template <class recType, int bTreeOrder>
class bTree

664 | Chapter 11: Binary Trees and B-Trees

1
1

{
public:

bool search(const recType& searchItem);
//Function to determine if searchItem is in the B-tree.
//Postcondition: Returns true if searchItem is found in the
// B-tree; otherwise, returns false.

void insert(const recType& insertItem);
//Function to insert insertItem in the B-tree.
//Postcondition: If insertItem is not in the the B-tree, it
// is inserted in the B-tree.

void inOrder();
//Function to do an inorder traversal of the B-tree.

bTree();
//constructor

//Add additional members as needed.

protected:
bTreeNode<recType, bTreeOrder> *root;

};

Search
The function search searches the binary search tree for a given item. If the item is found in the
binary search tree, it returns true; otherwise, it returns false. The search must start at the root
node. Because, usually, there is more than one item in a node, we must search the array
containing the data. Therefore, in addition to the function search, we also write the function
searchNode that searches a node sequentially. If item is found, the function searchNode

returns true and the location in the array where item is found. If item is not in the node, the
function returns false and location points to either the first item that is larger than the search
item or one past the last item in the node. The definitions of these functions are as follows:

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::searchNode

(bTreeNode<recType, bTreeOrder> *current,
const recType& item,
bool& found, int& location)

{
location = 0;

while (location < current->recCount
&& item > current->list[location])

location++;

if (location < current->recCount
&& item == current->list[location])

found = true;
else

found = false;
} //end searchNode

B-Trees | 665

template <class recType, int bTreeOrder>
bool bTree<recType, bTreeOrder>::search(const recType& searchItem)
{

bool found = false;
int location;

bTreeNode<recType, bTreeOrder> *current;

current = root;

while (current != NULL && !found)
{

searchNode(current, item, found, location);

if (!found)
current = current->children[location];

}

return found;
} //end search

Note that the function searchNode searches the node sequentially. However, because
the data in the node is ordered, we can also use a binary search algorithm to search the
node. We leave it as an exercise for you to modify the definition of the function
searchNode so that it uses a binary search algorithm to search the node; see Program-
ming Exercise 16 at the end of this chapter.

Traversing a B-Tree
As in the case of a binary tree, a B-tree can be traversed in three ways: inorder, preorder, and
postorder. We only discuss the inorder traversal algorithm and leave the others as an exercise.

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::inOrder()
{

recInorder(root);
} // end inOrder

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::recInorder

(bTreeNode<recType, bTreeOrder> *current)
{

if (current != NULL)
{

recInorder(current->children[0]);

666 | Chapter 11: Binary Trees and B-Trees

for (int i = 0; i < current->recCount; i++)
{

cout << current->list[i] << " ";

recInorder(current->children[i + 1]);
}

}
} //end recInorder

Insertion into a B-Tree
The general algorithm to insert an item in a B-tree is as follows.

Insert Algorithm: Search the tree to see if the key is already in the tree. If the key is already
in the tree, output an error messsage. If the key is not in the tree, the search terminates at a
leaf. The record is inserted into the leaf if there is room. If the leaf is full, split the node into
two nodes and the median key is moved to the parent node. (Note that the median is
determined by considering all the keys in the node and the new key to be inserted.) The
splitting can propogate upward even as far as the root, causing the tree to increase in height.

Next, we illustrate how the insert algorithm works.

Figures 11-26 to 11-29 shows the insertion of items into an initially empty B-tree of
order 5.

The insertion of 40, 30, 70, and 5 is shown in Figure 11-26(a). The insertion of 16
requires to split the root node, causing the height of the tree to increase; see Figure 11-26(b).
The insertion of 82 and 95 is shown in Figure 11-26(c). The next item inserted is 100; see
Figure 11-26(d). The item 100 is to be inserted in the right child of the root node.
However, the right child of the root node is full. So we split this node and move the
median key, which is 82, to the parent node. Because the parent node is not full, we can
insert 82 in the parent node; see Figure 11-26(d).

1
1

Insert:
40, 30,
70, 5

5 30 40 70

(a)

Insert: 16

30

(c)

5 16 40 70

Insert:
82, 95

82 95

30

(b)

5 16 40 70

30

(d)

5 16 40 70

Insert: 100
82

10095

FIGURE 11-26 Item insertion into a B-tree of order 5

B-Trees | 667

Figure 11-27 shows the insertion of 73, 54, 98, and 37.

Note that 73, 54, and 98 are inserted without splitting any node; see Figure 11-27(a).
However, the insertion of 37 requires the splitting of a node. The item 37 is to be
inserted in the right child of 30. However, the right child of 30 is full, as shown in
Figure 11-27(a). So we split the right child of 30, insert 37, and move the median key,
which is 54, to the parent node. Because the parent node is not full, the median key 54

is inserted into the parent node; see Figure 11-27(b).

Figure 11-28 shows the insertion of 25, 62, 81, 150, and 79 into the B-tree of
Figure 11-27(b).

Note that 25, 62, 81, and 150 are inserted without splitting any node; see Figure 11-28(a).
However, the insertion of 79 requires the splitting of a node. The item 79 is to be inserted in
the right child of 54. However, the right child of 54 is full; see Figure 11-28(a). So we split
the right child of 54, insert 79, and move the median key, which is 73, to the parent node.
Because the parent node is not full, the median key 73 is inserted into the parent node; see
Figure 11-28(b).

Insert:
37 30

5 16

54

9895 100

82

37 40 70 73

(b)

Insert:
73, 54,

98
30

(a)

5 16 40 54

82

989570 73 100

FIGURE 11-27 Insertion of 73, 54, 98, and 37

Insert: 25, 62,
81, 150

30

5 16

54

9895 100

82

37 40 70 73

(a)

25 62 81 150

Insert: 79 30

5 16

54

9895 100

73

37 40 70

(b)

0512652

82

79 81

FIGURE 11-28 Insertion of 25, 62, 81, 150, and 79

668 | Chapter 11: Binary Trees and B-Trees

Next, we insert 200, as shown in Figure 11-29.

The item 200 is to be inserted in the right child of 82; see Figure 11-28(b). However, the
right child of 82 is full. So we split the right child of 82, insert 200 in the node, and move
the median key, which is 100, to the parent node. However, the parent node, which is
the root node in Figure 11-28(b), is also full. So we split the parent node and move the
median key, which is 73, to the new root node; see Figure 11-29. From Figure 11-29, it
is clear that the height of the B-tree is increased.

From the previous discussion, it follows that to implement the insertion algorithm, we
need algorithms to split a node, insert an item into a node, and move the median key to
the parent node. Furthermore, because the insertion of an item might require the splitting
of a node and moving the median key to the parent node, the simplest way to implement
the insertion algorithm is to use recursion. To trigger the recursion, we will write another
function, insertBTree. The definition of the function insert, which uses the function
insertBTree, is as follows:

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::insert(const recType& insertItem)
{

bool isTaller = false;
recType median;

bTreeNode<recType, bTreeOrder> *rightChild;

insertBTree(root, insertItem, median,
rightChild, isTaller);

if (isTaller) //the tree is initially empty or the root
//was split by the function insertBTree

{
bTreeNode<recType, bTreeOrder> *tempRoot;
tempRoot = new bTreeNode<recType, bTreeOrder>;
tempRoot->recCount = 1;
tempRoot->list[0] = median;

1
1

Insert: 200

30

5 16

54

989537 40 7025 62 79 81

73

82 100

150 200

FIGURE 11-29 Insertion of 200

B-Trees | 669

tempRoot->children[0] = root;
tempRoot->children[1] = rightChild;

root = tempRoot;
}

} //insert

The function insertBTree recursively inserts an item into a B-tree. After inserting an item,
it returns true if the height of the tree is to be increased. If the root node is to be split, this
function splits the root node, sets isTaller to true, and sends the median key, median,
and a pointer, rightChild, of the right child of median to the function insert. The
function insert adjusts the root of the B-tree. This function has five parameters:
current—a pointer to the B-tree in which to insert an item, insertItem—item to be
inserted in the B-tree, median—to return the median key, rightChild—pointer to the
right child of median, and isTaller—to indicate if the height of a B-tree is to be increased.
In pseudocode, the algorithm is as follows:

if (current is NULL)
{

Either the B-tree is empty or the search ends at an empty subtree.
Set median to insertItem
Set rightChild to NULL
Set isTaller to true

}
else
{

Call function searchNode to search the current node

if insertItem is in the node
output an error message

else
{

call the function insertBTree with appropriate parameters
if isTaller is true

if current node is not full
insert item into current node

else
call the function splitNode to split the node

}
}

We leave it as an exercise for you to write the definition of the function insertBTree;
see Programming Exercise 15 at the end of this chapter.

The function insertNode inserts an item in the node. Because the keys in the node are
in order, the algorithm to insert a new item is similar to the insertAt function discussed
in Chapter 3. The function has four parameters: current—a pointer to the node in
which to insert the new item, insertItem—the item to be inserted, rightChild—a
pointer to the right subtree of the item to be inserted, and insertPosition—the
position in the array where to insert the item. The definition of this function is as follows:

670 | Chapter 11: Binary Trees and B-Trees

1
1

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::insertNode

(bTreeNode<recType, bTreeOrder> *current,
const recType& insertItem,
bTreeNode<recType, bTreeOrder>* &rightChild,
int insertPosition)

{
int index;

for (index = current->recCount; index > insertPosition;
index--)

{
current->list[index] = current->list[index - 1];
current->children[index + 1] = current->children[index];

}

current->list[index] = insertItem;
current->children[index + 1] = rightChild;
current->recCount++;

} //end insertNode

The function splitNode splits a node into two nodes and inserts the new item in the
relevant node. It returns the median key and a pointer to the second half of the node. The
parameter current points to the node to be split, insertItem is the item to be inserted,
newChild is a pointer to the right child of the item to be inserted, insertPosition
specifies the position where to insert the new item, after splitting the node the parameter
rightNode returns a pointer to the right half of the node, and median returns the
median key of the node.

template <class recType, int bTreeOrder>
void bTree<recType, bTreeOrder>::splitNode

(bTreeNode<recType, bTreeOrder> *current,
const recType& insertItem,
bTreeNode<recType, bTreeOrder>* rightChild,
int insertPosition,
bTreeNode<recType, bTreeOrder>* &rightNode,
recType &median)

{
rightNode = new bTreeNode<recType, bTreeOrder>;

int mid = (bTreeOrder - 1) / 2;

if (insertPosition <= mid) //new item goes in the first
//half of the node

{
int index = 0;
int i = mid;

B-Trees | 671

while (i < bTreeOrder - 1)
{

rightNode->list[index] = current->list[i];
rightNode->children[index + 1] =

current->children[i + 1];
index++;
i++;

}

current->recCount = mid;
insertNode(current, insertItem, rightChild,

insertPosition);
(current->recCount)--;

median = current->list[current->recCount];

rightNode->recCount = index;
rightNode->children[0] =

current->children[current->recCount + 1];
}
else //new item goes in the second half of the node
{

int i = mid + 1;
int index = 0;

while (i < bTreeOrder - 1)
{

rightNode->list[index] = current->list[i];
rightNode->children[index + 1] =

current->children[i + 1];
index++;
i++;

}

current->recCount = mid;
rightNode->recCount = index;

median = current->list[mid];
insertNode(rightNode, insertItem, rightChild,

insertPosition - mid - 1);
rightNode->children[0] =

current->children[current->recCount + 1];
}

} //splitNode

We leave it as an exercise for you to include the functions to insert an item in a B-tree and
the functions to search and traverse a B-tree in the class BTree, and write a program to
perform these operations on a B-tree; see Programming Exercise 15 at the end of this chapter.

Deletion from a B-Tree
To delete an item from a B-tree, we search the tree for the item to be deleted, say
deleteItem. The following cases arise:

672 | Chapter 11: Binary Trees and B-Trees

1. If deleteItem is not in the tree, output an appropriate error message.

2. If deleteItem is in the tree, find the node containing the deleteItem. If
the node containing the deleteItem is not a leaf, its immediate prede-
cessor (or successor) is in a leaf. So we can swap the immediate predecessor
(or successor) with the deleteItem to move the deleteItem into a leaf.
We consider the cases to delete an item from a leaf.

a. If the leaf contains more than the minimum number of keys, delete
the deleteItem from the leaf. (In this case, no further action is
required.)

b. If the leaf contains only the minimum number of keys, look at the
sibling nodes that are adjacent to the leaf. (Note that the sibling
nodes and the leaf have the same parent node.)

i. If one of the sibling nodes has more than the minimum number
of keys, move one of the keys from that sibling node to the
parent and one key from the parent to the leaf, and then delete
deleteItem.

ii. If the adjacent siblings have only the minimum number of keys,
then combine one of the siblings with the leaf and the median
key from the parent. If this action does not leave the minimum
number of keys in the parent node, this process of combining
the nodes propogates upward, possibly as far as the root node,
which could result in reducing the height of the B-tree.

Next, we illustrate how the deletion process works. Consider the B-tree of order 5
shown in Figure 11-30.

Let us delete 18 from this B-tree. Because 18 is in a leaf and the leaf has more than the
minimum number of keys, we simply delete 18 from the leaf; see Figure 11-31.

1
1

75 80

10

1 3 5

25

15 18 20 30 32 62 68

60

70 90

92 95

FIGURE 11-30 A B-tree of order 5

B-Trees | 673

Next, let us delete 30. Figure 11-32 shows the B-tree before and after deleting 30.

The leaf containing 30 has only the minimum number of keys. However, its adjacent
sibling has more than the minimum number of keys. So we move 20 from the adjacent
sibling to the parent node and then move 25 from the parent node to the leaf; see
Figure 11-32(b).

Next, let us delete 70. Figure 11-33 shows the process of deleting 70.

Before
deleting: 30

75 80

10

1 3 5

25

15 18 20 30 32 62 68

60

70 90

92 95

After
deleting: 30

75 80

10

1 3 5

20

15 18 25 32 62 68

60

70 90

92 95

(a)

(b)

FIGURE 11-32 B-tree before and after deleting 30

75 80

10

1 3 5

25

15 20 30 32 62 68

60

70 90

92 95

FIGURE 11-31 Deleting 18 from a B-tree of order 5

674 | Chapter 11: Binary Trees and B-Trees

1
1

The node containing 70 is not a leaf. So we swap 70 with its immediate predecessor,
which is 68; see Figure 11-33(b). After deleting 70 from the leaf, because the leaf does
not have the minimum number of keys, it is combined with its adjacent sibling; see
Figure 11-33(c). However, this process does not leave the minimum number of keys in
the parent node, which is 90. So we combine this node with its left sibling and their
parent, which in this case is the root node; see Figure 11-33(d). Note that the deletion of
70 resulted in reducing the height of the B-tree.

We leave it as an exercise for you to develop the necessary algorithms to delete a record
from a B-tree.

Before
deleting: 70

75 80

10

1 3 5

25

15 18 20 30 32 62 68

60

70 90

92 95

Swap 70 with 68

Delete 70 and
combine the

node with the
right sibling

62 68 75 80

60

90

92 95

This node does not
have the minimum
number of keys.

Combine it with the
left sibling and the

parent.

75 80

10

1 3 5

25

15 18 20 30 32 62 70

60

68 90

92 95

10

1 3 5

25

15 18 20 30 32

(b)

(a)

(c)

62 68 75 80 92 95

10

1 3 5

25

15 18 20 30 32

60 90
After

deleting: 70

(d)

FIGURE 11-33 Deletion of 70 from the B-tree

B-Trees | 675

QUICK REVIEW

1. A binary tree is either empty or it has a special node called the root node. If
the tree is nonempty, the root node has two sets of nodes, called the left and
right subtrees, such that the left and right subtrees are also binary trees.

2. The node of a binary tree has two links in it.

3. A node in a binary tree is called a leaf if it has no left and right children.

4. A node U is called the parent of a node V if there is a branch from U to V.

5. A path from a node X to a node Y in a binary tree is a sequence of nodes
X0, X1, . . . , Xn such that (a) X ¼ X0, Xn ¼ Y and (b) Xi-1 is the parent of Xi

for all i ¼ 1, 2, . . . , n. That is, there is a branch from X0 to X1, X1 to
X2, . . . , Xi-1 to Xi, . . . , Xn-1 to Xn.

6. The level of a node in a binary tree is the number of branches on the path
from the root to the node.

7. The level of the root node of a binary tree is 0; the level of the children of
the root node is 1.

8. The height of a binary tree is the number of nodes on the longest path from
the root to a leaf.

9. In an inorder traversal, the binary tree is traversed as follows: (a) Traverse
the left subtree; (b) visit the node; (c) traverse the right subtree.

10. In a preorder traversal, the binary tree is traversed as follows: (a) Visit the
node; (b) traverse the left subtree; (c) traverse the right subtree.

11. In a postorder traversal, the binary tree is traversed as follows: (a) Traverse
the left subtree; (b) traverse the right subtree; (c) visit the node.

12. A binary search tree T is either empty or

i. T has a special node called the root node.

ii. T has two sets of nodes, LT and RT, called the left subtree and the
right subtree of T, respectively.

iii. The key in the root node is larger than every key in the left subtree
and smaller than every key in the right subtree.

iv. LT and RT are binary search trees.

13. To delete a node from a binary search tree that has both left and right
nonempty subtrees, first its immediate predecessor is located, then the
predecessor’s info is copied into the node, and finally the predecessor is
deleted.

14. A perfectly balanced binary tree is a binary tree such that

i. The heights of the left and right subtrees of the root are equal.

ii. The left and right subtrees of the root are perfectly balanced binary
trees.

676 | Chapter 11: Binary Trees and B-Trees

1
1

15. An AVL (or height-balanced) tree is a binary search tree such that

i. The heights of the left and right subtrees of the root differ by at most 1.

ii. The left and right subtrees of the root are AVL trees.

16. Let x be a node in a binary tree. xl denotes the height of the left subtree of
x; xh denotes the height of the right subtree of x.

17. Let T be an AVL tree and x be a node in T. Then |xh � xl| � 1, where
|xh � xl| denotes the absolute value of xh � xl.

18. Let x be a node in the AVL tree T.

a. If xl > xh, we say the x is left high. In this case, xl ¼ xh + 1.

b. If xl ¼ xh, we say the x is equal high.

c. If xh > xl, we say the x is right high. In this case, xh ¼ xl + 1.

19. The balance factor of x, written bf(x), is defined as bf(x) ¼ xh � xl.

20. Let x be a node in the AVL tree T. Then,

a. If x is left high, bf(x) ¼ �1.
b. If x is equal high, bf(x) ¼ 0.

c. If x is right high, bf(x) ¼ 1.

21. Let x be a node in a binary tree. We say that node x violates the balance
criteria if |xh� xl| > 1, that is, the heights of the left and right subtrees of x
differ by more than 1.

22. Every node x in the AVL tree T, in addition to the data and pointers to the
left and right subtrees, must keep track of its balance factor.

23. In an AVL tree, there are two types of rotations: left rotation and right
rotation. Suppose that the rotation occurs at node, say x. If it is a left
rotation, certain nodes from the right subtree of x move to its left subtree;
the root of the right subtree of x becomes the new root of the reconstructed
subtree. Similarly, if it is a right rotation at x, certain nodes from the left
subtree of x move to its right subtree; the root of the left subtree of x
becomes the new root of the reconstructed subtree.

24. A B-tree of order m is an m-way search tree that is either empty, or has
the following properties: (1) All leaves are on the same level; (2) All
internal nodes except the root have at most m (nonempty) children and
at least Øm/2ø children. (Note that Øm/2ø denotes the ceiling of m/2.); (3)
The root has at least 2 children if it is not a leaf, and at most m children.

25. To insert an item into a B-tree, search the tree to see if the record is already
in the tree. If the record is already in the tree, output an error messsage. If
the record is not in the tree, the search terminates at a leaf. The record is
inserted into the leaf if there is room. If the leaf is full, split the node into
two nodes and the median record is moved to the parent node. The
splitting can propogate upward even as far as the root, causing the tree to
increase in height.

Quick Review | 677

EXERCISES

1. Mark the following statements as true or false.

a. A binary tree must be nonempty.

b. The level of the root node is 0.

c. If a tree has only one node, the height of this tree is 0 because the
number of levels is 0.

d. The inorder traversal of a binary tree always outputs the data in
ascending order.

2. There are 14 different binary trees with four nodes. Draw all of them.

The binary tree of Figure 11-34 is to be used for Exercises 3 through 8.

3. Find LA, the node in the left subtree of A.

4. Find RA, the node in the right subtree of A.

5. Find RB, the node in the right subtree of B.

6. List the nodes of this binary tree in an inorder sequence.

7. List the nodes of this binary tree in a preorder sequence.

8. List the nodes of this binary tree in a postorder sequence.

A

B F

C E G

D

FIGURE 11-34 Binary tree for Exercises 3 through 8

678 | Chapter 11: Binary Trees and B-Trees

The binary tree of Figure 11-35 is to be used for Exercises 9 through 13.

9. List the path from the node with info 80 to the node with info 79.

10. A node with info 35 is to be inserted in the tree. List the nodes that are visited
by the function insert to insert 35. Redraw the tree after inserting 35.

11. Delete node 52 and redraw the binary tree.

12. Delete node 40 and redraw the binary tree.

13. Delete nodes 80 and 58 in that order. Redraw the binary tree after each
deletion.

14. Suppose that you are given two sequences of elements corresponding to the
inorder sequence and the preorder sequence. Prove that it is possible to
reconstruct a unique binary tree.

15. The nodes in a binary tree in preorder and inorder sequences are as follows:

preorder: ABCDEFGHIJKLM
inorder: CEDFBAHJIKGML

Draw the binary tree.

16. Given the preorder sequence and the postorder sequence, show that it
might not be possible to reconstruct the binary tree.

1
1

50

30

98

85

55

80

48 58

25

52

45

40

90

110

70

75

7965

FIGURE 11-35 Binary tree for Exercises 9 through 13

Exercises | 679

17. Insert 100 in the AVL tree of Figure 11-36. The resulting tree must be an
AVL tree. What is the balance factor at the root node after the insertion?

18. Insert 45 in the AVL tree of Figure 11-37. The resulting tree must be an
AVL tree. What is the balance factor at the root node after the insertion?

19. Insert 42 in the AVL tree of Figure 11-38. The resulting tree must be an
AVL tree. What is the balance factor at the root node after the insertion?

50

30

98

80

25 40

FIGURE 11-36 AVL tree for Exercise 17

50

30

55

80

48

25 40

FIGURE 11-37 AVL tree for Exercise 18

680 | Chapter 11: Binary Trees and B-Trees

20. The keys 24, 39, 31, 46, 48, 34, 19, 5, and 29 are inserted (in the order given)
into an initially empty AVL tree. Show the AVL tree after each insertion.

The binary tree of Figure 11-39 is to be used for Exercises 21 to 23.

21. Insert the keys 72, 30, and 50, in this order, into the B-tree of order 5 of
Figure 11-39. Show the resulting tree.

22. Insert the keys 38, 45, 55, 80, and 85 into the B-tree of order 5 of Figure 11-39.
Show the resulting tree.

23. Insert the keys 2, 30, 42, 10, 96, 15, 50, 82, and 98 into the B-tree of
order 5 of Figure 11-39. Show the resulting tree.

The binary tree of Figure 11-40 is to be used for Exercises 24 to 27.

1
1

70 85

12

2 4 7

30

16 22 24 35 40 55 60

50

65 88

90 96

FIGURE 11-40 B-tree of order 5 for Exercises 24 to 27

50

30

9855

80

48

25 40

20 35

FIGURE 11-38 AVL tree for Exercise 19

35

8 20 37 40

75

959060 99

FIGURE 11-39 B-tree of order 5 for Exercises 21 to 23

Exercises | 681

24. Delete 7 from the B-tree of order 5 of Figure 11-40. Show the resulting tree.

25. Delete 40 from the B-tree of order 5 of Figure 11-40. Show the resulting tree.

26. Delete 88 from the B-tree of order 5 of Figure 11-40. Show the resulting tree.

27. Delete 12 from the B-tree of order 5 of Figure 11-40. Show the resulting tree.

28. Suppose that you have the keys 40, 30, 70, 5, 16, 82, 95, 100, 73, 54, 98,
37, 25, 62, 81, 150, 79, and 87.

a. Insert these keys into an initially empty B-tree of order 5.

b. Insert these keys into an initially empty B-tree of order 6.

PROGRAMMING EXERCISES

1. Write the definition of the function, nodeCount, that returns the number of
nodes in a binary tree. Add this function to the class binaryTreeType and
create a program to test this function.

2. Write the definition of the function, leavesCount, that takes as a parameter
a pointer to the root node of a binary tree and returns the number of leaves
in a binary tree. Add this function to the class binaryTreeType and
create a program to test this function.

3. Write a function, swapSubtrees, that swaps all of the left and right subtrees
of a binary tree. Add this function to the class binaryTreeType and
create a program to test this function.

4. Write a function, singleParent, that returns the number of nodes in a
binary tree that have only one child. Add this function to the class

binaryTreeType and create a program to test this function. (Note: First
create a binary search tree.)

5. Write a program to test various operations on a binary search tree.

6. a. Write the definition of the function to implement the nonrecursive
postorder traversal algorithm.

b. Write a program to test the nonrecursive inorder, preorder, and post-
order traversal algorithms. (Note: First create a binary search tree.)

7. Write a version of the preorder traversal algorithm in which a user-defined
function can be passed as a parameter to specify the visiting criteria at a node.

8. Write a version of the postorder traversal algorithm in which a user-defined
function can be passed as a parameter to specify the visiting criteria at a node.

9. a. Write the definition of the class template that implements an AVL tree as
an ADT. (You do not need to implement the delete operation.)

b. Write the definitions of the member functions of the class that you
defined in (a).

c. Write a program to test various operations of an AVL tree.

682 | Chapter 11: Binary Trees and B-Trees

10. Write a function that inserts the nodes of a binary tree into an ordered
linked list. Also write a program to test your function.

11. Write a program to do the following:

a. Build a binary search tree, T1.

b. Do a postorder traversal of T1 and while doing the postorder traversal,
insert the nodes into a second binary search tree T2.

c. Do a preorder traversal of T2 and while doing the preorder traversal,
insert the node into a third binary search tree T3.

d. Do an inorder traversal of T3.

e. Output the heights and the number of leafs in each of the three binary
search trees.

12. Write the definitions of the functions of the class videoBinaryTree not
given in the Programming Example Video Store. Also write a program to
test the video store program.

13. (Video Store Program) In Programming Exercise 14 in Chapter 5, you
were asked to design and implement a class to maintain customer data in a
linked list. Because the search on a linked list is sequential and, therefore, can
be time consuming, design and implement the class customerBTreeType

so that this customer data can be stored in a binary search tree. The class

customerBTreeType must be derived from the class bSearchTreeType
as designed in this chapter.

14. (Video Store Program) Using classes to implement the video data, video
list data, customer data, and customer list data, as designed in this chapter
and in Programming Exercises 12 and 13, design and complete the program
to put the video store into operation.

15. Write the definition of the function insertBTree to recursively insert a
record into a B-tree. Also write a program to test various operations on a
B-tree.

16. Rewrite the definition of the function searchNode of the class B-tree so
that it uses a binary search to search the node. Also write a program to test
various operations on a B-tree.

1
1

Programming Exercises | 683

This page intentionally left blank

GRAPHS
IN THIS CHAPTER , YOU WILL :

. Learn about graphs

. Become familiar with the basic terminology of graph theory

. Discover how to represent graphs in computer memory

. Examine and implement various graph traversal algorithms

. Learn how to implement a shortest path algorithm

. Examine and implement the minimum spanning tree algorithm

. Explore topological sort

. Learn how to find Euler circuits in a graph

12C H A P T E R

In previous chapters, you learned various ways to represent and manipulate data. This
chapter discusses how to implement and manipulate graphs, which have numerous
applications in computer science.

Introduction
In 1736, the following problem was posed. In the town of Königsberg (now called
Kaliningrad), the river Pregel (Pregolya) flows around the island Kneiphof and then
divides into two. See Figure 12-1.

The river has four land areas (A, B, C, D), as shown in the figure. These land areas are
connected using seven bridges, as shown in Figure 12-1. The bridges are labeled a, b, c,
d, e, f, and g. The Königsberg bridge problem is as follows: Starting at one land area, is it
possible to walk across all the bridges exactly once and return to the starting land area?
In 1736, Euler represented the Königsberg bridge problem as a graph, as shown in
Figure 12-2, and answered the question in the negative. This marked (as recorded) the
birth of graph theory.

b

D

B

C

A

f
a

c d

e

g

FIGURE 12-2 Graph representation of the Königsberg bridge problem

B

C

D

a b

c
d

e

f

g

A
Kniephof

FIGURE 12-1 The Königsberg bridge problem

686 | Chapter 12: Graphs

Over the past 200 years, graph theory has been applied to a variety of applications. Graphs
are used to model electrical circuits, chemical compounds, highway maps, and so on.
They are also used in the analysis of electrical circuits, finding the shortest route, project
planning, linguistics, genetics, social science, and so forth. In this chapter, you learn about
graphs and their applications in computer science.

Graph Definitions and Notations
To facilitate and simplify our discussion, we borrow a few definitions and terminology
from set theory. Let X be a set. If a is an element of X, we write a ˛ X. (The symbol
‘‘˛’’ means ‘‘belongs to.’’) A set Y is called a subset of X if every element of Y is also an
element of X. If Y is a subset of X, we write Y ˝ X. (The symbol ‘‘˝’’ means ‘‘is a subset
of.’’) The intersection of sets A and B, written A ˙ B, is the set of all elements that are
in A and B; that is, A ˙ B ¼ {x | x ˛ A and x ˛ B}. (The symbol ‘‘˙’’ means
‘‘intersection.’’) The union of sets A and B, written A ¨ B, is the set of all elements that
are in A or in B; that is, A ¨ B ¼{x | x ˛ A or x ˛ B}. (The symbol ‘‘¨’’ means
‘‘union.’’) For sets A and B, the set A � B is the set of all ordered pairs of elements of
A and B; that is, A � B ¼ {(a, b) | a ˛ A, b ˛ B}. (The symbol ‘‘�’’ means ‘‘Cartesian
product.’’)

A graph G is a pair, G ¼ (V, E), where V is a finite nonempty set, called the set of
vertices of G and E � V � V . That is, the elements of E are pairs of elements of V. E is
called the set of edges of G. G is called trivial if it has only one vertex.

Let V(G) denote the set of vertices, and E(G) denote the set of edges of a graph G. If the
elements of E are ordered pairs,G is called a directed graph or digraph; otherwise,G is
called an undirected graph. In an undirected graph, the pairs (u, v) and (v, u) represent
the same edge.

Let G be a graph. A graph H is called a subgraph of G if V(H) ˝ V(G) and
E(H) ˝ E(G); that is, every vertex of H is a vertex of G, and every edge in H is an
edge in G.

A graph can be shown pictorially. The vertices are drawn as circles, and a label inside the
circle represents the vertex. In an undirected graph, the edges are drawn using lines. In a
directed graph, the edges are drawn using arrows.

1
2

Graph Definitions and Notations | 687

EXAMPLE 12-1

Figure 12-3 shows some examples of undirected graphs.

EXAMPLE 12-2

Figure 12-4 shows some examples of directed graphs.

For the graphs of Figure 12-4, we have

V(G1) = {1, 2, 3, 4, 5} E(G1) = {(1, 2), (1, 4), (2, 5), (3, 1), (3, 4), (4, 5)}

V(G2) = {0, 1, 2, 3, 4} E(G2) = {(0, 1), (0, 3), (1, 2), (1, 4), (2, 1), (2, 4), (4, 3)}

V(G3) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} E(G3) = {(0, 1), (0, 5), (1, 2), (1, 3), (1, 5), (2, 4), (4, 3),

(5, 6), (6, 8), (7, 3), (7, 8), (8, 10), (9, 4),
(9, 7), (9, 10)}

1 2

3 4

5

G1

0 1

3 4

2

G2

0 1 2

3

4

6

7

8

9

10

5

G3

FIGURE 12-4 Various directed graphs

LA NY

MiamiOmaha

Chicago

1

2 3

4 5 6

1 2

3 4

5

FIGURE 12-3 Various undirected graphs

688 | Chapter 12: Graphs

Let G be an undirected graph. Let u and v be two vertices in G. Then u and v are called
adjacent if there is an edge from one to the other; that is, (u, v) ˛ E. An edge incident on
a single vertex is called a loop. If two edges, e1 and e2, are associated with the same pair of
vertices {u, v}, then e1 and e2 are called parallel edges. A graph is called a simple graph

if it has no loops and no parallel edges. Let e ¼ (u, v) be an edge in G. We then say that
edge e is incident on the vertices u and v. The degree of u, written deg(u) or d(u), is the
number of edges incident with u. We make the convention that each loop on a vertex u
contributes 2 to the degree of u. u is called an even (odd) degree vertex if the degree of
u is even (odd). There is a path from u to v if there is a sequence of vertices u1, u2, . . ., un
such that u ¼ u1, un ¼ v and (ui, ui+ 1) is an edge for all i ¼ 1, 2, . . ., n - 1. Vertices u and v
are called connected if there is a path from u to v. A simple path is a path in which all
the vertices, except possibly the first and last vertices, are distinct. A cycle in G is a simple
path in which the first and last vertices are the same. G is called connected if there is a
path from any vertex to any other vertex. A maximal subset of connected vertices is called
a component of G.

Let G be a directed graph, and let u and v be two vertices in G. If there is an edge from u
to v, that is, (u, v) ˛ E, we say that u is adjacent to v and v is adjacent from u. The
definitions of the paths and cycles in G are similar to those for undirected graphs. G is
called strongly connected if any two vertices in G are connected.

Consider the directed graphs of Figure 12-4. In G1, 1-4-5 is a path from vertex 1 to
vertex 5. There are no cycles in G1. In G2, 1-2-1 is a cycle. In G3, 0-1-2-4-3 is a path
from vertex 0 to vertex 3; 1-5-6-8-10 is a path from vertex 1 to vertex 10. There are no
cycles in G3.

Graph Representation
To write programs that process and manipulate graphs, the graphs must be stored—that
is, represented—in computer memory. A graph can be represented (in computer
memory) in several ways. We now discuss two commonly used ways: adjacency matrices
and adjacency lists.

Adjacency Matrices
Let G be a graph with n vertices, where n > 0. Let V(G) ¼ {v1, v2, . . ., vn}. The
adjacency matrix AG is a two-dimensional n � n matrix such that the (i, j)th entry of AG

is 1 if there is an edge from vi to vj; otherwise, the (i, j)th entry is 0. That is,

AGði; jÞ ¼ 1 ifðvi; vjÞ 2 EðGÞ
0 otherwise

�

In an undirected graph, if (vi, vj) ˛ E(G), then (vj, vi) ˛ E(G), so AG(i, j) ¼ 1 ¼ AG(j, i).
It follows that the adjacency matrix of an undirected graph is symmetric.

1
2

Graph Representation | 689

EXAMPLE 12-3

Consider the directed graphs of Figure 12-4. The adjacency matrices of the directed
graphs G1 and G2 are as follows:

AG1
¼

0 1 0 1 0

0 0 0 0 1

1 0 0 1 0

0 0 0 0 1

0 0 0 0 0

2
66664

3
77775; AG2

¼

0 1 0 1 0

0 0 1 0 1

0 1 0 0 1

0 0 0 0 0

0 0 0 1 0

2
66664

3
77775:

Adjacency Lists
Let G be a graph with n vertices, where n> 0. Let V(G) ¼ {v1, v2, . . ., vn}. In the
adjacency list representation, corresponding to each vertex, v, there is a linked list such
that each node of the linked list contains the vertex, u, such that (v, u) ˛ E(G). Because
there are n nodes, we use an array, A, of size n, such that A[i] is a reference variable
pointing to the first node of the linked list containing the vertices to which vi is adjacent.
Clearly, each node has two components, say vertex and link. The component vertex
contains the index of the vertex adjacent to vertex i.

EXAMPLE 12-4

Consider the directed graphs of Figure 12-4. Figure 12-5 shows the adjacency list of the
directed graph G2.

1

1

4

3

4

2

3

[0]

[1]

[2]

[3]

[4]

FIGURE 12-5 Adjacency list of graph G2 of Figure 12-4

690 | Chapter 12: Graphs

Figure 12-6 shows the adjacency list of the directed graph G3.

Operations on Graphs
Now that you know how to represent graphs in computer memory, the next obvious
step is to learn the basic operations on a graph. The operations commonly performed on a
graph are as follows:

1. Create the graph. That is, store the graph in computer memory using a
particular graph representation.

2. Clear the graph. This operation makes the graph empty.

3. Determine whether the graph is empty.

4. Traverse the graph.

5. Print the graph.

We will add more operations on a graph when we discuss a specific application or a
particular graph later in this chapter.

How a graph is represented in computer memory depends on the specific application. For
illustration purposes, we use the adjacency list (linked list) representation of graphs. Therefore,
for each vertex v the vertices adjacent to v (in a directed graph, also called the immediate

successors) are stored in the linked list associated with v.

To manage the data in a linked list, we use the class unorderedLinkedList, discussed
in Chapter 5.

1
2

1 5

2

3

3

8

8

53

4

4

6

10

7 10

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[10]

[9]

[8]

FIGURE 12-6 Adjacency list of graph G3 of Figure 12-4

Operations on Graphs | 691

The labeling of the vertices of a graph depends on a specific application. If you are dealing
with the graph of cities, you could label the vertices by the names of the cities. However,
to write algorithms to manipulate a graph as well as to simplify the algorithm, there must
be some ordering to the vertices. That is, we must specify the first vertex, the second
vertex, and so on. Therefore, for simplicity, throughout this chapter we assume that the n
vertices of the graphs are numbered 0, 1, . . ., n - 1. Moreover, it follows that the class we
will design to implement the graph algorithm will not be a template.

Graphs as ADTs
In this section, we describe the class to implement graphs as an abstract data type (ADT)
and provide the definitions of the functions to implement the operations on a graph.

The following class defines a graph as an ADT:

//***
// Author: D.S. Malik
//
// class graphType
// This class specifies the basic operations to implement a graph.
//**

class graphType
{
public:

bool isEmpty() const;
//Function to determine whether the graph is empty.
//Postcondition: Returns true if the graph is empty;
// otherwise, returns false.

void createGraph();
//Function to create a graph.
//Postcondition: The graph is created using the
// adjacency list representation.

void clearGraph();
//Function to clear graph.
//Postcondition: The memory occupied by each vertex
// is deallocated.

void printGraph() const;
//Function to print graph.
//Postcondition: The graph is printed.

void depthFirstTraversal();
//Function to perform the depth first traversal of
//the entire graph.
//Postcondition: The vertices of the graph are printed
// using the depth first traversal algorithm.

692 | Chapter 12: Graphs

void dftAtVertex(int vertex);
//Function to perform the depth first traversal of
//the graph at a node specified by the parameter vertex.
//Postcondition: Starting at vertex, the vertices are
// printed using the depth first traversal algorithm.

void breadthFirstTraversal();
//Function to perform the breadth first traversal of
//the entire graph.
//Postcondition: The vertices of the graph are printed
// using the breadth first traversal algorithm.

graphType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked lists.

~graphType();
//Destructor
//The storage occupied by the vertices is deallocated.

protected:
int maxSize; //maximum number of vertices
int gSize; //current number of vertices
unorderedLinkedList<int> *graph; //array to create

//adjacency lists

private:
void dft(int v, bool visited[]);

//Function to perform the depth first traversal of
//the graph at a node specified by the parameter vertex.
//This function is used by the public member functions
//depthFirstTraversal and dftAtVertex.
//Postcondition: Starting at vertex, the vertices are
// printed using the depth first traversal algorithm.

};

We leave the UML class diagram of the class graphType as an exercise.

The definitions of the functions of the class graphType are discussed next.

A graph is empty if the number of vertices is 0—that is, if gSize is 0. Therefore, the
definition of the function isEmpty is as follows:

bool graphType::isEmpty() const
{

return (gSize == 0);
}

The definition of the function createGraph depends on how the data is input into
the program. For illustration purposes, we assume that the data to the program is input
from a file. The user is prompted for the input file. The data in the file appears in the
following form:

1
2

Graphs as ADTs | 693

5
0 2 4 ... -999
1 3 6 8 ... -999
...

The first line of input specifies the number of vertices in the graph. The first entry in the
remaining lines specifies the vertex, and all of the remaining entries in the line (except the
last) specify the vertices that are adjacent to the vertex. Each line ends with the number –999.

Using these conventions, the definition of the function createGraph is as follows:

void graphType::createGraph()
{

ifstream infile;
char fileName[50];

int vertex;
int adjacentVertex;

if (gSize != 0) //if the graph is not empty, make it empty
clearGraph();

cout << "Enter input file name: ";
cin >> fileName;
cout << endl;

infile.open(fileName);

if (!infile)
{

cout << "Cannot open input file." << endl;
return;

}

infile >> gSize; //get the number of vertices

for (int index = 0; index < gSize; index++)
{

infile >> vertex;
infile >> adjacentVertex;

while (adjacentVertex != -999)
{

graph[vertex].insertLast(adjacentVertex);
infile >> adjacentVertex;

} //end while
} // end for

infile.close();
} //end createGraph

The function clearGraph empties the graph by deallocating the storage occupied by
each linked list and then setting the number of vertices to 0.

694 | Chapter 12: Graphs

void graphType::clearGraph()
{

for (int index = 0; index < gSize; index++)
graph[index].destroyList();

gSize = 0;
} //end clearGraph

The definition of the function printGraph is given next:

void graphType::printGraph() const
{

for (int index = 0; index < gSize; index++)
{

cout << index << " ";
graph[index].print();
cout << endl;

}

cout << endl;
} //end printGraph

The definitions of the constructor and the destructor are as follows:

//Constructor
graphType::graphType(int size)
{

maxSize = size;
gSize = 0;
graph = new unorderedLinkedList<int>[size];

}

//Destructor
graphType::~graphType()
{

clearGraph();
}

Graph Traversals
Processing a graph requires the ability to traverse the graph. This section discusses the
graph traversal algorithms.

Traversing a graph is similar to traversing a binary tree, except that traversing a graph is a
bit more complicated. Now a binary tree has no cycles and starting at the root node we
can traverse the entire tree. On the other hand, a graph might have cycles and we might
not be able to traverse the entire graph from a single vertex (for example, if the graph is
not connected). Therefore, we must keep track of the vertices that have been visited. We
must also traverse the graph from each vertex (that has not been visited) of the graph. This
ensures that the entire graph is traversed.

1
2

Graph Traversals | 695

The two most common graph traversal algorithms are the depth-first traversal and
breadth-first traversal, which are described next. For simplicity, we assume that when
a vertex is visited, its index is output. Moreover, each vertex is visited only once. We use
the bool array visited to keep track of the visited vertices.

Depth-First Traversal
The depth-first traversal is similar to the preorder traversal of a binary tree. The general
algorithm is as follows:

for each vertex, v, in the graph
if v is not visited

start the depth first traversal at v

Consider the graphG3 of Figure 12-4. It is shown here again as Figure 12-7 for easy reference.

The depth-first ordering of the vertices of graph G3 in Figure 12-7 is as follows:

0 1 2 4 3 5 6 8 10 7 9

For the graph of Figure 12-7, the depth-first search starts at the vertex 0. After visiting all the
vertices that can be reached starting at the vertex 0, the depth-first search starts at the next
vertex that is not visited. There is a path from the vertex 0 to every other vertex except the
vertices 7 and 9. Therefore, when the depth-first search starts at the vertex 0, all the vertices
except 7 and 9 are visited before these vertices. After completing the depth-first search that
started at the vertex 0, the depth-first search starts at the vertex 7 and then at the vertex 9.
Note that there is no path from the vertex 7 to the vertex 9. Therefore, after completing the
depth-first search that started at the vertex 7, the depth-first search starts at the vertex 9.
The general algorithm to do a depth-first traversal at a given node, v, is as follows:

1. mark node v as visited

2. visit the node

3. for each vertex u adjacent to v
if u is not visited

start the depth first traversal at u

0 1 2

3

4

6

7

8

9

10

5

FIGURE 12-7 Directed graph G3

696 | Chapter 12: Graphs

Clearly, this is a recursive algorithm. We use a recursive function, dft, to implement this
algorithm. The vertex at which the depth-first traversal is to be started, and the bool

array visited, are passed as parameters to this function.

void graphType::dft(int v, bool visited[])
{

visited[v] = true;
cout << " " << v << " "; //visit the vertex

linkedListIterator<int> graphIt;

//for each vertex adjacent to v
for (graphIt = graph[v].begin(); graphIt != graph[v].end();

++graphIt)
{

int w = *graphIt;
if (!visited[w])

dft(w, visited);
} //end while

} //end dft

In the preceding code, note that the statement

linkedListIterator<int> graphIt;

declares graphIt to be an iterator. In the for loop, we use it to traverse a linked list
(adjacency list) to which the pointer graph[v] points. Next, let us look at the
statement

int w = *graphIt;

The expression *graphIt returns the label of the vertex, adjacent to the vertex v, to
which graphIt points.

Next, we give the definition of the function depthFirstTraversal to implement the
depth-first traversal of the graph.

void graphType::depthFirstTraversal()
{

bool *visited; //pointer to create the array to keep
//track of the visited vertices

visited = new bool[gSize];

for (int index = 0; index < gSize; index++)
visited[index] = false;

//For each vertex that is not visited, do a depth
//first traverssal

for (int index = 0; index < gSize; index++)
if (!visited[index])

dft(index,visited);
delete [] visited;

} //end depthFirstTraversal

1
2

Graph Traversals | 697

The function depthFirstTraversal performs a depth-first traversal of the entire graph.
The definition of the function dftAtVertex, which performs a depth-first traversal at a
given vertex, is as follows:

void graphType::dftAtVertex(int vertex)
{

bool *visited;

visited = new bool[gSize];

for (int index = 0; index < gSize; index++)
visited[index] = false;

dft(vertex, visited);

delete [] visited;
} // end dftAtVertex

Breadth-First Traversal
The breadth-first traversal of a graph is similar to traversing a binary tree level-by-level
(the nodes at each level are visited from left to right). All the nodes at any level, i, are
visited before visiting the nodes at level i + 1.

The breadth-first ordering of the vertices of the graph G3 in Figure 12-7 is as follows:

0 1 5 2 3 6 4 8 10 7 9

For the graph G3, we start the breadth traversal at vertex 0. After visiting the vertex 0, we
visit the vertices that are directly connected to it and are not visited, which are 1 and 5.
Next, we visit the vertices that are directly connected to 1 and are not visited, which are
2 and 3. After this, we visit the vertices that are directly connected to 5 and are not
visited, which is 6. After this, we visit the vertices that are directly connected to 2 and are
not visited, and so on.

As in the case of the depth-first traversal, because it might not be possible to traverse the
entire graph from a single vertex, the breadth-first traversal also traverses the graph from
each vertex that is not visited. Starting at the first vertex, the graph is traversed as much as
possible; we then go to the next vertex that has not been visited. To implement the
breadth-first search algorithm, we use a queue. The general algorithm is as follows:

1. for each vertex v in the graph
if v is not visited

add v to the queue //start the breadth first search at v

2. Mark v as visited

3. while the queue is not empty

3.1. Remove vertex u from the queue

3.2. Retrieve the vertices adjacent to u

698 | Chapter 12: Graphs

1
2

3.3. for each vertex w that is adjacent to u

if w is not visited

3.3.1. Add w to the queue

3.3.2. Mark w as visited

The following C++ function, breadthFirstTraversal, implements this algorithm:

void graphType::breadthFirstTraversal()
{

linkedQueueType<int> queue;

bool *visited;
visited = new bool[gSize];

for (int ind = 0; ind < gSize; ind++)
visited[ind] = false; //initialize the array

//visited to false

linkedListIterator<int> graphIt;

for (int index = 0; index < gSize; index++)
if (!visited[index])
{

queue.addQueue(index);
visited[index] = true;
cout << " " << index << " ";

while (!queue.isEmptyQueue())
{

int u = queue.front();
queue.deleteQueue();

for (graphIt = graph[u].begin();
graphIt != graph[u].end(); ++graphIt)

{
int w = *graphIt;
if (!visited[w])
{

queue.addQueue(w);
visited[w] = true;
cout << " " << w << " ";

}
}

} //end while
}

delete [] visited;
} //end breadthFirstTraversal

As we continue to discuss graph algorithms, we will be writing C++ functions to
implement specific algorithms, and so we will derive (using inheritance) new classes from
the class graphType.

Graph Traversals | 699

Shortest Path Algorithm
Graph theory has many applications. For example, we can use graphs to show how different
chemicals are related or to show airline routes. Graphs also be used to show the highway
structure of a city, state, or country. The edges connecting two vertices can be assigned a
nonnegative real number, called theweight of the edge. If the graph represents a highway
structure, the weight can represent the distance between two places or the travel time from
one place to another. Such graphs are called weighted graphs.

Let G be a weighted graph. Let u and v be two vertices in G, and let P be a path in G
from u to v. The weight of the path P is the sum of the weights of all the edges on the
path P, which is also called the weight of v from u via P.

LetG be a weighted graph representing a highway structure. Suppose that the weight of an
edge represents the travel time. For example, to plan monthly business trips, a salesperson
wants to find the shortest path (that is, the path with the smallest weight) from her or his
city to every other city in the graph. Many such problems exist in which we want to find
the shortest path from a given vertex, called the source, to every other vertex in the graph.

This section describes the shortest path algorithm, also called a greedy algorithm,
developed by Dijkstra.

Let G be a graph with n vertices, where n ‡ 0. Let V(G) ¼ {v1, v2, . . ., vn}. Let W be a
two-dimensional n � n matrix such that

W ði; jÞ ¼ wij ifðvi; vjÞ is an edge in G and wij is the weight of the edge ðvi; vjÞ
1 if there is no edge from vi to vj

�

The input to the program is the graph and the weight matrix associated with the graph.
To make inputting the data easier, we extend the definition of the class graphType
(using inheritance), and add the function createWeightedGraph to create the graph and
the weight matrix associated with the graph. Let us call this class weightedGraphType.
The functions to implement the shortest path algorithm will also be added to this class.

//***
// Author: D.S. Malik
//
// class weightedGraphType
// This class specifies the operations to find the weight of the
// shortest path from a given vertex to every other vertex in a
// graph.
//**

class weightedGraphType: public graphType
{
public:

void createWeightedGraph();
//Function to create the graph and the weight matrix.
//Postcondition: The graph using adjacency lists and
// its weight matrix is created.

700 | Chapter 12: Graphs

void shortestPath(int vertex);
//Function to determine the weight of a shortest path
//from vertex, that is, source, to every other vertex
//in the graph.
//Postcondition: The weight of the shortest path from vertex
// to every other vertex in the graph is determined.

void printShortestDistance(int vertex);
//Function to print the shortest weight from the vertex
//specified by the parameter vertex to every other vertex in
//the graph.
//Postcondition: The weight of the shortest path from vertex
// to every other vertex in the graph is printed.

weightedGraphType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked lists.
// weights is a two-dimensional array to store the weights
// of the edges.
// smallestWeight is an array to store the smallest weight
// from source to vertices.

~weightedGraphType();
//Destructor
//The storage occupied by the vertices and the arrays
//weights and smallestWeight is deallocated.

protected:
double **weights; //pointer to create weight matrix
double *smallestWeight; //pointer to create the array to store

//the smallest weight from source to vertices
};

We leave the UML class diagram of the class weightedGraphType and the inheritance
hierarchy as an exercise. The definition of the function createWeightedGraph is also
left as an exercise for you. Next, we describe the shortest path algorithm.

Shortest Path
Given a vertex, say vertex (that is, a source), this section describes the shortest path algorithm.
The general algorithm is as follows:

1. Initialize the array smallestWeight so that

smallestWeight[u] = weights[vertex, u]

2. Set smallestWeight[vertex] = 0.

3. Find the vertex v that is closest to vertex for which the shortest path
has not been determined.

4. Mark v as the (next) vertex for which the smallest weight is found.

1
2

Shortest Path Algorithm | 701

5. For each vertex w in G, such that the shortest path from vertex to w has
not been determined and an edge (v, w) exists, if the weight of the path
to w via v is smaller than its current weight, update the weight of w to
the weight of v + the weight of the edge (v, w).

Because there are n vertices, Steps 3 through 5 are repeated n - 1 times. Example 12-5
illustrates the shortest path algorithm. (We use the Boolean array weightFound to keep track
of the vertices for which the smallest weight from the source vertex has been found. If the
smallest weight for a vertex, from the source, has been found, then this vertex’s corresponding
entry in the array weightFound is set to true; otherwise the corresponding entry is false.)

EXAMPLE 12-5

Let G be the graph shown in Figure 12-8.

Suppose that the source vertex of G is 0. The graph shows the weight of each edge. After
Steps 1 and 2 execute, the resulting graph is as shown in Figure 12-9.

Iteration 1 of Steps 3 through 5: At Step 3, we select a vertex that is closest to the vertex 0
and for which the shortest path has not been found.We do this by finding a vertex in the array

0

1

2

3 4

16

12
2

3

7

5

4

3

5

10

FIGURE 12-8 Weighted graph G

0

1

2

3 4

16

12
2

3

7 4

3

5

w = 2 w = 3

w = 16

w = ∞

5

smallestWeight

weightFound

0

[0]

16

[1]

2

[3]

3

[4]

T
[0]

F
[1]

F
[2]

F
[3]

F
[4]

10

∞
[2]

FIGURE 12-9 Graph after Steps 1 and 2 execute

702 | Chapter 12: Graphs

smallestWeight that has the smallest weight and its corresponding entry in the array
weightFound is false. Therefore, in this iteration, we select the vertex 3. At Step 4, we
mark weightFound[3] as true. Next at Step 5, we consider vertices 1 and 4 because these
are the vertices for which there is an edge from the vertex 3 and the shortest path from 0 to
these vertices has not been found. We then check if the path from the vertex 0 to the vertices
1 and 4 via the vertex 3 can be improved. The weight of the path 0-3-1 from 0 to 1 is less
than the weight of the path 0-1. So we update smallestWeight[1] to 14. The weight of
the path 0-3-4, which is 2 + 7 = 9, is greater than the weight of the path 0-4, which is 3. So
we do not update the weight of the vertex 4. Figure 12-10 shows the resulting graph. (The
dotted arrow shows the shortest path from the source—that is, from 0—to the vertex.)

