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Today’s Menu: 

  ISA & Assembly Language 
  Instruction Set Definition  

  Registers and Memory 
  Arithmetic Instructions 
  Load/store Instructions 
  Control Instructions 
  Instruction Formats 
  Example ISA: MIPS  

  Summary 
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Instruction Set Architecture  (ISA) 

  

Assembly Language 
               ||| 

Instruction Set 
Architecture 

               ||| 
Machine Language 

Application 

Compiler 

Operating System 

          Microarchitecture I/O System 

Digital Logic Design 

Circuit Design 
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The Big Picture 

  Assembly Language 
  Interface the architecture presents to 

user, compiler, & operating system 
  “Low-level” instructions that use the 

datapath & memory to perform basic 
types of operations 

  arithmetic: add, sub, mul, div 
  logical: and, or, shift 
  data transfer: load, store 
  (un)conditional branch: jump, 

branch on condition 

assembly language program 
  

 
 

ALU 

   
  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Instruction register 

Memory Address Register 

from memory 
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Software Layers 
  High-level languages such as C, C++, FORTRAN, JAVA are translated into 

assembly code by a compiler 
  Assembly language translated to machine language by assembler 

for (j = 1; j < 10; j++){ 
 a = a + b 

} 
 
 

ALU 

   
  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Instruction register 

Memory Address Register 

Memory Data Register 

Executable 
(binary) 

Compiler 

ADD R1, R2, R3 
SUB R3, R2, R1 

Assembler 
0010100101 
0101010101 
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Basic ISA Classes 

  Memory to Memory Machines 
  Can access memory directly in instructions: e.g., Mem[0] = Mem[1] + 1 
  But we need storage for temporaries 
  Memory is slow (hard to optimize code) 
  Memory is big (need lots of address bits in code  large code) 

  Architectural Registers 
  registers can hold temporary variables 
  registers are (unbelievably) faster than memory 
  memory traffic is reduced, so program is sped up 

(since registers are faster than memory) 
  code density improves  smaller code 

(since register named with fewer bits than memory location) 
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Basic ISA Classes (cont’d) 
  Accumulator (1 register): 

  1 address       add A   acc ←  acc + mem[A] 
  1+x address   addx A   acc ←  acc + mem[A + x] 

  General Purpose Register File (Load/Store): 
  3 address  add Ra Rb Rc  Ra ←  Rb + Rc 
      load Ra Rb  Ra ←  mem[Rb] 
      store Ra Rb  mem[Rb] ←  Ra 

  General Purpose Register File (Register-Memory): 
  2 address  add A B        EA(A) ←  EA(A) + EA(B) 
  3 address  add A B C    EA(A) ←  EA(B) + EA(C) 

  Stack (not a register file but an operand stack) 
  0 address        add   tos ←  tos + next (tos=top of stack) 

  Comparison: 
  Bytes per instruction?  Number of Instructions?  Cycles per instruction? 
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Comparing Number of Instructions 

  Code sequence for C = A + B for four classes of instruction sets: 

Stack Accumulator Register  Register  
(register-memory) (load-store) 

Load  A 
Add   B 
Store C 

Load  R1,A 
Add   R1,B 
Store C, R1 

Push A 
Push B 
Add 
Pop  C 

Load  R1,A 
Load  R2,B 
Add   R3,R1,R2 
Store C,R3 

MIPS is one of these: this is what we’ll be learning 
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General Purpose Register Machines Dominate 

  Literally all machines use general purpose registers 

  Advantages of registers 

  registers are faster than memory 

  memory traffic is reduced, so program is sped up 
(since registers are unbelievably faster than memory) 

  registers can hold variables 

  registers are easier for a compiler to use: 
(A*B) – (C*D) – (E*F)  can do multiplies in any order vs. stack 

  code density improves 
(since register named with fewer bits than memory location) 
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Example: MIPS Assembly Language Notation 

  Generic 
  op    x,  y,  z      # x <-- y op z 

 

  Addition 
  add   a, b,  c   # a <-- b + c 
  addi  a, a, 10     # a <-- a + 10 

 

  Subtraction 
  sub   a, b, c     # a <-- b - c 
   

 
  f = (g + h) - (i + j) 

  add  t0,  g,  h    #  t0 <-- g + h 
  add  t1,  i,  j     #  t1 <-- i + j 
  sub  f,  t0,  t1    #  f <-- t0 - t1 

Source Source Destination 
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Instruction Set Definition (programming model) 
  Objects  = architected entities = machine state 

  Registers 
  General purpose 
  Special purpose (e.g. program counter, condition code, stack pointer) 

  Memory locations 
  Linear address space: 0, 1, 2, … , 2

s
-1 

  Operations = instruction types 
  Data operation 

  Arithmetic (add, multiply, subtract, divide, etc.) 
  Logical (and, or, xor, not, etc.) 

  Data transfer 
  Move (register  register) 
  Load (memory  register) 
  Store (register  memory) 

  Instruction sequencing 
  Branch (conditional, e.g., less than, greater than, equal) 
  Jump (unconditional) 
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Registers and Memory (MIPS) 

    32 registers provided 
  R0 .. R31 

  You’ll sometimes see $ instead of R 
(R6 and $6 both denote register 6) 

  Some special-use registers 
  Register R0 is hard-wired to zero 
  Register R29 is the stack pointer 
  Register R31 is used for procedure return address 

 
  Arithmetic instructions operands must be registers 

 This is a load/store machine! Must load all data to registers before using it. 