Iteration 2 of Steps 3 through 5: At Step 3, we select vertex 4 because this is the vertex in
the array smallestWeight that has the smallest weight and its corresponding entry in the
array weightFound is false. Next we execute Steps 4 and 5. At Step 4, we set
weightFound[4] to true. At Step 5, we consider vertices 1 and 2 because these are the
vertices for which there is an edge from the vertex 4 and the shortest path from 0 to these
vertices has not been found.We then check if the path from the vertex 0 to the vertices 1 and
2 via the vertex 4 can be improved. Clearly, the weight of the path 0-4-1, which is 13, is
smaller than the current weight of 1, which is 14. So we update smallestWeight[1].
Similarly, we update smallestWeight[2]. Figure 12-11 shows the resulting graph.

1
2

0

1

2

3 4

16

12
2

3

7 4

3

5

w = 2 w = 3

w = 14

5

smallestWeight

weightFound

0

[0]

14

[1] [2]

2

[3]

3

[4]

T
[0]

F
[1]

F
[2]

T
[3]

F
[4]

10 w = ∞

∞

FIGURE 12-10 Graph after the first iteration of Steps 3 to 5

0

1

2

3 4

16

12
2

3

7 4

3

5

w = 2 w = 3

w = 13

w = 7

5

smallestWeight

weightFound

0
[0]

13
[1]

7
[2]

2
[3]

3
[4]

T
[0]

F
[1]

F
[2]

T
[3]

T
[4]

10

FIGURE 12-11 Graph after the second iteration of Steps 3 to 5

Shortest Path Algorithm | 703

Iteration 3 of Steps 3 through 5: At Step 3, the vertex selected is 2. At Step 4, we set
weightFound[2] to true. Next at Step 5, we consider the vertex 1 because this is the
vertex for which there is an edge from the vertex 2 and the shortest path from 0 to this
vertex has not been found. We then check if the path from the vertex 0 to the vertex 1

via the vertex 2 can be improved. Clearly, the weight of the path 0-4-2-1, which is 10,
from 0 to 1 is smaller than the current weight of 1 (which is 13). So we update
smallestWeight[1]. Figure 12-12 shows the resulting graph.

Iteration 4 of Steps 3 through 5: At Step 3, the vertex 1 is selected and at Step 4,
weightFound[1] is set to true. In this iteration, the action of Step 5 is null because
the shortest path from the vertex 0 to every other vertex in the graph has been
determined. Figure 12-13 shows the final graph.

The following C++ function, shortestPath, implements the previous algorithm:

void weightedGraphType::shortestPath(int vertex)
{

for (int j = 0; j < gSize; j++)
smallestWeight[j] = weights[vertex][j];

0

1

2

3 4

16

12
2

3

7 4

3

5

w = 2 w = 3

w = 10

w = 7

5

smallestWeight

weightFound

0
[0]

10
[1]

7
[2]

2
[3]

3
[4]

T
[0]

T
[1]

T
[2]

T
[3]

T
[4]

10

FIGURE 12-13 Graph after the fourth iteration of Steps 3 through 5

0

1

2

3 4

16

12
2

3

7 4

3

5

w = 2 w = 3

w = 10

w = 7

5

smallestWeight

weightFound

0
[0]

10
[1]

7
[2]

2
[3]

3
[4]

T
[0]

F
[1]

T
[2]

T
[3]

T
[4]

10

FIGURE 12-12 Graph after the third iteration of Steps 3 to 5

704 | Chapter 12: Graphs

1
2

bool *weightFound;
weightFound = new bool[gSize];

for (int j = 0; j < gSize; j++)
weightFound[j] = false;

weightFound[vertex] = true;
smallestWeight[vertex] = 0;

for (int i = 0; i < gSize - 1; i++)
{

double minWeight = DBL_MAX;
int v;

for (int j = 0; j < gSize; j++)
if (!weightFound[j])

if (smallestWeight[j] < minWeight)
{

v = j;
minWeight = smallestWeight[v];

}

weightFound[v] = true;

for (int j = 0; j < gSize; j++)
if (!weightFound[j])

if (minWeight + weights[v][j] < smallestWeight[j])
smallestWeight[j] = minWeight + weights[v][j];

} //end for
} //end shortestPath

Note that the function shortestPath records only the weight of the shortest path from
the source to a vertex. We leave it for you to modify this function so that the shortest
path from the source to a vertex is also recorded. Moreover, this function uses the named
constant DBL_MAX, which is defined in the header file cfloat.

Let G be a graph with n vertices. In the function shortestPath, the first for loop
executes n times and the second for loop also executes n times. The third for loop
executes n – 1 times. The body of the third for loop contains two for loops, in sequence,
and each of these for loops executes n times. Thus, the total number of iterations of the
for loops is n + n + (n – 1)(n + n) ¼ 2n + 2n(n – 1) ¼ O(n2). Hence, the function
shortestPath, that is, the shortest path algorithm is of order O(n2).

The definitions of the function printShortestDistance and the constructor and
destructor are as follows:

void weightedGraphType::printShortestDistance(int vertex)
{

cout << "Source Vertex: " << vertex << endl;
cout << "Shortest distance from source to each vertex."

<< endl;
cout << "Vertex Shortest_Distance" << endl;

Shortest Path Algorithm | 705

for (int j = 0; j < gSize; j++)
cout << setw(4) << j << setw(12) << smallestWeight[j]

<< endl;
cout << endl;

} //end printShortestDistance

//Constructor
weightedGraphType::weightedGraphType(int size)

:graphType(size)
{

weights = new double*[size];

for (int i = 0; i < size; i++)
weights[i] = new double[size];

smallestWeight = new double[size];
}

//Destructor
weightedGraphType::~weightedGraphType()
{

for (int i = 0; i < gSize; i++)
delete [] weights[i];

delete [] weights;
delete smallestWeight;

}

Minimum Spanning Tree
Consider the graph of Figure 12-14, which represents the airline connections of a
company, between seven cities. The number on each edge represents some cost factor
of maintaining the connection between cities.

0

1
2

3

4

5
6

6
5

10

2

8

7
4 5

2

FIGURE 12-14 Airline connections between cities and the cost factor of maintaining the connections

706 | Chapter 12: Graphs

1
2

Due to financial hardship, the company needs to shut down the maximum number of
connections and still be able to fly (may be not directly) from one city to another. The
graphs of Figure 12-15(a), (b), and (c) show three different solutions.

The total cost factor of maintaining the remaining connections in Figure 12-15(a) is 33, in
Figure 12-15(b) it is 28, and in Figure 12-15(c) it is 25. Out of these three solutions, obviously,
the desired solution is the one shown by the graph of Figure 12-15(c) because it gives the lowest
cost factor. Graphs of Figure 12-15 are called spanning trees of the graph of Figure 12-14.

Let us note the following from the graphs of Figure 12-15. Each of the graphs of Figure 12-15
is a subgraph of the graph of Figure 12-14, and there is a unique path from a node to any
other node. Such graphs are called trees. There are many other situations, where given a
weighted graph, we need to determine a graph such as in Figure 12-15 with the smallest
weight. In this section, we give an algorithm to determine such graphs. However, first
we introduce some terminology.

A (free) tree T is a simple graph such that if u and v are two vertices in T, there is a unique
path from u to v. A tree in which a particular vertex is designated as a root is called a rooted
tree. If a weight is assigned to the edges in T, T is called aweighted tree. If T is a weighted
tree, the weight of T, denoted by W(T), is the sum of the weights of all the edges in T.

A tree T is called a spanning tree of graphG if T is a subgraph ofG such that V(T)¼ V(G),
that is, all the vertices of G are in T.

Suppose G denotes the graph of Figure 12-14. Then the graphs of Figure 12-15 show
three spanning trees of G. Let us note the following theorem.

Theorem 12-1: A graph G has a spanning tree if and only if G is connected.

From this theorem, it follows that to determine a spanning tree of a graph, the graph must
be connected.

Definition: Let G be a weighted graph. A minimum (minimal) spanning tree of G
is a spanning tree with the minimum weight.

0

1
2

3

4

5
6

5

10

2 4 5

2

0

1
2

3

4

5
6

6
5

8

7
5

2

0

1
2

3

4

5
6

5

2 74
5

2

(a) (b) (c)

FIGURE 12-15 Possible solutions to the graph of Figure 12-14

Minimum Spanning Tree | 707

There are two well-known algorithms, Prim’s algorithm and Kruskal’s algorithm, for finding
a minimum spanning tree of a graph. This section discusses Prim’s algorithm to find a
minimum spanning tree. If interested, you can find Kruskal’s algorithm in the discrete
structures book or a data structures book listed in Appendix H.

Prim’s algorithm builds the tree iteratively by adding edges until a minimum spanning
tree is obtained. We start with a designated vertex, which we call the source vertex. At
each iteration, a new edge that does not form a cycle is added to the tree.

LetG be a weighted graph such thatV(G)¼ {v0, v1,. . .,vn-1}, where n, the number of vertices,
is nonnegative. Let v0 be the source vertex. Let T be the partially built tree. Initially V(T)
contains the source vertex and E(T) is empty. At the next iteration, a new vertex that is not in
V(T) is added toV(T), such that an edge exists from a vertex in T to the new vertex so that the
corresponding edge has the smallest weight. The corresponding edge is added to E(T).

The general form of Prim’s algorithm is as follows. (Let n be the number of vertices in G.)

1. Set V(T) ¼ {source}

2. Set E(T) ¼ empty

3. for i = 1 to n

3.1. minWeight = infinity;

3.2. for j = 1 to n
if vj is in V(T)

for k = 1 to n
if vk is not in T and weight[vj, vk] < minWeight
{

endVertex = vk;
edge = (vj, vk);
minWeight = weight[vj, vk];

}

3.3. V(T) = V(T) ¨ {endVertex};

3.4. E(T) = E(T) ¨ {edge};

Let us illustrate Prim’s algorithm using the graph G of Figure 12-16 (which is same as the
graph of Figure 12-14).

0

1
2

3

4

5
6

6 5

10

2

8

7
4 5

2

FIGURE 12-16 Weighted graph G

708 | Chapter 12: Graphs

Let N denote the set of vertices of G that are not in T. Suppose that the source vertex is
0. Figure 12-17 shows how Prim’s algorithm works.

After Steps 1 and 2 execute, V(T), E(T), and N are as shown in Figure 12-17(a). Step 3
checks the following edges: (0,1), (0,2), and (0,3). The weight of the edge (0,1) is 6, the
weight of the edge (0,2) is 5, and the weight of the edge (0,3) is 2. Clearly, the edge (0,3)
has the smallest weight; see Figure 12-17(b). Therefore, vertex 3 is added to V(T) and the
edge (0,3) is added to E(T). Figure 12-17(b) shows the resulting graph, V(T), E(T), andN.
(The dotted line shows the edge in T.)

1
2

0

1
2

3

4

5
6

6 5

10

2
8

74 5

2 V (T) = {0}
E(T) = φ
N = {1,2,3,4,5,6}

V (T) = {0,3}
E(T) = {(0,3)}
N = {1,2,4,5,6}

V (T) = {0,1,2,3,6}
E(T) = {(0,3),(0,2),
 (2,6),(6,1)}
N = {4,5}

V (T) = {0,1,2,3,4,5,6}
E(T) = {(0,3),(0,2),(2,6),
 (6,1),(1,4),(2,5)}
N = φ

V (T) = {0,1,2,3,4,6}
E(T) = {(0,3),(0,2),(2,6),
 (6,1),(1,4)}
N = {5}

V (T) = {0,2,3,6}
E(T) = {(0,3),(0,2),
 (2,6)}
N = {1,4,5}

V (T) = {0,2,3}
E(T) = {(0,3),(0,2)}
N = {1,4,5,6}

0

1
2

3

4

5
6

6 5

10

2
8

74 5

2

(a) (b)

(c) (d)

0

1
2

3

4

5
6

6 5

10

2
8

74 5

2

0

1
2

3

4

5
6

6 5

10

2
8

74 5

2

0

1
2

3

4

5
6

6 5

10

2
8

7
4 5

2

(e (f))
0

1
2

3

4

5
6

6 5

10

2
8

7
4 5

2

(g)

0

1
2

3

4

5
6

6 5

10

2
8

7
4 5

2

FIGURE 12-17 Graph G, V(T), E(T), and N after Steps 1 and 2 execute

Minimum Spanning Tree | 709

Next, Step 3 checks the following edges: (0,1), (0,2), and (3,4). The weight of the edge
(0,1) is 6, the weight of the edge (0,2) is 5, and the weight of the edge (3,4) is 8. Clearly,
the edge (0,2) has the smallest weight. Therefore, vertex 2 is added to V(T) and the edge
(0,2) is added to E(T). Figure 12-17(c) shows the resulting graph, V(T), E(T), and N.

At the next iteration, Step 3 checks the following edges: (0,1), (2,5), (2,6), and (3,4). The
weight of the edge (0,1) is 6, the weight of the edge (2,5) is 7, the weight of the edge (2,6)
is 5, and the weight of the edge (3,4) is 8. Clearly, the edge (2,6) has the smallest weight.
Therefore, vertex 6 is added to V(T) and the edge (2,6) is added to E(T). Figure 12-17(d)
shows the resulting graph, V(T), E(T), and N. (The dotted lines show the edges in T.)

At the next iteration, Step 3 checks the following edges: (0,1), (2,5), (3,4), and (6,1). The
weight of the edge (0,1) is 6, the weight of the edge (2,5) is 7, the weight of the edge (3,4)
is 8, and the weight of the edge (6,1) is 4. Clearly, the edge (6,1) has the smallest weight.
Therefore, vertex 1 is added to V(T) and the edge (6,1) is added to E(T). Figure 12-17(e)
shows the resulting graph, V(T), E(T), and N. (The dotted lines show the edges in T.)

At the next iteration, Step 3 checks the following edges: (1,4), (2,5), and (3,4). The
weight of the edge (1,4) is 2, the weight of the edge (2,5) is 7, and the weight of the edge
(3,4) is 8. Clearly, the edge (1,4) has the smallest weight. Therefore, vertex 4 is added to
V(T) and the edge (1,4) is added to E(T). Figure 12-17(f) shows the resulting graph,
V(T), E(T), and N. (The dotted lines show the edges in T.)

At the next iteration, Step 3 checks the following edges: (2,5) and (4,5). The weight of
the edge (2,5) is 7 and the weight of the edge (4,5) is 10. Clearly, the edge (2,5) has the
smallest weight. Therefore, vertex 5 is added to V(T) and the edge (2,5) is added to E(T).
Figure 12-17(g) shows the resulting graph, V(T), E(T), and N. (The dotted lines show the
edges in T.)

In Figure 12-17(g), the dotted lines show a minimum spanning tree of G of weight 25.

Before we give the definition of the function to implement Prim’s algorithm, let us first
define a spanning tree as an ADT.

Let mstv be a bool array such that mstv[j] is true if the vertex vi is in T, and false
otherwise. Let edges be an array such that edges[j] = k, if there is an edge connecting
vertices vj and vk. Suppose that the edge (vi, vj) is in the minimum spanning
tree. Let edgeWeights be an array such that edgeWeights[j] is the weight of the
edge (vi, vj).

Using these conventions, the following class defines a spanning tree as an ADT:

//***
// Author: D.S. Malik
//
// class msTreeType
// This class specifies the operations to find a minimum
// spanning tree in a graph.
//**

710 | Chapter 12: Graphs

class msTreeType: public graphType
{
public:

void createSpanningGraph();
//Function to create the graph and the weight matrix.
//Postcondition: The graph using adjacency lists and
// its weight matrix is created.

void minimumSpanning(int sVertex);
//Function to create a minimum spanning tree with
//root as sVertex.
// Postcondition: A minimum spanning tree is created.
// The weight of the edges is also saved in the array
// edgeWeights.

void printTreeAndWeight();
//Function to output the edges of the minimum spanning tree
//and the weight of the minimum spanning tree.
//Postcondition: The edges of a minimum spanning tree
// and their weights are printed.

msTreeType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked lists.
// weights is a two-dimensional array to store the weights
// of the edges.
// edges is an array to store the edges of a minimum
// spanning tree.
// edgeWeights is an array to store the weights of the
// edges of a minimum spanning tree.

~msTreeType();
//Destructor
//The storage occupied by the vertices and the arrays
//weights, edges, and edgeWeights is deallocated.

protected:
int source;
double **weights;
int *edges;
double *edgeWeights;

};

We leave the UML class diagram of the class msTreeType and the inheritance hierarchy
as an exercise. The definition of the function createSpanningGraph is also left as
an exercise for you. This function creates the graph and the weight matrix associated
with the graph.

The following C++ function, minimumSpanning, implements Prim’s algorithm, as
described previously:

1
2

Minimum Spanning Tree | 711

void msTreeType::minimumSpanning(int sVertex)
{

int startVertex, endVertex;
double minWeight;

source = sVertex;

bool *mstv;
mstv = new bool[gSize];

for (int j = 0; j < gSize; j++)
{

mstv[j] = false;
edges[j] = source;
edgeWeights[j] = weights[source][j];

}

mstv[source] = true;
edgeWeights[source] = 0;

for (int i = 0; i < gSize - 1; i++)
{

minWeight = DBL_MAX;

for (int j = 0; j < gSize; j++)
if (mstv[j])

for (int k = 0; k < gSize; k++)
if (!mstv[k] && weights[j][k] < minWeight)
{

endVertex = k;
startVertex = j;
minWeight = weights[j][k];

}

mstv[endVertex] = true;
edges[endVertex] = startVertex;
edgeWeights[endVertex] = minWeight;

} //end for
} //end minimumSpanning

The definition of the function minimumSpanning contains three nested for loops.
Therefore, in the worst case, Prim’s algorithm given in this section is of the order
O(n3). It is possible to design Prim’s algorithm so that it is of the order O(n2); Program-
ming Exercise 5 at the end of this chapter asks you to do this.

The definition of the function printTreeAndWeight is as follows:

void msTreeType::printTreeAndWeight()
{

double treeWeight = 0;

cout << "Source Vertex: " << source << endl;
cout << "Edges Weight" << endl;

712 | Chapter 12: Graphs

for (int j = 0; j < gSize; j++)
{

if (edges[j] != j)
{

treeWeight = treeWeight + edgeWeights[j];
cout << "("<<edges[j] << ", " << j << ") "

<< edgeWeights[j] << endl;
}

}

cout << endl;
cout << "Minimum spanning Tree Weight: "

<< treeWeight << endl;
} //end printTreeAndWeight

The definitions of the constructor and the destructor are as follows:

msTreeType::msTreeType(int size)
:graphType(size)

{
weights = new double*[size];

for (int i = 0; i < size; i++)
weights[i] = new double[size];

edges = new int[size];

edgeWeights = new double[size];
}

//Destructor
msTreeType::~msTreeType()
{

for (int i = 0; i < gSize; i++)
delete [] weights[i];

delete [] weights;
delete [] edges;
delete edgeWeights;

}

Topological Order
In college, before taking a particular course, students, usually, must take all its prerequisite
courses, if any. For example, before taking the Programming II course, the student must
take the Programming I course. However, certain courses can be taken independent of
each other. The courses within a department can be represented as a directed graph. A
directed edge from, say vertex u to vertex v means the course represented by the vertex
u is a prerequisite of the course represented by the vertex v. It would be helpful for
the students to know, before starting a major, the sequence in which they can take the
courses so that before taking a course they take all its prerequisite courses and fulfill the

1
2

Topological Order | 713

graduation requirements on time. In this section, we describe an algorithm that can be
used to output the vertices of a directed graph in such a sequence. Let us first introduce
some terminology.

Let G be a directed graph and V(G) ¼ {v1, v2, . . ., vn}, where n ‡ 0. A topological

ordering of V(G) is a linear ordering vi1, vi2, . . ., vin of the vertices such that, if vij is a
predecessor of vik, j 6¼ k, 1 � j � n, 1 � k � n, then vij precedes vik, that is, j < k in this
linear ordering.

In this section, we describe an algorithm, topological order, which outputs the
vertices of a directed graph in topological order. We assume that the graph has no
cycles. We leave it as an exercise for you to modify the algorithm for the graphs that
have cycles.

Because the graph has no cycles, the following is true:

• There exists a vertex v in G such that v has no successor.

• There exists a vertex u in G such that u has no predecessor.

Suppose that the array topologicalOrder (of size n, the number of vertices) is used to
store the vertices of G in topological order. Thus, if a vertex, say u, is a successor of the
vertex v and topologicalOrder[j] = v and topologicalOrder[k] = u, then j < k.

The topological sort algorithm can be implemented either using the depth-first traversal or
the breadth-first traversal. This section discusses how to implement topological ordering
using the breadth-first traversal. Programming Exercise 7 at the end of this chapter
describes how to implement the topological sort using the depth-first traversal.

We extend the definition of the class graphType (using inheritance) to implement the
breadth-first topological ordering algorithm. Let us call this class topologicalOrderType.
Next, we give the definition of the class that includes the functions to implement the
topological ordering algorithm.

//***
// Author: D.S. Malik
//
// class topologicalOrderType
// This class specifies the operations to find a topological
// ordering of a graph.
//**

class topologicalOrderType: public graphType
{
public:

void bfTopOrder();
//Function to perform breadth first topological ordering of
//a graph.
//Postcondition: The vertices are output in a breadth first
//topological order.

714 | Chapter 12: Graphs

topologicalOrderType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked lists.

};

Next, we discuss how to implement the function bfTopOrder.

Breadth-First Topological Ordering
Recall that the breadth-first traversal algorithm is similar to traversing a binary tree
level-by-level, and so the root node (which has no predecessor) is visited first. There-
fore, in the breadth-first topological ordering, we first find a vertex that has no
predecessor vertex and place it first in the topological ordering. We next find the
vertex, say v, all of whose predecessors have been placed in the topological ordering
and place v next in the topological ordering. To keep track of the number of vertices of
a vertex, we use the array predCount. Initially, predCount[j] is the number of
predecessors of the vertex vj. The queue used to guide the breadth-first traversal is
initialized to those vertices vk such that predCount[k] is 0. In essence, the general
algorithm is as follows:

1. Create the array predCount and initialize it so that predCount[i] is
the number of predecessors of the vertex vi.

2. Initialize the queue, say queue, to all those vertices vk so that
predCount[k] is 0. (Clearly, queue is not empty because the graph has
no cycles.)

3. while the queue is not empty

3.1. Remove the front element, u, of the queue.

3.2. Put u in the next available position, say
topologicalOrder[topIndex], and increment topIndex.

3.3. For all the immediate successors w of u,

3.3.1. Decrement the predecessor count of w by 1.

3.3.2. if the predecessor count of w is 0, add w to queue.

The graph G3 of Figure 12-7 has no cycles. The vertices of G3 in breadth-first topological
ordering are as follows:

Breadth First Topological order: 0 9 1 7 2 5 4 6 3 8 10

Next, we illustrate the breadth-first topological ordering of the graph G3.

1
2

Topological Order | 715

After Steps 1 and 2 execute, the arrays predCount, topologicalOrder, and queue are as
shown in Figure 12-18. (Notice that for simplicity, we show only the elements of the queue.)

Step 3 executes as long as the queue is nonempty.

Iteration 1 of Step 3: After Step 3.1 executes, the value of u is 0. Step 3.2 stores the value of
u, which is 0, in the next available position in the array topologicalOrder. Notice that 0 is
stored at position 0 in this array. Step 3.3 reduces the predecessor count of all the successors
of 0 by 1, and if the predecessor count of any successor node of 0 reduces to 0, that node is
pushed into queue. The successor nodes of the node 0 are the nodes 1 and 5. The
predecessor count of the node 1 reduces to 0, and the predecessor count of the node 5

reduces to 1. The node 1 is pushed into queue. After the first iteration of Step 3, the arrays
predCount, topologicalOrder, and queue are as shown in Figure 12-19.

Iteration 2 of Step 3: The queue is nonempty. After Step 3.1 executes, the value of u is 9.
Step 3.2 stores the value of u, which is 9, in the next available position in the array
topologicalOrder. Notice that 9 is stored at position 1 in this array. Step 3.3 reduces the

0 1 2

3

4

6

7

8

9

10

5

predCount

0
[0]

0
[1]

1
[2]

3
[3]

2
[4]

1
[5]

1
[6]

1
[7]

2
[8]

0
[9]

2
[10]

topologicalOrder

0
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10]

queue

9, 1

u 0

FIGURE 12-19 Arrays predCount, topologicalOrder, and queue after the first iteration of Step 3

0 1 2

3

4

6

7

8

9

10

5

predCount

0
[0]

1
[1]

1
[2]

3
[3]

2
[4]

2
[5]

1
[6]

1
[7]

2
[8]

0
[9]

2
[10]

topologicalOrder
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10]

queue

0, 9

FIGURE 12-18 Arrays predCount, topologicalOrder, and queue after Steps 1 and 2 execute

716 | Chapter 12: Graphs

predecessor count of all the successors of 9 by 1, and if the predecessor count of any successor
node of 9 reduces to 0, that node is pushed into queue. The successor nodes of the node 9

are the nodes 4, 7, and 10. The predecessor count of the node 7 reduces to 0 and the
predecessor count of the nodes 4 and 10 reduces to 1. The node 7 is pushed into queue.
After the second iteration of Step 3, the arrays predCount, topologicalOrder, and
queue are as shown in Figure 12-20.

Iteration 3 of Step 3: The queue is nonempty. After Step 3.1 executes, the value of u
is 1. Step 3.2 stores the value of u, which is 1, in the next available position in the array
topologicalOrder. Notice that 1 is stored at position 2 in this array. Step 3.3 reduces
the predecessor count of all the successors of 1 by 1 and if the predecessor count of any
successor node of 1 reduces to 0, that node is pushed into queue. The successor nodes of
the node 1 are the nodes 2, 3, and 5. The predecessor count of the nodes 2 and 5 reduces
to 0 and the predecessor count of the node 3 reduces to 2. The nodes 2 and 5, in this
order, are pushed into the queue. After the third iteration of Step 3, the arrays
predCount, topologicalOrder, and queue are as shown in Figure 12-21.

1
2

0 1 2

3

4

6

7

8

9

10

5

predCount

0
[0]

0
[1]

1
[2]

3
[3]

1
[4]

1
[5]

1
[6]

0
[7]

2
[8]

0
[9]

1
[10]

topologicalOrder

0
[0]

9
[1] [2] [3] [4] [5] [6] [7] [8] [9][10]

queue

1, 7

u 9

FIGURE 12-20 Arrays predCount, topologicalOrder, and queue after the second iteration
of Step 3

0 1 2

3

4

6

7

8

9

10

5

predCount

0
[0]

0
[1]

0
[2]

2
[3]

1
[4]

0
[5]

1
[6]

0
[7]

2
[8]

0
[9]

1
[10]

topologicalOrder

0
[0]

9
[1]

1
[2] [3] [4] [5] [6] [7] [8] [9][10]

queue

7, 2, 5

u 1

FIGURE 12-21 ArrayspredCount,topologicalOrder, andqueue after the third iteration of Step3

Topological Order | 717

If you repeat Step 3 eight more times, the arrays predCount, topologicalOrder, and
queue are as shown in Figure 12-22.

In Figure 12-22, the array topologicalOrder shows the breadth-first topological
ordering of the nodes of the graph G3.

The following C++ function implements this breadth-first topological ordering algorithm:

void topologicalOrderType::bfTopOrder()
{

linkedQueueType<int> queue;

int *topologicalOrder; //pointer to the array to store
//breadth first topological ordering

topologicalOrder = new int[gSize];

int topIndex = 0;

linkedListIterator<int> graphIt; //iterator to traverse a
//linked list

int *predCount; //pointer to the array to store the
//predecessor count of a vertex.

predCount = new int[gSize];

for (int ind = 0; ind < gSize; ind++)
predCount[ind] = 0;

//Determine the predecessor count of all the vertices.
for (int ind = 0; ind < gSize; ind++)
{

for (graphIt = graph[ind].begin();
graphIt != graph[ind].end(); ++graphIt)

{
int w = *graphIt;
predCount[w]++;

}
}

0 1 2

3

4

6

7

8

9

10

5

predCount

0
[0]

0
[1]

0
[2]

0
[3]

0
[4]

0
[5]

0
[6]

0
[7]

0
[8]

0
[9]

0
[10]

topologicalOrder

0
[0]

9
[1]

1
[2]

7
[3]

2
[4]

5
[5]

4
[6]

6
[7]

3
[8]

8
[9]

10
[10]

queue

FIGURE 12-22 Arrays predCount, topologicalOrder, and queue after Step 3 executes

718 | Chapter 12: Graphs

//Initialize queue: If the predecessor count of
//vertex is 0, put this node into the queue.

for (int ind = 0; ind < gSize; ind++)
if (predCount[ind] == 0)

queue.addQueue(ind);

while (!queue.isEmptyQueue())
{

int u = queue.front();
queue.deleteQueue();
topologicalOrder[topIndex++] = u;

//Reduce the predecessor count of all the successors
//of u by 1. If the predecessor count of a vertex
//becomes 0, put this vertex into the queue.

for (graphIt = graph[u].begin();
graphIt != graph[u].end(); ++graphIt)

{
int w = *graphIt;
predCount[w]--;
if (predCount[w] == 0)

queue.addQueue(w);
}

}//end while

//output the vertices in breadth first topological order
for (int ind = 0; ind < gSize; ind++)

cout << topologicalOrder[ind] << " ";

cout << endl;

delete [] topologicalOrder;
delete [] predCount;

}//bfTopOrder

We leave the definition of the constructor as an exercise. (See Programming Exercise 6 at
the end of this chapter.)

Euler Circuits
Let us consider the Königsberg bridge problem stated at the beginning of the chapter.
The problem is to determine whether it is possible to take a walk that crosses each bridge
exactly once before returning to the starting point; see Figure 12-1. As remarked earlier,
Euler converted this problem into a graph theory problem as follows: Each of the islands
A, B, C, and D is considered as a vertex of a graph and the bridges are considered as
edges, as shown in Figure 12-2. Now the problem reduces to finding a circuit in the
graph of Figure 12-2, such that it contains all the edges. In this section, we further
describe properties of graphs, which will help us answer this question.

1
2

Euler Circuits | 719

Definition: A circuit is a path of nonzero length from a vertex u to uwith no repeated edges.

Definition: A circuit in a graph that includes all the edges of the graph is called an Euler

circuit.

Definition: A graph G is said to be Eulerian if either G is a trivial graph or G has an
Euler circuit.

Notice that the graph of Figure 12-2 is a connected graph and this graph has odd degree
vertices as well as even degree vertices.

Let us consider a connected graph with more than one vertex such that every vertex has
odd degree. For example, consider the graph of Figure 12-23. This is a connected graph
and every vertex of this graph is odd degree. This graph has no circuit and so has no
circuit that contains all the edges.

Next consider the connected graph G of Figure 12-24 such that every vertex has even
degree.

The graph of Figure 12-24 has an Euler circuit. For example, (0, e1, 1, e2, 2, e3, 3, e4, 5,
e5, 1, e6, 3, e7, 4, e8, 0) is an Euler circuit in the graph of Figure 12-24.

The following theorems give necessary and sufficient conditions for a connected graph to
have an Euler circuit.

0 1

2

3

FIGURE 12-23 A graph with all vertices of odd degree

1

3

2

4

0

5

e1

e5

e4

e3

e6

e2

e7

e8

FIGURE 12-24 A graph with all vertices of even degree

720 | Chapter 12: Graphs

1
2

Theorem 12-2: If a connected graph G is Eulerian, then every vertex of G has even
degree.

Theorem 12-3: Let G be a connected graph such that every vertex of G is of even
degree. Then G has an Euler circuit.

We can effectively use this theorem to determine whether a connected graph G has an
Euler circuit by checking whether all of its vertices are of even degree.

Let us again consider the Königsberg bridge problem. Notice that the graph correspond-
ing to this problem is a connected graph but has vertices of odd degree; see Figure 12-2.
Hence, by Theorem 12-2, the graph of Figure 12-2 has no Euler circuit. In other words,
starting at one land area, it is not possible to walk across all the bridges exactly once and
return to the starting land area.

After 1736, two additional bridges have been constructed on the Pregel river—one is
between the regions B and C and the other is between A and D. The graph with the
additional two bridges is shown in Figure 12-25.

By Theorem 12-3, every connected graph with only even degree vertices has an Euler
circuit. Next, we describe an algorithm, known as Fleury’s algorithm, which can be used
to construct an Euler circuit in a connected graph with vertices of even degrees.

Fleury’s Algorithm

Step 1. Choose a vertex v as the starting vertex for the circuit and choose an edge e with
v as one of the end vertices.

Step 2. If the other end vertex u of the edge e is also v, go to Step 3. Otherwise, choose
an edge e1 different from e with u as one of the end vertices. If the other vertex u1 of e1 is
v, go to Step 3; otherwise, choose an edge e2 different from e and e1 with u1 as one of the
end vertices and repeat Step 2.

Step 3. If the circuit T1 obtained in Step 2 contains all the edges, then stop. Otherwise,
choose an edge ej different from the edges of T1 such that one of the end vertices of ej,
say, w is a member of the circuit T1.

D

B

C

A

FIGURE 12-25 Graph of the Königsberg bridge problem with two additional bridges

Euler Circuits | 721

Step 4. Construct a circuit T2 with starting vertex w, as in Steps 1 and 2, such that all the
edges of T2 are different from the edges in the circuit T1.

Step 5. Construct the circuit T3 by inserting the circuit T2 at w of the circuit T1. Now go
to Step 3 and repeat Step 3 with the circuit T3.

Next, we illustrate how Fleury’s algorithm works. Consider the graph of Figure 12-26.

Let us apply Fleury’s algorithm to find an Eulerian circuit.

First, select vertex 0 and form the circuit: T1: (0, e1, 1, e3, 2, e2, 0).

Next, select vertex 1 and edge e4. Construct the circuit: C1: (1, e4, 2, e6, 6, e7, 3, e5, 1).

Then form the circuit: T2: (0, e1, C1, e3, 2, e2, 0).

Circuit T2 does not contain all the edges of the given graph. Now choose vertex 6 and
edge e8 and form the circuit: C2: (6, e8, 6).

Now construct the circuit: T3: (0, e1, 1, e4, 2, e6, C2, e7, 3, e5, 1, e3, 2, e2, 0).

This circuit also does not contain all the edges. Select now vertex 3 and edge e11. Form
the circuit: C3: (3, e11, 4, e10, 5, e9, 3).

Next, construct the circuit: T4: (0, e1,1, e4, 2, e6, C2, e7, C3, e5, 1, e3, 2, e2, 0).

Circuit T4 contains all the vertices and all the edges of the given graph and, hence, it is an
Euler circuit.

We leave it as an exercise for you to write a program to implement Fleury’s algorithm.
(See Programming Exercise 8 at the end of this chapter.)

QUICK REVIEW

1. A graph G is a pair, G ¼ (V, E), where V is a finite nonempty set, called the
set of vertices of G and E � V � V , called the set of edges.

2. In an undirected graph G ¼ (V, E), the elements of E are unordered pairs.

1

2

3

4

0 5

6

e1

e5

e4e3

e2

e6

e10

e11

e9
e7

e8

FIGURE 12-26 A graph with all vertices of even degree

722 | Chapter 12: Graphs

3. In a directed graph G ¼ (V, E), the elements of E are ordered pairs.

4. Let G be a graph. A graph H is called a subgraph of G if every vertex of H is
a vertex of G and every edge in H is an edge in G.

5. Two vertices u and v in an undirected graph are called adjacent if there is an
edge from one to the other.

6. An edge incident on a single vertex is called a loop.

7. In an undirected graph, if two edges e1 and e2 are associated with the same
pair of vertices {u, v}, then e1 and e2 are called parallel edges.

8. A graph is called a simple graph if it has no loops and no parallel edges.

9. Let e ¼ (u, v) be an edge in an undirected graph G. The edge e is said to be
incident on the vertices u and v.

10. A path from a vertex u to a vertex v is a sequence of vertices u1, u2, . . ., un
such that u ¼ u1, un ¼ v, and (ui, ui+ 1) is an edge for all i ¼ 1, 2, . . ., n - 1.

11. The vertices u and v are called connected if there is a path from u to v.

12. A simple path is a path in which all the vertices, except possibly the first and
last vertices, are distinct.

13. A cycle in G is a simple path in which the first and last vertices are the same.

14. An undirected graph G is called connected if there is a path from any vertex
to any other vertex.

15. A maximal subset of connected vertices is called a component of G.

16. Suppose that u and v are vertices in a directed graph G. If there is an edge
from u to v, that is, (u, v) ˛ E, we say that u is adjacent to v and v is adjacent
from u.

17. A directed graph G is called strongly connected if any two vertices in G are
connected.

18. Let G be a graph with n vertices, where n > 0. Let V(G) ¼ {v1, v2, . . ., vn}.
The adjacency matrix AG is a two-dimensional n � n matrix such that the
(i, j)th entry of AG is 1 if there is an edge from vi to vj; otherwise, the (i, j)th
entry is 0.

19. In an adjacency list representation, corresponding to each vertex v is a
linked list such that each node of the linked list contains the vertex u and
(v, u) ˛ E(G).

20. The depth-first traversal of a graph is similar to the preorder traversal of a
binary tree.

21. The breadth-first traversal of a graph is similar to the level-by-level traversal
of a binary tree.

22. The shortest path algorithm gives the shortest distance for a given node to
every other node in the graph.

23. In a weighted graph, every edge has a nonnegative weight.

1
2

Quick Review | 723

24. The weight of the path P is the sum of the weights of all the edges on the
path P, which is also called the weight of v from u via P.

25. A (free) tree T is a simple graph such that if u and v are two vertices in T,
there is a unique path from u to v.

26. A tree in which a particular vertex is designated as a root is called a rooted
tree.

27. Suppose T is a tree. If a weight is assigned to the edges in T, T is called a
weighted tree.

28. If T is a weighted tree, the weight of T, denoted by W(T), is the sum of the
weights of all the edges in T.

29. A tree T is called a spanning tree of graph G if T is a subgraph of G such
that V(T) ¼ V(G)—that is, if all the vertices of G are in T.

30. Let G be a graph and V(G) ¼ {v1, v2, . . ., vn}, where n ‡ 0. A topological
ordering of V(G) is a linear ordering vi1, vi2, . . ., vin of the vertices such that
if vij is a predecessor of vik, j 6¼ k, 1 � j, k � n, then vij precedes vik, that is,
j < k in this linear ordering.

31. A circuit is a path of nonzero length from a vertex u to u with no repeated
edges.

32. A circuit in a graph that includes all the edges of the graph is called an Euler
circuit.

33. A graph G is said to be Eulerian if either G is a trivial graph or G has an
Euler circuit.

EXERCISES

Use the graph in Figure 12-27 for Exercises 1 through 4.

1. Find the adjacency matrix of the graph.

2. Draw the adjacency list of the graph.

3. List the nodes of the graph in a depth-first traversal.

4. List the nodes of the graph in a breadth-first traversal.

0 1

2
3

4

5

FIGURE 12-27 Graph for Exercises 1 through 4

724 | Chapter 12: Graphs

5. Find the weight matrix of the graph in Figure 12-28.

6. Consider the graph in Figure 12-29. Find the shortest distance from node 0

to every other node in the graph.

7. Find a spanning tree in the graph in Figure 12-30.

1
2

0 1

3

2

4

5

6

10
6

6
4 10

3

11

8

FIGURE 12-28 Graph for Exercise 5

15

0 1

2

3

4

5

3

5

4

2

12

8

8

3

7

FIGURE 12-29 Graph for Exercise 6

8

4

0

10

5

7

6

9

2 3

11

1

FIGURE 12-30 Graph for Exercise 7

Exercises | 725

8. Find a spanning tree in the graph in Figure 12-31.

9. Find the minimum spanning tree for the graph in Figure 12-32 using the
algorithm given in this chapter.

10. List the nodes of the graph of Figure 12-33 in a breadth-first topological
ordering.

10 3

7

4

8 9

5 6

2

FIGURE 12-31 Graph for Exercise 8

0 1

2

5

4 3

7

3
1

2

8
3

5

5

FIGURE 12-32 Graph for Exercise 9

5

0 1 2 4

3

6 7

8 9

FIGURE 12-33 Graph for Exercise 10

726 | Chapter 12: Graphs

11. Describe whether the graph in Figure 12-34 has an Euler circuit. If the
graph has an Euler circuit, find one such circuit.

12. Describe whether the graph in Figure 12-35 has an Euler circuit. If the
graph has an Euler circuit, find one such circuit.

PROGRAMMING EXERCISES

1. Write a program that outputs the nodes of a graph in a depth-first traversal.

2. Write a program that outputs the nodes of a graph in a breadth-first traversal.

3. Write a program that outputs the shortest distance from a given node to
every other node in the graph.

4. Write a program that outputs the minimum spanning tree for a given graph.

5. The algorithm to determine the minimum spanning tree given in this chapter
is of the orderO(n3). The following is an alternative to Prim’s algorithm that is
of the order O(n2).

1
2

0

1

23

4

e2
e1

e3
e8

e7

e6

e5

e4

FIGURE 12-34 Graph for Exercise 11

e1

e2

e3
e4 e5

e6

e7

e8

e9e10

e11

e12

e13e14

e15

0

1

4

9

2

7

3 65

8

FIGURE 12-35 Graph for Exercise 12

Programming Exercises | 727

Input: A connected weighted graphG¼ (V, E) of n vertices, numbered 0, 1, . . .,
n – 1; starting with vertex s, with a weight matrix of W.

Output: The minimum spanning tree.
Prim2(G, W, n, s)
Let T ¼ (V, E), where E ¼ f.
for(j = 0; j < n; jþþ)
{

edgeWeight[j] = W(s,j);
edges[j] = s;

visited[s] = false;

}
edgeWeight[s] = 0;

visited[s] = true;

while(not all nodes are visited)
{

Choose the node that is not visited and has the smallest weight, and
call it k.
visited[k] = true;
E = E ¨ {(k, edges[k])}

V = V ¨ {k}
for each node j that is not visited

if(W(k,j) < edgeWeight[k])

{
edgeWeight[k] = W(k,j);

edges[j] = k;

}
}

return T.

Write a definition of the function Prim2 to implement this algorithm, and also
add this function to the class msTreeType. Furthermore, write a program to
test this version of Prim’s algorithm.

6. Write a program to test the breadth-first topological ordering algorithm.

7. Let G be a graph and V(G) ¼ {v1, v2, . . ., vn}, where n ‡ 0. Recall that a
topological ordering of V(G) is a linear ordering vi1,vi2, . . ., vin of the vertices
such that if vij is a predecessor of vik, j 6¼ k, 1 � j � n, 1 � k � n, then vij
precedes vik, that is, j < k in this linear ordering. Suppose that G has no
cycles. The following algorithm, a depth-first topological ordering, lists the
nodes of the graph in a topological ordering.

In a depth-first topological ordering, we start with finding a vertex that has
no successors (such a vertex exists because the graph has no cycles), and place
it last in the topological order. After we have placed all the successors of a
vertex in topological order, we place the vertex in the topological order

728 | Chapter 12: Graphs

before any of its successors. Clearly, in the depth-first topological ordering,
first we find the vertex to be placed in topologicalOrder[n-1], then
topologicalOrder[n-2], and so on.

Write the definitions of the C++ functions to implement the depth-first topo-
logical ordering. Add these functions to the class topologicalOrderType,
which is derived from the class graphType. Also, write a program to test your
depth-first topological ordering.

8. Write a program to implement Fleury’s algorithm as described in this chapter.

1
2

Programming Exercises | 729

This page intentionally left blank

STANDARD TEMPLATE

LIBRARY (STL) II
IN THIS CHAPTER , YOU WILL :

. Learn more about the Standard Template Library (STL)

. Become familiar with associative containers

. Explore how associative containers are used to manipulate data in a program

. Learn about various generic algorithms

13C H A P T E R

Chapter 4 introduced the Standard Template Library (STL). Recall that the basic compo-
nents of the STL are containers, iterators, and algorithms. The three categories of contain-
ers are sequence containers, associative containers, and container adapters. Chapter 4
described the sequence containers vector and deque; Chapter 5 described the sequence
container list. The container adapter stack is described in Chapter 7, and the container
adapters queue and priority_queue are described in Chapter 8. Chapter 4 discussed
iterators. This chapter discusses the components of the STL not discussed in the previous
chapters, specifically, the associative containers and algorithms.

Before discussing the associative containers, first we discuss the class pair, which is
used by some of the associative containers.

Class pair

With the help of the class pair, two values can be combined into a single unit and,
therefore, can be treated as one unit. Thus, a function can return two values by using the
class pair. This class is used in several other places in the STL. For example, the
classes map and multimap, described later in this chapter, also use the class pair to
manage their elements.

The definition of the class pair is contained in the header file utility. Thus, to use
the class pair in a program, the program must include the following statement:

#include <utility>

The class pair has two constructors: the default constructor and a constructor with
two parameters. Thus, the general syntax to declare an object of type pair is as follows:

pair<Type1, Type2> pElement;

or

pair<Type1, Type2> pElement(expr1, expr2);

where expr1 is of type Type1 and expr2 is of type Type2.

Every object of type pair has two data members, first and second, and these two data
members are public. Because the data members of an object of type pair are public,
each object of type pair can directly access these data members in a program.

Example 13-1 illustrates the use of the class pair.

EXAMPLE 13-1

Consider the following statements.

pair<int, double> x; //Line 1
pair<int, double> y(13, 45.9); //Line 2

732 | Chapter 13: Standard Template Library (STL) II

pair<int, int> z(10, 20); //Line 3
pair<string, string> name("Bill", "Brown"); //Line 4
pair<string, double> employee("John Smith", 45678.50); //Line 5

The statement in Line 1 declares x to be an object of type pair. The first component of
x is of type int; the second component is of type double. Because no values are
specified in the declaration of x, the default constructor of the class pair executes
and the data members, first and second, are initialized to their default value, which
in this case is 0.

The statement in Line 2 declares y to be an object of type pair. The first component of y is
of type int; the second component is of type double. The first component of y, that is,
first, is initialized to 13; the second component, that is, second, is initialized to 45.9.

The statement in Line 3 declares z to be an object of type pair. Both components of z
are of type int. The first component of z, that is, first, is initialized to 10; the second
component, that is, second, is initialized to 20.

The statement in Line 4 declares name to be an object of type pair. Both components of
name are of type string. The first component of name, that is, first, is initialized to
"Bill"; the second component, that is, second, is initialized to "Brown".

The statement in Line 5 declares employee to be an object of type pair. The first
component of employee is of type string; the second component is of type double.
The first component of employee, that is, first, is initialized to "John Smith"; the
second component, that is, second, is initialized to 45678.50.

The statement

x.first = 50;

assigns 50 to the data member first of x. Similarly, the statement

name.second = "Calvert";

assigns "Calvert" to the data member second of name.

The following statements show how to output the value of an object of type pair.
Assume that we have the declarations of Lines 1 through 5.

Statement Effect

cout << y.first << " " << y.second << endl; Outputs: 13 45.9

cout << name.first << " "
<< name.second << endl;

Outputs: Bill Brown

cout << employee.first << " "
<< employee.second << endl;

Outputs: John Smith 45678.50

1
3

Class pair | 733

Comparing Objects of Type pair
The relational operators have been overloaded for the class pair. Similar objects of the
pair type are compared as follows.

Suppose x and y are objects of type pair, and the corresponding data members of x and
y are of the same type. (If the data members of x and y are not of the built-in type, the
relational operators must be properly defined on the data members.) Table 13-1 describes
how the relational operators are defined for the class pair.

Type pair and Function make_pair
The header file utility also contains the definition of the function template make_pair.
With the help of the function make_pair, we can create pairs without explicitly specifying the
type pair. The definition of the function template make_pair is similar to the following:

template <class T1, class T2>
pair<T1, T2> make_pair(const T1& X, const T2& Y)
{

return (pair<T1, T2>(X, Y));
}

From the definition of the function template make_pair, it is clear that the function
template make_pair is a value-returning function and returns a value of type pair. The
components of the value returned by the function template make_pair are passed as
parameters to the function template make_pair.

The expression

make_pair(75, 'A')

returns a value of type pair. The value of the first component is 75; the value of the
second component is the character 'A'.

TABLE 13-1 Relational operators for the class pair

Comparison Description

x == y if (x.first == y.first) and (x.second == y.second)

x < y
if (x.first < y.first)
or ((x.first >= y.first) and (x.second < y.second))

x <= y if (x < y) or (x == y)

x > y if not(x <= y)

x >= y if not(x < y)

x != y if not(x == y)

734 | Chapter 13: Standard Template Library (STL) II

The function make_pair is especially useful if a pair is to be passed as an argument to a
function. Example 13-2 illustrates the use of make_pair.

EXAMPLE 13-2

//**
// Author: D.S. Malik
//
// This program illustrates how to use the functions pair and
// make_pair.
//**

#include <algorithm> //Line 1
#include <iostream> //Line 2
#include <utility> //Line 3
#include <string> //Line 4

using namespace std; //Line 5

void funcExp(pair<int,int>); //Line 6
void funcExp1(pair<int, char>); //Line 7
void funcExp2(pair<int, string> x); //Line 8
void funcExp3(pair<int, char *> x); //Line 9

int main() //Line 10
{ //Line 11

pair<int, double> x(50, 87.67); //Line 12
pair<string, string> name("John", "Johnson"); //Line 13

cout << "Line 14: " << x.first << " " << x.second
<< endl; //Line 14

cout << "Line 15: " << name.first << " "
<< name.second << endl; //Line 15

pair<int, int> y; //Line 16
cout << "Line 17: " << y.first << " " << y.second

<< endl; //Line 17

pair<string, string> name2; //Line 18
cout << "Line 19: " << name2.first << "***"

<< name2.second << endl; //Line 19
funcExp(make_pair(75, 80)); //Line 20
funcExp1(make_pair(87, 'H')); //Line 21
funcExp1(pair<int, char>(198, 'K')); //Line 22
funcExp2(pair<int, string>(250, "Hello")); //Line 23
funcExp2(make_pair(65,string("Hello There"))); //Line 24
funcExp3(pair<int, char *>(35, "Hello World")); //Line 25
funcExp3(make_pair(22, (char *)("Sunny"))); //Line 26

return 0; //Line 27
} //Line 28

1
3

Class pair | 735

void funcExp(pair<int, int> x) //Line 29
{ //Line 30

cout << "Line 31: " << "In funcExp: " << x.first
<< " " << x.second << endl; //Line 31

} //Line 32

void funcExp1(pair<int, char> x) //Line 33
{ //Line 34

cout << "Line 36: " << "In funcExp1: " << x.first //Line 35
<< " " << x.second << endl; //Line 36

} //Line 37

void funcExp2(pair<int, string> x) //Line 38
{ //Line 39

cout << "Line 40: " << "In funcExp2: " << x.first
<< " " << x.second << endl; //Line 40

} //Line 41
void funcExp3(pair<int, char *> x) //Line 42
{ //Line 43

cout << "Line 44: " << "In funcExp3: " << x.first
<< " " << x.second << endl; //Line 44

} //Line 45

Sample Run:

Line 14: 50 87.67
Line 15: John Johnson
Line 17: 0 0
Line 19: ***
Line 31: In funcExp: 75 80
Line 36: In funcExp1: 87 H
Line 36: In funcExp1: 198 K
Line 40: In funcExp2: 250 Hello
Line 40: In funcExp2: 65 Hello There
Line 44: In funcExp3: 35 Hello World
Line 44: In funcExp3: 22 Sunny

Associative Containers
Elements in an associative container are automatically sorted according to some ordering
criteria. The default ordering criterion is the relational operator < (less than). Users also
have the option of specifying their own ordering criterion.

Because elements in an associative container are sorted automatically, when a new element is
inserted in the container, it is inserted at the proper place. A convenient and fast way to
implement this type of data structure is to use a binary search tree. This is, in fact, how
associative containers are implemented. Thus, every element in the container has a parent
node (except the root node) and at most two children. For each element, the key in the
parent node is larger than the key in the left child and smaller than the key in the right child.

736 | Chapter 13: Standard Template Library (STL) II

The predefined associative containers in the STL are sets, multisets, maps, and
multimaps.

The following sections describe these containers.

Associative Containers: set and multiset
As described earlier, both the containers set and multiset automatically sort their
elements according to some sort criteria. The default sorting criterion is the relational
operator < (less than); that is, the elements are arranged in ascending order. The user can
also specify other sorting criteria. For user-defined data types, such as classes, the relational
operators must be properly overloaded.

The only difference between the containers set and multiset is that the container
multiset allows duplicates, whereas the container set does not.

The name of the class defining the container set is set; the name of the class defining
the container multiset is multiset. The name of the header file containing the
definitions of the classes set and multiset, and the definitions of the functions to
implement various operations on these containers, is set. Thus, to use any of these
containers, the program must include the following statement:

#include <set>

DECLARING set OR multiset ASSOCIATIVE CONTAINERS

The classes set and multiset contain several constructors to declare and initialize
containers of these types. This section discusses the various ways that these types of
associative containers are declared and initialized. Table 13-2 describes how a set/

multiset container of a specific type can be declared and initialized.

1
3

TABLE 13-2 Various ways to declare a set/multiset container

Statement Effect

ctType<elmType> ct;
Creates an empty set/multiset
container, ct. The sort criterion
is <.

ctType<elmType, sortOp> ct;
Creates an empty set/multiset
container, ct. The sort criterion is
specified by sortOp.

ctType<elmType> ct(otherCt);

Creates a set/multiset
container, ct. The elements of
otherCt are copied into ct. The
sort criterion is <. Both ct and
otherCt are of the same type.

Associative Containers | 737

If you want to use a sort criterion other than the default, you must specify this option
when the container is declared. For example, consider the following statements:

set<int> intSet; //Line 1
set<int, greater<int> > otherIntSet; //Line 2
multiset<string> stringMultiSet; //Line 3
multiset<string, greater<string> > otherStringMultiSet; //Line 4

The statement in Line 1 declares intSet to be an empty set container, the element type
is int, and the sort criterion is the default sort criterion. The statement in Line 2 declares
otherIntSet to be an empty set container, the element type is int, and the sort
criterion is greater than (that is, the elements in the container otherIntSet will be
arranged in descending order). The statements in Lines 3 and 4 have similar conventions.
The statements in Lines 2 and 4 illustrate how to specify the descending sorting criterion.

In the statements in Lines 2 and 4, note the space between the two >—that is, the space

between greater<int> and >. This space is important because >> is also a shift

operator in C++.

TABLE 13-2 Various ways to declare a set/multiset container (continued)

Statement Effect

ctType<elmType, sortOp> ct(otherCt);

Creates a set/multiset
container, ct. The elements of
otherCt are copied into ct.
The sort criterion is specified by
sortOp. Both ct and otherCt
are of the same type. Note that the
sort criteria of ct and otherCt
must be the same.

ctType<elmType> ct(beg, end);

Creates a set/multiset
container, ct. The elements starting
at the position beg until the position
end-1 are copied into ct. Both
beg and end are iterators.

ctType<elmType, sortOp> ct(beg, end);

Creates a set/multiset
container, ct. The elements
starting at the position beg until
the position end-1 are copied into
ct. Both beg and end are
iterators. The sort criterion is
specified by sortOp.

738 | Chapter 13: Standard Template Library (STL) II

1
3

ITEM INSERTION AND DELETION FROM set/multiset

Suppose that ct is of type either set or multiset. Table 13-3 describes the operations
that can be used to insert or delete elements from a set. Table 13-3 also illustrates how to
use these operations. The name of the function is shown in bold.

Example 13-3 illustrates various operations on a set/multiset container.

EXAMPLE 13-3

//***
// Author: D.S. Malik
//
// This program illustrates how the operations on a set/multiset
// container work.
//***

TABLE 13-3 Operations to insert or delete elements from a set

Expression Effect

ct.insert(elem)
Inserts a copy of elem into ct. In the case of
sets, it also returns whether the insert operation
succeeded.

ct.insert(position, elem)

Inserts a copy of elem into ct. The position
where elem is inserted is returned. The first
parameter, position, hints at where to begin
the search for insert. The parameter
position is an iterator.

ct.insert(beg, end);
Inserts a copy of all the elements into ct
starting at the position beg until end-1. Both
beg and end are iterators.

ct.erase(elem); Deletes all the elements with the value elem.
The number of deleted elements is returned.

ct.erase(position); Deletes the element at the position specified by
the iterator position. No value is returned.

ct.erase(beg, end);
Deletes all the elements starting at the position
beg until the position end-1. Both beg and
end are iterators. No value is returned.

ct.clear(); Deletes all the elements from the container ct.
After this operation, the container ct is empty.

Associative Containers | 739

#include <iostream> //Line 1
#include <set> //Line 2
#include <string> //Line 3
#include <iterator> //Line 4
#include <algorithm> //Line 5

using namespace std; //Line 6

int main() //Line 7
{ //Line 8

set<int> intSet; //Line 9
set<int, greater<int> > intSetA; //Line 10

set<int, greater<int> >::iterator intGtIt; //Line 11

ostream_iterator<int> screen(cout, " "); //Line 12

intSet.insert(16); //Line 13
intSet.insert(8); //Line 14
intSet.insert(20); //Line 15
intSet.insert(3); //Line 16

cout << "Line 17: intSet: "; //Line 17
copy(intSet.begin(), intSet.end(), screen); //Line 18
cout << endl; //Line 19

intSetA.insert(36); //Line 20
intSetA.insert(30); //Line 21
intSetA.insert(39); //Line 22
intSetA.insert(59); //Line 23
intSetA.insert(156); //Line 24

cout << "Line 25: intSetA: "; //Line 25
copy(intSetA.begin(), intSetA.end(), screen); //Line 26
cout << endl; //Line 27

intSetA.erase(59); //Line 28

cout << "Line 29: After removing 59, intSetA: "; //Line 29
copy(intSetA.begin(), intSetA.end(), screen); //Line 30
cout << endl; //Line 31

intGtIt = intSetA.begin(); //Line 32
++intGtIt; //Line 33

intSetA.erase(intGtIt); //Line 34

cout << "Line 35: After removing the second "
<< "element, intSetA: "; //Line 35

copy(intSetA.begin(), intSetA.end(), screen); //Line 36
cout << endl; //Line 37

multiset<string, greater<string> > namesMultiSet; //Line 38
multiset<string, greater<string> >::iterator iter; //Line 39

740 | Chapter 13: Standard Template Library (STL) II

1
3

ostream_iterator<string> pScreen(cout, " "); //Line 40

namesMultiSet.insert("Donny"); //Line 41
namesMultiSet.insert("Zippy"); //Line 42
namesMultiSet.insert("Ronny"); //Line 43
namesMultiSet.insert("Hungry"); //Line 44
namesMultiSet.insert("Ronny"); //Line 45

cout << "Line 46: namesMultiSet: "; //Line 46
copy(namesMultiSet.begin(), namesMultiSet.end(),

pScreen); //Line 47
cout << endl; //Line 48

return 0; //Line 49
} //Line 50

Sample Run:

Line 17: intSet: 3 8 16 20
Line 25: intSetA: 156 59 39 36 30
Line 29: After removing 59, intSetA: 156 39 36 30
Line 35: After removing the second element, intSetA: 156 36 30
Line 46: namesMultiSet: Zippy Ronny Ronny Hungry Donny

The statement in Line 9 declares intSet to be a set container. The statement in Line 10
declares intSetA to be a set container whose elements are to be arranged in descending
order. The statement in Line 11 declares intGtIt to be a set iterator. The iterator
intGtIt can process the elements of any set container whose elements are of type int

and arranged in descending order. The statement in Line 12 declares screen to be an
ostream iterator that outputs the elements of any container whose elements are of type int.

The statements in Lines 13 through 16 insert 16, 8, 20, and 3 into intSet; the statement
in Line 18 outputs the elements of intSet. In the output, see the line marked Line 17,
which contains the output of the statements in Lines 17 through 19 of the program.

The statements in Lines 20 through 24 insert 36, 30, 39, 59, and 156 into intSetA; the
statement in Line 26 outputs the elements of intSetA. In the output, see the line marked
Line 25, which contains the output of the statements in Lines 25 through 27 of the
program. Notice that the elements of intSetA appear in descending order.

The statement in Line 28 removes 59 from intSetA. After the statement in Line 32 executes,
intGtIt points to the first element of intSetA. After the statement in Line 32 executes,
intGtIt points to the second element of intSetA. The statement in Line 33 removes the
element of intSetA to which intGtIt points. The statement in Line 36 outputs the
elements of intSetA.

The statement in Line 38 declares namesMultiSet to be a container of type multiset.
The elements in namesMultiSet are of type string and are arranged in descending
order. The statement in Line 39 declares iter to be a multiset iterator.

The statements in Lines 41 through 45 insert Donny, Zippy, Ronny, Hungry, and Ronny

into namesMultiSet. The statement in Line 47 outputs the elements of namesMultiSet.

Associative Containers | 741

Associative Containers: map and multimap
The containers map and multimap manage their elements in the form key/pair. The
elements are automatically sorted according to some sort criteria applied on the key. The
default sorting criterion is the relational operator < (less than); that is, the elements are
arranged in ascending order. The user can also specify other sorting criteria. For user-
defined data types, such as classes, the relational operators must be properly overloaded.

The only difference between the containers map and multimap is that the container
multimap allows duplicates, whereas the container map does not.

The name of the class defining the container map is map; the name of the class defining
the container multimap is also multimap. The name of the header file containing the
definitions of the classes map and multimap, and the definitions of the functions to
implement various operations on these containers, is map. Therefore, to use any of these
containers, the program must include the following statement:

#include <map>

DECLARING map OR multimap ASSOCIATIVE CONTAINERS

The classes map and multimap contain several constructors to declare and initialize
containers of these types. This section discusses the various ways that these types of
associative containers are declared and initialized. Table 13-4 describes how a map/

multimap container of a specific type can be declared and initialized. (In Table 13-4,
ctType is either a map or a multimap.)

TABLE 13-4 Various ways to declare a map/multimap container

Statement Effect

ctType<key, elmType> ct;
Creates an empty map/multimap
container, ct. The sort criterion is <.

ctType<key, elmType, sortOp> ct;
Creates an empty map/multimap
container, ct. The sort criterion is
specified by sortOp.

ctType<key, elmType> ct(otherCt);

Creates amap/multimap container,ct.
The elements of otherCt are copied
into ct. The sort criterion is <. Both ct
and otherCt are of the same type.

ctType<key, elmType, sortOp>
ct(otherCt);

Creates a map/multimap container,
ct. The elements of otherCt are
copied into ct. The sort criterion is
specified by sortOp. Both ct and
otherCt are of the same type. Note
that the sort criteria of ct and
otherCt must be the same.

742 | Chapter 13: Standard Template Library (STL) II

If you want to use a sort criterion other than the default, you must specify this option
when the container is declared. For example, consider the following statements:

map<int, int> intMap; //Line 1
map<int, int, greater<int> > otherIntMap; //Line 2
multimap<int, string> stringMultiMap; //Line 3
multimap<int, string, greater<string> > otherStringMultiMap; //Line 4

The statement in Line 1 declares intMap to be an empty map container, the key type and
the element type are int, and the sort criterion is the default sort criterion. The statement
in Line 2 declares otherIntMap to be an empty map container, the key type and the
element type are int, and the sort criterion is greater than. That is, the elements in the
container otherIntMap will be arranged in descending order. The statements in Lines 3
and 4 have similar conventions. The statements in Lines 2 and 4 illustrate how to specify
the descending sorting criterion.

In the statements in Lines 2 and 4, note the space between the two >—that is, the space

between greater<int> and >. This space is important because >> is also a shift

operator in C++.

ITEM INSERTION AND DELETION FROM map/multimap

Suppose that ct is of type either map or multimap. Table 13-5 describes the operations
that can be used to insert or delete elements from a set. Table 13-5 also illustrates how to
use these operations. The name of the function is shown in bold. In this table, ct is either
a map or multimap container.

1
3

TABLE 13-4 Various ways to declare a map/multimap container (continued)

Statement Effect

ctType<key, elmType> ct(beg, end);

Creates a map/multimap container,
ct. The elements starting at the
position beg until the position end-1
are copied into ct. Both beg and end
are iterators.

ctType<key, elmType, sortOp>
ct(beg, end);

Creates a map/multimap container,
ct. The elements starting at the
position beg until the position end-1
are copied into ct. Both beg and end
are iterators. The sort criterion is
specified by sortOp.

Associative Containers | 743

Example 13-4 illustrates various operations on a map/multimap container.

EXAMPLE 13-4

//***
// Author: D.S. Malik
//
// This program illustrates how the operations on a map/multimap
// container work.
//***

#include <iostream> //Line 1
#include <map> //Line 2
#include <utility> //Line 3
#include <string> //Line 4
#include <iterator> //Line 5

TABLE 13-5 Operations to insert or delete elements from a map or multimap

Expression Effect

ct.insert(elem)
Inserts a copy of elem into ct. In the case of
sets, it also returns whether the insert operation
succeeded.

ct.insert(position, elem)

Inserts a copy of elem into ct. The position
where elem is inserted is returned. The first
parameter, position, hints at where to begin
the search for insert. The parameter
position is an iterator.

ct.insert(beg, end);
Inserts a copy of all the elements into ct
starting at the position beg until end-1. Both
beg and end are iterators.

ct.erase(elem); Deletes all the elements with the value elem.
The number of deleted elements is returned.

ct.erase(position); Deletes the element at the position specified by
the iterator position. No value is returned.

ct.erase(beg, end);
Deletes all the elements starting at the position
beg until the position end-1. Both beg and
end are iterators. No value is returned.

ct.clear(); Deletes all the elements from the container ct.
After this operation, the container ct is empty.

744 | Chapter 13: Standard Template Library (STL) II

1
3

using namespace std; //Line 6

int main() //Line 7
{ //Line 8

map<int, int> intMap; //Line 9
map<int, int>::iterator mapItr; //Line 10

intMap.insert(make_pair(1, 16)); //Line 11
intMap.insert(make_pair(2, 8)); //Line 12
intMap.insert(make_pair(4, 20)); //Line 13
intMap.insert(make_pair(3, 3)); //Line 14
intMap.insert(make_pair(1, 23)); //Line 15
intMap.insert(make_pair(20, 18)); //Line 16
intMap.insert(make_pair(8, 28)); //Line 17
intMap.insert(make_pair(15, 60)); //Line 18
intMap.insert(make_pair(6, 43)); //Line 19
intMap.insert(pair<int, int>(12, 16)); //Line 20

cout << "Line 21: The elements of intMap" << endl; //Line 21
for (mapItr = intMap.begin();

mapItr != intMap.end(); mapItr++) //Line 22
cout << mapItr->first << "\t"

<< mapItr->second << endl; //Line 23
cout << endl; //Line 24

intMap.erase(12); //Line 25

mapItr = intMap.begin(); //Line 26
++mapItr; //Line 27
++mapItr; //Line 28
intMap.erase(mapItr); //Line 29

cout << "Line 30: After deleting, elements of "
<< "intMap" << endl; //Line 30

for (mapItr = intMap.begin();
mapItr != intMap.end(); mapItr++) //Line 31

cout << mapItr->first << "\t"
<< mapItr->second << endl; //Line 32

cout << endl; //Line 33

multimap<string, string> namesMultiMap; //Line 34
multimap<string, string>::iterator nameItr; //Line 35

namesMultiMap.insert(make_pair("A1", "Donny")); //Line 36
namesMultiMap.insert(make_pair("B1", "Zippy")); //Line 37
namesMultiMap.insert(make_pair("K1", "Ronny")); //Line 38
namesMultiMap.insert(make_pair("A2", "Hungry")); //Line 39
namesMultiMap.insert(make_pair("D1", "Ronny")); //Line 40
namesMultiMap.insert(make_pair("A1", "Dumpy")); //Line 41

cout << "Line 42: namesMultiMap: " << endl; //Line 42
for (nameItr = namesMultiMap.begin();

nameItr != namesMultiMap.end(); nameItr++) //Line 43

Associative Containers | 745

cout << nameItr->first << "\t"
<< nameItr->second << endl; //Line 44

cout << endl; //Line 45

return 0; //Line 46
} //Line 47

Sample Run:

Line 21: The elements of intMap
1 16
2 8
3 3
4 20
6 43
8 28
12 16
15 60
20 18

Line 30: After deleting, elements of intMap
1 16
2 8
4 20
6 43
8 28
15 60
20 18

Line 42: namesMultiMap:
A1 Donny
A1 Dumpy
A2 Hungry
B1 Zippy
D1 Ronny
K1 Ronny

The statement in Line 9 declares intMap to be a map container. The statement in Line 10
declares mapItr to be a map iterator. The iterator intGtIt can process the elements of
any map container whose elements have the key type and the element type int.

The statements in Lines 11 through 20 insert the elements with their keys. For example,
16 is inserted with the key 1. The statements in Lines 11 through 19 use the function
make_pair to insert the elements; the statement in Line 20 uses the class pair as the
cast operator to insert the element.

The for loop in Line 22 outputs the elements of the container intMap.

The statement in Line 25 removes the element with key 12 from intMap. The statement
in Line 26 initializes mapItr to the first element in the container intMap. The statements
in Line 27 and 28 each advance mapItr to the next element in intMap. After the
statement in Line 28 executes, mapItr points to the third element of intMap. The
statement in Lines 29 removes the element of intMap to which mapItr points. The for
loop in Line 31 outputs the elements of the container intMap.

746 | Chapter 13: Standard Template Library (STL) II

The statement in Line 34 declares namesMultiMap to be a container of type multimap.
The elements and their keys in namesMultiMap are of type string. The statement in
Line 35 declares nameItr to be a multimap iterator.

The statements in Lines 36 through 41 insert the elements into namesMultiMap. The
for loop in Line 43 outputs the elements of the container namesMultiMap.

Containers, Associated Header Files,
and Iterator Support
Chapters 4 and 5 and the previous sections discussed various types of containers. Recall
that every container is a class. The definition of the class implementing a specific
container is contained in the header file. Table 13-6 describes the container, its associated
header file, and the type of iterator supported by the container.

1
3

TABLE 13-6 Containers, their associated header files, and the type of iterator supported
by each container

Sequence containers Associated header file Type of iterator support

vector <vector> Random access

deque <deque> Random access

list <list> Bidirectional

Associative containers Associated header file Type of iterator support

map <map> Bidirectional

multimap <map> Bidirectional

set <set> Bidirectional

multiset <set> Bidirectional

Adapters Associated header file Type of iterator support

stack <stack> No iterator support

queue <queue> No iterator support

priority_queue <queue> No iterator support

Containers, Associated Header Files, and Iterator Support | 747

Algorithms
Several operations can be defined for a container. Some of the operations are very specific
to a container and, therefore, are provided as part of the container definition (that is, as
member functions of the class implementing the container). However, several operations—
such as find, sort, and merge—are common to all containers. These operations are
provided as generic algorithms and can be applied to all containers as well as the built-in
array type. The algorithms are bound to a particular container through an iterator pair.

The generic algorithms are contained in the header file algorithm. This section
describes several of these algorithms and shows how to use them in a program. Because
algorithms are implemented with the help of functions, in the following sections, the
terms function and algorithm mean the same thing.

STL Algorithm Classification
In earlier sections, you applied various operations on the sequence container, such as
clear, sort, merge, and so on. However, those algorithms were tied to a specific
container as members of a specific class. All those algorithms and a few more are also
available in more general forms, called generic algorithms, and can be applied in a
variety of situations. This section discusses some of these generic algorithms.

The STL contains algorithms that only look at the elements in a container and that move
the elements of a container. It also has algorithms that can perform specific calculations,
such as finding the sum of the elements of a numeric container. In addition, the STL
contains algorithms for basic set theory operations, such as set union and intersection.
You have already encountered some of the generic algorithms such as the copy algo-
rithm, which copies the elements from a given range of elements to another place such as
another container or the screen. The algorithms in the STL can be classified into the
following categories:

• Nonmodifying algorithms

• Modifying algorithms

• Numeric algorithms

• Heap algorithms

The next four sections describe these algorithms. Most of the generic algorithms are
contained in the header file algorithm. Certain algorithms, such as the numeric algo-
rithms, are contained in the header file numeric.

Nonmodifying Algorithms
Nonmodifying algorithms do not modify the elements of the container; they merely
investigate the elements. Table 13-7 lists the nonmodifying algorithms.

748 | Chapter 13: Standard Template Library (STL) II

Modifying Algorithms
Modifying algorithms, as the name implies, modify the elements of the container by
rearranging, removing, or changing the values of the elements. Table 13-8 lists the
modifying algorithms.

1
3

TABLE 13-8 Modifying algorithms

copy prev_permutation rotate_copy

copy_backward random_shuffle set_difference

fill remove set_intersection

fill_n remove_copy
set_symmetric_
difference

generate remove_copy_if set_union

generate_n remove_if sort

inplace_merge replace stable_partition

iter_swap replace_copy stable_sort

merge replace_copy_if swap

next_permutation replace_if swap_ranges

nth_element reverse transform

partial_sort reverse_copy unique

partial_sort_copy rotate unique_copy

partition

TABLE 13-7 Nonmodifying algorithms

adjacent_find find_end max_element

binary_search find_first_of min

count find_if min_element

count_if for_each mismatch

equal includes search

equal_range lower_bound search_n

find max upper_bound

STL Algorithm Classification | 749

Modifying algorithms that change the order of the elements, not their values, are also
called mutating algorithms. For example, next_permutation, partition, prev_

permutation, random_shuffle, reverse, reverse_copy, rotate, rotate_copy,
and stable_partition are mutating algorithms.

Numeric Algorithms
Numeric algorithms are designed to perform numeric calculations on the elements of a
container. Table 13-9 lists these algorithms.

Heap Algorithms
Chapter 10 described the heapsort algorithm. Recall that in the heapsort algorithm,
the array containing the data is viewed as a binary tree. Therefore, a heap is a form of
binary tree represented as an array. In a heap, the first element is the largest element,
and the ith element (if it exists) is larger than the elements at positions 2i and 2i + 1 (if
they exist). In the heapsort algorithm, first the array containing the data is converted
into a heap, and then the array is sorted using a special type of sorting algorithm.
Table 13-10 lists the algorithms provided by the STL to implement the heap sort
algorithm.

Most of the STL algorithms are explained toward the end of this section. For the most
part, the function prototypes of these algorithms are given along with a brief explanation
of what each algorithm does. You then learn how to use these algorithms with the help
of a C++ program. The STL algorithms are very powerful and accomplish wonderful
results. Furthermore, they have been made general, in the sense that other than using the
natural operations to manipulate containers, they allow the user to specify the manipulat-
ing criteria. For example, the natural sorting order is ascending, but the user can specify
criteria to sort the container in descending order. Thus, every algorithm is typically
implemented with the help of overloaded functions. Before starting to describe these
algorithms, we discuss function objects, which allow the user to specify the manipulat-
ing criteria.

TABLE 13-10 Heap algorithms

make_heap push_heap

pop_heap sort_heap

TABLE 13-9 Numeric algorithms

accumulate inner_product

adjacent_difference partial_sum

750 | Chapter 13: Standard Template Library (STL) II

Function Objects
To make the generic algorithms flexible, the STL usually provides two forms of an
algorithm using the mechanism of function overloading. The first form of an algorithm
uses the natural operation to accomplish this goal. In the second form, the user can specify
the criteria based on which the algorithm processes the elements. For example, the algorithm
adjacent_find searches the container and returns the position of the first two elements that
are equal. In the second form of this algorithm, we can specify criteria (say, less than) to look
for the first two elements such that the second element is less than the first element. These
criteria are passed as a function object. More formally, a function object contains a function
that can be treated as a function using the function call operator, (). In fact, a function object
is a class template that overloads the function call operator, ().

In addition to allowing you to create your own function objects, the STL provides
arithmetic, relational, and logical function objects, which are described in Table 13-11.
The STL’s function objects are contained in the header file functional.

1
3

TABLE 13-11 Arithmetic STL function objects

Function object name Description

plus<Type>

plus<int> addNum;

int sum = addNum(12, 35);

The value of sum is 47.

minus<Type>

minus<int> subtractNum;

int difference = subtractNum(56, 35);

The value of difference is 21.

multiplies<Type>

multiplies<int> multiplyNum;

int product = multiplyNum(6, 3);

The value of product is 18.

divides<Type>

divides<int> divideNum;

int quotient = divideNum(16, 3);

The value of quotient is 5.

modulus<Type>

modulus<int> remainder;

int rem = remainder(16, 7);

The value of rem is 2.

negate<Type>

negate<int> opposite;

int num = opposite(-25);

The value of opposite is 25.

STL Algorithm Classification | 751

Example 13-5 illustrates how to use the STL’s arithmetic function objects.

EXAMPLE 13-5

//***
// Author: D.S. Malik
//
// This program shows how STL arithmetic function objects work.
//***

#include <iostream> //Line 1
#include <string> //Line 2
#include <algorithm> //Line 3
#include <numeric> //Line 4
#include <iterator> //Line 5
#include <vector> //Line 6
#include <functional> //Line 7

using namespace std; //Line 8

int funcAdd(plus<int>, int, int); //Line 9

int main() //Line 10
{ //Line 11

plus<int> addNum; //Line 12
int num = addNum(34, 56); //Line 13

cout << "Line 14: num = " << num << endl; //Line 14

plus<string> joinString; //Line 15

string str1 = "Hello "; //Line 16
string str2 = "There"; //Line 17

string str = joinString(str1, str2); //Line 18

cout << "Line 19: str = " << str << endl; //Line 19
cout << "Line 20: Sum of 34 and 26 = "

<< funcAdd(addNum, 34, 26) << endl; //Line 20

int list[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 21

vector<int> intList(list, list + 8); //Line 22
ostream_iterator<int> screenOut(cout, " "); //Line 23

cout << "Line 24: intList: "; //Line 24
copy(intList.begin(), intList.end(), screenOut); //Line 25
cout << endl; //Line 26

//accumulate
int sum = accumulate(intList.begin(),

intList.end(), 0); //Line 27

752 | Chapter 13: Standard Template Library (STL) II

cout << "Line 28: Sum of the elements of intList = "
<< sum << endl; //Line 28

int product = accumulate(intList.begin(), intList.end(),
1, multiplies<int>()); //Line 29

cout << "Line 30: Product of the elements of intList = "
<< product << endl; //Line 30

return 0; //Line 31
} //Line 32

int funcAdd(plus<int> sum, int x, int y) //Line 33
{ //Line 34

return sum(x, y); //Line 35
} //Line 36

Sample Run:

Line 14: num = 90
Line 19: str = Hello There
Line 20: Sum of 34 and 26 = 60
Line 24: intList: 1 2 3 4 5 6 7 8
Line 28: Sum of the elements of intList = 36
Line 30: Product of the elements of intList = 40320

Table 13-12 describes the relational STL function objects.

1
3

TABLE 13-12 Relational STL function objects

Function object name Description

equal_to<Type>

Returns true if the two arguments are equal, and false
otherwise. For example,

equal_to<int> compare;

bool isEqual = compare(5, 5);

The value of isEqual is true.

not_equal_to<Type>

Returns true if the two arguments are not equal, and
false otherwise. For example,

not_equal_to<int> compare;
bool isNotEqual = compare(5, 6);

The value of isNotEqual is true.

greater<Type>

Returns true if the first argument is greater than the
second argument, and false otherwise. For example,
greater<int> compare;
bool isGreater = compare(8, 5);

The value of isGreater is true.

STL Algorithm Classification | 753

The STL relational function objects can also be applied to containers, as shown next. The STL
algorithm adjacent_find searches a container and returns the position in the container
where the two elements are equal. This algorithm has a second form that allows the user to
specify the comparison criteria. For example, consider the following vector, vecList:

vecList = {2, 3, 4, 5, 1, 7, 8, 9};

The elements of vecList are supposed to be in ascending order. To see if the elements
are out of order, we can use the algorithm adjacent_find as follows:

intItr = adjacent_find(vecList.begin(), vecList.end(),
greater<int>());

where intItr is an iterator of type vector. The function adjacent_find starts at the
position vecList.begin()—that is, at the first element of vecList—and looks for
the first set of consecutive elements such that the first element is greater than the second.
The function returns a pointer to element 5, which is stored in intItr.

The program in Example 13-6 further illustrates how to use the relational function objects.

EXAMPLE 13-6

//***
// Author: D.S. Malik
// This program shows how STL relational function objects work.
//***

TABLE 13-12 Relational STL function objects (continued)

Function object name Description

greater_equal<Type>

Returns true if the first argument is greater than or equal to
the second argument, and false otherwise. For example,

greater_equal<int> compare;
bool isGreaterEqual = compare(8, 5);

The value of isGreaterEqual is true.

less<Type>

Returns true if the first argument is less than the second
argument, and false otherwise. For example,

less<int> compare;
bool isLess = compare(3, 5);

The value of isLess is true.

less_equal<Type>

Returns true if the first argument is less than or equal to the
second argument, and false otherwise. For example,

less_equal<int> compare;
bool isLessEqual = compare(8, 15);

The value of isLessEqual is true.

754 | Chapter 13: Standard Template Library (STL) II

#include <iostream> //Line 1
#include <string> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4
#include <vector> //Line 5
#include <functional> //Line 6

using namespace std; //Line 7

int main() //Line 8
{ //Line 9

equal_to<int> compare; //Line 10
bool isEqual = compare(6, 6); //Line 11

cout << "Line 12: isEqual = " << isEqual << endl; //Line 12

greater<string> greaterStr; //Line 13

string str1 = "Hello"; //Line 14
string str2 = "There"; //Line 15

if (greaterStr(str1, str2)) //Line 16
cout << "Line 17: \"" << str1 << "\" is greater "

<< "than \"" << str2 << "\"" << endl; //Line 17
else //Line 18

cout << "Line 19: \"" << str1 << "\" is not "
<< "greater than \"" << str2 << "\""
<< endl; //Line 19

int temp[8] = {2, 3, 4, 5, 1, 7, 8, 9}; //Line 20

vector<int> vecList(temp, temp + 8); //Line 21
vector<int>::iterator intItr1, intItr2; //Line 22
ostream_iterator<int> screen(cout, " "); //Line 23

cout << "Line 24: vecList: "; //Line 24
copy(vecList.begin(), vecList.end(), screen); //Line 25
cout << endl; //Line 26

intItr1 = adjacent_find(vecList.begin(),
vecList.end(), greater<int>()); //Line 27

intItr2 = intItr1 + 1; //Line 28

cout << "Line 29: In vecList, the first set of "
<< "out of order elements are: " << *intItr1
<< " " << *intItr2 << endl; //Line 29

cout << "Line 30: In vecList, the first out of "
<< "order element is at position: "
<< vecList.end() - intItr2 << endl; //Line 30

return 0; //Line 31
} //Line 32

1
3

STL Algorithm Classification | 755

Sample Run:

Line 12: isEqual = 1
Line 19: "Hello" is not greater than "There"
Line 24: vecList: 2 3 4 5 1 7 8 9
Line 29: In vecList, the first set of out of order elements are: 5 1
Line 30: In vecList, the first out of order element is at position: 4

Table 13-13 describes the logical STL function objects.

Predicates
Predicates are special types of function objects that return Boolean values. There are two
types of predicates—unary and binary. Unary predicates check a specific property for a
single argument; binary predicates check a specific property for a pair—that is, two—of
arguments. Predicates are typically used to specify searching or sorting criteria. In the
STL, a predicate must always return the same result for the same value. Therefore, the
functions that modify their internal states cannot be considered predicates.

INSERT ITERATOR

Consider the following statements:

int list[5] = {1, 3, 6, 9, 12}; //Line 1
vector<int> vList; //Line 2

The statement in Line 1 declares and initializes list to be an array of 5 components; the
statement in Line 2 declares vList to be a vector. Because no size is specified for vList,
no memory space is reserved for the elements of vList. Now suppose that we want to
copy the elements of list into vList. The statement

copy(list, list + 8, vList.begin());

will not work because no memory space is allocated for the elements of vList, and the copy
function uses the assignment operator to copy the elements from the source to the destination.

TABLE 13-13 Logical STL function objects

Function object name Effect

logical_not<Type>
Returns true if its operand evaluates to false, and
false otherwise. This is a unary function object.

logical_and<Type>
Returns true if both of its operands evaluate to true,
and false otherwise. This is a binary function object.

logical_or<Type>
Returns true if at least one of its operands evaluates to
true, andfalse otherwise. This is a binary function object.

756 | Chapter 13: Standard Template Library (STL) II

1
3

One solution to this problem is to use a for loop to step through the elements of list and
use the function push_back of vList to copy the elements of list. However, there is a
better solution, which is convenient and applicable whenever no memory space is allocated at
the destination. The STL provides three iterators, called insert iterators, to insert the
elements at the destination: back_inserter, front_inserter, and inserter.

back_inserter: This inserter uses the push_back operation of the container in place of
the assignment operator. The argument to this iterator is the container itself. For
example, for the preceding problem, we can copy the elements of list into vList by
using back_inserter as follows:

copy(list, list + 5, back_inserter(vList));

front_inserter: This inserter uses the push_front operation of the container in place
of the assignment operator. The argument to this iterator is the container itself. Because
the vector class does not support the push_front operation, this iterator cannot be
used for the vector container.

inserter: This inserter uses the container’s insert operation in place of the assignment
operator. This iterator has two arguments: The first argument is the container itself; the
second argument is an iterator to the container specifying the position at which the
insertion should begin.

The program in Example 13-7 illustrates the effect of inserters on a container.

EXAMPLE 13-7

//***
// Author: D.S. Malik
//
// This program shows how STL inserters work.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <iterator> //Line 3
#include <vector> //Line 4
#include <list> //Line 5

using namespace std; //Line 6

int main() //Line 7
{ //Line 8

int temp[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 9

vector<int> vecList1; //Line 10
vector<int> vecList2; //Line 11

ostream_iterator<int> screenOut(cout, " "); //Line 12

copy(temp, temp + 8, back_inserter(vecList1)); //Line 13

STL Algorithm Classification | 757

cout << "Line 14: vecList1: "; //Line 14
copy(vecList1.begin(), vecList1.end(), screenOut); //Line 15
cout << endl; //Line 16

copy(vecList1.begin(), vecList1.end(),
inserter(vecList2, vecList2.begin())); //Line 17

cout << "Line 18: vecList2: "; //Line 18
copy(vecList2.begin(), vecList2.end(), screenOut); //Line 19
cout << endl; //Line 20

list<int> tempList; //Line 21

copy(vecList2.begin(), vecList2.end(),
front_inserter(tempList)); //Line 22

cout << "Line 23: tempList: "; //Line 23
copy(tempList.begin(), tempList.end(), screenOut); //Line 24
cout << endl; //Line 25

return 0; //Line 26
} //Line 27

Sample Run:

Line 14: vecList1: 1 2 3 4 5 6 7 8
Line 18: vecList2: 1 2 3 4 5 6 7 8
Line 23: tempList: 8 7 6 5 4 3 2 1

STL Algorithms
This section describes most of the STL algorithms. Each algorithm also includes the
function prototypes, a brief description of what the algorithm does, and a program
showing how to use it. In the function prototypes, the parameter types indicate for
which type of container the algorithm is applicable. For example, if a parameter is of type
randomAccessIterator, then the algorithm is applicable only for random access type
containers such as vectors. Throughout, we use abbreviations such as outputItr to
mean output iterator, inputItr to mean input iterator, forwardItr to mean forward
iterator, and so on.

Functions fill and fill_n
The function fill is used to fill a container with elements; the function fill_n is used
to fill in the next n elements. The element that is used as a filling element is passed as a
parameter to these functions. Both of these functions are defined in the header file
algorithm. The prototypes of these functions are as follows:

758 | Chapter 13: Standard Template Library (STL) II

template <class forwardItr, class Type>
void fill(forwardItr first, forwardItr last, const Type& value);

template <class forwardItr, class size, class Type>
void fill_n(forwardItr first, size n, const Type& value);

The first two parameters of the function fill are forward iterators specifying the starting
and ending positions of the container; the third parameter is the filling element. The first
parameter of the function fill_n is a forward iterator that specifies the starting position
of the container, the second parameter specifies the number of elements to be filled, and
the third parameter specifies the filling element. The program in Example 13-8 illustrates
how to use these functions.

EXAMPLE 13-8

//***
// Author: D.S. Malik
//
// This program shows how the STL functions fill and fill_n
// work.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <iterator> //Line 3
#include <vector> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

vector<int> vecList(8); //Line 8
ostream_iterator<int> screen(cout, " "); //Line 9

fill(vecList.begin(), vecList.end(), 2); //Line 10

cout << "Line 11: After filling vecList with 2's: "; //Line 11
copy(vecList.begin(), vecList.end(), screen); //Line 12
cout << endl; //Line 13

fill_n(vecList.begin(), 3, 5); //Line 14

cout << "Line 15: After filling the first three "
<< "elements with 5's: " << endl << " "; //Line 15

copy(vecList.begin(), vecList.end(), screen); //Line 16
cout << endl; //Line 17

return 0; //Line 18
} //Line 19

1
3

STL Algorithms | 759

Sample Run:

Line 11: After filling vecList with 2's: 2 2 2 2 2 2 2 2
Line 15: After filling the first three elements with 5's:

5 5 5 2 2 2 2 2

The statements in Lines 8 and 9 declare vecList to be a sequence container of size 8,
and screen to be an ostream iterator initialized to cout with the delimit character
space. The statement in Line 10 uses the function fill to fill vecList with 2; that is, all
eight elements of vecList are set to 2. Recall that vecList.begin() returns an iterator
to the first element of vecList, and vecList.end() returns an iterator to the last
element of vecList. The statement in Line 12 outputs the elements of vecList using
the copy function. The statement in Line 14 uses the function fill_n to store 5 in the
elements of vecList. The first parameter of fill_n is vecList.begin(), which
specifies the starting position of where to begin copying. The second parameter of
fill_n is 3, which specifies the number of elements to be filled. The third parameter,
5, specifies the filling character. Therefore, 5 is copied into the first three elements of
vecList. The statement in Line 16 outputs the elements of vecList.

Functions generate and generate_n
The functions generate and generate_n are used to generate elements and fill a
sequence. These functions are defined in the header file algorithm. The prototypes of
these functions follow:

template <class forwardItr, class function>
void generate(forwardItr first, forwardItr last, function gen);

template <class forwardItr, class size, class function>
void generate_n(forwardItr first, size n, function gen);

The function generate fills a sequence in the range first...last-1, with successive
calls to the function gen(). The function generate_n fills a sequence in the range
first...first+n-1—that is, starting at position first, with n successive calls to the
function gen(). Note that gen can also be a pointer to a function. Moreover, if gen is a
function, it must be a value-returning function without parameters. The program in
Example 13-9 illustrates how to use these functions.

EXAMPLE 13-9

//***
// Author: D.S. Malik
//
// This program shows how the STL functions generate and
// generate_n work.
//***

760 | Chapter 13: Standard Template Library (STL) II

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <iterator> //Line 3
#include <vector> //Line 4

using namespace std; //Line 5

int nextNum(); //Line 6

int main() //Line 7
{ //Line 8

vector<int> vecList(8); //Line 9
ostream_iterator<int> screen(cout, " "); //Line 10

generate(vecList.begin(), vecList.end(), nextNum); //Line 11

cout << "Line 12: vecList after filling with "
<< "numbers: "; //Line 12

copy(vecList.begin(), vecList.end(), screen); //Line 13
cout << endl; //Line 14

generate_n(vecList.begin(), 3, nextNum); //Line 15

cout << "Line 16: vecList, after filling the first "
<< "three elements " << endl
<< " with the next number: "; //Line 16

copy(vecList.begin(), vecList.end(), screen); //Line 17
cout << endl; //Line 18

return 0; //Line 19
} //Line 20

int nextNum() //Line 21
{ //Line 22

static int n = 1; //Line 23

return n++; //Line 24
} //Line 25

Sample Run:

Line 12: vecList after filling with numbers: 1 2 3 4 5 6 7 8
Line 16: vecList, after filling the first three elements

with the next number: 9 10 11 4 5 6 7 8

This program contains a value-returning function nextNum, which contains a static
variable n initialized to 1. A call to this function returns the current value of n and then
increments the value of n. Therefore, the first call of nextNum returns 1, the second call
returns 2, and so on.

The statements in Lines 9 and 10 declare vecList to be a sequence container of size 8, and
screen to be an ostream iterator initialized to cout with the delimit character space. The

1
3

STL Algorithms | 761

statement in Line 11 uses the function generate to fill vecList by successively calling the
function nextNum. Notice that after the statement in Line 11 executes, the value of the
static variable n of nextNum is 9. The statement in Line 13 outputs the elements of
vecList. The statement in Line 15 calls the function generate_n to fill the first three
elements of vecList by calling the function nextNum three times. The starting position is
vecList.begin(), which is the first element of vecList, and the number of elements to
be filled is 3, given by the second parameter of generate_n (see Line 15). The statement in
Line 17 outputs the elements of vecList.

Functions find, find_if, find_end, and find_first_of
The functions find, find_if, find_end, and find_first_of are used to find the
elements in a given range. These functions are defined in the header file algorithm. The
prototypes of the functions find and find_if are as follows:

template <class inputItr, class size, class Type>
inputItr find(inputItr first, inputItr last,

const Type& searchValue);

template <class inputItr, class unaryPredicate>
inputItr find_if(inputItr first, inputItr last, unaryPredicate op);

The function find searches the range of elements first...last-1 for the element
searchValue. If searchValue is found in the range, the function returns the position in
the range where searchValue is found; otherwise, it returns last. The function
find_if searches the range of elements first...last-1 for the element for which
op(rangeElement) is true. If an element satisfying op(rangeElement) is true is
found, it returns the position in the given range where such an element is found;
otherwise, it returns last.

Example 13-10 illustrates how to use the functions find and find_if.

EXAMPLE 13-10

Consider the following statements.

char cList[10] = {'a', 'i', 'C', 'd', 'e', 'f',
'o', 'H', 'u', 'j'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2
vector<char>::iterator position; //Line 3

After the statement in Line 2 executes, the vector container charList is as follows:

charList = {'a', 'i', 'C', 'd', 'e', 'f', 'o', 'H', 'u', 'j'};

Consider the following statement:

position = find(charList.begin(), charList.end(), 'd');

762 | Chapter 13: Standard Template Library (STL) II

This statement searches charList for the first occurrence of 'd' and returns an iterator,
which is stored in position. Because 'd' is the fourth character in charList, its
position is 3. Therefore, position points to the element at position 3 in charList.

Now consider the following statement:

position = find_if(charList.begin(), charList.end(), isupper);

This statement uses the function find_if to find the first uppercase character in
charList. Note that the function isupper from the header file cctype is passed as
the third parameter to the function find_if. The first uppercase character in charList
is the third element. Therefore, after this statement executes, position points to the
third element of charList.

We leave it as an exercise for you to write a program that test the functions find and
find_if; see Programming Exercise 1 at the end of this chapter.

Next, we describe the functions find_end and find_first_of. Both of these functions
have two forms. The prototypes of the function find_end are as follows:

template <class forwardItr1, class forwardItr2>
forwardItr1 find_end(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 find_end(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

Both forms of the function find_end search the range first1...last1-1 for the last
occurrence of the range first2...last2-1. If the search is successful, the function
returns the position in first1..last1-1 where the match occurs; otherwise, it returns
last1. That is, the function find_end returns the position of the last element in the
range first1...last1-1 where the range first2...last2-1 is a subrange of
first1...last1-1. In the first form, the elements are compared for equality; in the
second form, the comparison op(elementFirstRange, elementSecondRange) must
be true.

The prototypes of the function find_first_of are as follows:

template <class forwardItr1, class forwardItr2>
forwardItr1 find_first_of(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 find_first_of(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

1
3

STL Algorithms | 763

The first form returns the position, within the range first1...last1-1, of the first
element of first2...last2-1 that is also in the range first1...last1-1. The
second form returns the position, within the range first1...last1-1, of the first
element of first2...last2-1 for which op(elemRange1, elemRange2) is true. If
no match is found, both forms return last1-1.

Example 13-11 illustrates how to use the functions find_end and find_first_of.

EXAMPLE 13-11

Suppose that you have the following statements:

int list1[10] = {12, 34, 56, 21, 34, 78, 34, 56, 12, 25};
int list2[2] = {34, 56};
int list3[5] = {33, 48, 21, 34, 73};
vector<int>::iterator location;

Consider the following statement:

location = find_end(list1, list1 + 10, list2, list2 + 2);

This statement uses the function find_end to find the last occurrence of list2, as a
subsequence, within list1. The last occurrence of list2 in list1 starts at position 6

(that is, at the seventh element). Therefore, after this statement executes, location

points to the element at position 6, in list1, which is the seventh element of list1.

Now consider the following statement:

location = find_first_of(list1, list1 + 10, list3, list3 + 5);

This statement uses the function find_first_of to find the position in list1 where
the first element of list3 is also an element of list1. The first element of list3, which
is also an element of list1, is 34 and its position in list1 is 1, the second element of
list1. Therefore, after this statement executes, location points to the element at
position 1, in list1, which is the second element of list1.

We leave it as an exercise for you to write a program that tests the functions find_end
and find_first_of; see Programming Exercise 2 at the end of this chapter.

Functions remove, remove_if, remove_copy,
and remove_copy_if
The function remove is used to remove certain elements from a sequence; the function
remove_if is used to remove the elements from a sequence by using some criteria. The
function remove_copy copies the elements of a sequence into another sequence by excluding
certain elements of the first sequence. Similarly, the function remove_copy_if copies the
elements of a sequence into another sequence by excluding certain elements, using some
criteria, of the first sequence. These functions are defined in the header file algorithm.

764 | Chapter 13: Standard Template Library (STL) II

1
3

The prototypes of the functions remove and remove_if are as follows:

template <class forwardItr, class Type>
forwardItr remove(forwardItr first, forwardItr last,

const Type& value);

template <class forwardItr, class unaryPredicate>
forwardItr remove_if(forwardItr first, forwardItr last,

unaryPredicate op);

The function remove removes each occurrence of a given element in the range
first...last-1. The element to be removed is passed as the third parameter to this
function. The function remove_if removes those elements, in the range first...last-1,
for which the predicate op(element) is true. Both of these functions return forwardItr,
which points to the position after the last element of the new range of elements. These
functions do not modify the size of the container; in fact, the elements are moved to the
beginning of the container. For example, if the sequence is {3, 7, 2, 5, 7, 9} and the element
to be removed is 7, then after removing 7, the resulting sequence is {3, 2, 5, 9, 9}. The
function returns a pointer to element 9 (which is after 5).

The program in Example 13-12 further illustrates the importance of this returned
forwardItr. (See Lines 17, 19, 21, and 23.)

Let us now look at the prototypes of the functions remove_copy and remove_copy_if:

template <class inputItr, class outputItr, class Type>
outputItr remove_copy(inputItr first1, inputItr last1,

outputItr destFirst, const Type& value);

template <class inputItr, class outputItr, class unaryPredicate>
outputItr remove_copy_if(inputItr first1, inputItr last1,

outputItr destFirst,
unaryPredicate op);

The function remove_copy copies all the elements in the range first1...last1-1,
except the elements specified by value, into the sequence starting at the position
destFirst. Similarly, the function remove_copy_if copies all the elements in the
range first1...last1-1, except the elements for which op(element) is true, into
the sequence starting at the position destFirst. Both of these functions return an
outputItr, which points to the position after the last element copied.

The program in Example 13-12 shows how to use the functions remove, remove_if,
remove_copy, and remove_copy_if.

EXAMPLE 13-12

//***
// Author: D.S. Malik
//
// This program shows how the STL functions remove, remove_if,
// remove_copy, and remove_copy_if works.
//***

STL Algorithms | 765

#include <iostream> //Line 1
#include <cctype> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4
#include <vector> //Line 5

using namespace std; //Line 6

bool lessThanEqualTo50(int num); //Line 7

int main() //Line 8
{ //Line 9

char cList[10] = {'A', 'a', 'A', 'B', 'A',
'c', 'D', 'e', 'F', 'A'}; //Line 10

vector<char> charList(cList, cList + 10); //Line 11
vector<char>::iterator lastElem, newLastElem; //Line 12

ostream_iterator<char> screen(cout, " "); //Line 13

cout << "Line 14: Character list: "; //Line 14
copy(charList.begin(), charList.end(), screen); //Line 15
cout << endl; //Line 16

//remove
lastElem = remove(charList.begin(),

charList.end(), 'A'); //Line 17

cout << "Line 18: Character list after removing A: "; //Line 18
copy(charList.begin(), lastElem, screen); //Line 19
cout << endl; //Line 20

//remove_if
newLastElem = remove_if (charList.begin(),

lastElem, isupper); //Line 21
cout << "Line 22: Character list after removing "

<< "the uppercase letters: " << endl; //Line 22
copy(charList.begin(), newLastElem, screen); //Line 23
cout << endl << endl; //Line 24

int list[10] = {12, 34, 56, 21, 34, 78, 34, 55, 12,
25}; //Line 25

vector<int> intList(list, list + 10); //Line 26
vector<int>::iterator endElement; //Line 27

ostream_iterator<int> screenOut(cout, " "); //Line 28

cout << "Line 29: intList: "; //Line 29
copy(intList.begin(), intList.end(), screenOut); //Line 30
cout << endl; //Line 31

766 | Chapter 13: Standard Template Library (STL) II

vector<int> temp1(10); //Line 32

//remove_copy
endElement = remove_copy(intList.begin(), intList.end(),

temp1.begin(), 34); //Line 33

cout << "Line 34: temp1 after copying all the "
<< "elements of intList except 34: " << endl; //Line 34

copy(temp1.begin(), endElement, screenOut); //Line 35
cout << endl; //Line 36

vector<int> temp2(10, 0); //Line 37

//remove_copy_if
remove_copy_if (intList.begin(), intList.end(),

temp2.begin(), lessThanEqualTo50); //Line 38

cout << "Line 39: temp2 after copying all the elements of "
<< "intList except \nnumbers less than 50: "; //Line 39

copy(temp2.begin(), temp2.end(), screenOut); //Line 40
cout << endl; //Line 41

return 0; //Line 42
} //Line 43

bool lessThanEqualTo50(int num) //Line 44
{ //Line 45

return (num <= 50); //Line 46
} //Line 47

Sample Run:

Line 14: Character list: A a A B A c D e F A
Line 18: Character list after removing A: a B c D e F
Line 22: Character list after removing the uppercase letters:
a c e

Line 29: intList: 12 34 56 21 34 78 34 55 12 25
Line 34: temp1 list after copying all the elements of intList except 34:
12 56 21 78 55 12 25
Line 39: temp2 after copying all the elements of intList except
numbers less than 50: 56 78 55 0 0 0 0 0 0 0

The statement in Line 11 creates a vector list, charList, of type char, and initializes
charList using the array cList created in Line 10. The statement in Line 12 declares
two vector iterators, lastElem and newLastElem. The statement in Line 13 declares an
ostream iterator, screen. The statement in Line 15 outputs the value of charList. The
statement in Line 17 uses the function remove to remove all the occurrences of 'A' from
charList. The function returns a pointer to one past the last element of the new range,
which is stored in lastElem. The statement in Line 19 outputs the elements in the new
range. (Note that the statement in Line 19 outputs the elements in the range

1
3

STL Algorithms | 767

charList.begin()...lastElem-1.) The statement in Line 21 uses the function
remove_if to remove the uppercase letters from the list charList and stores the pointer
returned by the function remove_if in newLastElem. The statement in Line 23 outputs
the elements in the new range.

The statement in Line 26 creates a vector, intList, of type int and initializes intList
using the array list, created in Line 25. The statement in Line 30 outputs the elements
of intList. The statement in Line 33 copies all the elements, except the occurrences of
34, of intList into temp1. The list intList is not modified. The statement in Line 35
outputs the elements of temp1. The statement in Line 37 creates a vector, temp2, of type
int of 10 components and initializes all the elements of temp2 to 0. The statement in
Line 38 uses the function remove_copy_if to copy those elements of intList that are
less than 50. The statement in Line 40 outputs the elements of temp2.

Functions replace, replace_if, replace_copy,
and replace_copy_if
The function replace is used to replace all the occurrences, within a given range, of a
given element with a new value. The function replace_if is used to replace the values
of the elements, within a given range, satisfying certain criteria with a new value. The
prototypes of these functions are as follows:

template <class forwardItr, class Type>
void replace(forwardItr first, forwardItr last,

const Type& oldValue, const Type& newValue);

template <class forwardItr, class unaryPredicate, class Type>
void replace_if(forwardItr first, forwardItr last,

unaryPredicate op, const Type& newValue);

The function replace replaces all the elements in the range first...last-1 whose
values are equal to oldValue with the value specified by newValue. The function
replace_if replaces all the elements in the range first...last-1, for which
op(element) is true, with the value specified by newValue.

The function replace_copy is a combination of replace and copy. Similarly, the
function replace_copy_if is a combination of replace_if and copy. Let us first look
at the prototypes of the functions replace_copy and replace_copy_if:

template <class inputItr, class outputItr, class Type>
outputItr replace_copy(forwardItr first, forwardItr last,

outputItr destFirst,
const Type& oldValue,
const Type& newValue);

template <class forwardItr, class outputItr,
class unaryPredicate, class Type>

768 | Chapter 13: Standard Template Library (STL) II

1
3

outputItr replace_copy_if(forwardItr first, forwardItr last,
outputItr destFirst,
unaryPredicate op,
const Type& newValue);

The function replace_copy copies all the elements in the range first...last-1 into
the container starting at destFirst. If the value of an element in this range is equal to
oldValue, it is replaced by newValue. The function replace_copy_if copies all the
elements in the range first...last-1 into the container starting at destFirst. If for
any element in this range op(element) is true, at the destination its value is replaced by
newValue. Both of these functions return an outputItr (a pointer) positioned one past
the last element copied at the destination.

Example 13-13 illustrates how to use the functions replace, replace_if, replace_copy,
and replace_copy_if.

EXAMPLE 13-13

Consider the following statements:

char cList[10] = {'A', 'a', 'A', 'B', 'A',
'c', 'D', 'e', 'F', 'A'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2

After the statement in Line 2 executes, the vector container charList is as follows:

charList = {'A', 'a', 'A', 'B', 'A', 'c',
'D', 'e', 'F', 'A'} //Line 3

Now consider the following statement:

replace(charList.begin(), charList.end(), 'A', 'Z'); //Line 4

This statement uses the function replace to replace all the occurrences of 'A' with 'Z'

in charList. After this statement executes, charList is as follows:

charList ={'Z', 'a', 'Z', 'B', 'Z', 'c', 'D',
'e', 'F', 'Z'} //Line 5

Now consider the following statement:

replace_if(charList.begin(), charList.end(), isupper, '*'); //Line 6

This statement uses the function replace_if to replace the uppercase letters with '*' in
the list charList. After this statement executes, charList is as follows:

charList ={'*', 'a', '*', '*', '*', 'c', '*',
'e', '*', '*'} //Line 7

Next suppose that you have the following statements:

int list[10] = {12, 34, 56, 21, 34, 78, 34, 55, 12, 25}; //Line 8
vector<int> intList(list, list + 10); //Line 9
vector<int> temp(10); //Line 10

STL Algorithms | 769

The statement in Line 9 creates a vector, intList, of type int and initializes intList using
the array list, created in Line 8. After the statement in Line 9 executes, intList is as follows:

intList = {12, 34, 56, 21, 34, 78, 34, 55, 12, 25}

The statement in Line 10 declares a vector temp of type int. Next consider the following
statement:

replace_copy(intList.begin(), intList.end(),
temp1.begin(), 34, 0); //Line 11

This statement copies all the elements of intList and replaces 34 with 0. The list
intList is not modified. After this statement executes, temp is as follows:

temp = {12, 0, 56, 21, 0, 78, 0, 55, 12, 25}

Next, suppose that you have the following function definition:

bool lessThanEqualTo50(int num) //Line 12
{

return (num <= 50);
}

The function lessThanEqualTo50 returns true if num is less than or equal to 50,
otherwise it returns false. Consider the following statement:

replace_copy_if(intList.begin(), intList.end(),
temp.begin(), lessThanEqualTo50, 50); //Line 13

This statement uses the function replace_copy_if to copy the elements of intList
into temp and replaces all the elements less than 50 with 50. Notice that the fourth
parameter of the function replace_copy_if is the function lessThanEqualTo50.
After the statement in Line 13 executes, temp is as follows:

temp = {50, 50, 56, 50, 50, 78, 50, 55, 50, 50}

We leave it as an exercise for you to write a program that further illustrates how to use the
functions replace, replace_if, replace_copy, and replace_copy_if; see Pro-
gramming Exercise 3 at the end of this chapter.

Functions swap, iter_swap, and swap_ranges
The functionsswap,iter_swap, andswap_ranges are used to swap elements. These functions
are defined in the header file algorithm. The prototypes of these functions are as follows:

template <class Type>
void swap(Type& object1, Type& object2);

template <class forwardItr1, class forwardItr2>
void iter_swap(forwardItr1 first, forwardItr2 second);

770 | Chapter 13: Standard Template Library (STL) II

1
3

template <class forwardItr1, class forwardItr2>
forwardItr2 swap_ranges(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2);

The function swap swaps the values of object1 and object2. The function iter_swap

swaps the values to which the iterators first and second point.

The function swap_ranges swaps the elements of the range first1...last1-1 with
the consecutive elements starting at position first2. It returns the iterator of the second
range positioned one past the last element swapped. The program in Example 13-14
illustrates how to use these functions.