Registers 

0 

31 
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Memory Organization 

    Viewed as a large, single-dimension array, with an address. 
  A memory address is an index into the array 
  "Byte addressing" means that the index points to a byte of memory. 

  Bytes are nice, but most data items use larger "words" 
  For MIPS, a word is 32 bits or 4 bytes. 

 
 

0 
1 
2 
3 
4 
5 
6 
... 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

Byte-addressable 
view of memory 

0 
4 
8 
12 
16 
20 
24 
... 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

Word-aligned 
view of memory 
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  Bytes are nice, but most data items use larger "words" 
  For MIPS, a word is 32 bits or 4 bytes. 

 
 
 
 
 
 

  32-bit computer: 
  232 bytes with byte addresses from 0 to 232-1 
  230 words with byte addresses 0, 4, 8, ... 232-4 

  Words are aligned 
 what are the  least 2 significant bits of a word address? 

Memory Organization 

0 
4 
8 

12 
... 

32 bits of data 

32 bits of data 

32 bits of data 

32 bits of data 

Registers hold 32 bits of data 
Byte addresses 

 of words 
 in mem 
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Addressing Objects: Endianess 

  Big Endian: address of most significant  byte = word address  
(xx00 = Big End of word) 
  IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA 

  Little Endian: address of least significant  byte = word 
address (xx00 = Little End of word) 
  Intel 80x86, DEC Vax, DEC Alpha 

  Programmable: set a bit at boot time 
  IBM/Motorola PowerPC 

 

msb lsb 
3          2          1           0 

little endian byte 0 

0          1          2           3 
big endian byte 0 
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Addressing Objects: Alignment 

  Hardware may or may not support “unaligned” load/store 
  E.g., Load word from address 0x203 

  Possible alternatives: 
  Full hardware support, multiple “aligned” accesses by hardware 
  Hardware trap to OS, multiple “aligned” accesses by software 
  Compiler can guarantee/prevent “unaligned” accesses 

Alignment: require that objects fall on address  
 that is multiple of  their size. 

0      1      2      3 

Aligned 

Not 
Aligned 
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Instruction Cycle (execution model) 

  Sequential Execution Model 
  Program is a sequence of 

instructions  
  Instructions are atomic and 

executed sequentially 

  Stored Program Concept 
  Program and data both are 

stored in memory 
  Instructions are fetched from 

memory for execution 

Instruction Fetch 

Operand Fetch 

Instruction Decode 

Result  Store 

Execute 

Next   Instruction 
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Instruction Cycle (execution model) 

  
Instruction Fetch 

Instruction Decode 

Operand Fetch 

Execute 

Result  Store 

Next   Instruction 

Instruction Format/Encoding 

Addressing Modes 

Op-codes and Data Types 

Addressing Modes 

Instruction Sequencing 

Get instruction from memory 

ISA Issues 
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Memory 

Executing an Assembly Instruction 

  Program Counter holds the 
instruction address 

  Sequencer (FSM) fetches 
instruction from memory and 
puts it into the Instruction 
Register 

  Control logic decodes the 
instruction and tells the 
register file, alu and other 
registers what to do 

  If an ALU operation (e.g. 
add) data flows from register 
file, through ALU and back to 
register file 

 
 

   
  
 

C ol  
 L o 

ontr 
gic 

ALU 

Register File Program Counter 

Instruction register 

Memory Address Register 

Memory Data Register 
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Register File Program Execution 

 
 

   

0x00 add R4, R0, R0   
0x04 sub R1, R3, R4   
0x08 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

4 bytes wide 

00000006 
00000004 

0x00000000 

add R4,R0,R0 
--------------   0 

0 
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0x00 add R4, R0, R0   
0x04 sub R1, R3, R4   
0x08 

Register File Program Execution 

 
 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

4 bytes wide 

00000006 
00000000 

0x00000004 

sub R1,R3,R4 

00000006 
0 
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Try This 

  f = (g + h) - (i + j) 
  R16 == f, R17 == g,  R18 == h, R19 == i, R20 == j 

 
 0x00 add R8, R17, R18  

0x04 add R9, R19, R20  
0x08 sub R16, R8, R9  

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 8     
reg 9    
reg 16   f 
reg 17   g = 0x00000002 
reg 18   h = 0x00000003 
reg 19   i  = 0x00000001 
reg 20   j  = 0x00000004 
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Try This 

  f = (g + h) - (i + j) 
  R16 == f, R17 == g,  R18 == h, R19 == i, R20 == j 

 
 0x00 add R8, R17, R18  

0x04 add R9, R19, R20  
0x08 sub R16, R8, R9  

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 8     
reg 9    
reg 16   f 
reg 17   g = 0x00000002 
reg 18   h = 0x00000003 
reg 19   i  = 0x00000001 
reg 20   j  = 0x00000004 



   24 

Accessing Data 

  ALU generated address 
  Address goes to Memory 

Address