EXAMPLE 13-14

//***
// Author: D.S. Malik
//
// This program shows how the STL functions swap, iter_swap,
// and swap_ranges work.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <vector> //Line 3
#include <iterator> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

char cList[10] = {'A', 'B', 'C', 'D', 'F',
'G', 'H', 'I', 'J', 'K'}; //Line 8

vector<char> charList(cList, cList + 10); //Line 9
vector<char>::iterator charItr; //Line 10

ostream_iterator<char> screen(cout, " "); //Line 11

cout << "Line 12: Character list: "; //Line 12
copy(charList.begin(), charList.end(), screen); //Line 13
cout << endl; //Line 14

//swap
swap(charList[0], charList[1]); //Line 15

cout << "Line 16: Character list after swapping the "
<< "first and second elements: " << endl; //Line 16

copy(charList.begin(), charList.end(), screen); //Line 17
cout << endl; //Line 18

//iter_swap
iter_swap(charList.begin() + 2,

charList.begin() + 3); //Line 19

STL Algorithms | 771

cout << "Line 20: Character list after swapping the "
<< "third and fourth elements: " << endl; //Line 20

copy(charList.begin(), charList.end(), screen); //Line 21
cout << endl; //Line 22

charItr = charList.begin() + 4; //Line 23
iter_swap(charItr, charItr + 1); //Line 24

cout << "Line 25: Character list after swapping the "
<< "fifth and sixth elements: " << endl; //Line 25

copy(charList.begin(), charList.end(), screen); //Line 26
cout << endl << endl; //Line 27

int list[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; //Line 28

vector<int> intList(list, list + 10); //Line 29

ostream_iterator<int> screenOut(cout, " "); //Line 30

cout << "Line 31: intList: "; //Line 31
copy(intList.begin(), intList.end(), screenOut); //Line 32
cout << endl; //Line 33

//swap_ranges
swap_ranges(intList.begin(), intList.begin() + 4,

intList.begin() + 5); //Line 34

cout << "Line 35: intList after swapping the first "
<< "four elements with the \n four elements "
<< "starting at the sixth element of intList: "
<< endl; //Line 35

copy(intList.begin(), intList.end(), screenOut); //Line 36
cout << endl; //Line 37

return 0; //Line 38
} //Line 39

Sample Run:

Line 12: Character list: A B C D F G H I J K
Line 16: Character list after swapping the first and second elements:
B A C D F G H I J K
Line 20: Character list after swapping the third and fourth elements:
B A D C F G H I J K
Line 25: Character list after swapping the fifth and sixth elements:
B A D C G F H I J K

Line 31: intList: 1 2 3 4 5 6 7 8 9 10
Line 35: intList after swapping the first four elements with

four elements starting at the sixth element of intList:
6 7 8 9 5 1 2 3 4 10

772 | Chapter 13: Standard Template Library (STL) II

The statement in Line 9 creates the vector charList and initializes it using the array cList

declared in Line 8. The statement in Line 13 outputs the values of charList. The statement
in Line 15 swaps the first and second elements of charList. The statement in Line 19, using
the function iter_swap, swaps the third and fourth elements of charList. (Recall that the
position of the first element in charList is 0.) After the statement in Line 23 executes,
charItr points to the fifth element of charList. The statement in Line 24 uses the iterator
charItr to swap the fifth and sixth elements of charList. The statement in Line 26
outputs the values of the elements of charList. (In the output, the line marked Line 25
contains the output of Lines 25 through 27 of the program.)

The statement in Line 29 creates the vector intList and initializes it using the array
declared in Line 28. The statement in Line 32 outputs the values of the elements of
intList. The statement in Line 34 uses the function swap_ranges to swap the first four
elements of intList with the four elements of intList starting at the sixth element of
intList. The statement in Line 36 outputs the elements of intList. (In the output, the
line marked Line 35 contains the output of Lines 35 through 37 of the program.)

Functions search, search_n, sort, and binary_search
The functions search, search_n, sort, and binary_search are used to search ele-
ments. These functions are defined in the header file algorithm.

The prototypes of the function search are as follows:

template <class forwardItr1, class forwardItr2>
forwardItr1 search(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 search(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

Given two ranges of elements, first1...last1-1 and first2...last2-1, the func-
tion search searches the first element in the range first1...last1-1 where the range
first2...last2-1 occurs as a subrange of first1...last1-1. The first form makes
the equality comparison between the elements of the two ranges. For the second form,
the comparison op(elemFirstRange, elemSecondRange) must be true. If a match is
found, the function returns the position in the range first1...last1-1 where the
match occurs; otherwise, the function returns last1.

The prototypes of the function search_n are as follows:

template <class forwardItr, class size, class Type>
forwardItr search_n(forwardItr first, forwardItr last,

size count, const Type& value);

1
3

STL Algorithms | 773

template <class forwardItr, class size, class Type,
class binaryPredicate>

forwardItr search_n(forwardItr first, forwardItr last,
size count, const Type& value,
binaryPredicate op);

Given a range of elements first...last-1, the function search_n searches count for
any consecutive occurrences of value. The first form returns the position in the range
first...last-1 where a subsequence of count consecutive elements have values equal
to value. The second form returns the position in the range first...last-1 where a
subsequence of count consecutive elements exists for which op(elemRange, value) is
true. If no match is found, both forms return last.

The prototypes of the function sort are as follows:

template <class randomAccessItr>
void sort(randomAccessItr first, randomAccessItr last);

template <class randomAccessItr, class compare>
void sort(randomAccessItr first, randomAccessItr last,

compare op);

The first form of the sort function reorders the elements in the range first...last-1
in ascending order. The second form reorders the elements according to the criteria
specified by op.

The prototypes of the function binary_search are as follows:

template <class forwardItr, class Type>
bool binary_search(forwardItr first, forwardItr last,

const Type& searchValue);

template <class forwardItr, class Type, class compare>
bool binary_search(forwardItr first, forwardItr last,

const Type& searchValue, compare op);

The first form returns true if searchValue is found in the range first...last-1, and
false otherwise. The second form uses a function object, op, that specifies the search
criteria.

Example 13-15 illustrates how to use these searching and sorting functions.

EXAMPLE 13-15

//***
// Author: D.S. Malik
//
// This program shows how the STL functions search, search_n,
// sort, and binary_search work.
//***

774 | Chapter 13: Standard Template Library (STL) II

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <iterator> //Line 3
#include <vector> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

int intList[15] = {12, 34, 56, 34, 34, 78, 38, 43,
12, 25, 34, 56, 62, 5, 49}; //Line 8

vector<int> vecList(intList, intList + 15); //Line 9
int list[2] = {34, 56}; //Line 10

vector<int>::iterator location; //Line 11

ostream_iterator<int> screenOut(cout, " "); //Line 12

cout << "Line 13: vecList: "; //Line 13
copy(vecList.begin(), vecList.end(), screenOut); //Line 14
cout << endl; //Line 15

cout << "Line 16: list: "; //Line 16
copy(list, list + 2, screenOut); //Line 17
cout << endl; //Line 18

//search
location = search(vecList.begin(), vecList.end(),

list, list + 2); //Line 19

if (location != vecList.end()) //Line 20
cout << "Line 21: list found in vecList. The "

<< "first occurrence of \n list in vecList "
<< "is at position: "
<< (location - vecList.begin()) << endl; //Line 21

else //Line 22
cout << "Line 23: list is not in vecList"

<< endl; //Line 23

//search_n
location = search_n(vecList.begin(), vecList.end(),

2, 34); //Line 24

if (location != vecList.end()) //Line 25
cout << "Line 26: Two consecutive occurrences of "

<< "34 found in \n vecList at position: "
<< (location - vecList.begin()) << endl; //Line 26

else //Line 27
cout << "Line 28: Two consecutive occurrences "

<< "of 34 not in vecList" << endl; //Line 28

1
3

STL Algorithms | 775

//sort
sort(vecList.begin(), vecList.end()); //Line 29

cout << "Line 30: vecList after sorting:"
<< endl << " "; //Line 30

copy(vecList.begin(), vecList.end(), screenOut); //Line 31
cout << endl; //Line 32

//binary_search
bool found; //Line 33

found = binary_search(vecList.begin(),
vecList.end(), 78); //Line 34

if (found) //Line 35
cout << "Line 36: 43 found in vecList " << endl; //Line 36

else //Line 37
cout << "Line 38: 43 is not in vecList" << endl; //Line 38

return 0; //Line 39
} //Line 40

Sample Run:

Line 13: vecList: 12 34 56 34 34 78 38 43 12 25 34 56 62 5 49
Line 16: list: 34 56
Line 21: list found in vecList. The first occurrence of

list in vecList is at position: 1
Line 26: Two consecutive occurrences of 34 found in

vecList at position: 3
Line 30: vecList after sorting:

5 12 12 25 34 34 34 34 38 43 49 56 56 62 78
Line 36: 43 found in vecList

The statement in Line 9 creates a vector, vecList, and initializes it using the array intList

created in Line 8. The statement in Line 10 creates an array, list, of two components and
initializes list. The statement in Line 14 outputs vecList. The statement in Line 19 uses
the function search and searches vecList to find the position (of the first occurrence) in
vecList where list occurs as a subsequence. The statements in Lines 20 through 23
output the result of the search; see the line marked Line 21 in the output.

The statement in Line 24 uses the function search_n to find the position in vecList
where two consecutive instances of 34 occur. The statements in Lines 25 through 28
output the result of the search.

The statement in Line 29 uses the function sort to sort vecList. The statement in Line
31 outputs vecList. In the output, the line marked Line 30 contains the output of the
statements in Lines 30 through 32 of the program.

The statement in Line 34 uses the function binary_search to search vecList. The
statements in Lines 35 through 38 output the search result.

776 | Chapter 13: Standard Template Library (STL) II

Functions adjacent_find, merge, and inplace_merge
The algorithm adjacent_find is used to find the first occurrence of consecutive
elements that meet certain criteria. The prototypes of the functions implementing this
algorithm are as follows:

template <class forwardItr>
forwardItr adjacent_find(forwardItr first, forwardItr last);

template <class forwardItr, class binaryPredicate>
forwardItr adjacent_find(forwardItr first, forwardItr last,

binaryPredicate op);

The first form of adjacent_find uses the equality criteria; that is, it looks for the first
consecutive occurrence of the same element. In the second form, the algorithm returns an
iterator to the element in the range first...last-1 for which op(elem, nextElem) is
true, where elem is an element in the range first...last-1 and nextElem is an element
in this range next to elem. If no matching elements are found, both algorithms return last.

Suppose that intList is a list container of type int. Further assume that intList is as follows:

intList = {0, 1, 1, 2, 3, 4, 4, 5, 6, 6}; //Line 1

Consider the following statements:

list<int>::iterator listItr; //Line 2
listItr = adjacent_find(intList.begin(), intList.end());//Line 3

The statement in Line 2 declares listItr to be a list iterator that can point to any list

container of type int. The statement in Line 3 uses the function adjacent_find to find
the position of the (first set of) consecutive identical elements. The function returns a
pointer to the first set of consecutive elements, which is stored in listItr. After the
statement in Line 3 executes, listItr points to the second element of intList.

Now suppose that vecList is a vector container of type int. Further assume that
vecList is as follows:

vecList = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8}; //Line 4

Consider the following statements:

vector<int>::iterator intItr; //Line 5
intItr = adjacent_find(vecList.begin(), vecList.end(),

greater<int>()); //Line 6

The statement in Line 5 declares intItr to be a vector iterator that can point to any
vector container of type int. The statement in Line 6 uses the second form of the function
adjacent_find to find the first element of vecList that is greater than the following
element of vecList. Notice that the third parameter of the function adjacent_find is the
binary predicate greater, which returns the position in vecList where the first element is
greater than the second element. The returned position is stored in the iterator intItr. After
the statement in Line 6 executes, intItr points to the element 9.

1
3

STL Algorithms | 777

Next we discuss the algorithm merge. The algorithm merge merges the sorted lists. The
result is a sorted list. Both lists must be sorted according to the same criteria. For example,
both lists should be in either ascending or descending order. The prototypes of the
functions to implement the merge algorithms are as follows:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr merge(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr merge(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst, binaryPredicate op);

Both forms of the algorithm merge merge the elements of the sorted ranges
first1...last1-1 and first2...last2-1. The destination range beginning with
the iterator destFirst contains the merged elements. The first form uses the less-than
operator, <, for ordering the elements. The second form uses the binary predicate op to
order the elements; that is, op(elemRange1, elemRange2) must be true. Both forms
return the position after the last copied element in the destination range. Moreover, the
source ranges are not modified and the destination range should not overlap with the
source ranges.

Consider the following statements:

int list1[5] = {0, 2, 4, 6, 8}; //Line 7
int list2[5] = {1, 3, 5, 7, 9}; //Line 8

list<int> intList; //Line 9
merge(list1, list1 + 5, list2, list2 + 5,

back_inserter(intList)); //Line 10

The statements in Lines 7 and 8 create the sorted arrays list1 and list2. The statement
in Line 9 declares intList to be a list container of type int. The statement in Line 10
uses the function merge to merge list1 and list2. The third parameter of the function
merge, in Line 10, is a call to back_inserter, which places the merged list into
intList. After the statement in Line 10 executes, intList contains the merged list,
that is,

intList = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The algorithm inplace_merge is used to combine the sorted consecutive sequence. The
prototypes of the functions implementing this algorithm are as follows:

template <class biDirectionalItr>
void inplace_merge(biDirectionalItr first,

biDirectionalItr middle,
biDirectionalItr last);

778 | Chapter 13: Standard Template Library (STL) II

template <class biDirectionalItr, class binaryPredicate>
void inplace_merge(biDirectionalItr first,

biDirectionalItr middle,
biDirectionalItr last,
binaryPredicate op);

Both forms merge the sorted consecutive sequences first...middle-1 and
middle...last-1. The merged elements overwrite the two ranges beginning at
first. The first form uses the less-than criterion to merge the two consecutive
sequences. The second form uses the binary predicate op to merge the sequences; that
is, for the elements of the two sequences, op(elemSeq1, elemSeq2) must be true.
For example, suppose that

vecList = {1, 3, 5, 7, 9, 2, 4, 6, 8}

where vecList is a vector container. Further suppose that vecItr is a vector iterator
pointing to element 2. Then, after the execution of the statement

inplace_merge(vecList.begin(), vecItr, vecList.end());

the elements in vecList are in the following order:

vecList = {1, 2, 3, 4, 5, 6, 7, 8, 9}

We leave it as an exercise for you to write a program that further illustrates how to use the
functions adjacent_find, merge, and inplace_merge; see Programming Exercise 4 at
the end of this chapter.

Functions reverse, reverse_copy, rotate,
and rotate_copy
The algorithm reverse reverses the order of the elements in a given range. The
prototype of the function to implement the algorithm reverse is as follows:

template <class biDirectionalItr>
void reverse(biDirectionalItr first, biDirectionalItr last);

The elements in the range first...last-1 are reversed. For example, if vecList =

{1, 2, 5, 3, 4}, then the elements in reverse order are vecList = {4, 3, 5, 2, 1}.

The algorithm reverse_copy reverses the elements of a given range while copying into
a destination range. The source is not modified. The prototype of the function imple-
menting the reverse_copy algorithm is as follows:

template <class biDirectionalItr, class outputItr>
outputItr reverse_copy(biDirectionalItr first,

biDirectionalItr last,
outputItr destFirst);

The elements in the range first...last-1 are copied in reverse order at the destina-
tion beginning with destFirst. The function also returns the position one past the last
element copied at the destination.

1
3

STL Algorithms | 779

The algorithm rotate rotates the elements of a given range. Its prototype is as follows:

template <class forwardItr>
void rotate(forwardItr first, forwardItr newFirst,

forwardItr last);

The elements in the range first...newFirst-1 are moved to the end of the range.
The element specified by newFirst becomes the first element of the range. For example,
suppose that

vecList = {3, 5, 4, 0, 7, 8, 2, 5}

and the iterator vecItr points to 0. Then, after the statement

rotate(vecList.begin(), vecItr, vecList.end());

executes, vecList is as follows:

vecList = {0, 7, 8, 2, 5, 3, 5, 4}

The algorithm rotate_copy is a combination of rotate and copy. That is, the elements
of the source are copied at the destination in a rotated order. The source is not modified.
The prototype of the function implementing this algorithm is as follows:

template <class forwardItr, class outputItr>
outputItr rotate_copy(forwardItr first, forwardItr middle,

forwardItr last,
outputItr destFirst);

The elements in the range first...last-1 are copied into the destination range
beginning with destFirst in the rotated order so that the element specified by
middle in the range first...last-1 becomes the first element of the destination.
The function also returns the position one past the last element copied at the destination.

The algorithms reverse, reverse_copy, rotate, and rotate_copy are contained in
the header file algorithm. The program in Example 13-16 illustrates how to use these
algorithms.

EXAMPLE 13-16

//***
// Author: D.S. Malik
//
// This program shows how the STL functions reverse,
// reverse_copy, rotate, and rotate_copy work.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <iterator> //Line 3
#include <list> //Line 4

780 | Chapter 13: Standard Template Library (STL) II

1
3

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

int temp[10] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8}; //Line 8

list<int> intList(temp, temp + 10); //Line 9
list<int> resultList; //List 10
list<int>::iterator listItr; //Line 11

ostream_iterator<int> screen(cout, " "); //Line 12

cout << "Line 13: intList: "; //Line 13
copy(intList.begin(), intList.end(), screen); //Line 14
cout << endl; //Line 15

reverse(intList.begin(), intList.end()); //reverse Line 16

cout << "Line 17: intList after reversal: "; //Line 17
copy(intList.begin(), intList.end(), screen); //Line 18
cout << endl; //Line 19

reverse_copy(intList.begin(), intList.end(),
back_inserter(resultList)); //reverse_copy Line 20

cout << "Line 21: resultList: "; //Line 21
copy(resultList.begin(), resultList.end(), screen); //Line 22
cout << endl; //Line 23

listItr = intList.begin(); //Line 24
listItr++; //Line 25
listItr++; //Line 26

cout << "Line 27: intList before rotating: "; //Line 27
copy(intList.begin(), intList.end(), screen); //Line 28
cout << endl; //Line 29

rotate(intList.begin(), listItr, intList.end()); //Line 30

cout << "Line 31: intList after rotating: "; //Line 31
copy(intList.begin(), intList.end(), screen); //Line 32
cout << endl; //Line 33

resultList.clear(); //Line 34

rotate_copy(intList.begin(), listItr, intList.end(),
back_inserter(resultList)); //rotate_copy Line 35

cout << "Line 36: intList after rotating and "
<< "copying: "; //Line 36

copy(intList.begin(), intList.end(), screen); //Line 37
cout << endl; //Line 38

STL Algorithms | 781

cout << "Line 39: resultList after rotating and "
<< "copying: "; //Line 39

copy(resultList.begin(), resultList.end(), screen); //Line 40
cout << endl; //Line 41

resultList.clear(); //Line 42

rotate_copy(intList.begin(),
find(intList.begin(),
intList.end(), 6), intList.end(),
back_inserter(resultList)); //Line 43

cout << "Line 44: resultList after rotating and "
<< "copying: "; //Line 44

copy(resultList.begin(), resultList.end(),
screen); //Line 45

cout << endl; //Line 46

return 0; //Line 47
} //Line 48

Sample Run:

Line 13: intList: 1 3 5 7 9 0 2 4 6 8
Line 17: intList after reversal: 8 6 4 2 0 9 7 5 3 1
Line 21: resultList: 1 3 5 7 9 0 2 4 6 8
Line 27: intList before rotating: 8 6 4 2 0 9 7 5 3 1
Line 31: intList after rotating: 4 2 0 9 7 5 3 1 8 6
Line 36: intList after rotating and copying: 4 2 0 9 7 5 3 1 8 6
Line 39: resultList after rotating and copying: 0 9 7 5 3 1 8 6 4 2
Line 44: resultList after rotating and copying: 6 4 2 0 9 7 5 3 1 8

The preceding output is self-explanatory. The details are left as an exercise for you.

Functions count, count_if, max_element, min_element,
and random_shuffle
The algorithm count counts the occurrences of a given value in a given range. The
prototype of the function implementing this algorithm is as follows:

template <class inputItr, class type>
iterator_traits<inputItr>:: difference_type

count(inputItr first, inputItr last, const Type& value);

The function count returns the number of times the value specified by the parameter
value occurs in the range first...last-1.

The algorithm count_if counts the occurrences of a given value in a given range
satisfying a certain criterion. The prototype of the function implementing this algorithm
is as follows:

782 | Chapter 13: Standard Template Library (STL) II

1
3

template <class inputItr, class unaryPredicate>
iterator_traits<inputItr>::difference_type

count_if(inputItr first, inputItr last, unaryPredicate op);

The function count_if returns the number of elements in the range first...last-1

for which op(elemRange) is true.

The algorithm max is used to determine the maximum of two values. It has two forms, as
shown by the following prototypes:

template <class Type>
const Type& max(const Type& aVal, const Type& bVal);

template <class Type, class compare>
const Type& max(const Type& aVal, const Type& bVal, compare comp);

In the first form, the greater-than operator associated with Type is used. In the second
form, the comparison operation specified by comp is used.

The algorithm max_element is used to determine the largest element in a given range.
This algorithm has two forms, as shown by the following prototypes:

template <class forwardItr>
forwardItr max_element(forwardItr first, forwardItr last);

template <class forwardItr, class compare>
forwardItr max_element(forwardItr first, forwardItr last,

compare comp);

The first form uses the greater-than operator associated with the data type of the elements
in the range first...last-1. In the second form, the comparison operation specified
by comp is used. Both forms return an iterator to the element containing the largest value
in the range first...last-1.

The algorithm min is used to determine the minimum of two values. It has two forms, as
shown by the following prototypes:

template <class Type>
const Type& min(const Type& aVal, const Type& bVal);

template <class Type, class compare>
const Type& min(const Type& aVal, const Type& bVal, compare comp);

In the first form, the less-than operator associated with Type is used. In the second form,
the comparison operation specified by comp is used.

The algorithm min_element is used to determine the smallest element in a given range.
This algorithm has two forms, as shown by the following prototypes:

template <class forwardItr>
forwardItr min_element(forwardItr first, forwardItr last);

template <class forwardItr, class compare>
forwardItr min_element(forwardItr first, forwardItr last,

compare comp);

STL Algorithms | 783

The first form uses the less-than operator associated with the data type of the elements in
the range first...last-1. In the second form, the comparison operation specified by
comp is used. Both forms return an iterator to the element containing the smallest value in
the range first...last-1.

The algorithm random_shuffle is used to randomly order the elements in a given
range. There are two forms of this algorithm, as shown by the following prototypes:

template <class randomAccessItr>
void random_shuffle(randomAccessItr first,

randomAccessItr last);

template <class randomAccessItr, class randomAccessGenerator>
void random_shuffle(randomAccessItr first,

randomAccessItr last,
randomAccessGenerator rand);

The first form reorders the elements in the range first...last-1 using a uniform
distribution random number generator. The second form reorders the elements in the
range first...last-1 using a random number-generating function object or a pointer
to a function.

Example 13-17 illustrates how to use these functions.

EXAMPLE 13-17

//***
// Author: D.S. Malik
//
// This program shows how the STL functions count, count_if,
// max_element, min_element, and random_shuffle work.
//***

#include <iostream> //Line 1
#include <cctype> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4
#include <vector> //Line 5

using namespace std; //Line 6

int main() //Line 7
{ //Line 8

char cList[10] = {'Z', 'a', 'Z', 'B', 'Z',
'c', 'D', 'e', 'F', 'Z'}; //Line 9

vector<char> charList(cList, cList + 10); //Line 10

ostream_iterator<char> screen(cout, " "); //Line 11

cout << "Line 12: charList: "; //Line 12
copy(charList.begin(), charList.end(), screen); //Line 13
cout << endl; //Line 14

784 | Chapter 13: Standard Template Library (STL) II

1
3

int noOfZs = count(charList.begin(), charList.end(),
'Z'); //count; Line 15

cout << "Line 16: Number of Z\'s in charList:"
<< noOfZs << endl; //Line 16

int noOfUpper = count_if (charList.begin(), charList.end(),
isupper); //count_if; Line 17

cout << "Line 18: Number of uppercase letters in "
<< "charList: " << noOfUpper << endl; //Line 18

int list[10] = {12, 34, 56, 21, 34,
78, 34, 55, 12, 25}; //Line 19

ostream_iterator<int> screenOut(cout, " "); //Line 20

cout << "Line 21: list: "; //Line 21
copy(list, list + 10, screenOut); //Line 22
cout << endl; //Line 23

int *maxLoc = max_element(list,
list + 10); //max_element; Line 24

cout << "Line 25: Largest element in list: "
<< *maxLoc << endl; //Line 25

int *minLoc = min_element(list,
list + 10); //min_element; Line 26

cout << "Line 27: Smallest element in list: "
<< *minLoc << endl; //Line 27

random_shuffle(list, list + 10); //random_shuffle; Line 28

cout << "Line 29: list after random shuffle: "; //Line 29
copy(list, list + 10, screenOut); //Line 30
cout << endl; //Line 31

return 0; //Line 32
} //Line 33

Sample Run:

Line 12: charList: Z a Z B Z c D e F Z
Line 16: Number of Z's in charList:4
Line 18: Number of uppercase letters in charList: 7
Line 21: list: 12 34 56 21 34 78 34 55 12 25
Line 25: Largest element in list: 78
Line 27: Smallest element in list: 12
Line 29: list after random shuffle: 12 34 25 56 12 78 55 21 34 34

The preceding output is self-explanatory. The details are left as an exercise for you.

STL Algorithms | 785

Functions for_each and transform
The algorithm for_each is used to access and process each element in a given range by
applying a function, which is passed as a parameter. The prototype of the function
implementing this algorithm is as follows:

template <class inputItr, class function>
function for_each(inputItr first, inputItr last, function func);

The function specified by the parameter func is applied to each element in the range
first...last-1. The function func can modify the element. The returned value of
the function for_each is usually ignored.

The algorithm transform has two forms. The prototypes of the functions implementing
this algorithm are as follows:

template <class inputItr, class outputItr,
class unaryOperation>

outputItr transform(inputItr first, inputItr last,
outputItr destFirst,
unaryOperation op);

template <class inputItr1, class inputItr2,
class outputItr, class binaryOperation>

outputItr transform(inputItr1 first1, inputItr1 last,
inputItr2 first2,
outputItr destFirst,
binaryOperation bOp);

The first form of the function transform has four parameters. This function creates a
sequence of elements at the destination, beginning with destFirst, by applying the
unary operation op to each element in the range first1...last-1. This function
returns the position one past the last element copied at the destination.

The second form of the function transform has five parameters. The function creates a
sequence of elements by applying the binary operation bOp—that is bOp(elemRange1,
elemRange2)—to the corresponding elements in the range first1...last1-1 and the
range beginning with first2. The resulting sequence is placed at the destination
beginning with destFirst. The function returns the position one element past the last
element copied at the destination.

Example 13-18 illustrates how to use these functions.

EXAMPLE 13-18

//***
// Author: D.S. Malik
//
// This program shows how the STL functions for_each and
// transform work.
//***

786 | Chapter 13: Standard Template Library (STL) II

#include <iostream> //Line 1
#include <cctype> //Line 2
#include <algorithm> //Line 3
#include <iterator> //Line 4
#include <vector> //Line 5

using namespace std; //Line 6

void doubleNum(int& num); //Line 7

int main() //Line 8
{ //Line 9

char cList[5] = {'a', 'b', 'c', 'd', 'e'}; //Line 10

vector<char> charList(cList, cList + 5); //Line 11

ostream_iterator<char> screen(cout, " "); //Line 12

cout << "Line 13: charList: "; //Line 13
copy(charList.begin(), charList.end(), screen); //Line 14
cout << endl; //Line 15

transform(charList.begin(), charList.end(),
charList.begin(), toupper); //Line 16

cout << "Line 17: charList after changing all lowercase"
<< " letters to \n uppercase: "; //Line 17

copy(charList.begin(), charList.end(), screen); //Line 18
cout << endl; //Line 19

int list[7] = {2, 8, 5, 1, 7, 11, 3}; //Line 20

ostream_iterator<int> screenOut(cout, " "); //Line 21

cout << "Line 22: list: "; //Line 22
copy(list, list + 7, screenOut); //Line 23
cout << endl; //Line 24

cout << "Line 25: The effect of the for_each "
<< "function: "; //Line 25

for_each(list, list + 7, doubleNum); //Line 26
cout << endl; //Line 27

cout << "Line 28: list after a call to the for_each "
<< "function: "; //Line 28

copy(list, list + 7, screenOut); //Line 29
cout << endl; //Line 30

return 0; //Line 31
} //Line 32

1
3

STL Algorithms | 787

void doubleNum(int& num) //Line 33
{ //Line 34

num = 2 * num; //Line 35
cout << num << " "; //Line 36

} //Line 37

Sample Run:

Line 13: cList: a b c d e
Line 17: cList after changing all lowercase letters to

uppercase: A B C D E
Line 22: list: 2 8 5 1 7 11 3
Line 25: The effect of the for_each function: 4 16 10 2 14 22 6
Line 28: list after a call to the for_each function: 4 16 10 2 14 22 6

The statement in Line 16 uses the function transform to change every lowercase letter
of cList into its uppercase counterpart. In the output, the line marked Line 17 contains
the output of the statements in Lines 17 through 19 in the program. Notice that the
fourth parameter of the function transform (in Line 16) is the function toupper from
the header file cctype.

The statement in Line 26 calls the function for_each to process each element in the list
using the function doubleNum. The function doubleNum has a reference parameter, num, of
type int. Moreover, this function doubles the value of num and then outputs the value of
num. Because num is a reference parameter, the value of the actual parameter is changed. In
the output, the line marked Line 25 contains the output produced by the cout statement in
the function doubleNum, which is passed as the third parameter of the function for_each
(see Line 26). The statement in Line 29 outputs the values of the elements of list. In the
output, Line 28 contains the output of the statements in Lines 28 through 29 of the program.

Functions includes, set_intersection, set_union,
set_difference, and set_symmetric_difference
This section describes the set theory operations includes (subset), set_intersection,
set_union, set_difference, and set_symmetric_difference. These algorithms
assume that the elements within each given range are already sorted.

The algorithm includes determines whether the elements in one range appear in
another range. This function has two forms, as shown by the following prototypes:

template <class inputItr1, class inputItr2>
bool includes(inputItr1 first1, inputItr1 last1,

inputItr2 first2, inputItr2 last2);

template <class inputItr1, class inputItr2,
class binaryPredicate>

bool includes(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
binaryPredicate op);

788 | Chapter 13: Standard Template Library (STL) II

Both forms of the function includes assume that the elements in the ranges
first1...last1-1 and first2...last2-1 are sorted according to the same sorting
criterion. The function returns true if all the elements in the range first2...last2-1
are also in first1...last1-1. In other words, the function returns true if
first1...last1-1 contains all the elements in the range first2...last2-1. The
first form assumes that the elements in both ranges are in ascending order. The second
form uses the operation op to determine the ordering of the elements.

Example 13-19 illustrates how the function includes works.

EXAMPLE 13-19

//***
// Author: D.S. Malik
//
// This program shows how the STL function includes works.
// This function assumes that the elements in the given ranges
// are ordered according to some sorting criterion.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2

using namespace std; //Line 3

int main() //Line 4
{ //Line 5

char setA[5] = {'A', 'B', 'C', 'D', 'E'}; //Line 6
char setB[10] = {'A', 'B', 'C', 'D', 'E',

'F', 'I', 'J', 'K', 'L'}; //Line 7
char setC[5] = {'A', 'E', 'I', 'O', 'U'}; //Line 8

ostream_iterator<char> screen(cout, " "); //Line 9

cout << "Line 10: setA: "; //Line 10
copy(setA, setA + 5, screen); //Line 11
cout << endl; //Line 12

cout << "Line 13: setB: "; //Line 13
copy(setB, setB + 10, screen); //Line 14
cout << endl; //Line 15

cout << "Line 16: setC: "; //Line 16
copy(setC, setC + 5, screen); //Line 17
cout << endl; //Line 18

if (includes(setB, setB + 10, setA, setA + 5)) //Line 19
cout << "Line 20: setA is a subset of setB"

<< endl; //Line 20

1
3

STL Algorithms | 789

else //Line 21
cout << "Line 22: setA is not a subset of setB"

<< endl; //Line 22

if (includes(setB, setB + 10, setC, setC + 5)) //Line 23
cout << "Line 24: setC is a subset of setB"

<< endl; //Line 24
else //Line 25

cout << "Line 26: setC is not a subset of setB"
<< endl; //Line 26

return 0; //Line 27
} //Line 28

Sample Run:

Line 10: setA: A B C D E
Line 13: setB: A B C D E F I J K L
Line 16: setC: A E I O U
Line 20: setA is a subset of setB
Line 26: setC is not a subset of setB

The preceding output is self-explanatory. The details are left as exercise for you.

The algorithm set_intersection is used to find the elements that are common to two
ranges of elements. This algorithm has two forms, as shown by the following prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_intersection(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_intersection(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

Both forms create a sequence of sorted elements that are common to two sorted ranges,
first1...last1-1 and first2...last2-1. The created sequence is placed in the
container beginning with destFirst. Both forms return an iterator positioned one past
the last element copied at the destination range. The first form assumes that the elements
are in ascending order. The second form assumes that both ranges are sorted using the
operation specified by op. The elements in the source ranges are not modified.

Suppose that

setA[5] = {2, 4, 5, 7, 8};
setB[7] = {1, 2, 3, 4, 5, 6, 7};
setC[5] = {2, 5, 8, 8, 15};

790 | Chapter 13: Standard Template Library (STL) II

1
3

setD[6] = {1, 4, 4, 6, 7, 12};
setE[7] = {2, 3, 4, 4, 5, 6, 10};

Then

AintersectB = {2, 4, 5, 7}
AintersectC = {2, 5, 8}
DintersectE = {4, 4, 6}

Notice that because 8 appears only once in setA, 8 appears only once in AintersectC,
even though 8 appears twice in setC. However, because 4 appears twice in both setD

and setE, 4 also appears twice in DintersectE.

The algorithm set_union is used to find the elements that are contained in two ranges of
elements. This algorithm has two forms, as shown by the following prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_union(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_union(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr result,
binaryPredicate op);

Both forms create a sequence of sorted elements that appear in either two sorted ranges,
first1...last1 - 1 or first2...last2 - 1. The created sequence is placed in the
container beginning with destFirst. Both forms return an iterator positioned one past
the last element copied at the destination range. The first form assumes that the elements
are in ascending order. The second form assumes that both ranges are sorted using the
operation specified by op. The elements in the source ranges are not modified.

Suppose that you have setA, setB, setC, setD, and setE as defined previously. Then

AunionB = {1, 2, 3, 4, 5, 6, 7, 8}
AunionC = {2, 4, 5, 7, 8, 8, 15}
BunionD = {1, 2, 3, 4, 4, 5, 6, 7, 12}
DunionE = {1, 2, 3, 4, 4, 5, 6, 7, 10, 12}

Notice that because 8 appears twice in setC, it appears twice in AunionC. Because 4

appears twice in setD and in setE, 4 appears twice in DunionE.

We leave it as an exercise for you to write a program that further illustrates how to use the
functions set_union and set_intersection; see Programming Exercise 5 at the end
of this chapter.

The algorithm set_difference is used to find the elements in one range of elements
that do not appear in another range of elements. This algorithm has two forms, as shown
by the following prototypes:

STL Algorithms | 791

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_difference(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_difference(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

Both forms create a sequence of sorted elements that are in the sorted range
first1...last1-1, but not in the sorted range first2...last2-1. The created
sequence is placed in the container beginning with destFirst. Both forms return an
iterator positioned one past the last element copied at the destination range. The first
form assumes that the elements are in ascending order. The second form assumes that
both ranges are sorted using the operation specified by op. The elements in the source
ranges are not modified.

Suppose that

setA = {2, 4, 5, 7, 8}
setC = {1, 5, 6, 8, 15}
setD = {2, 5, 5, 6, 9}
setE = {1, 5, 7, 9, 12}

Then

AdifferenceC = {2, 4, 7}
DdifferenceE = {2, 5, 6}

Because 5 appears twice in setD but only once in setE, 5 appears once in DdifferenceE.

The algorithm set_symmetric_difference has two forms, as shown by the following
prototypes:

template <class inputItr1, class inputItr2, class outputItr>
outputItr set_symmetric_difference(inputItr1 first1,

inputItr1 last1,
inputItr2 first2,
inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_symmetric_difference(inputItr1 first1,
inputItr1 last1,
inputItr2 first2,
inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

792 | Chapter 13: Standard Template Library (STL) II

1
3

Both forms create a sequence of sorted elements that are in the sorted range
first1...last1-1 but not in first2...last2-1, or elements that are in the sorted range
first2...last2-1 but not in first1...last1-1. In other words, the sequence of
elements created by set_symmetric_difference contains the elements that are in
range1_difference_range2 union range2_difference_range1. The created sequence
is placed in the container beginning with destFirst. Both forms return an iterator positioned
one past the last element copied at the destination range. The first form assumes that the
elements are in ascending order. The second form assumes that both ranges are sorted using the
operation specified by op. The elements in the source ranges are not modified. It can be shown
that the sequence created by set_symmetric_difference contains elements that are in
range1_union_range2, but not in range1_intersection_range2.

Suppose that

setB = {3, 4, 5, 6, 7, 8, 10}
setC = {1, 5, 6, 8, 15}
setD = {2, 5, 5, 6, 9}

Notice that BdifferenceC = {3, 4, 7, 10} and CdifferenceB = {1, 15}. Therefore,

BsymDiffC = {1, 3, 4, 7, 10, 15}

Now DdifferenceC = {2, 5, 9, 15} and CdifferenceD = {1, 8, 15}. Therefore,

DsymDiffC = {1, 2, 5, 8, 9, 15}

Example 13-20 further illustrates how the functions set_difference and
set_symmetric_difference work.

EXAMPLE 13-20

Suppose that we have the following statements:

int setA[5] = {2, 4, 5, 7, 8}; //Line 1
int setB[7] = {3, 4, 5, 6, 7, 8, 10}; //Line 2
int setC[5] = {1, 5, 6, 8, 15}; //Line 3

int AdifferenceC[5]; //Line 4
int BsymDiffC[10]; //Line 5

Consider the following statement:

set_difference(setA, setA + 5, setC, setC + 5, AdifferenceC); //Line 6

After this statement executes, AdifferenceC contains the elements that are in setA and
not in setC, that is,

AdifferenceC = {2, 4, 7} //Line 7

Now consider the following statement:

set_symmetric_difference(setB, setB + 7, setC, setC + 5,
BsymDiffC); //Line 8

STL Algorithms | 793

After this statement executes, BsymDiffC contains the elements that are in setB, but not
in setC or the elements that are in setC, but not in setB, that is,

BsymDiffC = {1, 3, 4, 7, 10, 15} //Line 9

We leave it as an exercise for you to write a program that further illustrates how to use the
functions set_difference and set_symmetric_difference; see Programming Exer-
cise 6 at the end of this chapter.

Functions accumulate, adjacent_difference,
inner_product, and partial_sum
The algorithms accumulate, adjacent_difference, inner_product, and
partial_sum are numerical functions and, thus, manipulate numeric data. Each of these
functions has two forms. The first form uses the natural operation to manipulate the data.
For example, the algorithm accumulate finds the sum of all the elements in a given
range. In the second form, we can specify the operation to be applied to the elements of
the range. For example, rather than add the elements of a given range, we can specify the
multiplication operation to the algorithm accumulate to multiply the elements of the
range. Next, as usual, we give the prototype of each of these algorithms followed by a
brief explanation. The algorithms are contained in the header file numeric.

template <class inputItr, class Type>
Type accumulate(inputItr first, inputItr last, Type init);

template <class inputItr, class Type, class binaryOperation>
Type accumulate(inputItr first, inputItr last,

Type init, binaryOperation op);

The first form of the algorithm accumulate adds all the elements to an initial value
specified by the parameter init, in the range first...last-1. For example, if the
value of init is 0, the algorithm returns the sum of all the elements. In the second form,
we can specify a binary operation, such as multiplication, to be applied to the elements of
the range. For example, if the value of init is 1 and the binary operation is multi-
plication, the algorithm returns the products of the elements in the range.

Next, we describe the algorithm adjacent_difference. Its prototypes are as follows:

template <class inputItr, class outputItr>
outputItr adjacent_difference(inputItr first, inputItr last,

outputItr destFirst);

template <class inputItr, class outputItr,
class binaryOperation>

outputItr adjacent_difference(inputItr first, inputItr last,
outputItr destFirst,
binaryOperation op);

794 | Chapter 13: Standard Template Library (STL) II

1
3

The first form creates a sequence of elements in which the first element is the same as the
first element in the range first...last-1, and all the other elements are the differences
of the current and previous elements. For example, if the range of elements is

{2, 5, 6, 8, 3, 7}

then the sequence created by the function adjacent_difference is

{2, 3, 1, 2, -5, 4}

The first element is the same as the first element in the original range. The second
element is equal to the second element in the original range minus the first element in the
original range. Similarly, the third element is equal to the third element in the original
range minus the second element in the original range, and so on.

In the second form of adjacent_difference, the binary operation op is applied to the
elements in the range. The resulting sequence is copied at the destination specified by
destFirst. For example, if the sequence is {2, 5, 6, 8, 3, 7} and the operation is
multiplication, the resulting sequence is {2, 10, 30, 48, 24, 21}.

Both forms return an iterator positioned one past the last element copied at the destination.

Example 13-21 illustrates how the functions accumulate and adjacent_difference
work.

EXAMPLE 13-21

//***
// Author: D.S. Malik
//
// This program shows how the STL numeric algorithms accumulate
// and adjacent_difference works.
//***

#include <iostream> //Line 1
#include <algorithm> //Line 2
#include <numeric> //Line 3
#include <iterator> //Line 4
#include <vector> //Line 5
#include <functional> //Line 6

using namespace std; //Line 7

void print(vector<int> vList); //Line 8

int main() //Line 9
{ //Line 10

int list[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 11

vector<int> vecList(list, list + 8); //Line 12
vector<int> newVList(8); //Line 13

STL Algorithms | 795

cout << "Line 14: vecList: "; //Line 14
print(vecList); //Line 15

int sum = accumulate(vecList.begin(),
vecList.end(), 0); //accumulate; Line 16

cout << "Line 17: Sum of the elements of vecList = "
<< sum << endl; //Line 17

int product = accumulate(vecList.begin(), vecList.end(),
1, multiplies<int>()); //Line 18

cout << "Line 19: Product of the elements of "
<< "vecList = " << product << endl; //Line 19

adjacent_difference(vecList.begin(), vecList.end(),
newVList.begin()); //adjacent_difference; Line 20

cout << "Line 21: newVList: "; //Line 21
print(newVList); //Line 22

adjacent_difference(vecList.begin(), vecList.end(),
newVList.begin(), multiplies<int>()); //Line 23

cout << "Line 24: newVList: "; //Line 24
print(newVList); //Line 25

return 0; //Line 26
} //Line 27

void print(vector<int> vList) //Line 28
{ //Line 29

ostream_iterator<int> screenOut(cout, " "); //Line 30

copy(vList.begin(), vList.end(), screenOut); //Line 31
cout << endl; //Line 32

} //Line 33

Sample Run:

Line 14: vecList: 1 2 3 4 5 6 7 8
Line 17: Sum of the elements of vecList = 36
Line 19: Product of the elements of vecList = 40320
Line 21: newVList: 1 1 1 1 1 1 1 1
Line 24: newVList: 1 2 6 12 20 30 42 56

The preceding output is self-explanatory. The details are left as an exercise for you.

The algorithm inner_product is used to manipulate the elements of two ranges. The
prototypes of this algorithm are as follows:

template <class inputItr1, class inputItr2, class Type>
Type inner_product(inputItr1 first1, inputItr1 last,

inputItr2 first2, Type init);

796 | Chapter 13: Standard Template Library (STL) II

template <class inputItr1, class inputItr2, class Type,
class binaryOperation1, class binaryOperation2>

Type inner_product(inputItr1 first1, inputItr1 last,
inputItr2 first2, Type init,
binaryOperation1 op1, binaryOperation2 op2);

The first form multiplies the corresponding elements in the range first1...last - 1

and the range of elements starting with first2, and the products of the elements are
added to the value specified by the parameter init. To be specific, suppose that elem1
ranges over the first range and elem2 ranges over the second range starting with first2.
The first form computes

init = init + elem1 * elem2

for all the corresponding elements. For example, suppose that the two ranges are {2, 4, 7, 8}
and {1, 4, 6, 9}, and that init is 0. The function computes and returns

0 + 2 * 1 + 4 * 4 + 7 * 6 + 8 * 9 = 132

In the second form, the default addition can be replaced by the operation specified by
op1, and the default multiplication can be replaced by the operation specified by op2.
This form, in fact, computes

init = init op1 (elem1 op2 elem2);

The algorithm partial_sum has two forms, as shown by the following prototypes:

template <class inputItr, class outputItr>
outputItr partial_sum(inputItr first, inputItr last,

outputItr destFirst);

template <class inputItr, class randomAccessItr,
class binaryOperation>

outputItr partial_sum(inputItr first, inputItr last,
outputItr destFirst, binaryOperation op);

The first form creates a sequence of elements in which each element is the sum of all the
previous elements in the range first...last-1 up to the position of the element. For
example, the first element of the new sequence is the same as the first element in the range
first...last-1, the second element is the sum of the first two elements in the range
first...last-1, the third element of the new sequence is the sum of the first three elements
in the range first...last-1, and so on. For example, for the sequence of elements

{1, 3, 4, 6}

the function partial_sum generates the following sequence:

{1, 4, 8, 14}

In the second form, the default addition can be replaced by the operation specified by op.
For example, if the sequence is

{1, 3, 4, 6}

1
3

STL Algorithms | 797

and the operation is multiplication, the function partial_sum generates the following
sequence:

{1, 3, 12, 72}

The created sequence is copied at the destination specified by destFirst, and returns an
iterator positioned one past the last copied element at the destination.

Example 13-22 further illustrates how the functions inner_product and partial_sum

work.

EXAMPLE 13-22

Suppose that you have the following statement:

int list1[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 1
int list2[8] = {2, 4, 5, 7, -9, 11, 12, 14}; //Line 2

vector<int> vecList(list1, list1 + 8); //Line 3
vector<int> newVList(list2, list2 + 8); //Line 4

int sum; //Line 5

After the statements in Lines 3 and 4 execute,

vecList = {1, 2, 3, 4, 5, 6, 7, 8} //Line 6
newVList = {2, 4, 5, 7, -9, 11, 12, 14} //Line 7

Now consider the following statement:

sum = inner_product(vecList.begin(), vecList.end(),
newVList.begin(), 0); //Line 8

This statement calculates the inner product of vecList and newVList and the result is
stored in sum, that is,

sum = 0 + 1 * 2 + 2 * 4 + 3 * 5 + 4 * 7 + 5 * (-9)
+ 6 * 11 + 7 * 12 + 8 * 14

= 270

Now consider the following statement:

sum = inner_product(vecList.begin(), vecList.end(),
newVList.begin(), 0,
plus<int>(), minus<int>()); //Line 9

This statement calculates the inner product of vecList and newVList. The multi-
plication, *, is replaced with minus, -, and the result is stored in sum, that is,

sum = 0 + (1 - 2) + (2 - 4) + (3 - 5) + (4 - 7) + (5 - (-9))
+ (6 - 11) + (7 - 12) + (8 - 14)

= -10

798 | Chapter 13: Standard Template Library (STL) II

1
3

Next consider the following statement:

partial_sum(vecList.begin(), vecList.end(),
newVList.begin()); //Line 10

This statement uses the function partial_sum to generate the sequence of elements 1,
3, 6, 10, 15, 21, 28, 36. These elements are assigned to newVList, that is,

newVList = {1, 3, 6, 10, 15, 21, 28, 36}

Next consider the following statement:

partial_sum(vecList.begin(), vecList.end(),
newVList.begin(), multiplies<int>()); //Line 11

This statement uses the function partial_sum to generate the sequence of elements 1,
2, 6, 24, 120, 720, 5040, 40320. Notice that the statement in Line 11 calculates the
partial multiplication of the elements of vecList by replacing plus with multiplication.
These elements are assigned to newVList, that is,

newVList = {1, 2, 6, 24, 120, 720, 5040, 40320}

We leave it as an exercise for you to write a program that further illustrates how to use the
functions inner_product and partial_sum; see Programming Exercise 7 at the end of
this chapter.

QUICK REVIEW

1. The STL provides class templates that process lists, stacks, and queues.

2. The threemain components of the STL are containers, iterators, and algorithms.

3. Algorithms are used to manipulate the elements in a container.

4. The main categories of containers are sequence containers, associative
containers, and container adapters.

5. The class pair allows you to combine two values into a single unit. A
function can return two values by using the class pair. The classes map
and multimap use the class pair to manage their elements.

6. The definition of the class pair is contained in the header file utility.

7. The function make_pair allows you to create pairs without explicitly
specifying the type pair. The definition of the function make_pair is
contained in the header file utility.

8. Elements in an associative container are automatically sorted according to
some ordering criterion. The default ordering criterion is the relational
operator less than, <.

9. The predefined associative containers in the STL are sets, multisets,
maps, and multimaps.

Quick Review | 799

10. Containers of type set do not allow duplicates.

11. Containers of type multiset allow duplicates.

12. The name of the class defining the container set is set.

13. The name of the class defining the container multiset is multiset.

14. The name of the header file containing the definition of the classes set
and multiset, and the definitions of the functions to implement various
operations on these containers, is set.

15. The operations insert, erase, and clear can be used to insert or delete
elements from sets.

16. The containers map and multimap manage their elements in the form key/
value. The elements are automatically sorted according to some sort criteria
applied on the key.

17. The default sorting criterion for the key of the containers map and
multimap is the relational operator < (less than).The user can also specify
other sorting criteria. For userdefined data types, such as classes, the rela-
tional operators must be properly overloaded.

18. The only difference between the containers map and multimap is that the
container multimap allows duplicates, whereas the container map does not.

19. The name of the class defining the container map is map.

20. The name of the class defining the container multimap is multimap.

21. The name of the header file containing the definitions of the classes map
and multimap, and the definitions of the functions to implement various
operations on these containers, is map.

22. Most of the generic algorithms are contained in the header file algorithm.

23. The main categories of STL algorithms are nonmodifying, modifying,
numeric, and heap.

24. Nonmodifying algorithms do not modify the elements of the container.

25. Modifying algorithms modify the elements of the container by rearranging,
removing, and/or changing the values of the elements.

26. Modifying algorithms that change the order of the elements, not their
values, are also called mutating algorithms.

27. Numeric algorithms are designed to perform numeric calculations on the
elements of a container.

28. A function object is a class template that overloads the function call
operator, operator().

29. The predefined arithmetic function objects are plus, minus, multiplies,
divides, modulus, and negate.

30. The predefined relational function objects are equal_to, not_equal_to,
greater, greater_equal, less, and less_equal.

800 | Chapter 13: Standard Template Library (STL) II

31. The predefined logical function objects are logical_not, logical_and,
and logical_or.

32. Predicates are special types of function objects that return Boolean values.

33. Unary predicates check a specific property for a single argument; binary
predicates check a specific property for a pair—that is, two—of arguments.

34. Predicates are typically used to specify a searching or sorting criterion.

35. In the STL, a predicate must always return the same result for the same value.

36. The functions that modify their internal states cannot be considered
predicates.

37. The STL provides three iterators—back_inserter, front_inserter, and
inserter—called insert iterators, to insert the elements at the destination.

38. The back_inserter uses the push_back operation of the container in
place of the assignment operator.

39. The front_inserter uses the push_front operation of the container in
place of the assignment operator.

40. Because the class vector does not support the push_front operation,
this iterator cannot be used for the vector container.

41. The inserter iterator uses the container’s insert operation in place of
the assignment operator.

42. The function fill is used to fill a container with elements; the function
fill_n is used to fill in the next n elements.

43. The functions generate and generate_n are used to generate elements
and fill a sequence.

44. The functions find, find_if, find_end, and find_first_of are used
to find the elements in a given range.

45. The function remove is used to remove certain elements from a sequence.

46. The function remove_if is used to remove elements from a sequence
using some criterion.

47. The function remove_copy copies the elements in a sequence into another
sequence by excluding certain elements from the first sequence.

48. The function remove_copy_if copies the elements in a sequence into
another sequence by excluding certain elements, using some criterion, from
the first sequence.

49. The functions swap, iter_swap, and swap_ranges are used to swap
elements.

50. The functions search, search_n, sort, and binary_search are used to
search elements.

51. The function adjacent_find is used to find the first occurrence of
consecutive elements satisfying a certain criterion.

1
3

Quick Review | 801

52. The algorithm merge merges two sorted lists.

53. The algorithm inplace_merge is used to combine two sorted, consecutive
sequences.

54. The algorithm reverse reverses the order of the elements in a given
range.

55. The algorithm reverse_copy reverses the elements in a given range while
copying into a destination range. The source is not modified.

56. The algorithm rotate rotates the elements in a given range.

57. The algorithm rotate_copy copies the elements of the source at the
destination in a rotated order.

58. The algorithm count counts the occurrences of a given value in a given range.

59. The algorithm count_if counts the occurrences of a given value in a
given range satisfying a certain criterion.

60. The algorithm max is used to determine the maximum of two values.

61. The algorithm max_element is used to determine the largest element in a
given range.

62. The algorithm min is used to determine the minimum of two values.

63. The algorithm min_element is used to determine the smallest element in a
given range.

64. The algorithm random_shuffle is used to randomly order the elements in
a given range.

65. The algorithm for_each is used to access and process each element in a
given range by applying a function, which is passed as a parameter.

66. The function transform creates a sequence of elements by applying
certain operations to each element in a given range.

67. The algorithm includes determines whether the elements of one range
appear in another range.

68. The algorithm set_intersection is used to find the elements that are
common to two ranges of elements.

69. The algorithm set_union is used to find the elements that are contained in
two ranges of elements.

70. The algorithm set_difference is used to find the elements in one range
of elements that do not appear in another range of elements.

71. Given two ranges of elements, the algorithm set_symmetric_difference

determines the elements that are in the first range but not the second range, or
the elements that are in the second range but not the first range.

72. The algorithms accumulate, adjacent_difference, inner_product,
and partial_sum are numerical functions and manipulate numeric
data.

802 | Chapter 13: Standard Template Library (STL) II

EXERCISES

1. What is the difference between an STL container and an STL algorithm?

2. Suppose that you have the following statement:

pair<int, string> temp;

a. Write a C++ statement that stores the pair (1, "Hello") into temp.

b. Write a C++ statement that outputs the pair stored in temp onto the
standard output device.

3. Suppose that you have the following statement:

pair<string, string> name;

What is the output, if any, of the following statements?

name = make_pair("Duckey", "Donald");
cout << name.first << " " << name.second << endl;

4. Explain how a set container differs from a map container.

5. a. Declare the map container stateDataMap to store pairs of the form
(stateName, capitalName), where stateName and capitalName are
variables of type string.

b. Write C++ statements that add the following pairs to stateDataMap:
(Nebraska, Lincoln), (New York, Albany), (Ohio, Columbus),
(California, Sacramento), (Massachusetts, Boston), and
(Texas, Austin).

c. Write a C++ statement that outputs the data stored in stateDataMap.

d. Write a C++ statement that changes the capital of California to Los
Angeles.

6. What is the difference between a set and a multiset?

7. What is an STL function object?

8. Suppose that charList is a vector container and:

charList = {a, A, B, b, c, d, A, e, f, K}

Further suppose that:

lastElem = remove_if(charList.begin(), charList.end(), islower);
ostream_iterator<char> screen(cout, " ");

where lastElem is a vector iterator into a vector container of type char.
What is the output of the following statement?

copy(charList.begin(), lastElem, screen);

9. Suppose that intList is a vector container and:

intList = {18, 24, 24, 5, 11, 56, 27, 24, 2, 24}

1
3

Exercises | 803

Furthermore, suppose that:

vector<int>::iterator lastElem;
ostream_iterator<int> screen(cout, " ");
vector<int> otherList(10);
lastElem = remove_copy(intList.begin(), intList.end(),

otherList.begin(), 24);

What is the output of the following statement?

copy(otherList.begin(), lastElem, screenOut);

10. Suppose that intList is a vector container and:

intList = {2, 4, 6, 8, 10, 12, 14, 16}

What is the value of result after the following statement executes?

result = accumulate(intList.begin(), intList.end(), 0);

11. Suppose that intList is a vector container and:

intList = {2, 4, 6, 8, 10, 12, 14, 16}

What is the value of result after the following statement executes?

result = accumulate(intList.begin(), intList.end(),
0, multiplies<int>());

12. Suppose that setA, setB, setC, and setD are defined as follows:

int setA[] = {3, 4, 5, 8, 9, 12, 14};
int setB[] = {2, 3, 4, 5, 6, 7, 8};
int setC[] = {2, 5, 5, 9};
int setD[] = {4, 4, 4, 6, 7, 12};

Further suppose that you have the following declarations:

int AunionB[10];
int AunionC[9];
int BunionD[10];
int AintersectB[4];
int AintersectC[2];

What is stored in AunionB, AunionC, BunionD, AintersectB, and
AintersectC after the following statements execute?

set_union(setA, setA + 7, setB, setB + 7, AunionB);
set_union(setA, setA + 7, setC, setC + 4, AunionC);

PROGRAMMING EXERCISES

1. Write a program that illustrates how to use the functions find and find_if.

2. Write a program that illustrates how to use the functions find_end and
find_first_of.

3. Write a program that illustrates how to use the functions replace,
replace_if, replace_copy, and replace_copy_if. Your program
must use the function lessThanEqualTo50, as shown in Example 13-13.

804 | Chapter 13: Standard Template Library (STL) II

4. Write a program that illustrates how to use the functions adjacent_find,
merge, and inplace_merge.

5. Write a program that illustrates how to use the functions set_union and
set_intersection.

6. Write a program that illustrates how to use the functions set_difference
and set_symmetric_difference.

7. Write a program that illustrates how to use the functions inner_product
and partial_sum.

8. (Stock Market Revisited) In Programming Exercise 8 of Chapter 4, you
are asked to design a program that analyzes the performance of the stocks
managed by a local stock trading company and at the end of each day
produce a listing of those stocks ordered by the stock symbol. The com-
pany’s investors also would like see another listing of the stocks, which is
ordered by the percent gained by eack stock.

Because the company also requires you to produce the list ordered by the
percent gain/loss, you need to sort the stock list by this component. However,
you are not to physically sort the list by the component percent gain/loss;
instead, you will provide a logical ordering with respect to this component.

To do so, add a data member, a vector, to hold the indices of the stock list
ordered by the component percent gain/loss. Call this vector indexByGain.
When printing the list ordered by the component percent gain/loss, use the
array indexByGain to print the list. The elements of the array indexByGain
will tell which component of the stock list to print next.

9. Redo the Programming Example Video Store of Chapter 5 so that it uses
the STL class set to process a list of videos.

10. Redo Programming Exercise 14 of Chapter 5 so that it uses the STL class
set to process the list of videos rented by the customer and the list of store
members.

11. Redo Programming Exercise 15 of Chapter 5 so that it uses the STL class

set to process the list of videos owned by the store, the list of videos rented
by the customer, and the list of store members.

12. Write a program to play Card Guessing Game. You program must give the
user the following choices:

a. Guess only the face value of the card.

b. Guess only the suit of the card.

c. Guess both the face value and suit of the card.

Before the start of the game, create a deck of cards. Before each guess, use
the function random_shuffle to randomly shuffle the deck.

1
3

Programming Exercises | 805

This page intentionally left blank

and and_eq asm auto

bitand bitor bool break

case catch char class

compl const const_cast continue

default delete do double

dynamic_cast else enum explicit

export extern false float

for friend goto if

include inline int long

mutable namespace new not

not_eq operator or or_eq

private protected public register

reinterpret_cast return short signed

sizeof static static_cast struct

switch template this throw

true try typedef typeid

typename union unsigned using

virtual void volatile wchar_t

while xor xor_eq

807

APPENDIX A

RESERVED WORDS

This page intentionally left blank

The following table shows the precedence (highest to lowest) and associativity of the

operators in C++.

Operator Associativity

:: (binary scope resolution) Left to right

:: (unary scope resolution) Right to left

() Left to right

[] -> . Left to right

++ �� (as postfix operators) Right to left

typeid dynamic_cast Right to left

static_cast const_cast Right to left

reinterpret_cast Right to left

++ �� (as prefix operators) ! + (unary) - (unary) Right to left

~ & (address of) * (dereference) Right to left

new delete sizeof Right to left

->* �� .* Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

809

APPENDIX B

OPERATOR PRECEDENCE

Operator Associativity

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= Right to left

<<= >>= &= |= ^= Right to left

throw Right to left

, (the sequencing operator) Left to right

810 | Appendix B: Operator Precedence

ASCII (American Standard Code for Information
Interchange)
The following table shows the ASCII character set.

ASCII

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us b ! " # $ % & '

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ` a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

The numbers 0-12 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digit of each character in the ASCII data set. For example,

811

APPENDIX C

CHARACTER SETS

the character in the row marked 6 (the number in the first column) and the column

marked 5 (the number in the second row) is A. Therefore, the character at position 65

(which is the 66th character) is A. Moreover, the character b at position 32 represents the

space character.

The first 32 characters, that is, the characters at positions 00-31 and at position 127 are

nonprintable characters. The following table shows the abbreviations and meanings of

these characters.

nul null character ff form feed can cancel

soh start of header cr carriage return em end of medium

stx start of text so shift out sub substitute

etx end of text si shift in esc escape

eot end of transmission dle data link escape fs file separator

enq enquiry dc1 device control 1 gs group separator

ack acknowledge dc2 device control 2 rs record separator

bel bell dc3 device control 3 us unit separator

bs back space dc4 device control 4 b space

ht horizontal tab nak negative acknowledge del delete

lf line feed syn synchronous idle

vt vertical tab etb end of transmitted block

EBCDIC (Extended Binary Coded Decimal
Interchange Code)
The following table shows some of the characters in the EBCDIC character set.

EBCDIC

0 1 2 3 4 5 6 7 8 9

6 b

7 . < (+ |

8 &

9 ! $ *) ; � - /

10 , % _

812 | Appendix C: Character Sets

EBCDIC

11 > ?

12
`

: # @ ‘ = " a

13 b c d e f g h i

14 j k l m n

15 o p q r

16 ~ s t u v w x y z

17

18 []

19 A B C D E F G

20 H I J

21 K L M N O P Q R

22 S T U V

23 W X Y Z

24 0 1 2 3 4 5 6 7 8 9

The numbers 6-24 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digits of the characters in the EBCDIC data set. For

example, the character in the row marked 19 (the number in the first column) and the

column marked 3 (the number in the second row) is A. Therefore, the character at

position 193 (which is the 194th character) is A. Moreover, the character b at position 64

represents the space character. The preceding table does not show all the characters in the

EBCDIC character set. In fact, the characters at positions 00-63 and 250-255 are

nonprintable control characters.

EBCDIC (Extended Binary Coded Decimal Interchange Code) | 813

This page intentionally left blank

The following table lists the operators that can be overloaded.

Operators that can be overloaded

+ - * / % ^ & |

! && || = == < <= >

>= != += -= *= /= %= ^=

|= &= << >> >>= <<= ++ —

->* , -> [] () ~ new delete

The following table lists the operators that cannot be overloaded.

Operators that cannot be overloaded

. .* :: ?: sizeof

APPENDIX D

OPERATOR
OVERLOADING

815

This page intentionally left blank

The C++ standard library contains many predefined functions, named constants, and

specialized data types. This appendix discusses some of the most widely used library

routines (and several named constants). For additional explanation and information on

functions, named constants, and so on, check your system documentation.

Header File cassert

The following table describes the function assert. Its specification is contained in the

header file cassert.

assert(expression) expression is any
int expression;

expression is usually
a logical expression

• If the value of expression
is nonzero (true), the program
continues to execute.

• If the value of expression
is 0 (false), execution of
the program terminates
immediately. The expression,
the name of the file containing
the source code, and the line
number in the source code are
displayed.

To disable all the assert statements, place the preprocessor directive #define
NDEBUG before the directive #include <cassert>.

817

APPENDIX E

HEADER FILES

Header File cctype

The following table shows various functions from the header file cctype.

Function Name
and Parameters

Parameter(s) Types Function Return Value

isalnum(ch) ch is a char value Function returns an int value as follows:

• If ch is a letter or a digit character, that is
('A'-'Z', 'a'-'z', '0'-'9'), it
returns a nonzero value (true)

• 0 (false), otherwise

iscntrl(ch) ch is a char value Function returns an int value as follows:

• If ch is a control character (in ASCII, a
character value 0-31 or 127), it returns a
nonzero value (true)

• 0 (false), otherwise

isdigit(ch) ch is a char value Function returns an int value as follows:

• If ch is a digit ('0'-'9'), it returns a
nonzero value (true)

• 0 (false), otherwise

islower(ch) ch is a char value Function returns an int value as follows:

• If ch is lowercase ('a'-'z'), it returns a
nonzero value (true)

• 0 (false), otherwise

isprint(ch) ch is a char value Function returns an int value as follows:

• If ch is a printable character, including blank
(in ASCII, ' ' through '~'), it returns
a nonzero value (true)

• 0 (false), otherwise

ispunct(ch) ch is a char value Function returns an int value as follows:

• If ch is a punctuation character, it returns a
nonzero value (true)

• 0 (false), otherwise

isspace(ch) ch is a char value Function returns an int value as follows:

• If ch is a white space character (blank,
newline, tab, carriage return, form feed), it
returns a nonzero value (true)

• 0 (false), otherwise

818 | Appendix E: Header Files

Function Name
and Parameters

Parameter(s) Types Function Return Value

isupper(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter ('A'-'Z'), it
returns a nonzero value (true)

• 0 (false), otherwise

tolower(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter, it returns the
ASCII value of the lowercase equivalent of ch

• ASCII value of ch, otherwise

toupper(ch) ch is a char value Function returns an int value as follows:

• If ch is a lowercase letter, it returns the ASCII
value of the uppercase equivalent of ch

• ASCII value of ch, otherwise

Header File cfloat
The header file cfloat contains many named constants. The following table lists some

of these constants.

Named Constant Description

FLT_DIG Approximate number of significant digits in a float value

FLT_MAX Maximum positive float value

FLT_MIN Minimum positive float value

DBL_DIG Approximate number of significant digits in a double value

DBL_MAX Maximum positive double value

DBL_MIN Minimum positive double value

LDBL_DIG Approximate number of significant digits in a long double value

LDBL_MAX Maximum positive long double value

LDBL_MIN Minimum positive long double value

Header File cfloat | 819

Header File climits
The header file climits contains many named constants. The following table lists some

of these constants.

Named Constant Description

CHAR_BIT Number of bits in a byte

CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SHRT_MAX Maximum short value

SHRT_MIN Minimum short value

INT_MAX Maximum int value

INT_MIN Minimum int value

LONG_MAX Maximum long value

LONG_MIN Minimum long value

UCHAR_MAX Maximum unsigned char value

USHRT_MAX Maximum unsigned short value

UINT_MAX Maximum unsigned int value

ULONG_MAX Maximum unsigned long value

Header File cmath
The following table shows various math functions.

Function Name
and Parameters

Parameter(s) Type Function Return Value

acos(x) x is a floating-point expression,
–1.0 � x � 1.0

Arc cosine of x, a value between 0.0 and p

asin(x) x is a floating-point expression,
–1.0 � x � 1.0

Arc sine of x, a value between -p/2
and p/2

820 | Appendix E: Header Files

Function Name
and Parameters

Parameter(s) Type Function Return Value

atan(x) x is a floating-point expression Arc tan of x, a value between -p/2 and p/2

ceil(x) x is a floating-point expression The smallest whole number � x,
(‘‘ceiling’’ of x)

cos(x) x is a floating-point expression,
x is measured in radians

Trigonometric cosine of the angle

cosh(x) x is a floating-point expression Hyperbolic cosine of x

exp(x) x is a floating-point expression The value e raised to the power of x;
(e = 2.718. . .)

fabs(x) x is a floating-point expression Absolute value of x

floor(x) x is a floating-point expression The largest whole number� x; (‘‘floor’’ of x)

log(x) x is a floating-point expression,
where x > 0.0

Natural logarithm (base e) of x

log10(x) x is a floating-point expression,
where x > 0.0

Common logarithm (base 10) of x

pow(x,y) x and y are floating-point
expressions. If x = 0.0,
y must be positive;
if x � 0.0, y must
be a whole number.

x raised to the power of y

sin(x) x is a floating-point expression;
x is measured in radians

Trigonometric sine of the angle

sinh(x) x is a floating-point expression Hyperbolic sine of x

sqrt(x) x is a floating-point expression,
where x � 0.0

Square root of x

tan(x) x is a floating-point expression;
x is measured in radians

Trigonometric tangent of the angle

tanh(x) x is a floating-point expression Hyperbolic tangent of x

Header File cmath | 821

Header File cstddef

Among others, this header file contains the definition of the following symbolic constant:

NULL: The system-dependent null pointer (usually 0)

Header File cstring

The following table shows various string functions.

Function Name and
Parameters

Parameter(s) Type Function Return Value

strcat(destStr, srcStr) destStr and srcStr

are null-terminated char
arrays; destStr must be
large enough to hold the
result

The base address of
destStr is returned;
srcStr, including the
null character, is
concatenated to the end of
destStr

strcmp(str1, str2) str1 and str2 are null
terminated char arrays

The returned value is as
follows:

• An int value < 0, if
str1 < str2

• An int value 0, if
str1 = str2

• An int value > 0, if
str1 > str2

strcpy(destStr, srcStr) destStr and
srcStr are

null-terminated char
arrays

The base address of
destStr is returned;
srcStr is copied into
destStr

strlen(str) str is a null-terminated
char array

An integer value � 0

specifying the length of
the str (excluding the
'\0') is returned

HEADER FILE string

This header file—not to be confused with the header file cstring—supplies a programmer-

defined data type named string. Associated with the string type are a data type

string::size_type and a named constant string::npos. These are defined as follows:

string::size_type An unsigned integer type

string::npos The maximum value of type string::size_type

822 | Appendix E: Header Files

Several functions are associated with the string type. The following table shows some

of these functions. Unless stated otherwise, str, str1, and str2 are variables (objects)

of type string. The position of the first character in a string variable (such as str) is

0, the second character is 1, and so on.

Function Name and Parameters Parameter(s) Type Function Return Value

str.c_str() None The base address of a
null-terminated C-string
corresponding to the
characters in str.

getline(istreamVar,str) istreamVar is an input
stream variable (of type
istream or ifstream).
str is a string object
(variable).

Characters until the newline
character are input from
istreamVar and stored in
str. (The newline
character is read but not
stored into str.) The value
returned by this function is
usually ignored.

str.empty() None Returns true if str is
empty, that is, the number
of characters in str is zero,
false otherwise.

str.length() None A value of type
string::size_type

giving the number of
characters in the string.

str.size() None A value of type
string::size_type

giving the number of
characters in the string.

str.find(strExp) str is a string object and
strExp is a string
expression evaluating to a
string. The string expression,
strExp, can also be a
character.

Thefind function searches
str to find the first
occurrence of the string or
the character specified by
strExp. If the search is
successful, the function
find returns the position
in str where the match
begins. If the search is
unsuccessful, the function
returns the special value
string::npos.

Header File cmath | 823

Function Name and Parameters Parameter(s) Type Function Return Value

str.substr(pos, len) Two unsigned integers, pos
and len. pos, represent
the starting position (of the
substring in str), and len

represents the length (of the
substring). The value of pos
must be less than
str.length().

A temporary string object
that holds a substring of
str starting at pos. The
length of the substring is, at
most, len characters. If
len is too large, it means
‘‘to the end’’ of the string in
str.

str1.swap(str2); One parameter of type
string. str1 and str2

are string variables.

The contents of str1 and
str2 are swapped.

str.clear(); None Removes all the characters
from str.

str.erase(); None Removes all the characters
from str.

str.erase(m); One parameter of type
string::size_type.

Removes all the characters
from str starting at index
m.

str.erase(m, n); Two parameters of type
int.

Starting at index m, removes
the next n characters from
str. If n > length of str,
removes all the characters
starting at the mth.

str.insert(m, n, c); Parameters m and n are of
type
string::size_type;
c is a character.

Inserts n occurrences of the
character c at index m into
str.

str1.insert(m, str2); Parameter m is of type
string::size_type.

Inserts all the characters of
str2 at index m into
str1.

str1.replace(m, n, str2); Parameters m and n are of
type
string::size_type.

Starting at index m, replaces
the next n characters of
str1 with all the
characters of str2. If n >
length of str1, then all the
characters until the end of
str1 are replaced.

824 | Appendix E: Header Files

Analysis: Insertion Sort
Let L be a list of n elements. Consider the kth entry in the list. If the kth entry is moved,
it could go to any of the first k – 1 positions in the list. And, if the kth entry is not moved,
it stays at its current position. Thus, there are a total of k possibilities for the kth entry:
(k – 1) possibilities to move and one possibility of not moving. Assume all possibilities are
equally likely. Then, the probability of not moving is 1/k and the probability of moving
the kth entry is (k – 1) / k.

If the kth entry is not moved, the number of key comparisons is one and the number of
item assignments is zero.

Suppose that the kth entry is moved. Then, the average number of key comparisons
(executed by the loop) to move the kth entry is

1þ 2þ 3þ . . .þ ðk� 1Þ
k� 1

¼ kðk� 1Þ
2ðk� 1Þ ¼

k

2
:

Now one key comparison is made before the loop, one item assignment is done before
the loop, and one item assignment is done after the loop. It now follows that, if the kth
entry is moved, on average it requires (k / 2) + 1 key comparisons and (k / 2) + 2 item
assignments.

Because the probability of moving the kth entry is (k – 1) / k and not moving is 1/k, the
average number of key comparisons for the kth entry is

k� 1

k

� �
k

2
þ 1

� �
þ 1

k
1 ¼ k� 1

k

� �
kþ 2

2

� �
þ 1

k
¼ ðk� 1Þðkþ 2Þ þ 2

2k

¼ kðkþ 1Þ
2k

¼ kþ 1

2

¼ 1

2
kþ 1

2
:

APPENDIX F

ADDITIONAL C++
TOPICS

825

Similarly, the average number of assignments for the kth entry is

k� 1

k

� �
k

2
þ 2

� �
þ 1

k
0 ¼ k� 1

k

� �
kþ 4

2

� �
¼ ðk� 1Þðkþ 4Þ

2k

¼ k2 þ 3k� 4

2k
¼ k2

2k
þ 3k

2k
� 4

2k

¼ 1

2
kþ 3

2
� 2

k
¼ 1

2
kþOð1Þ:

Note that the average number of key comparisons and the average number of item
assignments for the kth entry are similar.

To find the average number of key comparisons made by insertion sort, we add the
average number of key comparisons made by list entries 2 through n. (Note that the for
loop starts at the second entry of the list.) Thus, the average number of key comparisons is

Xn
k¼2

1

2
kþ 1

2

� �
¼ 1

2

Xn
k¼2

kþ
Xn
k¼2

1

2
¼ 1

2

Xn
k¼2

kþ n� 1

2

¼ 1

2

Xn
k¼1

kþ n� 1

2
� 1

2
¼ 1

2

nðnþ 1Þ
2

þ n� 1

2
� 1

2

¼ nðnþ 1Þ þ 2ðn� 1Þ � 2

4
¼ n2 þ nþ 2n� 4

4

¼ 1

4
n2 þ 3n� 4
� 	 ¼ Oðn2Þ:

In a similar manner, we can show that the average number of item assignments made by
insertion sort is O(n2).

Analysis: Quicksort
Let L be a list of n elements. Let C(n) denote the number of key comparisons and S(n)
denote the number of swaps of entries in L, n ¼ 1, 2, 3,

Clearly,

Cð1Þ ¼ Cð0Þ ¼ 0;

Sð2Þ ¼ 3:

The partition function compares the pivot with every key in the list. Thus, the
pivot is compared n – 1 times for a list of length n. Suppose the pivot position in the list
is r. Then

826 | Additional C++ Topics

CðnÞ ¼ ðn�1Þ þCðrÞ þ Cðn�r�1Þ ðEquation 1Þ

for all n ¼ 1, 2, 3, Clearly, the definition of C(n) as given in Equation 1 is recursive.
Equation 1 is also called a recurrence relation.

Worst-Case Analysis
In the worst case, r in Equation 1 will always be zero. Thus,

CðnÞ ¼ ðn�1Þ þCð0Þ þ Cðn� 0� 1Þ ¼ ðn� 1Þ þ Cðn� 1Þ: ðEquation 2Þ

Substitute n ¼ 2, 3, and 4, respectively, in Equation 2 to get

Cð2Þ ¼ 1þCð1Þ ¼ 1þ 0 ¼ 1;

Cð3Þ ¼ 2þCð2Þ ¼ 2þ 1 ¼ 3;

Cð4Þ ¼ 3þCð3Þ ¼ 3þ 3 ¼ 6:

We now solve Equation 1. Now

CðnÞ ¼ ðn� 1Þ þ Cðn� 1Þ
¼ ðn� 1Þ þ ðn� 2Þ þ Cðn� 2Þ because Cðn� 1Þ ¼ ðn� 2Þ þ Cðn� 2Þ
¼ ðn� 1Þ þ ðn� 2Þ þ ðn� 3Þ þ Cðn� 3Þ because Cðn� 2Þ ¼ ðn� 3Þ þ Cðn� 3Þ
..
.

¼ ðn� 1Þ þ ðn� 2Þ þ ðn� 3Þ þ :::þ 2þ Cð2Þ
¼ ðn� 1Þ þ ðn� 2Þ þ ðn� 3Þ þ :::þ 2þ 1

¼ nðn� 1Þ=2
¼ ð1=2Þn2 � ð1=2Þn
¼ Oðn2Þ:

We now look at the number of swaps in the worst case. In the worst case, the pivot is
the largest key, so the function partition will make n + 1 swaps for a list of length n
(one swap before the loop, n – 1 swaps within the loop, and one swap after the loop).
Hence,

SðnÞ ¼ ðnþ 1Þ þ Sðn� 1Þ ðEquation 3Þ

for all n ¼ 1, 2, 3, Substitute n ¼ 3 and 4, respectively, in Equation 3 to get,

Sð3Þ ¼ ð3þ 1Þ þ Sð2Þ ¼ 4þ 3 ¼ 7;

Sð4Þ ¼ ð4þ 1Þ þ Sð3Þ ¼ 5þ 7 ¼ 12:

Analysis: Quicksort | 827

Next, we solve Equation 3. Now

SðnÞ ¼ ðnþ 1Þ þ Sðn� 1Þ
¼ ðnþ 1Þ þ nþ Sðn� 2Þ because Sðn� 1Þ ¼ nþ Sðn� 2Þ
¼ ðnþ 1Þ þ nþ ðn� 1Þ þ Sðn� 3Þ because Sðn� 2Þ ¼ ðn� 1Þ þ Sðn� 3Þ
..
.

¼ ðnþ 1Þ þ nþ ðn� 1Þ þ :::þ 4þ Sð2Þ
¼ ðnþ 1Þ þ nþ ðn� 1Þ þ :::þ 4þ 3

¼ ðnþ 1Þ þ nþ ðn� 1Þ þ :::þ 4þ 3þ 2þ 1� 2� 1

¼ ðnþ 2Þðnþ 1Þ=2� 3

¼ ðn2 þ 3nþ 2Þ=2� 3

¼ ð1=2Þn2 þ ð3=2Þn� 2

¼ Oðn2Þ:

Average-Case Analysis
Let us now see the performance of quicksort in the average case.

Let S(n, p) denote the number of swaps for a list of length n such that the pivot is the
pth key, p ¼ 1, 2, . . ., n. Now, if the pivot is the pth key, then

Sðn; pÞ ¼ ðpþ 1Þ þ Sðp� 1Þ þ Sðn� pÞ:

From this, it follows that if the pivot is the first key,

Sðn; 1Þ ¼ ð1þ 1Þ þ Sð1� 1Þ þ Sðn� 1Þ ¼ 2þ Sð0Þ þ Sðn� 1Þ:

Similarly,

Sðn; 2Þ ¼ 3þ Sð1Þ þ Sðn� 2Þ;
..
.

Sðn; pÞ ¼ ðpþ 1Þ þ Sðp� 1Þ þ Sðn� pÞ;
..
.

Sðn; nÞ ¼ ðnþ 1Þ þ Sðn� 1Þ þ Sð0Þ:

828 | Additional C++ Topics

Assume that the pivot can occur at any position, that is, all positions are equally likely.
Then, the average number of swaps for a list of length n is as follows:

SðnÞ ¼ Sðn; 1Þ þ Sðn; 2Þ þ :::þ Sðn; nÞ
n

¼ 2þ 3þ :::þ ðnþ 1Þ þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ
n

¼ ð1þ 2þ :::þ ðnþ 1ÞÞ � 1

n
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ

n

¼ ðnþ 1Þðnþ 2Þ
2n

� 1

n
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ

n

¼ n2 þ 3nþ 2

2n
� 1

n
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ

n

¼ n

2
þ 3

2
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ

n
:

From this, it follows that

Sðn� 1Þ ¼ n� 1

2
þ 3

2
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 2ÞÞ

n� 1
:

This implies that

nSðnÞ � ðn� 1ÞSðn� 1Þ ¼ n2 þ 3n

2
þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 1ÞÞ�

ðn� 1Þ2
2

þ 3ðn� 1Þ
2

þ 2ðSð0Þ þ Sð1Þ þ :::þ Sðn� 2ÞÞ
()

¼ ðnþ 1Þ þ 2ðSðn� 1Þ:

Thus,

nSðnÞ ¼ ðnþ 1Þ þ ðnþ 1ÞSðn� 1Þ:

Divide both sides by n(n + 1) to obtain

SðnÞ
nþ 1

¼ 1

n
þ Sðn� 1Þ

n
:

Analysis: Quicksort | 829

This implies that

Sðn� 1Þ
n

¼ 1

n� 1
þ Sðn� 2Þ

n� 1
;

Sðn� 2Þ
n� 1

¼ 1

n� 2
þ Sðn� 3Þ

n� 2
;

..

.

Sð3Þ
4

¼ 1

3
þ Sð2Þ

3
;

Sð2Þ
3

¼ 1

2
þ Sð1Þ

2
:

Hence,

SðnÞ
nþ 1

¼ 1

n
þ 1

n� 1
þ . . .þ 1

3
þ 1

2
þ Sð1Þ

2
:

It can be shown that

1

n
þ 1

n� 1
þ . . .þ 1

3
þ 1

2
þ 1 ¼ lnðnÞ þOð1Þ:

It follows that

SðnÞ
nþ 1

¼ lnðnÞ þOð1Þ:

Hence,

SðnÞ ¼ nlnðnÞ þOðnÞ:
Also, because

lnðnÞ ¼ lnð2Þlog
2
ðnÞ ¼ 0:69 log

2
ðnÞ

it follows that

SðnÞ ¼ 0:69 n log
2
ðnÞ þOðnÞ ¼ Oðn log

2
ðnÞÞ:

Next, we derive a formula for C(n) for the average case of quicksort.

Suppose the pivot is the pth key in the list. Let C(n, p) denote the number of
comparisons made by the partition function when the pivot is the pth key. Then

Cðn; pÞ ¼ ðn� 1Þ þ Cðp� 1Þ þ Cðn� pÞ:

830 | Additional C++ Topics

Because all positions in the list for the pivot are equally likely, we have

CðnÞ ¼ Cðn; 1Þ þ Cðn; 2Þ þ . . .þ Cðn; nÞ
n

:

Now,

Cðn; 1Þ ¼ ðn� 1Þ þCð0Þ þ Cðn� 1Þ;
Cðn; 2Þ ¼ ðn� 1Þ þCð1Þ þ Cðn� 2Þ;
Cðn; 3Þ ¼ ðn� 1Þ þCð2Þ þ Cðn� 3Þ;

..

.

Cðn; pÞ ¼ ðn� 1Þ þCðp� 1Þ þ Cðn� pÞ;
..
.

Cðn; nÞ ¼ ðn� 1Þ þCðn� 1Þ þCð0Þ:

This implies that

CðnÞ ¼ nðn� 1Þ þ 2ðCð0Þ þ Cð1Þ þ � � � þ Cðn� 1ÞÞ
n

¼ ðn� 1Þ þ 2ðCð0Þ þ Cð1Þ þ � � � þ Cðn� 1ÞÞ
n

:

Change n to n-1 to get

Cðn� 1Þ ¼ ðn� 2Þ þ 2ðCð0Þ þ Cð1Þ þ � � � þ Cðn� 2ÞÞ
n� 1

:

Thus,

nCðnÞ � ðn� 1ÞCðn� 1Þ ¼ nðn� 1Þ � ðn� 1Þðn� 2Þ þ 2Cðn� 1Þ
¼ 2ðnþ 1Þ þ 2Cðn� 1Þ:

This implies that

nCðnÞ ¼ 2ðnþ 1Þ þ ðnþ 1ÞCðn� 1Þ:

Divide both sides by n(n + 1), to get

CðnÞ
nþ 1

¼ 2

n
þ Cðn� 1Þ

n
:

Analysis: Quicksort | 831

We now solve this equation.

Change n to n – 1, to get

Cðn� 1Þ
n

¼ 2

n� 1
þ Cðn� 2Þ

n� 1
:

Thus,

CðnÞ
nþ 1

¼ 2

n
þ 2

n� 1
þ 2

n� 2
þ . . .þ 2

3
þ 2

2
þCð1Þ

2

¼ 2

n
þ 2

n� 1
þ 2

n� 2
þ . . .þ 2

3
þ 2

2
þ 1

2

¼ 2
1

n
þ 1

n� 1
þ 1

n� 2
þ . . .þ 1

3
þ 1

2

� �
þ 1

2

¼ 2
1

n
þ 1

n� 1
þ 1

n� 2
þ . . .þ 1

3
þ 1

2
þ 1

� �
þ 1

2
� 2

¼ 2 lnðnÞ þOð1Þ:

This implies that

CðnÞ ¼ 2ðnþ 1Þ lnðnÞ þOðnÞ
¼ 2n lnðnÞ þOðnÞ
� ð1:39Þn log

2
nþOðnÞ:

832 | Additional C++ Topics

This book assumes that you are familiar with the basic elements of C++, such as data types,
assignment statements, input/output, control structures, functions and parameter passing, the
namespace mechanism, and arrays. However, to help you, this appendix quickly reviews
these basic elements of C++. Moreover, if you have taken Java as a first programming
language, this appendix helps familiarize you with the basic elements of C++. In addition to
describing the basic elements of C++, we also compare various features of C++ with Java.

For more details about the C++ language, refer to the book, C++ Programming: From
Problem Analysis to Program Design, Fourth Edition by the author and listed in the references
([6], Appendix H).

Data Types
C++ data types fall into three categories—simple data types, structured data types, and pointers.
Chapter 1 describes the user-defined classes, which fall into the category of structured data
types. Chapter 3 describes pointers. This section discusses the simple data types. Moreover,
later in this appendix, we briefly discuss arrays, a structured data type, in C++.

C++’s simple data type is similar to Java’s primitive data type. There are three categories
of simple data—integral, floating-point, and enumeration type.

Like Java, C++’s integral data types have several categories. Some of the integral data
types are char, bool, short, int, long, and unsigned int. Table G-1 defines the
range of values belonging to some of these data types.

TABLE G-1 Values and memory allocation for three simple data types

Data type Values Storage (in bytes)

int �2147483648 to 2147483647 4

bool true and false 1

char �128 to 127 1

APPENDIX G

C++ FOR JAVA
PROGRAMMERS

833

Use this table only as a guide. Different compilers may allow different ranges of values.

Check your compiler’s documentation.

The data type int in C++ works the same way as the data type int works in Java.

Notice that the data type char in C++ is a set of 256 values, whereas the data type char

in Java is a set of 65,536 values. In addition to dealing with small numbers, the char data
type is used to represent characters—that is, letters, digits, and special symbols. Typically,
C++ uses the ASCII characters, a set of 128 characters and described in Appendix C, to
deal with characters.

The data type bool has only two values: true and false. Also, true and false are
called the logical (Boolean) values. An expression that evaluates to true or false is
called a logical (Boolean) expression.

To deal with decimal numbers, C++ provides the floating-point data type. C++ provides
the data types float and double. As in the case of integral data types, the data types
float and double differ in their sets of values. The data types float and double in
C++ work the same way as they work in Java.

Arithmetic Operators and Expressions
The arithmetic operators— +, -, *, and /—in C++ work the same way as in Java. The
operator % in C++ is used with integral data types to find the remainder in ordinary division.
Furthermore, arithmetic expressions in C++ are formed and evaluated the same as they are in
Java. In addition, the increment operator, ++; the decrement operator, --; and the compound
assignment operators, +=, =, *=, /=, and %= in C++ work the same way as in Java.

The cast operator in C++ takes the following form:

static_cast<dataType> expression

You can also use the following C-like cast operator:

dataType expression

Named Constants, Variables, and Assignment
Statements
Named constants in C++ are declared using the reserved word const. The general
syntax of declaring a named constant is as follows:

const dataType identifier = value;

834 | Appendix G: C++ for Java Programmers

For example, the following statement declares CONVERSION to be a named constant of
type double and assigns the value 2.54 to it:

const double CONVERSION = 2.54;

In C++, variables are declared the same way as they are declared in Java, and the syntax of
the assignment statement in both languages is the same.

The general syntax for declaring one variable or multiple variables is as follows:

dataType identifier, identifier, . . .;

For example, the following statements declare amountDue to be a variable of type
double and counter to be a variable of type int:

double amountDue;
int counter;

The syntax of the assignment statement is as follows:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable on the left side. For example, suppose that amountDue is a variable of type
double and quantity is a variable of type int. If the value of quantity is 20, the
following statement assigns 150.00 to amountDue:

amountDue = quantity * 7.50;

C++ Library: Preprocessor Directives
Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++. Many of the functions and symbols needed to run a C++
program are provided as a collection of libraries. Every library has a name and is referred
to as a header file. For example, the descriptions of the functions needed to perform
input/output (I/O) are contained in the header file iostream. Similarly, the descriptions
of some very useful mathematical functions, such as power, absolute, and sine, are
contained in the header file cmath. If you want to use I/O or math functions, you need
to tell the computer where to find the necessary code. You use preprocessor directives
and the names of the header files to tell the computer the locations of the code provided
in the libraries. Preprocessor directives are processed by a program called a preprocessor.

Preprocessor directives are commands supplied to the preprocessor that cause the pre-
processor to modify the text of a C++ program before it is complied. All preprocessor
commands begin with #. There are no semicolons at the end of preprocessor commands
because they are not C++ commands. To use a header file in a C++ program, use the
preprocessor directive include.

C++ Library: Preprocessor Directives | 835

The general syntax to include a system-provided header file in a C++ program is as
follows:

#include <headerFileName>

For example, the following statement includes the header file iostream in a C++ program:

#include <iostream>

Preprocessor directives that include the header files are placed as the first lines of a
program so that the identifiers declared in those header files can be used throughout
the program. (In C++, identifiers must be declared before they can be used.)

Certain header files are provided as part of C++. Appendix E describes some of the
commonly used header files.

C++ Program
Every C++ program has two parts: preprocessor directives and the program. The
preprocessor directives are commands that direct the preprocessor to modify the C++
program before compilation. The program contains statements that accomplish some
meaningful results. Taken together, the preprocessor directives and program statements
constitute the C++ source code. To be useful, this source code must be saved in a file
that has the file extension .cpp.

When the program is compiled, the compiler generates the object code, which is saved in
a file with the file extension .obj. When the object code is linked with system resources,
the executable code is produced and saved in a file with the file extension .exe. The
name of the file containing the object code, and the name of the file containing the
executable code, are the same as the name of the file containing the source code. For
example, if the source code is located in a file named firstProg.cpp, the name of the
file containing the object code is firstProg.obj, and the name of the file containing
the executable code is firstProg.exe.

The extensions as given in the preceding paragraph—that is, .cpp, .obj, and .exe—are
system dependent. To be absolutely sure, check your system’s or integrated development
environment’s (IDE’s) documentation.

A C++ program is a collection of functions and one of the functions is the function
main. Therefore, every C++ program must have the function main. The basic parts of
the function main are the heading and the body of the function. The heading has the
following form:

functionType main(argument list)

For example, the statement:

int main()

836 | Appendix G: C++ for Java Programmers

means that the function main returns a value of the int data type, and it has no
arguments.

The following is an example of a C++ program:

#include <iostream>

using namespace std;

int main()
{

int num1, num2;

num1 = 10;
num2 = 2 * num1;

cout << "num1 = " << num1 << ", and num2 = " << num2 << endl;

return 0;
}

The next section discusses input and output (I/O) in detail.

Input and Output
Inputting data and outputting the results of a program is fundamental to any program-
ming language. Because I/O differs quite significantly in C++ and Java, this section
describes I/O in C++ in detail.

Input
Inputting data into variables from the standard input device is accomplished via the use of
cin and the operator >>. The syntax of cin together with >> is as follows:

cin >> variable >> variable. . .;

This is called an input (read) statement. Sometimes this is also called a cin statement. In
C++, >> is called the stream extraction operator or simply the extraction operator.

The input (or cin) statement works as follows. Suppose miles is a variable of the data
type double. The statement

cin >> miles;

causes the computer to get a value from the standard input device of the data type
double and place it in the memory cell named miles.

By using more than one variable with cin, more than one value can be read at a time.
Suppose feet and inch are variables of type int. A statement such as

cin >> feet >> inch;

Input and Output | 837

gets two integers from the keyboard and places them in the memory locations feet and
inch, respectively.

The extraction operator >> is defined only for putting data into variables of simple data

types. Therefore, the right-side operand of the extraction operator >> is a variable of the

simple data type.

How does the extraction operator >> work? When scanning for the next input, >> skips
all the white space characters. White space characters consist of blanks and certain
nonprintable characters, such as tabs and the newline character. Thus, whether you
separate the input data by lines or blanks, the extraction operator >> simply finds the
next input data in the input stream. For example, suppose that payRate and
hoursWorked are variables of type double. Consider the following input statement:

cin >> payRate >> hoursWorked;

Whether the input is

15.50 48.30

or

15.50 48.30

or

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of type char, the
input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is stored. If the
right-side operand is a variable of type int or double, the input 2 is treated as the
number 2.

Next, consider the input 25 and the statement

cin >> a;

where a is a variable of some simple data type. If a is of type char, only the single
character 2 is stored in a. If a is of type int, 25 is stored in a. If a is of type double, the
input 25 is converted to the decimal number 25.0. Table G-2 summarizes this discussion
by showing the valid input for a variable of the simple data type.

838 | Appendix G: C++ for Java Programmers

TABLE G-2 Valid input for a variable of the simple data type

Data type of a Valid input for a

char One printable character except the blank.

int An integer, possibly preceded by a (+ or -) sign.

double
A decimal number, possibly preceded by a (+ or -) sign. If the actual
data input is an integer, the input is converted to a decimal number
with the zero decimal part.

When reading data into a char variable, after skipping any leading white space
characters, the extraction operator >> finds and stores only the next character; reading
stops after a single character. To read data into an int or double variable, after
skipping all the leading white space characters and reading the plus or minus sign (if
any), the extraction operator >> reads the digits of the number, including the decimal
point for floating-point variables, and stops when it finds a white space character or a
character other than a digit.

Input Failure
Many things can go wrong during program execution. A program that is syntactically
correct might produce incorrect results. For example, suppose that a part-time employ-
ee’s paycheck is calculated by using the following formula:

wages = payRate * hoursWorked;

If you accidentally type a + in place of *, the calculated wages would be incorrect, even
though the statement containing the + is syntactically correct.

What about an attempt to read invalid data? For example, what would happen if you tried
to input a letter into an int variable? If the input data did not match the corresponding
variables, the program would run into problems. For example, trying to read a letter into
an int or double variable would result in an input failure. Consider the following
statements:

int a, b, c;
double x;

If the input is:

W 54

then the statement:

cin >> a >> b;

Input and Output | 839

would result in an input failure because you are trying to input the character 'W' into the
int variable a. If the input were:

35 67.93 48 78

then the input statement:

cin >> a >> x >> b;

would result in storing 35 in a, 67.93 in x, and 48 in b.

Now consider the following read statement with the previous input (the input with three
values):

cin >> a >> b >> c;

This statement stores 35 in a and 67 in b. The reading stops at . (the decimal point).
Because the next variable c is of the data type int, the computer tries to read . into c,
which is an error. The input stream then enters a state called the fail state.

What actually happens when the input stream enters the fail state? Once an input stream
enters a fail state, all further I/O statements using that stream are ignored. Unfortunately,
the program quietly continues to execute with whatever values are stored in the variables
and produce incorrect results.

Output
In C++, output on the standard output device is accomplished via the use of cout and
the operator <<. The syntax of cout together with << is as follows:

cout << expression or manipulator << expression or manipulator...;

This is called an output statement. Sometimes this is also called a cout statement. In
C++, << is called the stream insertion operator or simply the insertion operator.

Generating output with the cout statements follows two rules:

1. The expression is evaluated, and its value is printed at the current
insertion point on the output device. (On the screen, the insertion point
is where the cursor is.)

2. A manipulator is used to format the output. The simplest manipulator is
endl(the last character is the letter el), which causes the insertion point
to move to the beginning of the next line.

Example G-1 illustrates how cout statements work. In a cout statement, a string or an
expression involving only one variable or a single value evaluates to itself.

840 | Appendix G: C++ for Java Programmers

EXAMPLE G-1

Consider the following statements. The output is shown to the right of each statement.

Statement Output

cout << 29 / 4 << endl; 7
cout << "Hello there. " << endl; Hello there.
cout << 12 << endl; 12
cout << "4 + 7" << endl; 4 + 7
cout << 4 + 7 << endl; 11
cout << 'A' << endl; A
cout << "4 + 7 = " << 4 + 7 << endl; 4 + 7 = 11
cout << 2 + 3 * 5 << endl; 17
cout << "Hello \nthere. " << endl; Hello

there.

setprecision
You use the manipulator setprecision to control the output of floating-point num-
bers. The default output of floating-point numbers is scientific notation. Some IDEs
might use a maximum of six decimal places for the default output of floating-point
numbers. However, when an employee’s paycheck is printed, the desired output is a
maximum of two decimal places. To print floating-point output to two decimal places,
you use the setprecision manipulator to set the precision to 2.

The general syntax of the setprecision manipulator is as follows:

setprecision(n)

where n is the number of decimal places.

You use the setprecision manipulator with cout and the extraction operator. For
example, the statement

cout << setprecision(2);

formats the output of the decimal numbers to two decimal places, until a similar
subsequent statement changes the precision. Notice that the number of decimal places,
or the precision value, is passed as an argument to setprecision.

To use the manipulator setprecision, the program must include the header file
iomanip. Thus, the following include statement is required:

#include <iomanip>

fixed
To further control the output of floating-point numbers, you can use other manipulators.
To output floating-point numbers in a fixed decimal format, you use the manipulator

Input and Output | 841

fixed. The following statement sets the output of floating-point numbers in a fixed
decimal format on the standard output device:

cout << fixed;

After the preceding statement executes, all floating-point numbers are displayed in the
fixed-decimal format.

The manipulator scientific is used to output floating-point numbers in scientific
format.

showpoint
Suppose that the decimal part of a decimal number is 0. In this case, when you instruct
the computer to output the decimal number in a fixed decimal format, the output might
not show the decimal point and the decimal part. To force the output to show the
decimal point and trailing zeros, you use the manipulator showpoint. The following
statement sets the output of decimal numbers with the decimal point and trailing zeros on
the standard output device:

cout << showpoint;

Of course, the following statement sets the output of floating-point numbers in a fixed
decimal format with the decimal point and trailing zeros on the standard output device:

cout << fixed << showpoint;

setw
The manipulator setw is used to output the value of an expression in specific columns.
The value of the expression can be either a string or a number. The statement setw(n)
outputs the value of the next expression in n columns. The output is right-justified. Thus,
if you specify the number of columns to be 8, for example, and the output requires only 4
columns, the first four columns are left blank. Furthermore, if the number of columns
specified is less than the number of columns required by the output, the output auto-
matically expands to the required number of columns; the output is not truncated. For
example, if x is an int variable, the following statement outputs the value of x in five
columns on the standard output device:

cout << setw(5) << x << endl;

To use the manipulator setw, the program must include the header file iomanip. Thus,
the following include statement is required:

#include <iomanip>

Unlike setprecision, which controls the output of all floating-point numbers until it is
reset, setw controls the output of only the next expression.

842 | Appendix G: C++ for Java Programmers

left and right Manipulators
Recall that if the number of columns specified by the setw manipulator exceeds the
number of columns required by the next expression, the output is right-justified. Some-
times you might want the output to be left-justified. To left-justify the output, you use
the manipulator left.

The syntax to set the manipulator left is as follows:

ostreamVar << left;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be left-justified on the standard output device:

cout << left;

The syntax to set the manipulator right is as follows:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

File Input/Output
The previous sections discussed how to get input from the keyboard (standard input
device) and send output to the screen (standard output device). This section discusses
how to obtain data from other input devices, such as a flash memory (that is, secondary
storage), and how to save the output to a flash memory. C++ allows a program to get
data directly from, and save output directly to, secondary storage. A program can use the
file I/O and read data from or write data to a file. Formally, a file is defined as follows:

File: An area in secondary storage used to hold information.

The standard I/O header file, iostream, contains data types and variables that are used
only for input from the standard input device and output to the standard output device.
In addition, C++ provides a header file called fstream, which is used for file I/O.
Among other things, the fstream header file contains the definitions of two data types:
ifstream, which means input file stream and is similar to istream; and ofstream,
which means output file stream and is similar to ostream.

The variables cin and cout are already defined and associated with the standard input/
output devices. In addition, >> can be used with cin; <<, and the manipulators described
in the preceding section, can be used with cout. These same operators are also available
for file I/O, but the header file fstream does not declare variables to use them. You
must declare variables called file stream objects, which include ifstream variables for
input and ofstream variables for output. You then use these variables together with >>

Input and Output | 843

and << for I/O. Remember that C++ does not automatically initialize user-defined
variables. Once you declare the fstream objects, you must associate these objects with
the input/output sources.

File I/O is a five-step process:

1. Include the header file fstream in the program.

2. Declare file stream objects.

3. Associate the file stream objects with the input/output sources.

4. Use the file stream objects with >>, <<, or other input/output functions.

5. Close the files.

We now describe these five steps in detail. A skeleton program then shows how the steps
might appear in a program.

Step 1 requires that the header file fstream be included in the program. The following
statement accomplishes this task:

#include <fstream>

Step 2 requires you to declare file stream objects. Consider the following statements:

ifstream inData;
ofstream outData;

The first statement declares inData to be an ifstream object. The second statement
declares outData to be an ofstream object.

Step 3 requires you to associate the file stream objects with the input/output sources. This
step is called opening the files. The stream member function open is used to open the
files. The general syntax for opening a file is as follows:

fileStreamVariable.open(sourceName);

Here fileStreamVariable is a file stream object, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the
input data is stored in a file called prog.dat. The following statements associate inData
with prog.dat and outData with prog.out. That is, the file prog.dat is opened for
inputting data and the file prog.out is opened for outputting data.

inData.open("prog.dat"); //open the input file; Line 1
outData.open("prog.out"); //open the output file; Line 2

844 | Appendix G: C++ for Java Programmers

IDEs such as Visual Studio .NET manage programs in the form of projects. That is, first

you create a project and then add source files to the project. The statement in Line 1

assumes that the file prog.dat is in the same directory (subdirectory) as your project.

However, if this is in a different directory (subdirectory), you must specify the path where

the file is located, along with the name of the file. For example, suppose that the file

prog.dat is on a flash memory in drive H. Then, the statement in Line 1 should be

modified as follows:

inData.open("h:\\prog.dat");

Note that there are two \ after h:. In C++, \ is the escape character. Therefore, to

produce a \ within a string, you need \\. (To be absolutely sure about specifying the

source where the input file is stored, such as the drive h:\\, check your system’s

documentation.)

Similar conventions for the statement in Line 2.

Step 4 typically works as follows. You use the file stream objects with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream objects is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream object names that were declared. For example, the statement

inData >> payRate;

reads the data from the file prog.dat and stores it in the variable payRate. The
statement

outData << "The paycheck is: $" << pay << endl;

stores the output— The paycheck is: $565.78—in the file prog.out. This statement
assumes that the pay was calculated as 565.78.

Once the I/O is complete, Step 5 requires closing the files. Closing a file means that the
file stream variables are disassociated from the storage area, and the file stream objects are
freed. Once these variables are freed, they can be reused for other file I/O. Moreover,
closing an output file ensures that the entire output is sent to the file, that is, the buffer is
emptied. You close the files by using the stream function close. For example, assuming
the program includes the declarations listed in Steps 2 and 3, the statements for closing the
files are as follows:

inData.close();
outData.close();

On some systems, it is not necessary to close the files. When the program terminates, the

files are closed automatically. Nevertheless, it is a good practice to close the files

yourself. Also, if you want to use the same file stream variable to open another file, you

must close the first file opened with that file stream variable.

Input and Output | 845

In skeleton form, a program that uses file I/O is usually of the following form:

#include <fstream>
//Add any additional header files that you use
using namespace std;

int main()
{

//Declare file stream variables such as the following
ifstream inData;
ofstream outData;

//Additional variable declaration

//Open files
inData.open("prog.dat"); //open the input file
outData.open("prog.out"); //open the output file

//Code for data manipulation

//Close files
inData.close();
outData.close();

return 0;
}

Step 3 requires the file to be opened for file I/O. Opening a file associates a file stream
variable declared in the program with a physical file at the source, such as a flash memory.
In the case of an input file, the file must exist before the open statement executes. If the
file does not exist, the open statement fails and the input stream enters the fail state. An
output file does not have to exist before it is opened; if the output file does not exist, the
computer prepares an empty file for output. If the designated output file already exists, by
default the old contents are erased when the file is opened.

Control Structures
C++ and Java have the same six relational operators— ==, !=, <, <=, >, and >=; and they
work the same way in both the languages. The control structures in C++ and Java are the
same. For example, the selection control structures are if, if. . .else, and switch; and
the looping control structures are while, for, and do . . . while. The syntax for these
control structures is the same in both the languages. However, there are some differences.

In C++, any nonzero value is treated as true and the value 0 is treated as false. The
reserved word true is initialized to 1 and the false is initialized to 0. Logical expressions
in C++ evaluate to 0 or 1. On the other hand, logical expressions in Java evaluate to
true or false. Moreover, the data type boolean in Java cannot be typecasted to a
numeric type, so its values true and false cannot be typecasted to numeric values.

In C++, the mix-up of the assignment operator and the equality operator in a logical
expression can cause serious problems. For example, consider the following if statement:

846 | Appendix G: C++ for Java Programmers

if (drivingCode = 5)
...

In C++, the expression drivingCode = 5 returns the value 5. Because 5 is nonzero, the
expression evaluates to true. So in C++, the expression evaluates to true and the value of
the variable drivingCode is also changed. On the other hand, in Java, because the value 5 is
not a boolean value, it cannot be typecasted to true or false. So the preceding statement
in Java results in a compiler error, whereas in C++ it does not cause any syntax error.

Namespaces
When a header file, such as iostream, is included in a program, the global identifiers in the
header file also become global identifiers in the program. Therefore, if a global identifier in a
program has the same name as one of the global identifiers in the header file, the compiler
generates a syntax error (such as ‘‘identifier redefined’’). The same problem can occur if a
program uses third-party libraries. To overcome this problem, third-party vendors begin
their global identifier names with a special symbol. Moreover, compiler vendors begin their
global identifier names with an underscore (_). Therefore, to avoid linking errors, you
should not begin identifier names in your program with an underscore (_).

C++ tries to solve this problem of overlapping global identifier names with the
namespace mechanism.

The general syntax of the statement namespace is as follows:

namespace namespaceName
{

members
}

where a member is usually a named constant, variable declaration, function, or another
namespace. Note that namespaceName is a C++ identifier.

In C++, namespace is a reserved word.

EXAMPLE G-2

The statement

namespace globalType
{

const int n = 10;
const double rate = 7.50;
int count = 0;
void printResult();

}

defines globalType to be a namespace with four members: named constants n and
rate, the variable count, and the function printResult.

Namespaces | 847

The scope of a namespace member is local to the namespace. You can usually access a
namespace member outside the namespace in one of two ways, as described next.

The general syntax for accessing a namespace member is as follows:

namespaceName::identifier;

For example, to access the member rate of the namespace globalType, the following
statement is required:

globalType::rate;

To access the member printResult (which is a function), the following statement is
required:

globalType::printResult();

In C++, :: is called the scope resolution operator. Thus, to access a member of a
namespace, you use namespaceName, followed by the scope resolution operator, fol-
lowed by the member name. That is, you attach the name of namespaceName and the
scope resolution operator before the member name.

To simplify the accessing of a namespace member, C++ provides the use of the
statement using. The syntax to use the statement using is as follows.

a. To simplify the accessing of all namespace members:

using namespace namespaceName;

b. To simplify the accessing of a specific namespace member:

using namespaceName::identifier;

For example, the using statement

using namespace globalType;

simplifies the accessing of all the members of the namespace globalType. The statement

using globalType::rate;

simplifies the accessing of the member rate of the namespace globalType.

In C++, using is a reserved word.

You typically put the using statement after the namespace declaration. For the
namespace globalType, for example, you usually write the code as follows:

namespace globalType
{

const int n = 10;
const double rate = 7.50;

848 | Appendix G: C++ for Java Programmers

int count = 0;
void printResult();

}

using namespace globalType;

After the using statement, to access a namespace member, you do not have to put the
namespaceName and the scope resolution operator before the namespace member.
However, if a namespace member and a global identifier in a program have the same
name, to access this namespace member in the program, the namespaceName and the
scope resolution operator must precede the namespace member. Similarly, if a
namespace member and an identifier in a block have the same name, to access this
namespace member in the block, the namespaceName and the scope resolution operator
must precede the namespace member.

The identifiers in the system that provide the header files such as iostream, cmath,

and iomanip are defined in the namespace std. For this reason, to simplify the

accessing of identifiers from these header files, we use the following statement in the

programs that we write:

using namespace std;

Functions and Parameters
Functions in Java are called methods. In C++, there are two types of functions—value-
returning and void.

Value-Returning Functions
The syntax of a value-returning function is as follows:

functionType functionName(formal parameter list)
{

statements
}

In this syntax template, functionType is the type of value that the function returns. This
type is also called the data type of the value-returning function. Moreover, statements
enclosed between curly braces form the body of the function.

SYNTAX: FORMAL PARAMETER LIST

The general syntax of the formal parameter list is as follows:

dataType identifier, dataType identifier,...

Functions and Parameters | 849

FUNCTION CALL

The syntax to call a value-returning function is as follows:

functionName(actual parameter list)

SYNTAX: ACTUAL PARAMETER LIST

The syntax of the actual parameter list is as follows:

expression or variable, expression or variable, ...

Thus, to call a value-returning function, you use its name, with the actual parameters
(if any) in parentheses.

A function’s formal parameter list can be empty. However, if the formal parameter list is
empty, the parentheses are still needed.

A value-returning function returns its value via the return statement.

Void Functions
The definition of a void function has the following syntax:
void functionName(formal parameter list)
{

statements
}

FORMAL PARAMETER LIST

The formal parameter list may be empty. If the formal parameter is nonempty, the formal
parameter list has the following syntax:

dataType& variable, dataType& variable,

You must specify both the data type and the variable name in the formal parameter list.
The symbol & after dataType has a special meaning; it is used only for certain formal
parameters and is discussed later in this appendix.

FUNCTION CALL

The function call has the following syntax:

functionName(actual parameter list);

ACTUAL PARAMETER LIST

The actual parameter list has the following syntax:

expression or variable, expression or variable, ...

850 | Appendix G: C++ for Java Programmers

As with value-returning functions, in a function call the number of actual parameters,
together with their data types, matches the formal parameters in the order given. Actual
and formal parameters have a one-to-one correspondence. A function call causes the
body of the called function to execute. (Functions with default parameters are discussed at
the end of this appendix.)

EXAMPLE G-3

void funexp(int a, double b, char c, int& x)
{

...
}

The function funexp has four parameters.

In general, there are two types of formal parameters: value parameters and reference

parameters.

Value parameter: A formal parameter that receives a copy of the content of the
corresponding actual parameter.

Reference parameter: A formal parameter that receives the location (memory address)
of the corresponding actual parameter.

When you attach & after the dataType in the formal parameter list of a function, the
variable following that dataType becomes a reference parameter.

EXAMPLE G-4

void expfun(int one, int& two, char three, double& four);

The function expfun has four parameters: one, a value parameter of type int; two, a
reference parameter of type int; three, a value parameter of type char; and four, a
reference parameter of type double.

From the definition of value parameters, it follows that if a formal parameter is a value
parameter, the value of the corresponding actual parameter is copied into the formal
parameter. That is, the value parameter has its own copy of the data. Therefore, during
program execution, the value parameter manipulates the data stored in its own memory
space. After copying the data, the value parameter has no connection with the actual
parameter.

On the other hand, if a formal parameter is a reference parameter, it receives the address
of the corresponding actual parameter. That is, a reference parameter stores the address of
the corresponding actual parameter. During program execution to manipulate the data,
the address stored in the reference parameter directs it to the memory space of the

Functions and Parameters | 851

corresponding actual parameter. In other words, during program execution, the reference
parameter manipulates the data stored in the memory space of the corresponding actual
parameter. Any changes that a reference parameter makes to its data immediately changes
the value of the corresponding actual parameter.

A constant value cannot be passed to a reference parameter.

In Java, parameters are passed by value only; that is, the formal parameter receives a

copy of the actual parameter’s data. Therefore, if a formal parameter is a variable of a

primitive data type, it cannot pass its value outside the function. On the other hand,

suppose that a formal parameter is a reference variable. Then both the formal and

actual parameters point to the same object. Because the formal parameter contains

the address of the object storing the data, the formal parameter can change the value

of the actual object. Therefore, in Java, if a formal parameter is a reference variable,

it works like a reference parameter in C++.

Reference Parameters and Value-Returning Functions
While describing the syntax of the formal parameter list of a value-returning function, we
used only value parameters. You can also use reference parameters in a value-returning
function, although this approach is not recommended. By definition, a value-returning
function returns a single value; this value is returned via the return statement. If a function
needs to return more than one value, you should change it to a void function and use the
appropriate reference parameters to return the values.

Functions with Default Parameters
When a function is called, the number of actual and formal parameters must be the
same. C++ relaxes this condition for functions with default parameters. You specify
the value of a default parameter when the function name appears for the first time,
such as in the prototype. In general, the following rules apply for functions with
default parameters:

• If you do not specify the value of a default parameter, the default value is
used for that parameter.

• All of the default parameters must be the rightmost parameters of the
function.

• Suppose a function has more than one default parameter. In a function
call, if a value to a default parameter is not specified, you must omit all of
the arguments to its right.

• Default values can be constants, global variables, or function calls.

• The caller has the option of specifying a value other than the default for
any default parameter.

• You cannot assign a constant value as a default value to a reference parameter.

852 | Appendix G: C++ for Java Programmers

Consider the following function prototype:

void funcExp(int x, int y, double t, char z = 'A', int u = 67,
char v = 'G', double w = 78.34);

The function funcExp has seven parameters. The parameters z, u, v, and w are default
parameters. If no values are specified for z, u, v, and w in a call to the function funcExp,
their default values are used.

Suppose you have the following statements:

int a, b;
char ch;
double d;

The following function calls are legal:

1. funcExp(a, b, d);

2. funcExp(a, 15, 34.6,'B', 87, ch);

3. funcExp(b, a, 14.56,'D');

In statement 1, the default values of z, u, v, and w are used. In statement 2, the default
value of z is replaced by 'B', the default value of u is replaced by 87, the default value of
v is replaced by the value of ch, and the default value of w is used. In statement 3, the
default value of z is replaced by 'D', and the default values of u, v, and w are used.

The following function calls are illegal:

1. funcExp(a, 15, 34.6, 46.7);

2. funcExp(b, 25, 48.76, 'D', 4567, 78.34);

In statement 1, because the value of z is omitted, all the other default values must be
omitted. In statement 2, because the value of v is omitted, the value of w should be
omitted, too.

The following are illegal function prototypes with default parameters:

1. void funcOne(int x, double z = 23.45, char ch, int u = 45);

2. int funcTwo(int length = 1, int width, int height = 1);

3. void funcThree(int x, int& y = 16, double z = 34);

In statement 1, because the second parameter z is a default parameter, all the other
parameters after z must be default parameters. In statement 2, because the first parameter
is a default parameter, all the parameters must be the default values. In statement 3, a
constant value cannot be assigned to y because y is a reference parameter.

Functions and Parameters | 853

Arrays
Like Java, in C++, an array is a collection of a fixed number of components wherein all
of the components are of the same data type. However, in C++ arrays are not objects and
so need not be instantiated. In this section, we describe how one-dimensional arrays work
in C++.

A one-dimensional array is an array in which the components are arranged in a list
form. The general form of declaring a one-dimensional array is as follows:

dataType arrayName[intExp];

where intExp is any expression that evaluates to a positive integer. Also, intExp

specifies the number of components in the array.

EXAMPLE G-5

The statement

int num[5];

declares an array num of five components. Each component is of type int. The compo-
nents are num[0], num[1], num[2], num[3], and num[4].

Accessing Array Components
In C++, array components are accessed just like in Java. The general form (syntax) used
for accessing an array component is as follows:

arrayName[indexExp]

where indexExp, called the index, is any expression whose value is a nonnegative
integer. The index value specifies the position of the component in the array. In C++,
the array index starts at 0. Consider the following statement:

int list[10];

This statement declares an array list of 10 components. The components are list[0],
list[1], ..., list[9]. The assignment statement

list[5] = 34;

stores 34 in list[5], which is the sixth component of the array list.

Array Index Out of Bounds
Unfortunately, in C++, there is no guard against out-of-bounds indices. Thus, C++ does
not check whether the index value is within range—that is, between 0 and ArraySize - 1.
If the index goes out of bounds and the program tries to access the component specified by

854 | Appendix G: C++ for Java Programmers

the index, then whatever memory location is indicated by the index is accessed. This
situation can result in altering or accessing the data of a memory location that you never
intended. Consequently, if during execution the index goes out of bounds, several strange
things can happen. It is solely the programmer’s responsibility to make sure that the index is
within bounds. On some new compilers, if an array index goes out of bounds in a program,
it is possible that the program terminates with an error message.

Arrays as Parameters to Functions
In C++, arrays are passed by reference only. Because arrays are passed by reference only,
you do not use the symbol & when declaring an array as a formal parameter. When
declaring a one-dimensional array as a formal parameter, the size of the array is usually
omitted. If you specify the size of the one-dimensional array when it is declared as a
formal parameter, it is ignored by the compiler. In Java, associated with each array is the
variable length, which specifies the size of the array. However, no such variable is
associated with C++ arrays. To pass the size of the array to a function, we use another
parameter as in the following function:

void initialize(int list[], int size)
{

for (int count = 0; count < size; count++)
list[count] = 0;

}

The first parameter of the function initialize is an int array of any size. When the
function initialize is called, the size of the actual array is passed as the second
parameter of the function initialize.

When a formal parameter is a reference parameter, then whenever the formal parameter
changes, the actual parameter changes as well. However, even though an array is always
passed by reference, you can still prevent the function from changing the actual para-
meter. You do so by using the reserved word const in the declaration of the formal
parameter. Consider the following function:

void example(int x[], const int y[], int sizeX, int sizeY)
{

...
}

Here, the function example can modify the array x, but not the array y. Any attempt to
change y results in a compile-time error. It is a good programming practice to declare an
array to be a constant as a formal parameter if you do not want the function to modify the
array.

Arrays | 855

This page intentionally left blank

APPENDIX H

REFERENCES

1. G. Booch, R.A. Maksimchuk, M.W. Engel, B.J. Young, J. Conallen, and K.A.
Houston, Object-Oriented Analysis and Design with Applications, 3rd ed., Addison-
Wesley, Reading, MA, 2007.

2. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms C++, Computer
Science Press, New York, 1997.

3. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-Wesley,
Reading, MA, 1999.

4. D.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms,
3rd ed., Addison-Wesley, Reading, MA, 1997.

5. D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
3rd ed., Addison-Wesley, Reading, MA, 1998.

6. D.E. Knuth, The Art of Computer Programming, Volume 3: Searching and Sorting, 2nd
ed., Addison-Wesley, Reading, MA, 1998.

7. S.B. Lippman and J. Lajoie, C++ Primer, 3rd ed., Addison-Wesley, Reading, MA,
1998.

8. D.S. Malik, C++ Programming: From Problem Analysis to Program Design, 4th ed.,
Course Technology, Boston, MA, 2009.

9. D. S. Malik and M.K. Sen, Discrete Mathematical Structures, Theory and Applications,
Course Technology, Boston, MA, 2004.

10. E.M. Reingold and W. J. Hensen, Data Structures in Pascal, Little Brown and
Company, Boston, MA, 1986.

11. R. Sedgewick, Algorithms in C, 3rd ed., Addison-Wesley, Boston, MA, Parts 1–4,
1998; Part 5, 2002.

857

This page intentionally left blank

APPENDIX I

ANSWERS TO ODD-
NUMBERED EXERCISES

Chapter 1
1. a. true; b. false; c. false; d. false; e. false; f. true; g. false; h. false

3. The white box refers to testing the correctness of the program; that is, making sure
that the program does what it is supposed to do. White-box testing relies on the
internal structure and implementation of a function or algorithm. The objective is
to ensure that every part of the function or algorithm is executed at least once.

5. a. O(n2)

b. O(n3)

c. O(n3)

d. O(n)

e. O(n)

f. O(nlog2n)

7. a. 43

b. 4n + 3

c. O(n)

9. One possible answer is as follows:

int sumSquares(int n)
{
int sum = 0;

for (int j = 1; j <= n; j++)
sum = sum + j * j;

return sum;
}

The function sumSquares is of the order O(n).

859

11. The for loop has 2n – 4 iterations. Each time through the loop a fixed number of
statements execute. Hence, this algorithm is O(n). Now each time through the loop
there is one addition, one subtraction, and one multiplication. Thus, the numbers of
additions is 2n – 4, the number of subtractions is 2n – 4, and the number of
multiplications is 2n – 4.

13. There are three nested for loops and each of these loops has n iterations. For each
iteration of the outer loop, the middle loop has n iterations. Thus, the middle loop
executes n times and has n2 iterations. For each iteration of the middle loop, the
innermost loop has n iterations. It follows that the innermost loop has n3 iterations.
Hence, this algorithm is O(n3).

15. a. 6

b. 2

c. 2

d. void xClass::func()
{

u = 10; v = 15.3;
}

e. void xClass::print()
{

cout << u << " " << v << endl;
}

f. xClass::xClass()
{

u = 0;
v = 0;

}

g. x.print();

h. xClass t(20, 35.0);

17. 00:00:00
23:13:00
06:59:39
07:00:39
The two times are different.

19. a. personType student("Buddy", "Arora");

b. student.print();

c. student.setName("Susan", "Miller");

860 | Answers to Odd-Numbered Exercises

Chapter 2
1. a. true; b. true; c. true; d. false; e. false; f. true; g. true; h. false; i. false; j. true;

k. false; l. true; m. false; n. false

3. Some of the data members that can be added to the class employeeType are
department, salary, employeeCategory (such as supervisor and president), and
employeeID. Some of the member functions are setInfo, getSalary,
getEmployeeCategory, and setSalary.

5. a. The statement :

class bClass public aClass

should be:

class bClass: public aClass

b. Missing semicolon after }.

7. a. yClass::yClass()
{

a = 0;
b = 0;

}

b. xClass::xClass()
{

z = 0;
}

c. void yClass::two(int u, int v)
{

a = u;
b = v;

}

9. a. void two::setData(int a, int b, int c)
{

one::setData(a, b);
z = c;

}

b. void two::print() const
{

one::print();
cout <<z << endl;

}

11. In base: x = 7
In derived: x = 3, y = 8, x + y = 11
**** 7
11

Chapter 2 | 861

13. Because the left operand of << is a stream object, which is not of the type mystery.

15. a. friend istream& operator>>(istream&, strange&);

b. strange operator+(const strange&) const;

c. bool operator==(const strange&) const;

d. strange operator++(int);

17. In Line 3, the word operator before <= is missing. The correct statement is as
follows:

bool mystery::operator<=(mystery rightObj) //Line 3
{

}

19. In Line 2, the function operator+ must have two parameters. The correct state-
ment is as follows:

friend operator+ (mystery, mystery); //Line 2

21. One

23. Two

25. a. strange<int> sObj;

b. bool operator==(strange);

c. bool strange::operator==(strange right)
{

return(a == right.a && b = right.b);
}

27. a. 21; b. OneHow

Chapter 3
1. a. false; b. false; c. false; d. true; e. true; f. true; g. false; h. false

3. 98 98

98 98

5. b and c

7. 78 78

9. 4 4 5 7 10 14 19 25 32 40

11. In a shallow copy of data, two or more pointers points to the same memory space.
In a deep copy of data, each pointer has its own copy of the data.

862 | Answers to Odd-Numbered Exercises

13. Array p: 5 7 11 17 25
Array q: 25 17 11 7 5

15. The copy constructor makes a copy of the actual parameter data.

17. Classes with pointer data members should include the destructor, overload the
assignment operator, and explicitly provide the copy constructor by including it
in the class definition and providing its definition.

19. ClassA x: 4

ClassA x: 6
ClassB y: 5

21. In compile-time binding, the compiler generates the necessary code to call a
function. In run-time binding, the run-time system generates the necessary code
to make the appropriate function call.

23. a. The statement creates the arrayListType object intList of size 100. The
elements of intList are of the type int.

b. The statement creates the arrayListType object stringList of size 1000.
The elements of stringList are of the type string.

c. The statement creates the arrayListType object salesList of size 100. The
elements of salesList are of the type double.

Chapter 4
1. The three main components of the STL are containers, iterators, and algorithms.

3. vector<double> doubleList(50);

5. ostream_iterator<int> screen(cout, " ");

7. 0 2 4 6 8

9. 3 7 9

11. 50 75 100 200 95

13. vecList = {8, 23, 40, 6, 18, 9, 75, 9, 75}

15. 70 76 34 45 23 5 35 210

Chapter 5
1. a. false; b. false; c. false; d. false; e. true;

3. a. true; b. true; c. false; d. false; e. true

5. a. A = A->link;

b. list = A->link->link;

Chapter 5 | 863

c. B = B->link->link;

d. list = NULL;

e. B->link->info = 35;

f. newNode = new nodeType;
newNode->info = 10;
newNode->link = A->link;
A->link = newNode;

g. p = A->link;
A->link = p->link;
delete p;

7. a. This is an invalid code. The statement s->info = B; is invalid because B is a
pointer and s->info is an int.

b. This is an invalid code. After the statement s = s->link; executes, s is NULL
and so s->info does not exist.

9. Item to be deleted is not in the list.
18 38 2 15 45 25

11.

doublyLinkedList<Type>

#count: int
#*first: nodeType<Type>
#*last: nodeType<Type>

+operator=(const doublyLinkedList<Type> &):
const doublyLinkedList<Type>&

+initializeList(): void
+isEmptyList() const: bool
+destroy: void
+print() const: void
+reversePrint() const: void
+length() const: int
+front() const: Type
+back() const: Type
+search(const Type&) const: bool
+insert(const Type&): void
+deleteNode(const Type&): void
+doublyLinkedList()
+doublyLinkedList(const doublyLinkedList<Type>&)
+~doublyLinkedList()
-copyList(const doublyLinkedList<Type>&): void

FIGURE I-1 Chapter 5 Exercise 11

864 | Answers to Odd-Numbered Exercises

13. intList = {5, 24, 16, 11, 60, 9, 3, 58, 78, 85, 6, 15, 93, 98, 25}

15.

Chapter 6
1. a. true; b. true; c. false; d. false; e. false

3. The case in which the solution is defined in terms of smaller versions of itself.

5. A function that calls another function and eventually results in the original function
call is said to be indirectly recursive.

7. a. The statements in Lines 3 and 4.

b. The statements in Lines 5 and 6.

c. Any nonnegative integer.

d. It is a valid call. The value of mystery(0) is 0.

e. It is a valid call. The value of mystery(5) is 15.

f. It is an invalid call. It will result in an infinite recursion.

videoType

-videoTitle: string
-movieStar1: string
-movieStar2: string
-movieProducer: string
-movieDirector: string
-movieProductionCo: string
-copiesInStock: int

+operator<<(ostream&, const videoType&): friend ostream&
+setVideoInfo(string, string, string, string,
 string, string, int): void
+getNoOfCopiesInStock() const: int
+checkOut(): void
+checkIn(): void
+printTitle() const: void
+printInfo() const: void
+checkTitle(string): bool
+updateInStock(int): void
+setCopiesInStock(int): void
+getTitle() const: string
+videoType(string = "", string = "", string = "",
 string = "", string = "", string = "",
 int = 0)
+operator==(const videoType&) const: bool
+operator!=(const videoType&) const: bool

FIGURE I-2 Chapter 5 Exercise 15

Chapter 6 | 865

9. a. It does not produce any output.

b. 5 6 7 8 9

c. It does not produce any output.

d. It does not produce any output.

11. a. 2

b. 3

c. 5

d. 21

13.

multiplyðm;nÞ ¼
0 if n ¼ 0
m if n ¼ 1
mþmultiplyðm;n� 1Þ otherwise

8<
:

Chapter 7
1. x = 3

y = 9
7
13
4
7

3. a. 26

b. 45

c. 8

d. 29

5. a. A * B + C

b. (A + B) * (C – D)

c. (A – B – C) * D

7. a. This is an invalid statement. Because stackADT is an abstract class, we cannot
instantiate an object of this class.

b. Creates sales to be an object of the class stackType. The stack elements
are of type double and the stack size is 100. (Note that because the value -10 is
passed to the constructor with parameters, the definition of the constructor
with parameters creates the stack of size 100.)

866 | Answers to Odd-Numbered Exercises

c. Creates names to be object of the class stackType. The stack elements are of
type string and the stack size is 100.

d. This is an invalid statement. Because the class linkedStackType does not
have a constructor with parameters, you cannot pass the value 50 to the default
constructor.

9. 10
50 25 10
50

11. template<class Type>
Type second(stackType<Type> stack)
{

Type temp1, temp2;

assert(!stack.isEmptyStack());
temp1 = stack.top();
stack.pop();
assert(!stack.isEmptyStack());
temp2 = stack.top();
stack.push(temp1);

return temp2;
}

13. template<class type>
void clear(stack<type>& st)
{

while (!st.empty())
st.pop();

}

Chapter 8
1. Queue Elements: 5 9 16 4 2

3. The function mystery reverses the elements of a queue and also doubles the values
of the queue elements.

5. 10
20 40 20 5 3
20 3

7. a. queueFront = 99; queueRear = 26

b. queueFront = 0; queueRear = 25

9. a. queueFront = 99; queueRear = 0

b. queueFront = 0; queueRear = 99

Chapter 8 | 867

11. a. queueFront = 74; queueRear = 0

b. queueFront = 75; queueRear = 99. The position of the removed element was
75.

13. template<class Type>
int queueType<Type>::queueCount()
{

return count;
}

15.

Chapter 9
1. a. false; b. true; c. false; d. false

3. template<class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public:

int binarySearch(const elemType& item);
orderedArrayListType(int n = 100);

};

5. There are 30 buckets in the hash table and each bucket can hold 5 items.

7. Suppose that an item with key X is hashed at t, that is, h(X) = t, and 0 � t �;
HTSize - 1. Further suppose that position t is already occupied. In quadratic

queueType<Type>

-maxQueueSize: int
-count: int
-queueFront: int
-queueRear: int
-*list: Type

+operator=(const queueType<Type>&): const queueType<Type>&
+isEmptyQueue() const: bool
+isFullQueue() const: bool
+initializeQueue():void
+front() const: Type
+back() const: Type
+addQueue(const Type&): void
+deleteQueue(): void
+queueType(int = 100)
+queueType(const queueType<Type>&)
+~queueType()

FIGURE I-3 Chapter 8 Exercise 15

868 | Answers to Odd-Numbered Exercises

probing, starting at position t, we linearly search the array at locations (t + 1) %
HTSize, (t + 22) % HTSize = (t + 4) % HTSize, (t + 32) % HTSize = (t + 9) %
HTSize, . . ., (t + i2) % HTSize. That is, the probe sequence is t, (t + 1) % HTSize,
(t + 22) % HTSize, (t+32) % HTSize, . . ., (t + i2) % HTSize.

9. 30, 31, 34, 39, 46, and 55

11. 101

13. Let k1 = 2733, k2 = 1409, k3 = 2731, k4 = 1541, k5 = 2004, k6 = 2101, k7 = 2168,
k8 = 1863. Suppose HT is of size 13 indexed 0,1,2,. . .,12. Define the function
h: {k1, k2, k3, k4, k5, k6, k7, k8}!{0,1,2,. . .,12 } by h(ki) = ki %13.

Now, h(k1) = h(2733) = 2733 % 13 = 3. So the data of the student with ID 2733 is
stored in HT[3].

Also, 1409 % 13 = 5, 2731 % 13 = 1, 1541 % 13 = 7, 2004 % 13 = 2, 2101 % 13 = 8,
2168 % 13 = 10, and 1863 % 13 = 4. Hence, h(1409) = 5, h(2731) = 1, h(1541) = 7,
h(2004) = 2, h(2101) = 8, h(2168) = 10, and h(1863) = 4.

Suppose HT[b] a means ‘‘store the data of the student with ID a into HT[b].’’ Then

HT[3] 2733, HT[5] 1409, HT[1] 2731,

HT[7] 1541, HT[2] 2004, HT[8] 2088,

HT[10] 2168, HT[4] 1863.

15. Let k1 = 147, k2 = 169, k3 = 580, k4 = 216, k5 = 974, k6 = 124. Suppose HT is of
size 13 indexed 0,1,2,. . .,12. Define the function h: {k1, k2, k3, k4, k5,
k6}!{0,1,2,. . .,12 } by

h(ki) = ki %13.

Now h(k1) = h(147) = 147 % 13 = 4. So the data of the student with ID 147 is
stored in HT[4]. We construct the following table that shows the array position
where each student’s data is stored.

ID h(ID) (h(ID) + 1) % 13 (h(ID) + 2) % 13

147 4

169 0

580 8

216 8 9

974 12

124 7

Chapter 9 | 869

Now if HT[b] a means ‘‘store the data of the student with ID a into HT[b],’’ then

17. Let k1 = 5701, k2 = 9302, k3 = 4210, k4 = 9015, k5 = 1553, k6 = 9902, k7 = 2104.

Let k = 5701. Now 5701 % 19 = 1. Thus, h(5701) = 1. So the data of the student
with ID 5701 is stored in HT[1].

Next consider k = 9302. Now 9302 % 19 = 11. Thus, h(9302) = 11. Because
HT[11] is empty, we store the data of the student with ID 9302 in HT[11].

Consider k = 4210. Now 4210 % 19 = 11. Therefore, h(4210) = 11. Because
HT[11] is already occupied, we compute g(4210). Now g(4210) = 1 + (4210 % 17) =
1 + 11 = 12. So the probe sequence for 4210 is 11, (11 + 12) % 19 = 23 % 19 = 4.
Because HT[4] is empty, we store the data of the student with ID 4210 in HT[4].

We apply this process and find the array position to store the data of each student. If a
collision occurs for an ID, the following table shows the probe sequence of that ID.

Thus,

HT[1] 5701, HT[11] 9320, HT[4] 4210, HT[9] 9015,

HT[14] 1553, HT[3] 9902, HT[18] 2104.

19. In open hashing, the hash table, HT, is an array of pointers. (For each j, 0 � j �
HTSize – 1, HT[j] is a pointer to a linked list.) Therefore, items are inserted into
and deleted from a linked list, and so item insertion and deletion are simple and
straightforward. If the hash function is efficient, few keys are hashed to the same
home position. Thus, average linked list is short, which results in a shorter search
length.

HT[4] 147, HT[0] 169, HT[8] 580,

HT[9] 216, HT[12] 974, HT[7] 124.

ID h(ID) g(ID) Probe sequence

5701 1

9320 11

4210 11 12 11, 4, 16, 9, 2, . . . g(4210) = 1 + (4210 % 17) = 1 + 11 = 12

9015 9

1553 14

9902 3

2104 14 14 14, 9, 4, 18, . . . g(2104) = 1 + (2104 % 17) = 1 + 13 = 14.

870 | Answers to Odd-Numbered Exercises

21. Suppose there are 1000 items and each item requires 10 words of storage.
Further suppose that each pointer requires 1 word of storage. We then need
1000 words for the hash table, 10,000 words for the items, and 1000 words for
the link in each node. A total of 12,000 words of storage space, therefore, is
required to implement the chaining. On the other hand, if we use quadratic
probing, if the hash table size is twice the number of items, we need 20,000
words of storage.

23. The load factor a = 750 / 1001 � .75.

a. (1/2){1 + (1/(1� a))} � 2.49.

b. (�log2 (1� a)) / a � 2.66.

c. (1 + a /2) = 1.38.

Chapter 10
1. List before the first iteration: 26, 45, 17, 65, 33, 55, 12, 18

List after the first iteration: 12, 45, 17, 65, 33, 55, 26, 18

List after the second iteration: 12, 17, 45, 65, 33, 55, 26, 18

List after the third iteration: 12, 17, 18, 65, 33, 55, 26, 45

List after the fourth iteration: 12, 17, 18, 26, 33, 55, 65, 45

List after the fifth iteration: 12, 17, 18, 26, 33, 55, 65, 45

List after the sixth iteration: 12, 17, 18, 26, 33, 45, 65, 55

List after the seventh iteration: 12, 17, 18, 26, 33, 45, 55, 65

3. 3

5. 10, 12, 18, 21, 25, 28, 30, 71, 32, 58, 15

7. In Shellsort, the elements of the list are viewed as sublists at a particular distance.
Each sublist is sorted, so that elements that are far apart move closer to their final
position.

9. In the quicksort, the list is partitioned according to an element, called pivot, of
the list. After the partition, the elements in the first sublist are smaller than pivot,
and in the second sublist are larger than pivot. The mergesort partitions the
list by dividing it into two sublists of nearly equal size by breaking the list in the
middle.

11. a. 35

b. 18, 16, 40, 14, 17, 35, 57, 50, 37, 47, 72, 82, 64, 67

Chapter 10 | 871

13. During the first pass, six key comparisons are made. After two passes of the heapsort
algorithm, the list is as follows:

85, 72, 82, 47, 65, 50, 76, 30, 20, 60, 28, 25, 45, 17, 35, 14, 94, 100

15. Suppose that the elements of L are indexed 0, 1, . . ., n – 1. Starting at
firstOutOfOrder = 1, the for loop executes n – 1 times. Because L is sorted,
for each iteration of the for loop, the expression in the if statement evaluates
to false, so the body of the if statement never executes. Thus, it follows that
for each iteration of the for loop, the number of comparisons is 1 and the
number of item assignments is 0. Because the for loop executes n – 1 times, it
follows that the total number of comparisons is n – 1 and the number of item
assignments is 0.

17. template<class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
void insertFirst(const Type& newItem);
void insertLast(const Type& newItem);
void deleteNode(const Type& deleteItem);
void linkedInsertionSort();
void mergeSort();

private:
void divideList(nodeType<elemType>* first1,

nodeType<elemType>* &first2);
nodeType<elemType>* mergeList(nodeType<elemType>* first1,

nodeType<elemType>* first2);
void recMergeSort(nodeType<elemType>* &head);

};

Chapter 11
1. a. false; b. true; c. false; d. false

3. LA = {B, C, D, E}

5. RB = {E}

7. A B C D E F G

9. 80-55-58-70-79

872 | Answers to Odd-Numbered Exercises

11.

50

30

98

85

55

80

48 58

25

45

40

90

110

70

75

7965

FIGURE I-4 Chapter 11 Exercise 11

Chapter 11 | 873

13.

Binary Tree After Deleting 80

Binary Tree After Deleting 58

50

30

98

85

55

79

48 58

25

52

45

40

90

110

70

7565

50

30

98

85

55

79

48

25

52

45

40

90

11070

7565

FIGURE I-5 Chapter 11 Exercise 13

874 | Answers to Odd-Numbered Exercises

15.

17. The balance factor of the root node is 0.

19. The balance factor of the root node is 0.

A

B

L

M

H

G

F

I

C

E

D

KJ

FIGURE I-6 Chapter 11 Exercise 15

50

30

100

98

25 40 80

FIGURE I-7 Chapter 11 Exercise 17

40

30

25 35

20 9855

80

50

48

42

FIGURE I-8 Chapter 11 Exercise 19

Chapter 11 | 875

21.

23.

25.

27.

35

8 20

75

9590 9930 60 7237 40

50

FIGURE I-9 Chapter 11 Exercise 21

42

10 35 75 95

2 8 15 20 30 37 40 50 60 82 90 96 98 99

FIGURE I-10 Chapter 11 Exercise 23

70 85

12

2 4 7

24

16 22 30 35 55 60

50

65 88

90 96

FIGURE I-11 Chapter 11 Exercise 25

70 85

7

2 4

30

16 22 24 35 40 55 60

50

65 88

90 96

FIGURE I-12 Chapter 11 Exercise 27

876 | Answers to Odd-Numbered Exercises

Chapter 12
1. 0 1 1 1 0 0

0 0 0 0 1 0
0 1 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 0

2
6666664

3
7777775

3. 0 1 4 2 3 5

5. 1 10 6 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 4 8
3 1 1 1 11 1 1
1 1 1 1 1 1 1
1 6 1 1 1 1 10
1 1 1 1 1 1 1

2
666666664

3
777777775

7.

9.

8

4

0

10

5

7

6

9

2 3

11

1

FIGURE I-13 Chapter 12 Exercise 7

0 1

2

5

4 3

7

3

1

2

8
3

5

5

FIGURE I-14 Chapter 12 Exercise 9

Chapter 12 | 877

Source Vertex: 0
Edges Weight
(5, 1) 2
(0, 2) 3
(1, 3) 5
(5, 4) 3
(2, 5) 1

Minimal Spanning Tree Weight: 14

11. This graph has vertices of odd degree. For example, vertex 2 is of odd degree.
Hence, this graph has no Euler circuit.

Chapter 13
1. A container is used to store data; an algorithm is used to manipulate the data stored

in a container.

3. Duckey Donald

5. a. map<string, string> stateDataMap;

b. stateDataMap.insert(make_pair("Nebraska", "Lincoln"));
stateDataMap.insert(make_pair("New York", "Albany"));
stateDataMap.insert(make_pair("Ohio", "Columbus"));
stateDataMap.insert(make_pair("California", "Sacramento"));
stateDataMap.insert(make_pair("Massachusetts", "Boston"));
stateDataMap.insert(make_pair("Texas", "Austin"));

c. map<string, string>::iterator mapItr;

cout << left;
cout << "The elements of stateDataMap:" << endl;
for (mapItr = stateDataMap.begin();

mapItr != stateDataMap.end(); mapItr++)
cout << setw(15) << mapItr->first

<< setw(15) << mapItr->second << endl;
cout << endl;

d. map<string, string>::iterator mapItr;
mapItr = stateDataMap.find("California");

if (mapItr != stateDataMap.end())
mapItr->second = "Los Angeles";

7. An STL function object contains a function that can be treated as a function using
the function call operator.

9. 18 5 11 56 27 2

11. 0

878 | Answers to Odd-Numbered Exercises

No te :
� Page numbe rs in bo ld t ype ind ica te de f in i t i ons .
� Page numbe rs fo l l owed by (2) i nd ica te two sepa ra t e d i scuss ions .
� Page numbe rs fo l l owed by n i nd ica te no tes .
� Page numbe rs fo l l owed by t i nd ica te t ab les .
� In c ross - re fe rences f r om subhead ings , a ta r ge t head ing end ing wi th above o r be low po in ts t o ano the r
subhead ing under the same main head ing .

Symbo l s

& (ampersand):
address of operator. See address

of operator
reference parameter symbol,

149, 850, 851, 855
&& (ampersands): and operator,

810t
<> (angular brackets): system

header file delimiters, 76
See also extraction operator (>>);

greater-than operator (>);
insertion operator (<<); less-
than operator (<)

* (asterisk). See dereferencing
operator; multiplication
operator

*= (asterisk–equal sign):
compound assignment
operator, 810t

\ (backslash): escape character,
845n

| (bar): separator operator, 810t
|| (bars): or operator, 810t
[] (brackets). See array index

(subscript) operator
: (colon): member access

specifier operator, 18
:: (colons): scope resolution

operator, 25–26, 809t, 848
, (comma): sequencing operator,

810t

. (dot). See member access
operator

"" (double quotation marks):
user-defined header file
delimiters, 76

= (equal sign):

assignment operator. See
assignment operator

postfix expression operator, 430

== (equal signs). See equality
operator

! (exclamation mark): not
operator, 809t

!= (exclamation mark–equal
sign). See inequality
operator

> (greater-than sign): balance
factor indicator, 649

See also greater-than operator

>= (greater-than sign–equal
sign). See greater-than-or-
equal-to operator

>> (greater-than signs). See
extraction operator

-> (hyphen–right angle bracket).
See member access operator
arrow

< (less-than sign): balance factor
indicator, 649

See also less-than operator

<= (less-than sign–equal sign).
See less-than-or-equal-to
operator

<< (less-than signs). See
insertion operator

– (minus sign):

minus operator, 809t

UML symbol, 23

See also subtraction operator

– (minus signs). See decrement
operator

(number sign):

postfix expression number
symbol, 430

preprocessor directive character,
835

UML symbol, 23

#define preprocessor directive,
77

#endif preprocessor directive,
77

#ifndef preprocessor directive,
77

#include preprocessor
directive, 75–76, 77,
835–836

() (parentheses). See
parentheses

% (percent sign): modulus
(remainder) operator, 809t

+ (plus sign):

INDEX

addition operator. See addition
operator

plus operator, 809t
UML symbol, 23
++ (plus signs). See increment

operator
+= (plus–equal sign): compound

assignment operator, 810t
?: (question mark–colon):

conditional operator, 810t
; (semicolon):
in class definitions, 18
as not in preprocessor directives,

835
/ (slash). See division operator
/= (slash–equal sign): compound

assignment operator, 810t
(space) (blank space character):

extraction operator and, 838
~ (tilde): destructor name prefix,

33
_ (underscore): identifier

character, 847

Numbe rs

0 (null pointer), 138, 822
4-queens puzzle, 377–378,

378–379
8-queens puzzle, 376–377,

377, 379–381

A

absolute value function, 821t
abstract classes, 170, 196–197
abstract data types (ADTs), 34

classes and, 34–35
defining, 34–38. See also under

specific classes
defining AVL trees as, 651
defining B-trees as, 664–665
defining binary search trees as,

618; AVL trees, 651;
B-trees, 664–665

defining binary trees as, 609–611
defining class templates for,

111–112
defining graphs as, 692–693
defining linked lists as,

282–286, 328–330; doubly
linked lists, 311–313;
ordered linked lists,
300–301; unordered linked
lists, 292–293

defining lists as, 35–36;
array-based lists, 172–174,
498–499; ordered
array-based lists, 501–502;
with class templates,
111–112

defining queues as, 459–460;
linked queues, 464–465;
simulation queues,
475–476, 477–479,
481–482

defining spanning trees as,
710–711

defining stacks as, 398–399;
linked stacks, 415–417;
stacks as arrays, 400–402

implementing, 35–38
implementing hashing as,

521–523
linked lists as, 278–292

abstraction, 33–34
data abstraction, 34

access specifiers. See member
access specifiers

accessing:
array elements, 854
base class data members in

derived classes: private
members, 62–63, 68;
protected members, 78

class members, 24–25, 28–29,
32; via pointers, 137–138

namespace members,
848–849, 849n

private data members: in
derived classes, 62–63, 68;
with friend functions,
91–93

struct members via pointers,
137–138

vector container elements,
211, 213–214

accumulate function, 794,
794–796

acos(x) function, 820t
actual parameter lists:

value-returning functions, 850
void functions, 850

actual parameters:
passing derived class objects to

base class parameters,
165–166

preventing functions from
changing, 30–31, 855

adapters. See container adapters

adding items:
to queues, 453, 470–471;

linked queues, 466–467,
485–486; priority queues,
575; queues as arrays,
454–455, 455–456, 457,
462

to stacks, 397–398, 398, 441t;
linked stacks, 419–420;
stacks as arrays, 404–405

See also inserting items
addition operator (+), 86

overloading, 96–97, 106
precedence, 809t

addQueue function (operation),
452, 453

for linked queues, 466–467,
485–486

for queues as arrays, 454–455,
457, 462

address of operator (&), 133, 135
precedence, 809t

addresses (of memory cells): storing
in pointers, 133, 134–135

adjacency lists (of graphs), 690–691
adjacency matrices (of graphs),

689–690
adjacent vertices (in graphs), 689,

690, 691
adjacent_difference function,

794–796
adjacent_find function, 754,

777
ADTs. See abstract data types
advancing queueRear in queues

as arrays, 457
algorithms, 4

backtracking. See backtracking
algorithms

counting operations in, 10–13
dominant operations in, 12
efficiency, 375–376
Fleury’s algorithm, 721–722
generic. See STL algorithms
key comparisons in. See key

comparisons
nonrecursive algorithms: binary

tree traversal, 628–632
performance analysis, 8–17.

See also Big-O values
(notation)

recursive algorithms, 357,
360–361; binary tree
traversal, 606–608. See
also backtracking algorithms

880 | Index

time-complexity limits. See
Big-O values (notation)

uses, 210, 211
See also search algorithms; sort

algorithms; and other
specific algorithms

allocating memory:
for dynamic arrays, 138,

147–148
for dynamic variables, 138–139,

142–145
See also memory allocation

American Standard Code for
Information Interchange. See
ASCII character set

ampersand (&):
address of operator. See address

of operator
reference parameter symbol,

149, 850, 851, 855
ampersands (&&): and operator, 810t
analysis: problem analysis, 3

See also performance analysis
and operator (&&): precedence,

810t
angular brackets (<>): system

header file delimiters, 76
See also extraction operator (>>);

greater-than operator (>);
insertion operator (<<); less-
than operator (<)

arbitrary binary trees, 609, 616
arc cosine/sine/tangent functions,

820t, 821t
arguments. See parameters of

functions
arithmetic: pointer arithmetic,

146n, 195
See also arithmetic operations

arithmetic expressions, 834
infix expressions, 428, 428t
parentheses in, 428;

precedence, 809t
postfix. See postfix expressions
See also arithmetic operators

arithmetic operations:
numeric algorithms, 750,

794–799
on pointers, 146n, 195
See also arithmetic operators

arithmetic operators, 834
overloading, 95–98
in postfix expressions, 428–430
precedence, 428, 809t
See also arithmetic operations

arithmetic STL function objects,
751–753

array elements:
accessing, 854
assigning values to, 854–855
finding: the largest/smallest. See

largest element, finding;
smallest element, finding

swapping, 535–537, 557
array index (subscript) operator ([]):

precedence, 809t
array indices, 854

finding the smallest element’s
index, 536–537

as out of bounds, 854–855
array-based lists, 170–186

binary trees from, 568–569,
569–574

checking whether empty/full, 175
class. See arrayListType

class
constructor, 179
converting into heaps, 569–573
copy constructor, 180, 181
copying into vector containers,

756–757
defining as ADTs, 172–174,

498–499; ordered lists,
501–502

destructor, 179
inserting items in, 176–177,

182; ordered lists, 506–508
limitations, 266, 600
operations on, 175–183; time-

complexity limits, 183–184t
ordered lists: binary searches,

502–506, 508t; defining as
ADTs, 501–502; inserting
items in, 506–508

overloading the assignment
operator, 180–181

partitioning: mergesort, 559,
560–562; quicksort,
552–557

pivot element, 552–553, 554,
556–557, 826, 827,
828–829, 830–831

processing, 175–176; variables
for, 171

programming example, 187–194
removing items from, 177–178,

179, 183
replacing items in, 178–179
retrieving items from, 178
searching, 181–182

sorting: heapsort, 567–575;
insertion sort, 540–543;
quicksort, 552–558;
selection sort, 534–539

test program, 184–186
arrayListType class:

definition as an ADT, 172–174,
498–499

including functions in, 537
member functions, 175–183;

time-complexity limits,
183–184t

arrays (one-dimensional arrays),
854–855

character. See C-strings
circular queues as, 456
constant reference parameters

in, 855
declaring, 854; as formal

parameters, 855
dynamic. See dynamic arrays
elements. See array elements
indices. See array indices
initializing, 855
lists as. See array-based lists
names as constant pointers,

148–149
passing as parameters to

functions, 855
processing, 536–537, 543
processing lists with. See array-

based lists
queues as. See queues as arrays
size, 855
stacks as. See stacks as arrays
static arrays, 147
See also array-based lists; two-

dimensional arrays; vector
containers

ASCII character set, 811–812t
nonprintable characters, 812t

asin(x) function, 820t
assert function, 817t

using (accessing), 6
assert statements:

disabling, 817n
validating input with, 6

assign functions (containers),
229t, 322t

assigning values to variables, 835
assignment operator (=), 31

and classes, 31
compound assignment operators

(op=), 834; precedence,
810t

Index | 881

assignment operator (Continued)
container operation, 222t
deep copying with, 154–155
vs. equality operator (==),

846–847
overloading, 158–159; for array-

based lists, 180–181; for
binary trees, 615; for linked
lists, 285, 291; for linked
queues, 468; for linked
stacks, 423; for stacks as
arrays, 408

precedence, 809t
shallow copying with, 153–154,

157
assignment statements, 835

for class objects, 31
associative containers, 736–747

declaring and initializing: map/
multimap containers,
742–743; set/multiset
containers, 737–738

header files, 747t
as implemented, 736
item insertion and deletion: map/

multimap containers,
743–744; set/multiset
containers, 739

iterator support, 747t
operations on, 739–741,

743–747
predefined containers, 737
quick review, 799–800
sort criteria, 736, 737
using (including), 737
See also containers

associativity (of operators), 809–810t
asterisk (*). See dereferencing

operator; multiplication
operator

asterisk–equal sign (*=): compound
assignment operator, 810t

asymptotic functions, 14
at function (containers), 213t, 229t
atan(x) function, 821t
automatic class objects, 32
AVL trees (height-balanced binary

search trees), 635–654, 636
building, 649–651
defining as ADTs, 651
deleting items from, 637, 652
inserting items in, 637,

637–641, 648–651
nodes, 637; creating, 651;

height types, 637

operations on, 637, 637–652
performance analysis, 653–654
quick review, 677
rotating/reconstructing, 639,

640, 641, 641–647;
functions for, 645–647;
rotation types, 641–644

See also B-trees

B

B-trees, 662–675, 663
basic operations, 663. See also

operations on, below
defining as ADTs, 664–665
deleting items from, 672–675
inserting items into, 667–672
operations on, 663, 665–675
quick review, 677
searching, 665–666
traversing, 666–667

back element. See rear element (of
queues)

back function (containers), 213t,
229t, 322t

back function (linked lists), 288
doubly linked lists, 316

back function (queues), 452, 453,
470t, 471

linked queues, 466–467
queues as arrays, 461

back_inserter iterator, 757
backslash (\): escape character,

845n
backtracking algorithms:

n-Queens puzzle, 377–383
sudoku problem, 383–386

balance factor (bf) (of AVL tree
nodes), 637, 638n

indicators, 649
balanceFromLeft function,

645–646
balanceFromRight function,

646, 647
bar (|): separator operator, 810t
bars (||): or operator, 810t
base case for recursive definitions,

356–357
base class constructors:

calling/invoking, 70
defining, 72

base class data members:
accessing in derived classes:

private members, 62–63,
68; protected members,
78

base class formal parameters:
passing derived class objects
to, 162–168

base class member functions:
calling, 67, 68
overloading in derived classes,

63n, 67n
overriding in derived classes,

63–69
base classes, 60

constructors. See base class
constructors

defining, 63–65
destructors, 168
inheritance rules, 62, 69
members. See base class data

members; base class
member functions

See also baseClass class;
rectangleType class

baseClass class, 162–163
Baumert, L., 377
begin function (containers), 217,

221t
begin function (linked lists),

288–289
bf (balance factor) (of AVL tree

nodes), 637, 638n
bfTopOrder function, 718–719
bidirectional iterators, 234

operations on, 234t

Big-O functions, 14–16, 17t
Big-O values (notation)

(time-complexity limits),
14–15

for array-based list operations,
183–184t

for binary searches, 508t
for linked list operations,

291–292t; ordered linked
lists, 307t; unordered linked
lists, 298t

for Prim’s algorithm, 712;
alternative to, 727

for sequential searches, 508t
for shortest path algorithm,

705
for sort algorithms: heapsort,

567, 575; insertion sort,
548t, 552, 826; mergesort,
558, 566–567; quicksort,
552, 558t, 827, 828, 830;
selection sort, 539, 548t,
552

882 | Index

for stack operations, 409t;
linked stacks, 424t

binary numbers: converting decimal
numbers to, 372–375

binary operators: overloading, 95–98
binary predicates (function

objects), 756
binary search trees, 616–632, 617

associative containers as
implemented with, 736

AVL. See AVL trees
B. See B-trees
basic operations, 617–618
Big-O value, 628
defining as ADTs, 618; AVL

trees, 651
deleting items from, 621–626
finding values in, 616–617
height-balanced. See AVL trees
inserting items in, 620–621
linear, 627
m-way search trees, 662–663
operations on, 617, 618–626
perfectly balanced trees,

635–636
performance analysis, 627–628;

AVL trees, 653–654; Big-O
value, 628

programming example, 654–662
quick review, 676–677
searching, 618–619
structure, 616–617

binary searches, 502–506
algorithms, 502–505, 506
Big-O value, 508t
functions, 503–504, 773–776
implementation methods, 504n
key comparisons in, 504,

504–505, 506, 508t
lower bound (order), 508–509
performance analysis, 506;

Big-O value, 508t
quick review, 525
See also binary search trees

binary tree traversal, 605–608,
628–632

B-trees, 666–667
node sequences, 606, 607
nonrecursive algorithms,

628–632
nonrecursive functions, 629,

630, 631–632
quick review, 676
recursive algorithms, 606–608

recursive functions, 608, 611,
612–613; overloading,
632–633

updating data during, 632–635
binary trees, 600–615

arbitrary trees, 609, 616
from array-based lists, 568–569,

569–574
basic operations, 609. See also

operations on, below
checking whether empty, 611
comparison tree for sorting three

items, 551
copy constructor, 614–615
copying, 604–605, 614,

614–615
default constructor, 612
defining as ADTs, 609–611; AVL

trees, 651; search trees, 618
deleting items from, 609
destroying, 614
destructor, 615
diagrams, 600–601, 602–603
elements, 600–601, 603
height, 603–604
implementing, 609–615
inserting items in, 609
nodes. See nodes (of binary trees)
operations on, 609, 611–615
paths, 603
perfectly balanced trees,

635–636
programming example, 654–662
quick review, 676–677
searchable. See binary search

trees
traversing. See binary tree

traversal
binary_search function,

773–776
binarySearch function, 503–504

including in orderedArray
ListType class, 508

binaryTreeType class:
definition as an ADT, 609–611
member functions, 611–615

binding of member functions, 164
black-box testing, 7–8
blank (blank space character) ():

extraction operator and, 838
bool data type, 833, 833t, 834
Boolean expressions (logical

expressions), 834, 846
Boolean operators (logical operators):

precedence, 809t, 810t

Boolean values (logical values),
834, 846, 847

bOp operation, 786
boundary values, 8
boxType class, 66–67, 70

constructor definitions, 70, 72
member function definitions,

67–69
brackets (square) ([]). See array

index (subscript) operator
brackets, angular (<>): system

header file delimiters, 76
See also extraction operator (>>);

greater-than operator (>);
insertion operator (<<); less-
than operator (<)

branches (of binary trees), 551, 600
breadth-first ordering (of vertices),

698
breadth-first traversal (of graphs),

698–699
topological ordering of vertices,

714, 715–719
breadth-first traversal algorithm,

696, 698–699
breadthFirstTraversal

function, 699
bSearchTreeType class:

definition as an ADT, 618
and videoBinaryTree class,

656–657
bTree class: definition as an ADT,

664–665
buckets (of hash tables), 510

overflow of, 511, 524
build heap algorithm, 569–573
buildHeap function, 573
building AVL trees, 649–651
building linked lists, 274, 279

backward, 277–278
forward, 274–277

buildListBackward function
(linked lists), 278, 279

buildListForward function
(linked lists), 277, 279

built-in operations on class objects,
31, 85

C

c_str function (strings), 823t
C-string functions: header file, 822t
C-strings:

base address, 823t
comparing, 822t
concatenating, 822t

Index | 883

C-strings (Continued)
copying, 822t
lengths: determining, 822t

C++ features vs. Java features,
833–855

C++ library. See header files; STL
(Standard Template Library)

C++ program files: file names and
extensions, 836

C++ programs:
code types, 836
design, 3–4. See also object-

oriented design
preprocessor directives. See

preprocessor directives
structure, 836–837
syntax. See syntax
testing. See testing programs

calling functions:
base class member functions,

67, 68
constructors, 23; base class

constructors, 70; member
object constructors, 83

recursive calls, 357, 375
value-returning functions, 850
void functions, 850, 851
See also specific function calls

callPrint function, 163–164,
166–167

canPlaceQueen function
algorithm, 381

capacity function (vector
containers), 218t

case: converting characters to
lower/upper case, 819t

cassert header file, 6, 817t
cast operator, 834

static_cast precedence,
809t

cctype header file, 818–819t
ceil(x) function, 821t
cerr object, 5n
cfloat header file, 819t
chaining (open hashing), 512,

523–524
performance analysis, 525t
quick review, 527

char data type, 833, 833t, 834
named constants, 820t
See also char variables

char variables:
data type, 833, 833t, 834
inputting (reading) data into,

838–839

valid input, 839t
See also variables

CHAR_BIT constant, 820t
CHAR_MAX constant, 820t
CHAR_MIN constant, 820t
character arrays. See C-strings
character functions (cctype

header file), 818–819t
character sets (encoding schemes):

ASCII set, 811–812t;
nonprintable characters,
812t

EBCDIC set, 812–813t
characters:

arrays of. See C-strings
checking character values,

818–819t
converting to lower/upper case,

819t
inputting (reading), 838–839
inserting in strings, 824t
named constants, 820t
outputting, 841t
replacing in strings, 824t
special. See Symbols section at

the top of this index
as strings. See C-strings; strings

(string type)
value-returning functions,

818–819t
See also char variables;

character sets
checking whether binary trees are

empty, 611
checking whether graphs are empty,

693
checking whether lists are empty/

full:
array-based lists, 175
linked lists, 286; doubly linked

lists, 313
checking whether queues are

empty/full, 452, 453,
470–471

linked queues, 465–466
queues as arrays, 460

checking whether stacks are empty/
full, 398, 441t

linked stacks, 417n, 418
stacks as arrays, 404

checking whether stings are empty,
823t

child nodes (of binary trees),
600–601, 602

cin statements, 837–839,
843–844

input failure, 839–840
syntax, 837

circuits, 720
Euler circuits, 719–722, 720

circular linked lists, 326
circular queues as arrays, 456
class definitions:

creating, 17–21, 22, 25; for
ADTs, 34–38

function prototypes in, 18, 25
including constructors in, 22;

copy constructors, 161–162
including destructors in, 156
operator functions in, 86, 94
placement of, 112–113

class members, 17
access categories, 18
accessing, 24–25, 28–29, 32;

via pointers, 137–138
data. See data members

(instance variables)
declaring, 18, 20n
functions. See member functions

(class function members)
inheritance rules, 62, 69
making public, 18; or

private, 19, 20n
objects (in composition), 79–84
private. See private class

members
protected. See protected

class members
public. See public class

members
scope, 32
types, 18
variables. See data members

(instance variables)
class objects (objects) (class

variables), 17, 23
built-in operations on, 31, 85
copying values, 31, 157–158,

159–162
data for. See data
data for: operations on. See

operations
declaring, 23–24, 23n, 32, 159;

derived class objects, 69
default member-wise

initialization, 159
hidden pointer to. See this

pointer
identifying, 4, 48–49

884 | Index

implementation details, 34;
hiding, 25, 33

initializing of, 83–84, 159
logical properties, 33, 34
operators on, 31, 85
overloading operators for. See

operator overloading
pairs. See pairs (pair objects)
as parameters of functions, 32
passing as parameters to

functions, 30–31,
160–161; derived class
objects to base class formal
parameters, 162–168

referencing in member function
definitions, 87–91

scope, 32
class scope, 32
class templates, 108, 111–113,

210, 211
and class/function definition

placement, 112–113
defining, 111–112
function members. See member

functions (class template
function members)

function objects. See function
objects

instantiations of, 112
passing parameters to, 112,

663–664
priority_queue class

template, 472
quick review, 115
syntax, 111
See also containers; iterators

class variables. See class objects
classes, 4, 17–33, 17

abstract classes, 170, 196–197
and ADTs, 34–35
assignment operator and, 31
base. See base classes
composite classes, 79–84
creating from existing classes.

See inheritance
defining, 17–21, 22, 25;

including constructors, 22,
161–162; including
destructors, 156

defining ADTs as, 34–38
defining templates for, 111–112
definitions. See class definitions
derived. See derived classes
friend functions, 91–93
functions and, 32

identifying, 48–49
implementing ADTs as, 35–38
instances. See class objects
linked list nodes as, 267
as linked lists. See linked lists
members. See class members
overloading operators for. See

operator overloading
with pointer data members:

requirements (peculiarities),
155–162, 611

pointers and, 137–138
programming example, 38–48
as queues. See queues
quick review, 50–51
relationships between. See

composition; inheritance
as stacks. See stacks
as structs. See structs
syntax, 17
templates. See class templates
variables. See class objects

classIllusFriend class, 91–93
clear functions (containers),

214t, 222t, 223t, 739t, 744t
clear functions (strings), 824t
clearGraph function, 694–695
clearing:

graphs, 694–695
strings, 824t

clearList function (array-based
lists), 179

climits header file, 820t
clockType class:

basic operations, 34. See also
function members, below

constructors, 22, 29–30, 32–33
definition of, 18–21, 22, 25; as

an ADT, 34; including
constructors, 22

enhancements, 85
function members, 20, 21,

28–29; definitions of,
26–28

close function, 845
closed hashing. See open

addressing
closing files, 845
clustering (in hash tables):

primary clustering, 514–515;
random/quadratic probing
and, 515, 516, 518

secondary clustering, 518
cmath header file, 820–821t,

835

collision resolution, 512–524
closed hashing. See open

addressing
open hashing. See chaining
quick review, 526–527

collisions (in hash tables), 511(2)
See also collision resolution

colon (:): member access specifier
operator, 18

colons (::): scope resolution
operator, 25–26, 809t, 848

columns (data):
justifying, 843
outputting data in, 842, 843

comma (,): sequencing operator,
810t

common log function, 821t
comparing:

C-strings, 822t
pointers, 146

comparison operators. See
relational operators

comparison tree for sorting three
items, 551

comparison-based search
algorithms: lower bound
(order), 508–509

See also search algorithms
comparison-based sort algorithms:

lower bound (order), 551–552
See also sort algorithms

comparisons, key. See key
comparisons

compile-time binding, 164
complex numbers: processing,

103–107
Complex Numbers programming

example, 103–107
complexity limits of algorithms. See

Big-O values (notation)
composite classes: defining, 79–84
composition, 79–84

quick review, 113
compound assignment operators

(op=), 834
precedence, 810t

computer simulations, 472–474
See also movie theater service

simulation
computers:

encoding schemes. See
character sets

programs. See programs
(computer programs)

concatenating strings: C-strings, 822t

Index | 885

conditional operator (?:):
precedence, 810t

connected vertices/graphs, 689
consecutive items: finding, 754,

777
const (reserved word):

for arrays, 855
for member functions, 20,

30–31
for named constants, 834

const_cast operator:
precedence, 809t

const_reference typedef, 237t
constant expressions: passing as

parameters to class templates,
663–664

constant pointers, 148–149
constant polynomials, 187
constant reference parameters,

20, 31
in arrays, 855

constants. See named constants
constructors, 21–22

for array-based lists, 179
base class. See base class

constructors
calling/invoking, 23; base class

constructors, 70; member
object constructors, 83

copy. See copy constructors
for customer class, 476–477
default. See default constructors
defining, 29–30; base class

constructors, 72; derived
class constructors, 70, 72

derived class. See derived class
constructors

execution of, 21, 23, 83
for graphs, 695
for linked lists, 285, 286
member object constructors, 83
with parameters. See

constructors with
parameters

properties, 21
for queues as arrays, 462–463
quick review, 51
for server lists, 482
for stacks as arrays, 407
types, 21
waiting customer queue

constructor, 485
weightedGraphType class

constructor, 706

constructors with parameters, 21,
29–30, 221t

calling/invoking, 23, 83
declaring class objects with,

23–24
default parameters, 32–33, 71n
defining, 29–30, 72, 75; derived

class constructors, 70
container adapters, 211, 732, 747t

See also queues; stacks
containers, 211–225, 736–747

adapters. See container adapters
associative. See associative

containers
begin function, 217
counting elements, 782–783,

784–785
declaring iterators into,

216–217, 236–237
deque. See deque containers
determining in-range elements,

788–790
end function, 217
filling, 758–760, 760–762
finding elements, 762–764;

consecutive occurrences,
754, 777; largest element,
783, 784–785; smallest
element, 783–784,
784–785

generating elements, 760–762
header files, 747, 747t
iterator support, 747, 747t
list. See list containers
member functions common to,

217, 220, 221–222t
operations on, 748
outputting elements, 223–227
processing elements, 786–788
quick reviews, 255–256,

799–800
removing elements, 764–768
replacing elements, 768–770
returning first/last element

positions, 217
reversing elements, 779–782
rotating elements, 779–782
sequence. See sequence

containers; and also deque
containers; list containers;
vector containers

swapping items, 770–773
typedefs common to all, 237t
types (categories), 211, 732
vector. See vector containers

control structures, 846–847
converting:

array-based lists into heaps,
569–573

characters to lower/upper case,
819t

decimal numbers to binary
numbers, 372–375

copy constructors, 159–162, 196
for array-based lists, 180
for binary trees, 614–615
execution of, 161
including in class definitions,

161–162
for linked lists, 285, 290
for linked queues, 468
for linked stacks, 423
and shallow copying, 159
for stacks as arrays, 407–408

copy function (algorithm),
223–225

ostream iterators and,
225–227

copying:
array-based lists into vector

containers, 756–757
binary trees, 604–605, 614,

614–615
C-strings, 822t
class object values, 31,

157–158, 159–162
deep copying, 154–155
dynamic arrays, 153–155
linked lists, 289–290, 290
linked stacks, 422–423
pointers, 145
shallow. See shallow copying
stacks as arrays, 402n,

406–407
copyList function (linked lists),

289–290, 290, 313
copyStack function (linked

stacks), 422–423
copyStack function (stacks as

arrays), 402n, 406–407
copytree function, 604–605,

614
cos(x) function, 821t
cosh(x) function, 821t
count function, 782, 784–785
count_if function, 782–783,

784–785
counted for loops. See for loops
counting items, 782–783,

784–785

886 | Index

counting operations in algorithms,
10–13

cout object, 5n
cout statements, 840–843,

843–844
syntax, 840

.cpp extension, 836
createGraph function, 693–694
cstddef header file, 822
cstring header file, 822t
ct.begin function, 221t
ct.clear function, 222t, 739t,

744t
ct.empty function, 221t
ct.end function, 221t
ct.erase functions, 221t, 739t,

744t
ct.insert functions, 221t, 739t,

744t
ct.max_size function, 221t
ct.rbegin function, 221t, 225
ct.rend function, 221t
ct.size function, 221t
ct1.swap(ct2) function, 221t
ctType<elmType> ct

statements, 737–738t,
742–743t

ctType<elmType, sortOp> ct
statements, 737–738t,
742–743t

current pointer (of linked lists),
268–269, 269–270,
439–440

doubly linked lists, 311, 313,
314–315

customer object (Video Store
programming example),
337–338

customer objects (movie theater
service simulation), 473

class. See customerType class
getting and setting the time

between arrivals, 487
operations on, 475
service time. See transaction time
waiting queues. See waiting

customer queue objects
customer service time. See

transaction time
customerType class (movie

theater service simulation),
474–477

data members, 474
definition as an ADT, 475–476
member functions, 476–477

customerType class (Video Store
programming example):
personType class and, 337

cycles (in graphs), 689

D

dangling pointers: avoiding, 141
data (for objects), 4

inputting. See inputting data
invalid data, 839–840
operations on. See operations
outputting. See outputting data
shallow copying of. See shallow

copying
updating binary tree node data,

632–635
See also char data; int data;

values
data abstraction, 34
data members (instance variables),

18, 24, 30
access specifiers, 18, 20n, 61,

78–79
base class. See base class data

members
declaring, 18
function member access to, 18,

20n
inheritance rules, 62, 69
initializing of, 18, 21, 25, 26
memory allocation for, 24
passing as parameters to

functions, 30–31
pointers as: class requirements

(peculiarities), 155–162,
611

private. See private data
members

protected data members, 78
scope, 32
See also class members

data operations. See operations
data structures. See abstract data

types (ADTs); arrays; classes;
lists; queues; stacks; structs

data types:
abstract. See abstract data types

(ADTs)
basic categories, 833. See also

pointers; simple data types;
and structured, below

classes as, 4
file stream data types, 843
numeric. See floating-point data

types; integral data types

parameterized types (of class
templates), 111

simple. See simple data types
string::size_type data

type, 822
structured. See abstract data

types (ADTs); arrays;
classes; lists; queues;
stacks; structs

user-defined (programmer-
defined). See enumeration
data types; and structured,
above

dateType class, 79
definition of, 80–81
member function definitions,

81–82
DBL_DIG constant, 819t
DBL_MAX constant, 819t
DBL_MIN constant, 819t
deallocating memory:

for dynamic arrays, 155–156
for dynamic variables, 139–141,

144, 160, 168
for nodes of linked lists,

286–287, 290, 313–314
debugging programs, 7
decimal format, fixed: setting,

841–842
decimal numbers: converting to

binary numbers, 372–375
decimal places: setting output, 841
decimal point: showing with trailing

zeros, 842
declaration statements:

class objects, 23–24
named constants, 834
one-dimensional arrays, 854
variables, 835

declaring:
arrays, 854; as formal

parameters, 855
associative containers: map/

multimap containers,
742–743; set/multiset
containers, 737–738

class members, 18, 20n
class objects, 23–24, 23n,

32, 159
friend functions, 91
identifiers, 18
iterators into containers,

216–217, 236–237
named constants, 834
pair objects, 732

Index | 887

declaring (Continued)
pointers, 132–133, 135; as

parameters to functions,
149

sequence containers: deque
containers, 228, 228t;
list containers, 321;
vector containers,
212–213, 212t, 215

variables, 18, 835; derived class
objects, 69; file stream
objects, 843–844

virtual functions, 164–165
See also declaration statements

decrement operator (––), 834
precedence, 809t

decrementing pointers, 146
decToBin function, 373–375
deep copying (of data), 154–155
default constructors, 21, 29, 30,

33, 221t
for binary trees, 612
calling/invoking, 23
declaring class objects with, 23,

23n
with default parameters, 32–33,

71n
defining, 29, 72; derived class

constructors, 70
for linked lists, 286; doubly

linked lists, 313
for linked queues, 468
for linked stacks, 418

default member access specifier,
18, 61

default member-wise initialization
(of class objects), 159

default parameters:
constructors with, 32–33, 71n
functions with, 852–853

define preprocessor directive, 77
definitions. See class definitions;

function definitions
delete operator:

destroying binary trees, 614
destroying dynamic arrays,

155–156
destroying dynamic variables,

139–141, 144, 160
precedence, 809t
syntax, 141

deleteFromTree function,
624–625

deleteNode function (binary
search trees), 626

deleteNode function (doubly
linked lists), 319–320

deleteNode function (linked
lists), 295, 297–298

deleteNode function (ordered
linked lists), 306–307

deleteQueue function
(operation), 452, 453

for linked queues, 466–467,
485–486

for queues as arrays, 454, 455,
457, 462

deleting items (removing items),
764–768

from array-based lists, 177–178,
179, 183

from associative containers: map/
multimap containers,
743–744; set/multiset
containers, 739

from AVL trees, 637, 652
from B-trees, 672–675
from binary search trees,

621–626; AVL trees, 637,
652; B-trees, 672–675

from binary trees, 609
from hash tables, 519–520, 524
from linked lists, 273–274,

295–298; doubly linked
lists, 318–320; ordered
linked lists, 306–307

from queues, 453, 470–471;
linked queues, 466–467,
485–486; priority queues,
575, 576; queues as arrays,
454, 455, 455–456, 457,
462

from sequence containers, 223t;
vector containers, 214,
214–215t, 216

from stacks, 397, 398(2), 441t;
linked stacks, 419,
421–422; stacks as arrays,
405–406

from vector containers, 214,
214–215t, 216

delimiters. See double quotation
marks; separator operator;
sequencing operator

depth-first ordering (of vertices),
696

depth-first traversal (of graphs),
696–698

topological ordering of vertices,
714, 728–729

depth-first traversal algorithm, 696,
696–697

depthFirstTraversal function,
697–698

deq.assign functions, 229t
deq.at function, 229t
deq.back function, 229t
deq.front function, 229t
deq.pop_front function, 229t
deq.push_front function, 229t
deq[index] statement, 229t
deque class, 227
deque containers, 227–231

declaring, 228, 228t
header file, 747t
initializing of, 228, 228t
inserting items in, 227–228
iterator support, 747t
operations on, 228–231
quick review, 255–256
See also containers; sequence

containers
dereferencing operator (*),

133–134, 135
iterator operation, 231, 280
placement of, 132–133; in

formal-parameter-as-
reference-parameter
declarations, 149–150

precedence, 137, 809t
derived class constructors, 63,

69–75
defining, 70, 72

derived class member functions, 69
defining, 67–69, 74–75

derived class objects:
declaring, 69
passing to base class formal

parameters, 162–168
derived classes, 60

accessing base class data
members in: private
members, 62–63, 68;
protected members, 78

constructors. See derived class
constructors

defining, 66–67, 73–74, 75
function members. See derived

class member functions
function overloading in, 63n,

67n
function overriding in, 63–69
header files, 75–76
inheritance rules, 62, 69

888 | Index

linked queues derived from
linked lists, 469

linked stacks derived from linked
lists, 426–427

objects. See derived class
objects

overriding base class member
functions in, 63–69

syntax, 61
See also boxType class;

derivedClass class
derivedClass class, 162–163
design (of programs), 3–4

See also object-oriented design
destroy function, 614
destroying:

binary trees, 614
dynamic arrays, 155–156
dynamic variables, 139–141,

144, 160, 168
linked lists, 286–287; doubly

linked lists, 313–314
destroyList function

(operation):
for linked lists, 286–287; doubly

linked lists, 313–314
destroyTree function, 614
destructors, 33, 221t

for array-based lists, 179
for base classes, 168
for binary trees, 615
for dynamic arrays, 155–156
for dynamic variables, 160, 168
for graphs, 695
including in class definitions,

156
for linked lists, 290
for linked queues, 468
for linked stacks, 423
name prefix, 33
for queues as arrays, 462–463
for server lists, 483
for stacks as arrays, 407
virtual destructors, 168
weightedGraphType class

destructor, 706
determining in-range elements,

788–790
determining operations, 4, 48–49
dft function, 697
dftAtVertex function, 698
difference_type typedef, 237t
differences-between-sets functions,

788, 791–794
digraphs. See directed graphs

diminishing-increment sort,
549–550

direct recursion, 358–359
directed edges (of binary trees),

600
directed graphs (digraphs), 687,

688, 689, 690–691
vertices. See topological ordering

of vertices
disabling assert statements, 817n
discardExp function (postfix

expressions calculator), 435
divideList function, 561–562
divides<Type> function object,

751t
dividing linked lists, 560–562
division hash function, 512
division operator (/): precedence,

809t
domains of ADTs, 34
dominant operations in algorithms,

12
dot (dot operator). See member

access operator
double data type, 834

named constants, 819t
See also double variables

double hashing, 518–519
double quotation marks (""):

user-defined header file
delimiters, 76

double rotation (of AVL trees),
642–644, 644

functions for, 645
double variables:

data type, 834
inputting (reading) data into,

838–839
invalid input, 839–840
valid input, 839t
See also variables

double-ended queues. See deque
containers

doubly linked lists, 310–320
checking whether empty, 313
default constructor, 313
defining as ADTs, 311–313
deleting items (nodes) from,

318–320
destroying, 313–314
initializing, 314
inserting items (nodes) in,

316–318
lengths: determining, 314
list containers as, 321

nodes. See under nodes (of
linked lists)

operations on, 311, 313–320
printing, 314–315; in reverse

order, 315
quick review, 343
searching, 315
traversing, 311, 313, 314–315
See also list containers

doublyLinkedList class:
default constructor, 313
definition as an ADT, 311–313
member functions, 313–320
See also doubly linked lists

dummy customer technique
(waiting queue problem), 486

dynamic arrays, 147
copying, 153–155
creating, 138, 147–148
deque containers as, 227–228
destroying, 155–156
programming example, 187–194
quick review, 196
vector containers as, 211

dynamic binding, 164
dynamic data structures. See binary

trees; dynamic arrays; linked
lists; linked queues; linked
stacks

dynamic variables, 138–145
creating, 138–139, 142–145
destroying, 139–141, 144, 160,

168
dynamic_cast operator:

precedence, 809t

E

EBCDIC character set, 812–813t
edges (in graphs), 687, 689

weight of the edge, 700
efficiency of algorithms, 375–376
Election Results programming

example, 576–593
empty function (containers), 218t,

221t
empty function (queues), 470t,

471
empty function (stacks), 441t
empty function (strings), 823t
empty parentheses:

in class object declarations, 23
in formal parameter lists, 850

encapsulation, 4, 17, 84
encoding schemes. See character

sets

Index | 889

end function (containers), 217,
221t

end function (linked lists), 288–289
endif preprocessor directive, 77
endl manipulator, 840
enumeration data types, 833
equal sign (=):

assignment operator. See
assignment operator

balance factor indicator, 649
postfix expression operator, 430

equal signs (==). See equality
operator

‘‘equal to’’ operator:
in infix expressions. See equality

operator (==)
in postfix expressions (=), 430

equal_to<Type> function object,
753t

equality operator (==):
vs. assignment operator (=),

846–847
container operation, 222t
overloading, 96–97
pair class definition, 734t
precedence, 809t

equalTime function, 28–29
equivalence categories (test cases),

7
erase functions (containers),

214t, 221t, 223t, 739t, 744t
erase functions (strings), 824t
erasing strings, 824t
error handling (postfix expressions

calculator), 435
error stream, standard, 5n
escape character (\), 845n
Euler, Leonhard: on the Königsberg

bridge problem, 686
Euler circuits, 719–722, 720

conditions for, 720–721
constructing, 721–722

Eulerian graphs, 720
evaluateExpression function

(postfix expressions calculator),
432–434

evaluateOpr function (postfix
expressions calculator),
432–434

exclamation mark (!): not operator,
809t

exclamation mark–equal sign (!=).
See inequality operator

.exe extension, 836
executable code, 836

executable code file extension, 836
execution of constructors, 21, 23, 83
exp(x) function, 821t
exponential functions, 821t
expressions. See arithmetic

expressions; logical
expressions (Boolean
expressions)

Extended Binary Code Decimal
Interchange Code. See EBCDIC
character set

extensions for program files, 836
extraction operator (>>), 86, 837,

838n
in cin statements, 837–840,

843–844
overloading, 98, 99–100,

100–102, 105
precedence, 809t
using file stream objects with,

845

F

fabs(x) function, 821t
factorials (of integers), 356

calculation function, 357–358
fail state (input stream), 840

See also input failure
Fibonacci numbers:

in AVL trees, 653–654
recursive calculations, 366–369

FIFO (First In First Out) data
structure. See queues

file I/O, 843–846
header file, 843–844
process steps, 844–845, 846

file names and extensions: for
program files, 836

file stream data types, 843
file stream objects (variables):

declaring, 843–844
using with >> and <<, 845

files, 843
closing, 845
inputting/outputting data from/

to. See file I/O
opening, 844, 846
program file names and

extensions, 836
project file paths, 845n
See also header files;

implementation files; input
files; output files; and
specific file names

fill function, 758–760

fill_n function, 758–760
filling containers, 758–760,

760–762
filling two-dimensional arrays,

152–153
find function, 762–763
find function (strings), 823t
find_end function, 763–764
find_first_of function,

763–764
find_if function, 762–763
finding items, 762–764

consecutive occurrences, 754,
777

largest element, 783, 784–785;
recursive approach,
360–363; selection sort,
539n

smallest element, 783–784,
784–785; selection sort,
534–537

substrings, 824t
See also searching; searching

lists
first element. See front element (of

queues)
First In First Out (FIFO) data

structure. See queues
first pointer (of linked lists),

266, 274–275, 277–278,
280, 285

See also head pointer (of linked
lists)

fixed decimal format: setting,
841–842

fixed manipulator, 841–842
Fleury’s algorithm, 721–722
float data type, 834

named constants, 819t
floating-point data types, 833, 834
floating-point numbers:

data types, 833, 834
default output, 841
formatting output: precision

control, 841; scientific
notation, 841, 842

named constants, 819t
floor(x) function, 821t
FLT_DIG constant, 819t
FLT_MAX constant, 819t
FLT_MIN constant, 819t
folding hash function, 512
for loops: processing arrays with,

536–537, 543
for_each function, 786–788

890 | Index

formal parameter lists:
value-returning functions, 849
void functions, 850

formal parameters:
declaring arrays as, 855
declaring as reference

parameters, 149
passing derived class objects to

base class parameters,
162–168

passing functions as: to other
functions, 632–635,
786–788

types. See reference parameters;
value parameters

formatting output:
in columns, 842
justifying data, 843
See also manipulators (of output)

forward iterators, 233, 234n
operations on, 233t

free trees, 707
friend (reserved word), 91
friend functions (nonmember

functions), 91–93
declaring, 91
defining, 91
operator functions as, 94,

97–98, 102
overloading binary operators as,

97–98
front element (of queues), 452, 453

linked queues, 464; returning,
466–467

queues as arrays, 454; returning,
461

returning, 453, 470–471; linked
queues, 466–467; queues
as arrays, 461

front function (containers), 213t,
229t, 322t

front function (linked lists), 288
doubly linked lists, 316

front function (queues), 452,
453, 470t, 471

linked queues, 466–467
queues as arrays, 461

front pointer. See queueFront
pointer

front_inserter iterator, 757
Fruit Juice Machine programming

example, 38–48
fstream header file, 843–844
function call operator: overloading,

751

function calls. See calling functions
function definitions:

friend functions, 91
member functions, 18, 26–28,

81–82, 84
overload assignment operator,

158
overloading binary operators, 95,

96n, 98
overloading the extraction

operator, 99–100
overloading the insertion

operator, 99
placement of, 112–113
value-returning functions, 849
void functions, 850
See also specific function

definitions under syntax
function members. See member

functions
function names:

overloading. See function
overloading

without parentheses, 632
function objects (for STL

algorithms), 750, 751–756
arithmetic function objects,

751–753
header file, 751
logical function objects, 756t
predicates, 756
quick review, 800–801
relational function objects,

753–756, 753–754t
function overloading, 108

binary tree traversal functions,
632–633

in derived classes, 63n, 67n
with function templates, 84,

109–111
function overriding in derived

classes, 63–69
function prototypes:

in class definitions, 18, 25
copy function, 223–224
friend functions, 91
overloading binary operators,

95, 98
overloading the assignment

operator, 158
overloading the extraction

operator, 99
overloading the insertion

operator, 99
pre/postconditions in, 6–7

of STL algorithms, 758
See also specific prototypes

under syntax; and specific
STL algorithm descriptions

function templates, 84, 108
class template function members

as, 112
function overloading with, 84,

109–111
syntax, 109

functions, 5, 10
arguments. See parameters of

functions
asymptotic, 14
Big-O functions, 14–16, 17t
calling. See calling functions
as class members. See member

functions (class function
members)

class objects as parameters of, 32
constructors as, 21
with default parameters,

852–853
definitions. See function

definitions
destructors as, 33
friend functions. See friend

functions (nonmember
functions)

growth rates, 12–15, 12t, 14,
14t. See also Big-O values
(notation)

header files, 817–819,
820–824

for initializing class objects and
data members. See
constructors

main. See main function
of no type. See constructors
nonrecursive. See nonrecursive

functions
operator. See operator functions
overloading. See function

overloading
parameters. See parameters of

functions
parentheses in, 850
passing as parameters to other

functions, 632–635,
786–788

passing parameters to. See
passing parameters to
functions

pointers to, 632
postconditions, 6–7

Index | 891

functions (Continued)
preconditions, 5–7
predefined. See predefined

functions
preventing from changing actual

parameters, 30–31, 855
recursive. See recursive

functions
return values. See return values

(from value-returning
functions)

for searching lists. See search
functions

for sorting lists. See sort
functions

STL. See STL algorithms; and
header files, above

string functions (string type),
823, 823–824t

templates. See function
templates

user-defined. See value-
returning functions; void
functions; and specific
functions

using (accessing) predefined
functions, 835–836

value-returning. See value-
returning functions

virtual functions, 164–168
void. See void functions
See also specific functions

G

Gauss, C. F., 377
generate function, 760–762
generate_n function, 760–762
generating container elements,

760–762
generic algorithms. See STL

algorithms
getFreeServerID function, 483
getline function (strings), 823t
getNumberOfBusyServers

function, 483
global identifiers: overlapping

names problem, 847
Golomb, S., 377
Grade Report programming

example, 238–254
graph traversal, 695–699

breadth-first traversal, 698–699;
topological ordering of
vertices, 714, 715–719

depth-first traversal, 696–698;
topological ordering of
vertices, 714, 728–729

graphs, 685–729, 687
basic operations, 691. See also

graph traversal
checking whether empty, 693
clearing, 694–695
connected, 689
constructor, 695
creating, 693–694
cycles in, 689
defining as ADTs, 692–693
destructor, 695
directed graphs, 687, 688, 689,

690–691
Eulerian graphs, 720
printing, 695
quick review, 722–724
representations of, 689–691
shortest path algorithm, 700,

701–706
simple graphs, 689
terminology, 687, 689, 700,

707
traversing. See graph traversal
undirected graphs, 687, 688
uses, 687, 700
vertices. See vertices
weighted graphs, 700. See also

weighted trees
See also trees

graphType class:
definition as an ADT, 692–693
member functions, 693–695
topologicalOrderType class

extension, 714–715
greater<Type> function object,

753t
greater_equal<Type> function

object, 754t
greater-than operator (>):

container operation, 222t
pair class definition, 734t
precedence, 809t

greater-than sign (>): balance factor
indicator, 649

greater-than signs (>>). See
extraction operator

greater-than-or-equal-to operator
(>=):

container operation, 222t
pair class definition, 734t
precedence, 809t

greedy algorithm (shortest path
algorithm), 700, 701–706

growth rates of functions, 12–15,
12t, 14, 14t

See also Big-O values (notation)

H

Hamblin, Charles L., 428
‘‘has-a’’ relationships. See

inheritance
hash functions, 509–512

choosing, 511
double hashing, 518–519
linear probing, 513–515,

518–519
quadratic probing, 516–518
random probing, 515
rehashing, 516

hash tables (HTs), 509–511
clustering in. See clustering (in

hash tables)
collisions in, 511(2). See also

collision resolution
data organization in, 510
deleting items from, 519–520,

524
inserting items in, 523
keys for, 509, 511, 512,

519–520
searching, 523

hashing (search algorithm),
509–525

closed. See open addressing
double hashing, 518–519
implementing with quadratic

probing, 517–518, 521–523
open. See chaining
performance analysis, 524, 525t
quick review, 525–527
rehashing, 516
See also hash functions; hash

tables
head pointer (of linked lists), 266,

268–269, 269–270
See also first pointer (of

linked lists)
header files (specification files),

835, 836
class definition placement in,

112–113
for containers, 747, 747t
for derived classes, 75–76
directives to implementation

files, 113
for function objects, 751

892 | Index

for functions, 817–819,
820–824

including, 75–76, 835–836;
avoiding multiple inclusions,
76–77

for named constants, 819–820
for ordered linked lists, 307–308
for priority queues, 747t
for queues, 472, 747t
for stacks, 408, 424, 440–441,

747t
for unordered linked lists,

298–299
See also specific header files

header nodes (in linked lists),
325–326, 343–344

heap algorithms: STL algorithms,
750

See also under heapsort
heapify function, 572–573, 574,

575
heaps, 568

converting array-based lists into,
569–573

implementing priority queues as,
575–576

sorting. See heapsort
heapsort, 472, 567–575

build heap algorithm, 569–573
function, 574
performance analysis, 575
vs. quicksort, 575

height (of binary trees), 603–604
height function (binary trees),

604, 613
height-balanced trees. See AVL trees
hiding data operation details, 25
high-level language programs: code

types, 836
See also C++ programs

Highest GPA programming
example, 411–415

HTs. See hash tables
hyperbolic cosine/sine/tangent

functions, 821t
hyphen–right angle bracket (->).

See member access operator
arrow

I

I/O (input/output operations):
file I/O, 843–846
header file, 835, 843
See also inputting data (reading

data); outputting data

identifiers:
accessing (using) namespace

members, 848–849, 849n
declaring, 18
naming, 847
referencing function member

identifiers, 25–26
See also named constants

identifying classes, 48–49
identifying objects, 4, 48–49
ifndef preprocessor directive, 77
ifstream data type, 843
immediate successors (vertices), 691
implementation (of programs), 5–7
implementation details of class

objects, 34
hiding, 25, 33

implementation files, 91
function definition placement in,

112–113
header file directives to, 113

implementing ADTs, 35–38
implementing member functions,

5–7, 25–30
include preprocessor directive,

75–76, 77, 835–836
includes function, 788–790
including header files, 75–76,

835–836
avoiding multiple inclusions,

76–77
increment operator (++), 85, 834

iterator operation, 231, 280
precedence, 809t

increment sequence (Shellsort),
550

incrementing pointers, 146
indexed for loops. See for loops
indices. See array indices
indirect recursion, 358–359
indirection operator. See

dereferencing operator
inequality operator (!=):

container operation, 222t
overloading, 96–97
pair class definition, 734t
precedence, 809t

infinite recursion, 359
infix expressions, 428, 428t
infix notation, 428
information hiding, 25, 33
inheritance, 4, 60–79

multiple inheritance, 60–61
private inheritance, 61, 62,

69, 79

programming example, 238–254
protected inheritance, 79
public inheritance, 61–62, 78
quick review, 113
rules for base and derived

classes, 62, 69
single inheritance, 60–61
structure (hierarchy), 61
See also base classes; derived

classes
initializeList function

(operation):
for linked lists, 287; doubly

linked lists, 314
initializeQueue function

(operation), 452
for linked queues, 466
for queues as arrays, 458, 461

initializeStack function
(operation), 398

for linked stacks, 418–419
for stacks as arrays, 403

initializing:
arrays, 855; queues as arrays,

461; stacks as arrays, 403
of associative containers: map/

multimap containers,
742–743; set/multiset
containers, 737–738

of class objects, 83–84, 159
of data members (instance

variables), 18, 21, 25, 26
linked lists, 286, 287; doubly

linked lists, 314
pointers, 138
queues, 452; linked queues, 466;

queues as arrays, 458, 461
of sequence containers: deque

containers, 228, 228t;
list containers, 321;
vector containers,
212–213, 212t

stacks, 398; linked stacks,
418–419; stacks as arrays,
403

variables, 18
inner_product function, 794,

796–797, 798–799
inOrder function (B-tree

traversal), 666
inorder function (binary tree

traversal), 608, 611, 612–613
overloading, 632–633

inorder sequence, 606, 607

Index | 893

inorder traversal (of binary trees),
605, 606–608

node sequence, 606, 607
nonrecursive algorithm, 628–629
nonrecursive function, 629
recursive algorithm, 606–608
recursive function, 608, 611,

612–613; overloading,
632–633

inorderTraversal function,
632–635

inplace_merge function,
778–779

input: validating, 6
See also inputting data (reading

data)
input failure, 839–840
input files:

creating linked lists from, 338
opening, 844, 846

input iterators, 232
operations on, 232t

input statements. See cin
statements

input stream: fail state, 840
inputting data (reading data),

837–839
from files, 843–846
invalid data (input failure),

839–840
into strings, 823t

insert algorithm (B-trees),
667–669

insert function (array-based lists),
182

insert function (AVL trees), 651
insert function (B-trees),

669–670
insert function (hashing),

522–523
insert functions (binary search

trees), 620–621
AVL trees, 651
B-trees, 669–670

insert functions (containers),
214t, 221t, 223t, 739t, 744t,
757

insert functions (linked lists):
doubly linked lists, 317–318
ordered linked lists, 300,

304–305, 305n, 305
insert functions (strings), 824t
insert iterators, 756–758
insertAt function (array-based

lists), 176–177

insertBTree function (B-trees),
669, 670

algorithm, 670
insertEnd function (array-based

lists), 177
inserter iterator, 757
insertFirst function (linked

lists), 279, 294, 295
ordered linked lists, 305

inserting characters in strings, 824t
inserting items:

in array-based lists, 176–177,
182; ordered lists, 506–508

in associative containers: map/
multimap containers,
743–744; set/multiset
containers, 739

in AVL trees, 637, 637–641,
648–651

in B-trees, 667–672
in binary search trees, 620–621;

AVL trees, 637, 637–641,
648–651; B-trees,
667–672

in binary trees, 609
in deque containers, 227–228
doubly linked lists, 316–318
in hash tables, 523
in linked lists, 270–273, 325;

first/last node, 279,
294–295, 325

in ordered linked lists, 300,
302–305, 325–326

in priority queues, 575
in vector containers, 211,

214, 214–215t, 215, 216;
at the end, 215–216

See also adding items
insertIntoAVL function,

648–651
insertion operator (<<), 85, 86, 840

in cout statements, 840–843,
843–844

overloading, 98, 99, 100–102,
104–105

precedence, 809t
using file stream objects with,

845
insertion point: moving to the

beginning of the next line, 840
insertion sort, 540–548

array-based lists, 540–543
linked lists, 544–548
performance analysis, 548,

548t, 825–826

insertionSort function, 543
insertLast function (linked

lists), 279, 294–295
in orderedLinkedList class,

305
insertNode function (B-trees),

670–671
insertOrd function, 507–508

including in
orderedArrayListType
class, 508

instance variables. See data
members

instantiations of class templates,
112

int data type, 833, 833t, 834
named constants, 820t
See also int variables

int variables:
data type, 833, 833t, 834
inputting (reading) data into,

838–839
invalid input, 839–840
valid input, 839t
See also variables

INT_MAX constant, 820t
INT_MIN constant, 820t
integers:

data types, 833–834
factorials, 356; calculation

function, 357–358
named constants, 820t
See also char variables; int

variables
integral data types, 833–834
interface files. See header files
intersection of sets, 687
intersection-of-sets function, 788,

790–791
intListType class: definition as

an ADT, 35–36
invalid data, 839–840
invoking constructors. See under

calling functions
I/O (input/output operations):

file I/O, 843–846
header file, 835, 843
See also inputting data (reading

data); outputting data
iostream header file, 835, 843
‘‘is-a’’ relationships. See

composition
isalnum(ch) function, 818t
iscntrl(ch) function, 818t
isdigit(ch) function, 818t

894 | Index

isEmpty function (array-based
lists), 175

isEmpty function (binary trees),
611

isEmpty function (graphs), 693
isEmptyList function

(operation):
for linked lists, 286; doubly

linked lists, 313
isEmptyQueue function

(operation), 452
for linked queues, 465–466
for queues as arrays, 460

isEmptyStack function
(operation), 398

for linked stacks, 418
for stacks as arrays, 404

isFull function (array-based
lists), 175

isFullQueue function
(operation), 453

for linked queues, 465–466
for queues as arrays, 460

isFullStack function
(operation), 398

for linked stacks, 417n, 418
for stacks as arrays, 404

isItemAtEqual function (array-
based lists), 176

islower(ch) function, 818t
isprint(ch) function, 818t
ispunct(ch) function, 818t
isspace(ch) function, 818t
isTaller parameter, 648
istream iterator, 237–238
isupper(ch) function, 819t
iter_swap function, 770–773
iteration: recursion vs., 375–376
iteration control structures (loops),

375, 846
iterators, 211, 216, 231–238, 280

bidirectional iterators, 234
for containers, 747t
declaring into containers,

216–217, 236–237
forward iterators, 233–234
hierarchy, 236
input iterators, 232
insert iterators, 756–758
istream iterators, 237–238
of linked lists, 280
operations on, 231, 232t,

233t(2), 234t, 235t, 280
ostream iterator, 238

ostream iterators: and the copy
function, 225–227

output iterators, 232–233

quick review, 254, 255, 256,
801

random access iterators,
234–235

returning the first/last node
iterator, 288–289

stream iterators, 237–238

typedef const_iterator,
236

typedef const_reverse
_iterator, 237

typedef iterator, 216, 236

typedef reverse_iterator,
237

types, 232

J

Java features: C++ features vs.,
833–855

justifying output, 843

K

key comparisons (in algorithms), 498

binary search trees, 627–628

binary searches, 504, 504–505,
506, 508t

heapsort, 575

insertion sort, 548, 548t,
825–826

mergesort, 566–567

quicksort, 558t, 826–827, 827,
830–832

selection sort, 539, 548t

sequential searches, 500–501,
506, 508t

key of the node (binary search
trees), 617

keys (of data set items):

for hash tables, 509, 511, 512,
519–520

for lists, 498

See also key comparisons (in
algorithms)

keywords. See reserved words

Knuth sequence, 550

Königsberg bridge problem, 686,
719, 721

L

languages: Unified Modeling
Language (UML) diagrams,
22–23

See also programming languages
larger function: overloading,

108, 109–111
largest element, finding, 783,

784–785
recursive approach, 360–363
selection sort, 539n

largest function, 361–363
largest whole number function,

821t
last element (of queues). See rear

element (of queues)
Last In First Out (LIFO) data

structure. See stacks
last pointer (of linked lists),

274–275, 278, 280, 285
LDBL_DIG constant, 819t
LDBL_MAX constant, 819t
LDBL_MIN constant, 819t
leaf nodes (of binary trees), 603
left angle bracket (<). See less-than

operator
left angle bracket–equal sign (<=).

See less-than-or-equal-to
operator

left angle brackets (<<). See
insertion operator

left manipulator, 843
left rotation (of AVL trees), 641,

642, 644
functions for, 645, 645–646

left-justifying output, 843
Lehmer, D. H., 377
length function (doubly linked

lists), 314
length function (linked lists), 287
length function (strings), 823t
lengths of lists, determining, 170,

175
doubly linked lists, 314
linked lists, 287

lengths of strings, determining:
C-strings, 822t
strings, 823t

less<Type> function object, 754t
less_equal<Type> function

object, 754t
less-than operator (<):

associative container sort
criterion, 736, 737

container operation, 222t

Index | 895

less-than operator (<) (Continued)
pair class definition, 734t
precedence, 809t
queue element priority operator,

472
less-than sign (<): balance factor

indicator, 649
less-than signs (<<). See insertion

operator
less-than-or-equal-to operator (<=):

container operation, 222t
pair class definition, 734t
precedence, 809t

level of a node (of binary trees), 603
libraries. See header files; STL

(Standard Template Library)
LIFO (Last In First Out) data

structure. See stacks
linear binary search trees, 627
linear probing (in hash tables),

513–515
as double hashing, 518–519
performance analysis, 525t

linear queues. See queues as arrays
linear searches. See sequential

searches
linear stacks. See stacks as arrays
linked lists, 265–353, 266

adjacency list graphs, 690–691
as ADTs, 278–292
advantages, 600
basic operations, 269,

278–279. See also
operations on, below

building backward, 274,
277–278, 279

building forward, 274,
274–277, 279

checking whether empty/full, 286
circular linked lists, 326
class member functions,

285–292
copy constructor, 285, 290
copying, 289–290, 290
creating from input files, 338
current (pointer), 268–269,

269–270
default constructor, 286
defining as ADTs, 282–286
deleting items (nodes) from,

273–274, 295–298
deriving linked queues from, 469
deriving linked stacks from,

426–427
destroying, 286–287

destructors, 290
dividing, 560–562
doubly linked. See doubly linked

lists
drawbacks, 600
head (pointer), 266, 268–269,

269–270
with header and trailer nodes,

325–326, 343–344
initializing, 286, 287
inserting items (nodes) in,

270–273, 325; first/last
node, 279, 294–295, 325

iterators, 280
lengths: determining, 287
nodes. See nodes (of linked lists)
operations on, 269, 278–279,

286–291; time-complexity
limits, 291–292t

ordered. See ordered linked lists
overloading the assignment

operator for, 285, 291
pointers, 266, 268–269,

269–270, 274–275, 278,
438–440

printing, 287
printing backward, 438–440
programming example, 327–343
properties, 267–270
quick review, 343–344
searching, 293–294, 297–298,

334–335
sorted linked lists, 279
sorting: insertion sort, 544–548;

mergesort, 558–567;
selection sort, 539n

traversing, 269–270
types, 279
unsorted linked lists, 279
uses, 210

linked queues, 463–469
adding elements to, 466–467,

485–486
checking whether empty/full,

465–466
defining as ADTs, 464–465
deleting elements from,

466–467, 485–486
deriving from linked lists, 469
front element, 464; returning,

466–467
initializing, 466
operations on, 465–468
pointers, 463–464, 465, 466

rear element, 464; returning,
466–467

returning the front/rear element,
466–467

linked stacks, 415–427, 417n
adding elements to, 419–420
assignment operator overloading,

423
checking whether empty/full,

417n, 418
copy constructor, 423
copying, 422–423
default constructor, 418
defining as ADTs, 415–417
deriving from linked lists,

426–427
destructor, 423
header files, 424
initializing, 418–419
operations on, 418–423;

time-complexity limits,
424t

removing elements from, 419,
421–422

returning the top element, 419,
420–421

test program, 424–426
top element, 415; removing,

419, 421–422; returning,
419, 420–421

linkedInsertionSort function,
547–548

linkedListIterator class:
definition of, 280–281
function members, 281–282

linkedListType class, 279
copy constructor, 290
default constructor, 286
definition as an ADT, 282–286
destructor, 290
member functions, 285–292
and orderedLinkedList

class, 279, 300, 308–309
and unorderedLinkedList

class, 279, 285, 299
See also linked lists

linkedQueueType class:
definition as an ADT, 464–465
member function definitions,

465–468
unorderedLinkedList class

and, 469
and waitingCustomer

QueueType class, 485n
See also linked queues

896 | Index

linkedStackType class:
default constructor, 418
definition as an ADT, 415–417
unorderedLinkedList class

and, 426–427
See also linked stacks

links (of nodes in linked lists), 266,
267

last link as NULL, 266
list class, 321
list containers, 321–325

declaring and initializing, 321,
321t

header file, 747t
implementation of, 321
iterator support, 747t
merging sorted lists, 778–779
operations on, 322–325,

322–323t, 746–748
using (including), 321
See also containers; sequence

containers
list pointer (to stacks as arrays),

403
list<elemType> listCont

statements, 321t
listCont.assign functions, 322t
listCont.back function, 322t
listCont.front function, 322t
listCont.merge functions, 323t
listCont.pop_front function,

322t
listCont.push_front function,

322t
listCont.remove function, 322t
listCont.remove_if function,

322t
listCont.reverse function, 323t
listCont.sort functions, 323t
listCont.splice functions,

322–323t
listCont.unique functions, 322t
lists, 170

array-based. See array-based lists
defining as ADTs, 35–36; with

class templates, 111–112
item delimiter. See sequencing

operator
keys for, 498
lengths. See lengths of lists,

determining
linked. See linked lists
searching. See searching lists
sorting. See sort algorithms
See also arrays; queues; stacks

listSize function (array-based
lists), 175

listType class: See also
arrayListType class

listType class template,
111–112

log(x) function, 821t
log10(x) function, 821t
logical expressions (Boolean

expressions), 834, 846
logical operators (Boolean

operators): precedence, 809t,
810t

logical STL function objects, 756t
logical values (Boolean values),

834, 846, 847
logical_and<Type> function

object, 756t
logical_not<Type> function

object, 756t
logical_or<Type> function

object, 756t
long data type, 833

named constants, 820t
long double data type, 834

named constants, 819t
LONG_MAX constant, 820t
LONG_MIN constant, 820t
loops (in graphs), 689
loops (loop control structures), 375,

846
lower bound on comparison-based

search algorithms, 508–509
Lukasiewicz, Jan, 428

M

m-way search trees, 662–663
main function: form, 836–837
main memory. See deallocating

memory; memory allocation
make_pair function, 734–736
manipulators (of output), 840

endl manipulator, 840
fixed manipulator, 841–842
left manipulator, 843
right manipulator, 843
scientific manipulator, 842
setprecision manipulator,

841
setw manipulator, 842
showpoint manipulator, 842

map class, 732
map containers, 742–747

declaring and initializing,
742–743

header file, 747t
item insertion and deletion,

743–744
iterator support, 747t
sort criteria, 742, 743
using (including), 742

math functions (cmath header file),
820–821t

matrices, adjacency, 689–690
matrix operations, 206–207
max function, 604, 613, 783
max_element function, 783,

784–785
max_size function (containers),

218t, 221t
maxListSize function (array-

based lists), 175
member access operator (dot

operator) (.), 24, 31
precedence, 137, 809t

member access operator arrow (->),
137–138

precedence, 809t
member access specifier operator

(:), 18
member access specifiers, 18, 20n,

78–79
default specifier, 18, 61

member data. See data members
member functions (class function

members), 18
access specifiers, 18, 20n, 61,

78–79
access to other class members,

18, 20n
accessing, 24–25, 28–29, 32
base class functions. See base

class member functions
binding of, 164
calling. See calling functions
const specifier, 20, 30–31
defining, 18, 26–28, 81–82,

84; referencing class objects
in, 87–91

definition placement, 112
derived class functions. See

derived class member
functions

implementation details, 34;
hiding, 25, 33

implementing, 5–7, 25–30
including as public members,

534, 537
inheritance rules, 62, 69
making public, 18

Index | 897

member functions (class function
members) (Continued)

operator functions as, 94,
95–97, 102

overloading binary operators as,
95–97

passing parameters to. See
passing parameters to
functions

private function members,
21n, 285

referencing class objects in
defining, 87–91

referencing function member
identifiers, 25–26

scope, 32

virtual functions, 164–168
See also class members; and

under specific classes

member functions (class template
function members):

as function templates, 112
functions common to all

containers, 217, 220,
221–222t

functions common to sequence
containers, 222, 223t

member object constructors:
passing arguments to, 83

member objects (in composition),
79–84

member variables. See data
members (instance variables)

memory (main memory):
allocating: for dynamic arrays,

138, 147–148; for dynamic
variables, 138–139,
142–145. See also memory
allocation

deallocating: for dynamic arrays,
155–156; for dynamic
variables, 139–141, 144,
160, 168; for nodes of
linked lists, 286–287, 290,
313–314

leaks, 141
memory allocation:

for instance variables, 24

for recursive functions, 375
memory cells: addresses. See

addresses
memory leaks: avoiding, 141

menus: displaying, 339, 342
merge function, 778

merge function (list containers),
323t

mergeList function, 564–565,
566–567

mergesort, 558–567
performance analysis, 566–567

mergeSort function, 565
merging ordered linked lists,

562–565
merging sorted lists, 778–779
mid-square hash function, 512
min function, 783–784
min_element function, 783–784,

784–785
minimum spanning trees, 707

defining as ADTs, 710–711
Prim’s algorithm, 708–712;

alternative to, 727–728;
function for, 711–712

minimumSpanning function,
711–712

minLocation function, 536–537
minus operator (–): precedence,

809t
minus sign (–):

minus operator, 809t
UML symbol, 23
See also subtraction operator

minus signs (--). See decrement
operator

minus<Type> function object, 751t
modifying algorithms (STL),

749–750, 749t
modular programming, 4
modulus operator (%): precedence,

809t
modulus<Type> function object,

751t
movie theater service simulation,

472–490
class specification, 474–486
function for running, 488–489
information required, 486–487,

488
main program, 486–489
object identification, 473
objects. See customer objects;

server list object; server
objects; waiting customer
queue objects

sample run test results,
489–490

start transaction algorithm,
487–488

as time-driven, 474

moving the insertion point to the
beginning of the next line, 840

msTreeType class:
definition as an ADT, 710–711
member functions, 711–713

multimap class, 732
multimap containers, 742–747

declaring and initializing,
742–743

header file, 747t
item insertion and deletion,

743–744
iterator support, 747t
sort criteria, 742, 743
using (including), 742

multiple header file inclusions:
avoiding, 76–77

multiple inheritance, 60–61
multiplication operator (*):

overloading, 96–97, 106
precedence, 809t

multiplies<Type> function
object, 751t

multiset containers, 737–742
declaring and initializing,

737–738
header file, 747t
item insertion and deletion, 739
iterator support, 747t
sort criteria, 737, 738
using (including), 737

mutating algorithms (STL), 750

N

n-Queens puzzle, 377–383
named constants:

declaring, 834
header files, 819–820
NULL/0 (null pointer), 138, 822
string::npos, 822

names:
ADTs, 34
arrays: as constant pointers,

148–149
constructors, 21
destructors, 33
functions. See function names
operator functions, 86

namespace mechanism, 847–849
namespace members: accessing

(using), 848–849, 849n
namespace statements, 847–848
naming identifiers, 847
natural log function, 821t

898 | Index

NDEBUG preprocessor directive,
6n, 817n

negate<Type> function object,
751t

new operator:
creating dynamic arrays,

138–139, 147, 148
creating dynamic variables,

138–139
creating two-dimensional arrays,

150–151
precedence, 809t
syntax, 138

newline character (\n): extraction
operator and, 838

nodes (of AVL trees), 637
creating, 651
height types, 637

nodes (of B-trees): definition of, 664
nodes (of binary search trees), 617

AVL trees, 637, 651
B-trees, 664

nodes (of binary trees), 600–601,
602, 603

level, 603
pointers of/to, 602, 608; root

pointer, 603, 606
root. See root node
as structs, 602; AVL trees,

637; B-trees, 664
traversal sequences, 606, 607
updating data in, 632–635
See also nodes (of binary search

trees)
nodes (of graphs). See vertices
nodes (of linked lists), 266–269

components, 266
deallocating memory for,

286–287, 290, 313–314
definition of, 267, 270, 279
deleting, 273–274, 295–298;

from doubly linked lists,
318–320; from ordered
linked lists, 306–307

inserting, 270–273, 325; in
doubly linked lists,
316–318; first/last node,
279, 294–295, 325; in
ordered linked lists, 300,
302–305, 325–326

pointers to, 266, 268–269,
269–270, 274–275, 278,
438–440

printing the data in, 287

returning first/last node data,
288; from doubly linked
lists, 316

returning the first/last node
iterator, 288–289

as structs, 267, 279n
nonmember functions. See friend

functions
nonmodifying algorithms (STL),

748–749, 749t
nonprintable characters (ASCII

character set), 812t
nonrecursive algorithms: binary tree

traversal, 628–632
nonrecursive functions:

binary tree traversal, 629, 630,
631–632

printing a linked list backward,
438–440

nonRecursiveInTraversal
function, 629

nonRecursivePostTraversal
function, 631–632

nonRecursivePreTraversal
function, 630

‘‘not equal to’’ operator. See
inequality operator

not operator (!): precedence, 809t
not_equal_to<Type> function

object, 753t
npos. See string::npos named

constant
nQueensPuzzle class:

definition as an ADT, 381–382
member functions, 382–383

NULL (null pointer), 138, 822
null pointer (NULL/0), 138, 822
number sign (#):

postfix expression number
symbol, 430

preprocessor directive character,
835

UML symbol, 23
numbers:

complex number processing,
103–107

data types. See floating-point data
types; integral data types

Fibonacci number calculations,
366–369

See also floating-point numbers;
integers

numeric algorithms (STL), 750,
794–799

numeric data types. See floating-
point data types; integral data
types

O

O(g(n)). See Big-O values (notation)
.obj extension, 836
object code (object program), 836
object code file extension, 836
object members. See member

objects (in composition)
object-oriented design (OOD), 4,

17, 59–130
basic principles, 4. See also

encapsulation; inheritance;
polymorphism

data types. See classes
hardest part, 48
See also composition

object-oriented programming
(OOP). See object-oriented
design

object-oriented programming
languages, 4

objects. See class objects
ofstream data type, 843
one-dimensional arrays. See arrays
OOD. See object-oriented design
OOP (object-oriented

programming): languages, 4
See also object-oriented design

op= (compound assignment
operators): precedence, 810t

open addressing (closed hashing),
512–523

double hashing, 518–519
hash table item deletion,

519–520
linear probing. See linear probing
performance analysis, 525t
quadratic probing. See quadratic

probing
quick review, 526–527
random probing, 515
rehashing, 516

open function, 844, 846
open hashing. See chaining
opening files, 844, 846
operations, 4

of ADTs, 34
in algorithms: counting, 10–13;

dominant, 12
on array-based lists, 175–183;

time-complexity limits,
183–184t

Index | 899

operations (Continued)
on associative containers,

739–741, 743–747
on AVL trees, 637, 637–652
on B-trees, 663, 665–675
on binary search trees, 617,

618–626; AVL trees, 637,
637–652; B-trees, 663,
665–675

on binary trees, 609, 611–615.
See also on binary search
trees, above

bOp operation, 786
built-in operations on class

objects, 31, 85
on container adapters. See on

queues, below; on stacks,
below

on containers, 748; associative,
739–741, 743–747;
sequence. See on sequence
containers, below

on deque containers, 228–231
determining, 4, 48–49
on doubly linked lists, 311,

313–320
on graphs, 691
on iterators, 231, 232t, 233t(2),

234t, 235t, 280
on linked lists, 269, 278–279,

286–291; doubly linked
lists, 311, 313–320;
ordered linked lists,
301–307, 307t, 326; time-
complexity limits,
291–292t; unordered linked
lists, 293–298

on linked queues, 465–468
on linked stacks, 418–423;

time-complexity limits, 424t
on list containers, 322–325,

322–323t, 746–748
on ordered linked lists,

301–307, 326; time-
complexity limits, 307t

on pointers, 134–137
on priority queues, 575–576
on queues, 452–453, 470t;

linked queues, 465–468;
priority queues, 575–576;
queues as arrays, 460–462

on queues as arrays, 460–462
on sequence containers, 222,

223t; deque containers,
228–231; list containers,

322–325, 322–323t,
746–748; vector
containers, 213–216

on stacks, 397–398, 441t;
linked stacks, 418–423,
424t; stacks as arrays,
403–409, 409t

on stacks as arrays, 403–409;
time-complexity limits, 409t

on unordered linked lists,
293–298

on vector containers, 213–216
See also functions; member

functions
operator functions, 86

in class definitions, 86, 94
as member functions, 94, 95–97,

102
names, 86
as nonmember functions, 94,

97–98, 102
syntax, 86
See also operator* function;

and other specific operator
functions following

operator overloading, 84,85–102,86
arithmetic operators, 95–98
assignment operator, 158–159;

for array-based lists, 180;
for binary trees, 615; for
linked lists, 285, 291; for
linked queues, 468; for
linked stacks, 423; for
stacks as arrays, 408

binary operators, 95–98
extraction operator, 98, 99–100,

100–102, 105
functions for. See operator

functions
insertion operator, 98, 99,

100–102, 104–105
need for, 85–86
operators that can be overloaded,

815t
operators that cannot be

overloaded, 87, 815t
programming examples,

103–107, 576–593,
655–656

quick review, 113–114
relational operators, 95–98,

655–656
rules (restrictions on), 87, 94
unary operators, 102
See also operator functions

operator* function, 96–97, 106
operator= function, 158–159,

291, 408, 423, 468, 615
operator== function, 96–97
operator!= function, 96–97
operator>> function, 99,

100–102, 105
operator<< function, 100–102,

104–105
operator(): overloading, 751
operator+ function, 96–97,

106
operators:

address of operator. See address
of operator

arithmetic. See arithmetic
operators

array index. See array index
(subscript) operator

assignment. See assignment
operator

associativity, 809–810t
binary. See binary operators
on class objects, 31, 85
compound assignment operators,

810t, 834
decrement. See decrement

operator
delete operator, 139–141,

144
dereferencing. See dereferencing

operator
extraction. See extraction

operator
increment. See increment

operator
insertion. See insertion operator
logical. See logical operators
member access. See member

access operator
member access operator arrow,

137–138, 809t
member access specifier

operator, 18
new operator, 138–139, 147,

148
overloading. See operator

overloading
precedence. See precedence of

operators
relational. See relational

operators
scope resolution operator (::),

25–26, 809t, 848
unary. See unary operators

900 | Index

OpOverClass class, 94
overloading operators for:

See also operator
overloading

or operator (||): precedence, 810t
order (lower bound) on comparison-

based search algorithms,
508–509

order (time-complexity limits) of
algorithms. See Big-O values
(notation)

order of precedence. See
precedence of operators

ordered array-based lists:
binary searches, 502–506, 508t
defining as ADTs, 501–502
inserting items in, 506–508

ordered linked lists, 300–310
circular linked lists, 326
defining as ADTs, 300–301
deleting items (nodes) from,

306–307
with header and trailer nodes,

325–326
header file, 307–308
inserting items (nodes) in, 300,

302–305, 325–326
merging, 562–565
nodes. See under nodes (of

linked lists)
operations on, 301–307; circular

linked lists, 326; with
header and trailer nodes,
326; time-complexity limits,
307t

printing in reverse order,
363–366, 438–440

searching, 301–302
test program, 309–310

orderedArrayListType class:
definition as an ADT, 501–502
including functions in, 508

orderedLinkedList class, 279
definition as an ADT, 300–301
linkedListType class and,

279, 300, 308–309
member functions, 300,

301–307; time-complexity
limits, 307t

See also ordered linked lists
ostream iterator, 238
ostream iterators: and the copy

function, 225–227
out of bounds indices (of arrays),

854–855

output:
formatting. See formatting output
generating. See outputting data

output files: opening, 844, 846
output iterators, 232, 233n

operations on, 233t
output manipulators. See

manipulators
output statements. See cout

statements
outputting data, 840–843

in columns, 842, 843
to files, 843–846

overflow (of hash table buckets),
511, 524

overflow condition (of stacks as
arrays): checking for, 405

overloading:
the function call operator, 751
functions. See function

overloading
operators. See operator

overloading
overriding base class member

functions in derived classes,
63–69

P

pair class, 732–736
relational operators for, 734, 734t
using (accessing), 732

pair type, 734
pairs (pair objects):

comparing, 734
creating, 734–736
declaring, 732

parallel edges (in graphs), 689
parameter lists. See actual

parameter lists; formal
parameter lists

parameter passing. See passing
parameters

parameterized types (of class
templates), 111

parameters of functions:
actual. See actual parameters
class objects as, 32
formal. See formal parameters
functions with default

parameters, 852–853
memory allocation for, 375
passing. See passing parameters

to functions
simulation parameters,

486–487

parent nodes (of binary trees), 600,
603

parentheses (()):
in arithmetic expressions, 428;

precedence, 809t
in class object declarations, 23n
in formal parameter lists, 850
function names without, 632

partial_sum function, 794,
797–799

partition function, 557, 826,
827–828, 830–832

partition sorts. See mergesort;
quicksort

partitioning array-based lists:
mergesort, 559, 560–562
quicksort, 552–557, 826–832

partTimeEmployee class, 73–75
passing parameters:

to class templates, 112,
663–664

to functions. See passing
parameters to functions

to member object constructors, 83
passing parameters to functions, 112

arrays, 855
class objects, 30–31, 160–161;

derived class objects to base
class formal parameters,
162–168

functions, 632–635, 786–788
in Java, 852n
pointers, 149
as reference parameters, 30–31,

149, 162–165, 855
as value parameters, 30, 31,

149, 160–161, 166–168
paths (for files): project file paths,

845n
paths (in binary trees), 551, 603
paths (in graphs), 689

shortest path, 700; algorithm,
700, 701–706

simple paths, 689
weight of the path, 700

percent sign (%): modulus
(remainder) operator, 809t

perfectly balanced binary trees,
635–636

performance analysis:
algorithms, 8–17
AVL trees, 653–654
binary search trees, 627–628;

AVL trees, 653–654; Big-O
value, 628

Index | 901

performance analysis (Continued)
binary searches, 506; Big-O

value, 508t
chaining (open hashing), 525t
hashing, 524, 525t
heapsort, 575
insertion sort, 548, 548t,

825–826
linear probing (in hash tables),

525t
mergesort, 566–567
quadratic probing (in hash

tables), 525t
quicksort, 558t, 826–832
search algorithms, 12(2),

500–501, 506
selection sort, 539, 548t
sequential searches, 500–501;

Big-O value, 508t
Shellsort, 550
See also Big-O values (notation)

(time-complexity limits)
period (dot operator). See member

access operator
personalInfoType class, 79

definition of, 82–83
member function definitions,

83–84
and personType class, 79

personType class, 36, 73, 79
and customerType class, 337
definition of, 36–37, 88–89
function member definitions,

37–38, 89
and partTimeEmployee class,

73
personalInfoType class and,

79
program use of, 89–91

pivot element (array-based lists),
552–553, 554, 556–557,
826, 827, 828–829,
830–831

plus operator (+): precedence, 809t
plus sign (+):

addition operator. See addition
operator

plus operator, 809t
UML symbol, 23

plus signs (++). See increment
operator

plus<Type> function object, 751t
plus–equal sign (+=): compound

assignment operator, 810t
pointer arithmetic, 146n, 195

pointer data members: class
requirements (peculiarities),
155–162, 611

pointer data type, 132
pointer typedef, 237t
pointer variables. See pointers
pointerDataClass class, 155

copy constructor, 159, 161
destructor, 155–156

pointers (pointer variables),
132–155, 132

accessing class/struct
members via, 137–138

allocating memory using,
138–139, 142–145,
147–148

arithmetic operations on, 146n
to arrays. See dynamic arrays
basic operations, 134–137. See

also operations on, below
of/to binary tree nodes, 602, 608;

root pointer, 603, 606
and classes, 137–138
comparing, 146
constant pointers, 148–149
copying, 145
dangling pointers, 141
as data members: class

requirements (peculiarities),
155–162, 611

declaring, 132–133, 135
declaring as parameters to

functions, 149
decrementing, 146
deep copying with, 154–155
to functions, 632
incrementing, 146
initializing, 138
in linked lists, 266, 268–269,

269–270, 274–275, 278,
438–440

in linked queues, 463–464,
465, 466

null pointer (NULL/0), 138, 822
operations on, 145–146
passing as parameters to

functions, 149
to pointers, 150–151
in queues, 453
in queues as arrays, 454–458;

advancing queueRear, 457
quick review, 194–196
as return values, 150
shallow copying with, 153–154,

604

in stacks as arrays, 403
storing addresses in, 133,

134–135
this pointer, 87–91
uninitialized, 156n
to variables. See dynamic

variables
See also iterators; specific

pointers
Poisson distribution, 487–488
Polish notation, 428
polymorphism, 4

See also function overloading;
operator overloading; virtual
functions

polynomial operations:
programming example,
187–194

pop function (queue operation),
470t, 471

pop function (stack operation),
397, 398(2), 399, 441t

linked stacks, 419, 421–422
stacks as arrays, 405–406

pop_back function (containers),
215t, 223t

pop_front function (containers),
229t, 322t

postconditions of functions, 6–7
postfix expressions, 428–430,

428t, 443
evaluation algorithm, 428–431
evaluation program. See postfix

expressions calculator
postfix expressions calculator,

428–437
algorithm, 428–431
error handling, 435
function members, 431–435
output, 430
program listing, 436–437

postfix notation, 428, 443
See also postfix expressions

post-increment/decrement
operators: precedence, 809t

postorder function (binary tree
traversal), 608, 613

postorder sequence, 606, 607
postorder traversal (of binary trees),

605
node sequence, 606, 607
nonrecursive algorithm/function,

631–632
recursive function, 608, 613

pound sign. See number sign (#)

902 | Index

pow(x,y) function, 821t
precedence of operators, 809–810t

arithmetic operators, 428, 809t
dereferencing operator, 137,

809t
dot operator, 137, 809t

precision (of values): floating-point
numbers, 841

preconditions of functions, 5–7
predCount array, 715, 716, 717,

718
predefined functions:

header files, 817–824
using (accessing), 835–836

predicates (function objects), 756
prefix notation, 428
pre-increment/decrement

operators: precedence, 809t
preorder function (binary tree

traversal), 608, 613
preorder sequence, 606, 607
preorder traversal (of binary trees),

605
node sequence, 606, 607
nonrecursive algorithm/function,

630
recursive function, 608, 613

preprocessor directives, 75–76,
76–77, 835–836

NDEBUG, 6n, 817n
syntax, 835

Prim’s algorithm, 708–712
alternative to, 727–728

primary clustering (in hash tables),
514–515

random/quadratic probing and,
515, 516, 518

print function (array-based lists),
175–176

print function (baseClass
class), 162–164, 167, 168

as a virtual function, 164–165
printGraph function, 695
printing:

array-based lists, 175–176
doubly linked lists, 314–315; in

reverse order, 315
graphs, 695
linked lists, 287; in reverse

order, 438–440
ordered linked lists in reverse

order, 363–366, 438–440
weighted trees, 712–713

printListReverse function:
ordered linked lists, 365–366

printResult function (postfix
expressions calculator), 435

printShortestDistance
function, 705–706

printTreeAndWeight function,
712–713

priority queues, 471–472,
575–576

header file, 747t
inserting items in, 575
removing elements from, 575,

576
See also queues

priority_queue class template,
472

private class members, 18, 78
data members. See private

data members
declaring, 20n
function members, 21n, 285
inheritance rules, 62, 69, 78–79
UML symbol, 23

private data members, 18
accessing base class members in

derived classes, 62–63, 68
accessing with friend functions,

91–93
See also private class members

private function members, 21n,
285

private inheritance, 61, 62, 69,
79

probability of y events occurring at a
given time, 487–488

probe sequence (in hash tables):
with double hashing, 518
in linear probing, 513
in quadratic probing, 516,

516–517
in random probing, 515

problem analysis (of programs), 3
problem solving:

with recursion, 359–376
recursion vs. iteration, 375–376

processing array-based lists,
175–176

variables for, 171
processing container elements,

786–788
program design, 3–4

See also object-oriented design
program structure. See program

design
programmer-defined data types.

See enumeration data types

programming:
modular/structured

programming, 4
references (resource texts), 857

programming examples:
array-based lists, 187–194
binary/binary search trees,

654–662
classes, 38–48
Complex Numbers, 103–107
dynamic arrays, 187–194
Election Results, 576–593
Fruit Juice Machine, 38–48
Grade Report, 238–254
Highest GPA, 411–415
inheritance, 238–254
linked lists, 327–343
operator overloading, 103–107,

576–593, 655–656
polynomial operations, 187–194
sort algorithms, 576–593
stacks, 411–415
vector containers, 238–254
Video Store, 327–343,

654–662
programming languages: object-

oriented programming
languages, 4

See also high-level language
programs

programs (computer programs):
analysis (problem analysis), 3
C++. See C++ programs
debugging, 7
design, 3–4. See also object-

oriented design
development phase(s), 2, 3–8
high-level language. See high-

level language programs
implementation, 5–7
life cycle, 2–3
testing, 7–8
use and maintenance phases, 2

project file paths, 845n
protected class members, 78,

175, 285
inheritance rules, 78–79
UML symbol, 23

protected data members:
accessing base class members
in derived classes, 78

protected inheritance, 79
public class members, 18, 78

accessing, 32
declaring, 20n

Index | 903

public class members (Continued)
including functions as, 534, 537
inheritance rules, 62, 78–79
UML symbol, 23

public inheritance, 61–62, 78
pure virtual functions, 169–170
push function (queue operation),

470t, 470
push function (stack operation),

397–398, 398, 399, 441t
linked stacks, 419–420
stacks as arrays, 404–405

push_back function (containers),
215–216, 215t, 223t, 757

push_front function (containers),
229t, 322t, 757

Q

quadratic probing (in hash tables),
516–518

implementing hashing with,
517–518, 521–523

performance analysis, 525t
and primary clustering, 516, 518

queensConfiguration function,
382–383

question mark–colon (?:):
conditional operator, 810t

queue class, 469–471
queue header file, 472, 747t
queueADT class:

definition of, 453–454
member functions, 459–463

queueFront pointer, 453
in linked queues, 463–464,

465, 466
in queues as arrays, 454–458

queueRear pointer, 453
advancing in queues as arrays,

457
in linked queues, 463–464, 466
in queues as arrays, 454–458

queues, 451–496, 452
adding elements to, 453,

470–471; priority queues,
575

as arrays. See queues as arrays
checking whether empty/full,

452, 453, 470–471
in computer simulations, 473.

See also movie theater
service simulation

determining that all elements
have been processed,
485–486

double-ended. See deque
containers

dynamic. See linked queues
front element, 452, 453;

returning, 453, 470–471
header file, 472, 747t
initializing, 452
linear. See queues as arrays
linked. See linked queues
operations on, 452–453, 470t
pointers, 453
priority queues, 471–472,

575–576
quick review, 490
rear element, 452, 453;

returning, 453, 470–471
removing elements from, 453,

470–471
returning the front/rear element,

453, 470–471
STL class, 469–471
temporary queues, 486
uses, 210, 452

queues as arrays, 454–463
adding elements to, 454–455,

455–456, 457, 462
appearance-as-full problem,

473–475
checking whether empty/full, 460
circular queues, 456
constructor, 462–463
counting elements, 458
defining as ADTs, 459–460
deleting elements from, 454,

455, 455–456, 457, 462
destructor, 462–463
distinguishing between empty

and full queues, 458–459
front element, 454; returning,

461
initializing, 458, 461
operations on, 460–462
pointers, 454–458; advancing

queueRear, 457
rear element, 454; returning, 461
returning the front/rear element,

461
queueType class:

definition as an ADT, 459–460
and waitingCustomerQueue

Type class, 484–485
queuing systems, 473

designing, 473–474
See also movie theater service

simulation

quick reviews:
associative containers, 799–800
binary searches, 525
binary trees, 676–677
class templates, 115
classes, 50–51
composition, 113
constructors, 51
containers, 255–256, 799–800
deque containers, 255–256
dynamic arrays, 196
function objects, 800–801
graphs, 722–724
inheritance, 113
iterators, 254, 255, 256, 801
linked lists, 343–344
operator overloading, 113–114
pointers, 194–196
queues, 490
recursion, 386–387
search algorithms, 525
sequence containers, 254–256
sequential searches, 525
software engineering principles,

49–50
sort algorithms, 593–594
stacks, 442–443
STL (Standard Template

Library), 799–802
STL algorithms, 800, 801–802
templates, 114–115
vector containers, 255

quicksort, 552–558
vs. heapsort, 575
performance analysis, 558t,

826–832
recursive function, 557–558

quickSort function, 558
quotation marks. See double

quotation marks

R

RAM (random access memory). See
memory (main memory)

random access iterators, 234
operations on, 235t

random probing (in hash tables), 515
and primary clustering, 515, 518

random_shuffle function, 784,
784–785

rbegin function (containers),
221t, 225

read statements. See cin
statements

reading data. See inputting data

904 | Index

rear element (of queues), 452, 453
linked queues, 464; returning,

466–467
queues as arrays, 454; returning,

461
returning, 453, 470–471; linked

queues, 466–467; queues
as arrays, 461

rear pointer. See queueRear
pointer

recInorder function, 666–667
recMergeSort function, 565,

566
reconstructing AVL trees. See

rotating/reconstructing AVL trees
records. See structs
recQuickSort function, 557–558
rectangleType class, 63–65,

70, 72, 94
overloading operators for, 99–102

recursion, 355–394, 356
algorithms. See recursive

algorithms
definitions, 35–67
direct/indirect recursion, 358–359
functions. See recursive

functions
infinite recursion, 359
vs. iteration, 375–376
problem solving with, 359–376
quick review, 386–387

recursive algorithms, 357, 360–361
binary tree traversal, 606–608
See also backtracking algorithms

recursive definitions, 356–357
recursive function calls, 357, 358,

375
recursive functions, 357–376

binary tree traversal functions,
608, 611, 612–613;
overloading, 632–633

calls to, 357, 358, 375
designing, 359
Fibonacci number calculations,

366–369
height function (binary trees),

604, 613
largest element search,

360–363
memory allocation for, 375
mergesort, 565
printing ordered linked lists in

reverse order, 363–366
problem solving with, 359–376

recMergeSort function, 565,
566

recQuickSort function,
557–558

Tower of Hanoi problem,
369–372, 376

redefining base class member
functions in derived classes,
63–69

reference parameter symbol (&),
149, 850, 851, 855

placement of in formal-
parameter-as-reference-
parameter declarations,
149–150

reference parameters, 851–852
constant. See constant reference

parameters
declaring formal parameters as,

149
passing arrays as, 855
passing class objects as, 30–31;

derived class objects to base
class parameters, 162–165

passing pointers as, 149
symbol, 149, 850, 851, 855
in value-returning functions, 852

reference typedef, 237t
references on programming, 857
referencing function member

identifiers, 25–26
rehashing, 516
reinterpret_cast operator:

precedence, 809t
relational operators, 846

overloading, 95–98, 655–656
overloading function return type,

96n
for pair class objects, 734,

734t
precedence, 809t

relational STL function objects,
753–756, 753–754t

remainder operator (%): precedence,
809t

remove function, 764–768
remove function (array-based

lists), 183
remove function (list

containers), 322t
remove_copy function, 764–768
remove_copy_if function,

764–768
remove_if function, 764–768

remove_if function (list
containers), 322t

removeAt function (array-based
lists), 177–178

removing items. See deleting items
rend function (containers), 221t
repetition. See iteration
replace function, 768–770
replace function (strings), 824t
replace_copy function,

768–770
replace_copy_if function,

768–770
replace_if function, 768–770
replaceAt function (array-based

lists), 178–179
replacing items, 768–770

in array-based lists, 178–179
characters in strings, 824t

reserved words:
friend, 91
listed, 807
See also const

resize functions (vector
containers), 215t, 223t

retrieveAt function (array-based
lists), 178

retrieving items: from array-based
lists, 178

See also returning
return values (from value-returning

functions):
pointers as, 150
relational operator overloading

function return type, 96n
returning more than one, 732,

852
returning:

first node data (of linked lists),
288; doubly linked lists,
316

front element (of queues), 453,
470–471; linked queues,
466–467; queues as arrays,
461

function return values. See
return values (from value-
returning functions)

last node data (of linked lists),
288; doubly linked lists,
316

rear element (of queues), 453,
470–471; linked queues,
466–467; queues as arrays,
461

Index | 905

returning (Continued)
substrings, 824t
top element (of stacks), 397,

398, 405, 441t; linked
stacks, 419, 420–421;
stacks as arrays, 405

reverse function, 779–782
reverse function (list

containers), 323t
Reverse Polish notation. See postfix

notation
reverse_copy function, 779–782
reversePrint function (linked

lists): ordered linked lists,
363–365

reversePrint functions (linked
lists): doubly linked lists, 315

reversing items, 779–782
right angle bracket (>). See greater-

than operator
right angle bracket–equal sign (>=).

See greater-than-or-equal-to
operator

right angle brackets (>>). See
extraction operator

right manipulator, 843
right rotation (of AVL trees),

641–642, 644
functions for, 645, 646, 647

root node (of binary search trees):
key, 617

root node (of binary trees), 551,
600, 601

pointer to, 603, 606
root pointer, 603, 606
rooted trees, 707
rotate function, 779–782
rotate_copy function, 779–782
rotateToLeft function, 645
rotateToRight function, 645
rotating items, 779–782
rotating/reconstructing AVL trees,

639, 640, 641, 641–647
functions for, 645–647
rotation types, 641–644

run-time binding, 164
runSimulation function:

algorithm, 488–489

S

scientific manipulator, 842
scientific notation (format):

outputting floating-point
numbers in, 841, 842

scope: class members, 32

scope resolution operator (::),
25–26, 809t, 848

precedence, 809t
search algorithms, 498–531

binary search trees, 618–619
binary searches, 502–505, 506
dominant operations in, 12
key comparisons in. See under

key comparisons (in
algorithms)

order (lower bound): comparison-
based algorithms, 508–509;
order 1 algorithm. See
hashing

performance, 498
performance analysis, 12(2),

500–501, 506
quick review, 525
sequential searches, 181–182,

297, 499–501
See also hashing; search

functions
search function, 773–776
search function (B-trees), 665, 666
search function (binary search

trees), 618, 619
search function (linked lists),

293–294
search functions:

binary search trees, 618, 619
binary searches, 503–504,

773–776
sequential searches, 181–182,

293–294
STL functions, 773–776

search_n function, 773–776
searches. See binary searches;

search algorithms; sequential
searches

searching:
B-trees, 665–666
binary search trees, 618–619;

B-trees, 665–666
hash tables, 523
lists. See searching lists
See also finding items

searching lists:
algorithms for. See search

algorithms
array-based lists, 181–182
doubly linked lists, 315
functions for. See search functions
linked lists, 293–294,

297–298, 334–335
ordered linked lists, 301–302

searchNode function (B-trees),
665, 666

secondary clustering (in hash
tables), 518

secondary storage: file I/O from/to,
843–846

selection control structures, 846
selection sort:

array-based lists, 534–539
linked lists, 539n
performance analysis, 539, 548t
test program, 538–539

selectionSort function, 537
including in arrayListType

class, 537
semicolon (;):

in class definitions, 18
as not in preprocessor directives,

835
separator operator (|): precedence,

810t
seqCont.clear function, 223t
seqCont.erase functions, 223t
seqCont.insert functions, 223t
seqCont.pop_back function,

223t
seqCont.push_back function,

223t
seqCont.resize functions, 223t
seqSearch function, 181–182
sequence containers, 211–220,

227–231, 321–325
header files, 747t
iterator support, 747t
member functions/operations on,

222, 223t
predefined sequence containers,

211
quick reviews, 255–256
types: See also deque

containers; list containers;
vector containers

See also containers
sequencing operator (,):

precedence, 810t
sequential lists. See array-based

lists
sequential searches:

algorithm, 181–182, 297,
499–501

on array-based lists, 181–182
Big-O value, 508t
functions, 181–182, 293–294
key comparisons in, 500–501,

506, 508t

906 | Index

on linked lists, 293–294,
297–298, 334–335

lower bound (order), 508–509
performance analysis, 500–501;

Big-O value, 508t
quick review, 525

server list object (movie theater
service simulation), 473, 481

class. See serverListType
class

operations on, 481
server objects (movie theater

service simulation), 473
class. See serverType class
customer service time. See

transaction time
getting and setting the number

of, 487
list. See server list object
operations on, 477

serverListType class, 481–484
constructor, 482
data members, 481
definition as an ADT, 481–482
destructor, 483
member functions, 482–484

serverType class, 477–480
data members, 477
definition as an ADT, 477–479
member functions, 479–480

set containers, 737–742
declaring and initializing,

737–738
header file, 747t
item insertion and deletion, 739
iterator support, 747t
sort criteria, 737, 738
using (including), 737

set theory functions, 788–794
set theory terminology, 687
set_difference function, 788,

791–792, 793–794
set_intersection function,

788, 790–791
set_symmetric_difference

function, 788, 792–794
set_union function, 788, 791
setCustomerInfo function, 476
setprecision manipulator, 841

setw manipulator vs., 842
setServerBusy function,

483–484
setSimulationParameters

function, 487
setw manipulator, 842

shallow copying (of data),
153–154, 157, 159–161,
196, 604

avoiding, 154–155, 157–159,
161–162, 604–605,
614–615

shape class, 61, 169–170
Shellsort, 549–550
shellSort function, 550
short data type, 833

named constants, 820t
shortest path (in graphs), 700

algorithm, 700, 701–705; Big-O
value, 705; function for,
704–705

shortestPath function, 704–705
showpoint manipulator, 842
SHRT_MAX constant, 820t
SHRT_MIN constant, 820t
shuffling elements randomly, 784,

784–785
simple assignment operator. See

assignment operator
simple assignment statements. See

assignment statements
simple data types, 833–834, 833t,

834n
user-defined (programmer-

defined). See enumeration
data types

variables: valid input for,
838–839, 839t. See also
char variables; double
variables; int variables;
string variables

simple graphs, 689
simple paths (in graphs), 689
simulation (of systems), 472

See also computer simulations
simulation parameters: getting and

setting, 486–487
sin(x) function, 821t
single inheritance, 60–61
sinh(x) function, 821t
size function (containers), 218t,

221t
size function (queues), 470t
size function (stacks), 441t
size function (strings), 823t
size_type string data type. See

string::size_type data
type

size_type typedef, 237t
sizeof operator: precedence,

809t

slash (/). See division operator
slash–equal sign (/=): compound

assignment operator, 810t
smallest element, finding,

783–784, 784–785
selection sort, 534–537

smallest whole number function,
821t

software, 2
See also programs

software engineering, 2
software engineering principles,

2–17
quick review, 49–50

solveSudoku function, 385–386
sort algorithms, 534–598

Big-O values: heapsort, 567,
575; insertion sort, 548t,
552, 826; mergesort, 558,
566–567; quicksort, 552,
558t, 827, 828, 830;
selection sort, 539, 548t,
552

comparison tree, 551
diminishing-increment sort,

549–550
heapsort, 472, 567–575
insertion sort, 540–548
mergesort, 558–567
order (lower bound): comparison-

based algorithms, 551–552
performance analysis: heapsort,

575; insertion sort, 548,
548t, 825–826; mergesort,
566–567; quicksort, 558t,
826–832; selection sort,
539, 548t

programming example, 576–593
quick review, 593–594
quicksort, 552–558
selection sort, 534–539
Shellsort, 549–550

sort function, 773–776
sort functions:

heapsort, 574
insertion sort, 543, 547–548
list container operations, 323t
mergesort, 564–565
quicksort, 557–558
selection sort, 537
STL function, 773–776

sorted linked lists, 279
sorting lists:

algorithms for. See sort
algorithms

Index | 907

sorting lists (Continued)
array-based lists: heapsort,

567–575; insertion sort,
540–543; quicksort,
552–558; selection sort,
534–539

functions for. See sort functions
linked lists: insertion sort,

544–548; mergesort,
558–567; selection sort,
539n

source code (source program), 836
source code file extension, 836
source vertex, 700
space (blank space character) ():

extraction operator and, 838
spanning trees, 707

defining as ADTs, 710–711
See also minimum spanning

trees
special characters. See Symbols

section at the top of this index
specification details. See

implementation details of class
objects

specification files. See header files
splice functions (list

containers), 322–323t
splitNode function (B-trees),

671–672
sqrt(x) function, 821t
square brackets ([]). See array

index (subscript) operator
square root function, 821t
stack class, 440–442
stack header files, 408, 424,

440–441, 747t
stackADT class: definition of,

398–399
stacks, 395–450, 396, 397

adding elements to, 397–398,
398, 441t

as arrays. See stacks as arrays
basic operations, 397–398, 441t
checking whether empty/full,

398, 441t
defining as ADTs, 398–399
dynamic. See linked stacks
evaluating postfix expressions

with, 428–437
header files, 408, 424,

440–441, 747t
initializing, 398
linear. See stacks as arrays
linked. See linked stacks

operations on, 397–398, 441t
postfix notation application. See

postfix expressions
calculator

programming example, 411–415
quick review, 442–443
removing elements from, 397,

398(2), 441t
returning the number of

elements in, 441t
returning the top element, 397,

398, 441t
STL class, 440–442
structure, 402–403
top element, 396–397;

removing, 397, 398(2), 441t;
returning, 397, 398, 441t

uses, 210, 396, 428
stacks as arrays, 400–415

adding elements to, 404–405
assignment operator overloading,

408
checking whether empty/full, 404
constructor, 407
copy constructor, 407–408
copying, 402n, 406–407
defining as ADTs, 400–402
destructor, 407
header files, 408
initializing, 403
operations on, 403–409; time-

complexity limits, 409t
overflow condition check, 405
pointer for, 403
programming example, 411–415
removing elements from,405–406
returning the top element, 405
test program, 409–411
top element, 400, 402n, 415;

removing, 405–406;
returning, 405

underflow condition check, 406
stackTop variable, 400, 402n,

415
stackType class:

definition as an ADT, 400–402
header file, 408
See also stacks as arrays

standard error stream, 5n
standard functions. See predefined

functions
standard input device: inputting

data from, 837–839
standard output device: outputting

data to, 840–841

Standard Template Library. See
STL

statements:
assert. See assert

statements
assignment. See assignment

statements
declaration. See declaration

statements
input. See cin statements
namespace statements,

847–848
output. See cout statements

static arrays, 147
static binding, 164
static class objects, 32
static_cast cast operator, 834

precedence, 809t
std namespace, 849n
stepwise refinement (structured

design), 4
STL (Standard Template Library),

209–263, 731–805
class templates, 210, 211, 472
components, 210–211, 732.

See also containers;
iterators; STL algorithms

quick review, 799–802
STL algorithms (generic

algorithms), 748, 758–840
categories, 748–750
forms, 751
function objects. See function

objects
function prototypes, 758
heap algorithms, 750
modifying algorithms, 749–750,

749t
mutating algorithms, 750
nonmodifying algorithms,

748–749, 749t
numeric algorithms, 750,

794–799
quick review, 800, 801–802

str.c_str function, 823t
str.clear function, 824t
str.empty function, 823t
str.erase functions, 824t
str.find function, 823t
str.insert functions, 824t
str.length function, 823t
str.size function, 823t
str.substr function, 824t
str1.insert function, 824t
str1.replace function, 824t

908 | Index

str1.swap(str2) function, 824t
strcat function (C-strings), 822t
strcmp function (C-strings), 822t
strcpy function (C-strings), 822t
stream data types: file stream data

types, 843
stream extraction operator. See

extraction operator (>>)
stream insertion operator. See

insertion operator (<<)
stream iterators, 237–238

See also ostream iterators
stream variables:

cin. See cin statements
cout. See cout statements
file stream objects, 843–844

string functions (string type),
823, 823–824t

See also C-string functions
string header file, 822–823,

823–824t
string::npos named constant,

822
string::size_type data type,

822
string variables:

outputting values, 841t
swapping contents, 824t
See also strings; variables

strings (string type), 822
checking whether empty, 823t
clearing, 824t
determining length/size, 823t
erasing, 824t
finding, 823t
functions for manipulating, 823,

823–824t
inputting data into, 823t
inserting characters in, 824t
outputting, 841t
replacing characters in, 824t
returning substrings in, 824t
See also C-strings; string

variables
strlen function (C-strings), 822t
strongly connected vertices/graphs,

689
structs (data types/variables), 33

accessing members via pointers,
137–138

AVL tree nodes, 637
B-tree nodes, 664
binary tree nodes, 602
defining, 33
linked list nodes, 267, 279n

structured data types. See abstract
data types (ADTs); arrays;
classes; lists; queues; stacks;
structs

structured design, 4
structured programming, 4
structures. See structs
subgraphs, 687
subprograms. See functions
substr function (strings), 824t
substrings: finding and returning,

824t
subtraction operator (–), 86

precedence, 809t
subtrees (of binary trees), 600–601
sudoku class:

definition as an ADT, 384–385
member functions, 385–386

sudoku problem, 383–386
suffix notation. See postfix notation
swap function, 770–773
swap function (containers), 221t
swap function (sort algorithms),

537, 557, 827–828,
828–830

swap function (strings), 824t
swap_ranges function, 770–773
swapping items, 770–773

array elements, 535–537, 557
string variable contents, 824t

symbols. See Symbols section at
the top of this index

symmetric-differences-between-
sets function, 788, 792–794

synonyms (hash table keys), 511
syntax:

actual parameter lists: value-
returning functions, 850;
void functions, 850

array element access, 854
assignment statements, 835
cin statements, 837
class member access, 24
class object declarations, 23
class templates, 111
classes, 17
copy constructor in class

definitions, 162
cout statements, 840
delete operator, 141
derived classes, 61
formal parameter lists: value-

returning functions, 849;
void functions, 850

function calls: value-returning
functions, 850; void
functions, 850

function templates, 109
istream iterator, 237
left manipulator, 843
named constant declarations, 834
namespace statements, 847
new operator, 138
open function, 844
operator functions, 86
ostream iterator, 238
overloading binary operators,

95–96, 98
overloading the assignment

operator, 158
overloading the extraction

operator, 99–100
overloading the insertion

operator, 99
pointer declarations, 132
preprocessor directives, 835
right manipulator, 843
setprecision manipulator,

841
templates, 108–109
unsetf function, 843
using namespace/

namespacename
statements, 848

value-returning functions,
849–850

variable declarations, 835
void functions, 850–851

system header files: including, 76,
835–836

system simulation. See simulation
(of systems)

T

tab character: extraction operator
and, 838

tail recursive functions, 359
tan(x) function, 821t
tanh(x) function, 821t
template instantiations, 112
templates, 84, 108–113

quick review, 114–115
syntax, 108–109
See also class templates;

function templates
temporary queues, 486
test cases, 7
testing programs, 7–8

Index | 909

theater service simulation. See
movie theater service
simulation

this pointer, 87–91
throw operator: precedence,

810t
tilde (~): destructor name prefix, 33
time-complexity limits of

algorithms. See Big-O values
(notation)

time-driven simulation, 474
tokens. See identifiers
tolower(ch) function, 819t
top element (of linked stacks),

415
removing, 419, 421–422
returning, 419, 420–421

top element (of stacks), 396–397
removing, 397, 398(2), 441t
returning, 397, 398, 441t

top element (of stacks as arrays),
400, 402n, 415

removing, 405–406
returning, 405

top function (stack operation),
397, 398, 441t

linked stacks, 419, 420–421
stacks as arrays, 405

top-down design, 4
topological ordering of vertices,

714
breadth-first traversal, 714,

715–719
depth-first traversal, 714,

728–729
topologicalOrder array, 714,

716, 717, 718
topologicalOrderType class,

714–715
toupper(ch) function, 819t
Tower of Hanoi problem, 369–372,

376
trailer nodes (in linked lists),

325–326, 343–344
trailing zeros: showing the decimal

point with, 842
transaction time (customer service

time), 473, 481, 483–484
getting and setting, 487

transform function, 786–788
traversing:

B-trees, 666–667
binary trees. See binary tree

traversal

doubly linked lists, 311, 313,
314–315

graphs. See graph traversal
linked lists, 269–270

trees, 707
See also binary trees; spanning

trees; weighted trees
trigonometric functions, 820t,

821t
two-dimensional arrays:

creating, 150–151
processing, 151–153

Type (reserved word), 109
type names (of ADTs), 34
typedef const_iterator, 236
typedef const_reverse_

iterator, 237
typedef iterator, 216, 236
typedef reverse_iterator,

237
typedefs common to all

containers, 237t
typeid operator: precedence,

809t

U

UCHAR_MAX constant, 820t
UINT_MAX constant, 820t
ULONG_MAX constant, 820t
UML (Unified Modeling Language)

diagrams, 22–23
unary operators:

overloading, 102
precedence, 809t

unary predicates (function objects),
756

underflow condition (of stacks as
arrays): checking for, 406

underscore (_): identifier character,
847

undirected graphs, 687, 688
Unified Modeling Language (UML)

diagrams, 22–23
union of sets, 687
union-of-sets function, 788, 791
unique functions (list

containers), 322t
unordered linked lists, 292–299

defining as ADTs, 292–293
header file, 298–299
operations on, 293–298

unorderedLinkedList class,
279, 691

definition as an ADT, 292–293

linkedListType class and,
279, 285, 299

and linkedQueueType class,
469

and linkedStackType class,
426–427

member functions, 293–298;
time-complexity limits,
298t

and videoListType class,
332–333, 334

unsetf function, 842
syntax, 843

unsigned int data type, 833
updateServers function, 484
updateWaiting Queue function,

485–486
updating data in binary tree nodes,

632–635
user files. See implementation files
user-defined data types. See

enumeration data types;
and under structured data
types

user-defined functions. See value-
returning functions; void
functions; and specific
functions

user-defined header files:
including, 76

USHRT_MAX constant, 820t
using namespace/

namespacename statements,
848–849, 849n

utility header file, 732, 734

V

validating input: with assert
statements, 6

value parameters, 851, 851
constant reference parameters

vs., 20, 31
declaring pointers as, 149
passing class objects as, 30, 31,

160–161; derived class
objects to base class
parameters, 166–168

passing pointers as, 149
value_type typedef, 237t
value-returning functions:

actual parameter lists, 850
assert function, 6, 817t
calls to, 850
character functions, 818–819t
formal parameter lists, 849

910 | Index

math functions, 820–821t
reference parameters in, 852
return values: pointers as, 150;

returning more than one,
732, 852

string functions: C-string
functions, 822t; string
type, 823, 823–824t

syntax, 849–850
void functions as multiple

value–returning functions,
852

values:
boundary values, 8
logical. See logical values
return. See return values

(from value-returning
functions)

of variables. See under variables
See also data; numbers

variables:
for array-based list processing,

171
assigning values to, 835
as class members. See data

members (instance variables)
declaring, 18, 835; file stream

objects, 843–844
dynamic. See dynamic variables
file stream objects, 843–844
initializing, 18
inputting values. See inputting

data
instance. See data members
outputting values. See outputting

data
stream. See stream variables
valid input for simple data types,

838–839, 839t
See also char variables;

double variables; int
variables; string variables

vecCont.capacity function,
218t

vecCont.empty function, 218t
vecCont.max_size function,

218t
vecCont.size function, 218t
vecList.at function, 213t
vecList.back function, 213t
vecList.clear function, 214t
vecList.erase functions, 214t
vecList.front function, 213t
vecList.insert functions,

214t

vecList.pop_back function,
215t

vecList.push_back function,
215t

vecList.resize functions,
215t

vecList[index] operation,
213t

vector class, 211
vector containers, 211–220

accessing the elements of, 211,
213–214

copying array-based lists into,
756–757

declaring, 212–213, 212t,
215

declaring iterators into,
216–217, 236–237

deleting items from, 214,
214–215t, 216

header file, 747t
initializing of, 212–213, 212t
inserting items in, 211, 214,

214–215t, 215, 216; at the
end, 215–216

iterator support, 747t
operations on, 213–216
outputting the elements of,

223–227
programming example, 238–254
quick review, 255
size functions, 218t
stepping through the elements

of, 215n
using (including), 211
See also containers; sequence

containers
vector objects. See vector

containers
vertices (in graphs), 687

adjacent, 689, 690, 691
breadth-first ordering, 698
connected, 689
depth-first ordering, 696
immediate successors, 691
keeping track of visited vertices,

696
labeling/numbering, 692
source vertex, 700
topological ordering. See

topological ordering of
vertices

video list (Video Store programming
examples), 332–337,
656–658

creating, 338, 339–342
video object (Video Store

programming examples),
327–332, 654–656

Video Store programming examples,
327–343, 654–662

videoBinaryTree class,
656–658

bSearchTreeType class and,
656–657

definition of, 656–657
member functions, 657–658

videoListType class:
definition of, 333–334
member functions, 334–337
unorderedLinkedList class

and, 332–333, 334
videoType class:

definition as an ADT, 328–330,
654–655

member functions, 330–332,
655–656

virtual destructors, 168
virtual functions, 164

declaring, 164–165
passing derived class objects to

base class formal
parameters using,
164–168

pure virtual functions,
169–170

run-time binding with, 164
void functions:

actual parameter lists, 850
calls to, 850, 851
formal parameter lists, 850
as multiple value–returning

functions, 852
parameter passing. See passing

parameters to functions
with parameters, 850–852
syntax, 850–851

W

waiting customer queue objects
(movie theater service
simulation), 473, 484–485

accessing the elements of,
485

class. See waitingCustomer
QueueType class

determining that all elements
have been processed,
485–486

Index | 911

waitingCustomerQueueType
class, 484–486

constructor, 485
definition as an ADT, 485
linkedQueueType class and,

485n
member functions, 485–486
queueType class and,

484–485

Walker, R. J., 377
weight of the edge, 700
weight of the path, 700

shortest path algorithm, 700,
701–706

weighted graphs, 700
See also weighted trees

weighted trees, 707
printing, 712–713

weightedGraphType class:
definition of, 700–701
member functions, 701–706

weightFound Boolean array,
702

white-box testing, 7, 8
whitespace characters: extraction

operator and, 838
word symbols. See reserved words

912 | Index

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	1 SOFTWARE ENGINEERING PRINCIPLES AND C++ CLASSES
	Software Life Cycle
	Software Development Phase
	Analysis
	Design
	Implementation
	Testing and Debugging

	Algorithm Analysis: The Big-O Notation
	Classes
	Constructors
	Unified Modeling Language Diagrams
	Variable (Object) Declaration
	Accessing Class Members
	Implementation of Member Functions
	Reference Parameters and Class Objects (Variables)
	Assignment Operator and Classes
	Class Scope
	Functions and Classes
	Constructors and Default Parameters
	Destructors
	Structs

	Data Abstraction, Classes, and Abstract Data Types
	Programming Example: Fruit Juice Machine
	Identifying Classes, Objects, and Operations
	Quick Review
	Exercises
	Programming Exercises

	2 OBJECT-ORIENTED DESIGN (OOD) AND C++
	Inheritance
	Redefining (Overriding) Member Functions of the Base Class
	Constructors of Derived and Base Classes
	Header File of a Derived Class
	Multiple Inclusions of a Header File
	Protected Members of a Class
	Inheritance as public, protected, or private

	Composition
	Polymorphism: Operator and Function Overloading
	Operator Overloading
	Why Operator Overloading Is Needed
	Operator Overloading
	Syntax for Operator Functions
	Overloading an Operator: Some Restrictions
	The Pointer this
	Friend Functions of Classes
	Operator Functions as Member Functions and Nonmember Functions
	Overloading Binary Operators
	Overloading the Stream Insertion (<<) and Extraction (>>) Operators

	Operator Overloading: Member Versus Nonmember
	Programming Example: Complex Numbers
	Function Overloading
	Templates
	Function Templates
	Class Templates
	Header File and Implementation File of a Class Template

	Quick Review
	Exercises
	Programming Exercises

	3 POINTERS AND ARRAY-BASED LISTS
	The Pointer Data Type and Pointer Variables
	Declaring Pointer Variables
	Address of Operator (&)
	Dereferencing Operator (*)
	Pointers and Classes
	Initializing Pointer Variables
	Dynamic Variables
	Operator new
	Operator delete
	Operations on Pointer Variables
	Dynamic Arrays
	Array Name: A Constant Pointer
	Functions and Pointers
	Pointers and Function Return Values
	Dynamic Two-Dimensional Arrays
	Shallow Vs. Deep Copy and Pointers

	Classes and Pointers: Some Peculiarities
	Destructor
	Assignment Operator
	Copy Constructor

	Inheritance, Pointers, and Virtual Functions
	Classes and Virtual Destructors

	Abstract Classes and Pure Virtual Functions
	Array-Based Lists
	Copy Constructor
	Overloading the Assignment Operator
	Search
	Insert
	Remove
	Time Complexity of List Operations

	Programming Example: Polynomial Operations
	Quick Review
	Exercises
	Programming Exercises

	4 STANDARD TEMPLATE LIBRARY (STL) I
	Components of the STL
	Container Types
	Sequence Containers
	Sequence Container: vector
	Declaring an Iterator to a Vector Container
	Containers and the Functions begin and end
	Member Functions Common to All Containers
	Member Functions Common to Sequence Containers
	The copy Algorithm
	ostream Iterator and Function copy
	Sequence Container: deque

	Iterators
	Types of Iterators
	Input Iterators
	Output Iterators
	Forward Iterators
	Bidirectional Iterators
	Random Access Iterators
	Stream Iterators

	Programming Example: Grade Report
	Quick Review
	Exercises
	Programming Exercises

	5 LINKED LISTS
	Linked Lists
	Linked Lists: Some Properties
	Item Insertion and Deletion
	Building a Linked List

	Linked List as an ADT
	Structure of Linked List Nodes
	Member Variables of the class linkedListType
	Linked List Iterators
	Default Constructor
	Destroy the List
	Initialize the List
	Print the List
	Length of a List
	Retrieve the Data of the First Node
	Retrieve the Data of the Last Node
	Begin and End
	Copy the List
	Destructor
	Copy Constructor
	Overloading the Assignment Operator

	Unordered Linked Lists
	Search the List
	Insert the First Node
	Insert the Last Node
	Header File of the Unordered Linked List

	Ordered Linked Lists
	Search the List
	Insert a Node
	Insert First and Insert Last
	Delete a Node
	Header File of the Ordered Linked List

	Doubly Linked Lists
	Default Constructor
	isEmptyList
	Destroy the List
	Initialize the List
	Length of the List
	Print the List
	Reverse Print the List
	Search the List
	First and Last Elements

	STL Sequence Container: list
	Linked Lists with Header and Trailer Nodes
	Circular Linked Lists
	Programming Example: Video Store
	Quick Review
	Exercises
	Programming Exercises

	6 RECURSION
	Recursive Definitions
	Direct and Indirect Recursion
	Infinite Recursion

	Problem Solving Using Recursion
	Largest Element in an Array
	Print a Linked List in Reverse Order
	Fibonacci Number
	Tower of Hanoi
	Converting a Number from Decimal to Binary

	Recursion or Iteration?
	Recursion and Backtracking: 8-Queens Puzzle
	Backtracking
	n-Queens Puzzle
	Backtracking and the 4-Queens Puzzle
	8-Queens Puzzle

	Recursion, Backtracking, and Sudoku
	Quick Review
	Exercises
	Programming Exercises

	7 STACKS
	Stacks
	Implementation of Stacks as Arrays
	Initialize Stack
	Empty Stack
	Full Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructor and Destructor
	Copy Constructor
	Overloading the Assignment Operator (=)
	Stack Header File

	Programming Example: Highest GPA
	Linked Implementation of Stacks
	Default Constructor
	Empty Stack and Full Stack
	Initialize Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructors and Destructors
	Overloading the Assignment Operator (=)
	Stack as Derived from the class unorderedLinkedList

	Application of Stacks: Postfix Expressions Calculator
	Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward
	STL class stack
	Quick Review
	Exercises
	Programming Exercises

	8 QUEUES
	Queue Operations
	Implementation of Queues as Arrays
	Empty Queue and Full Queue
	Initialize Queue
	Front
	Back
	Add Queue
	Delete Queue
	Constructors and Destructors

	Linked Implementation of Queues
	Empty and Full Queue
	Initialize Queue
	addQueue, front, back, and deleteQueue Operations
	Queue Derived from the class unorderedLinkedListType

	STL class queue (Queue Container Adapter)
	Priority Queues
	STL class priority_queue

	Application of Queues: Simulation
	Designing a Queuing System
	Customer
	Server
	Server List
	Waiting Customers Queue
	Main Program

	Quick Review
	Exercises
	Programming Exercises

	9 SEARCHING AND HASHING ALGORITHMS
	Search Algorithms
	Sequential Search
	Ordered Lists
	Binary Search
	Insertion into an Ordered List

	Lower Bound on Comparison-Based Search Algorithms
	Hashing
	Hash Functions: Some Examples
	Collision Resolution
	Open Addressing
	Deletion: Open Addressing
	Hashing: Implementation Using Quadratic Probing
	Chaining
	Hashing Analysis

	Quick Review
	Exercises
	Programming Exercises

	10 SORTING ALGORITHMS
	Sorting Algorithms
	Selection Sort: Array-Based Lists
	Analysis: Selection Sort

	Insertion Sort: Array-Based Lists
	Insertion Sort: Linked List-Based Lists
	Analysis: Insertion Sort

	Shellsort
	Lower Bound on Comparison-Based Sort Algorithms
	Quicksort: Array-Based Lists
	Analysis: Quicksort

	Mergesort: Linked List-Based Lists
	Divide
	Merge
	Analysis: Mergesort

	Heapsort: Array-Based Lists
	Build Heap
	Analysis: Heapsort

	Priority Queues (Revisited)
	Programming Example: Election Results
	Quick Review
	Exercises
	Programming Exercises

	11 BINARY TREES AND B-TREES
	Binary Trees
	Copy Tree

	Binary Tree Traversal
	Inorder Traversal
	Preorder Traversal
	Postorder Traversal
	Implementing Binary Trees

	Binary Search Trees
	Search
	Insert
	Delete

	Binary Search Tree: Analysis
	Nonrecursive Binary Tree Traversal Algorithms
	Nonrecursive Inorder Traversal
	Nonrecursive Preorder Traversal
	Nonrecursive Postorder Traversal

	Binary Tree Traversal and Functions as Parameters
	AVL (Height-Balanced) Trees
	Insertion
	AVL Tree Rotations
	Deletion from AVL Trees
	Analysis: AVL Trees

	Programming Example: Video Store (Revisited)
	B-Trees
	Search
	Traversing a B-Tree
	Insertion into a B-Tree
	Deletion from a B-Tree

	Quick Review
	Exercises
	Programming Exercises

	12 GRAPHS
	Introduction
	Graph Definitions and Notations
	Graph Representation
	Adjacency Matrices
	Adjacency Lists

	Operations on Graphs
	Graphs as ADTs
	Graph Traversals
	Depth-First Traversal
	Breadth-First Traversal

	Shortest Path Algorithm
	Shortest Path

	Minimum Spanning Tree
	Topological Order
	Breadth-First Topological Ordering

	Euler Circuits
	Quick Review
	Exercises
	Programming Exercises

	13 STANDARD TEMPLATE LIBRARY (STL) II
	Class pair
	Comparing Objects of Type pair
	Type pair and Function make_pair

	Associative Containers
	Associative Containers: set and multiset
	Associative Containers: map and multimap

	Containers, Associated Header Files, and Iterator Support
	Algorithms
	STL Algorithm Classification
	Nonmodifying Algorithms
	Modifying Algorithms
	Numeric Algorithms
	Heap Algorithms
	Function Objects
	Predicates

	STL Algorithms
	Functions fill and fill_n
	Functions generate and generate_n
	Functions find, find_if, find_end, and find_first_of
	Functions remove, remove_if, remove_copy, and remove_copy_if
	Functions replace, replace_if, replace_copy, and replace_copy_if
	Functions swap, iter_swap, and swap_ranges
	Functions search, search_n, sort, and binary_search
	Functions adjacent_find, merge, and inplace_merge
	Functions reverse, reverse_copy, rotate, and rotate_copy
	Functions count, count_if, max_element, min_element, and random_shuffle
	Functions for_each and transform
	Functions includes, set_intersection, set_union, set_difference, and set_symmetric_difference
	Functions accumulate, adjacent_difference, inner_product, and partial_sum

	Quick Review
	Exercises
	Programming Exercises

	APPENDIX A: RESERVED WORDS
	APPENDIX B: OPERATOR PRECEDENCE
	APPENDIX C: CHARACTER SETS
	ASCII (American Standard Code for Information Interchange)
	EBCDIC (Extended Binary Coded Decimal Interchange Code)

	APPENDIX D: OPERATOR OVERLOADING
	APPENDIX E: HEADER FILES
	Header File cassert
	Header File cctype
	Header File cfloat
	Header File climits
	Header File cmath
	Header File cstddef
	Header File cstring

	APPENDIX F: ADDITIONAL C++ TOPICS
	Analysis: Insertion Sort
	Analysis: Quicksort
	Worst-Case Analysis
	Average-Case Analysis

	APPENDIX G: C++ FOR JAVA PROGRAMMERS
	Data Types
	Arithmetic Operators and Expressions

	Named Constants, Variables, and Assignment Statements
	C++ Library: Preprocessor Directives
	C++ Program
	Input and Output
	Input
	Input Failure
	Output
	setprecision
	fixed
	showpoint
	setw
	left and right Manipulators
	File Input/Output

	Control Structures
	Namespaces
	Functions and Parameters
	Value-Returning Functions
	Void Functions
	Reference Parameters and Value-Returning Functions
	Functions with Default Parameters

	Arrays
	Accessing Array Components
	Array Index Out of Bounds
	Arrays as Parameters to Functions

	APPENDIX H: REFERENCES
	APPENDIX I: ANSWERS TO ODD-NUMBERED EXERCISES
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	INDEX

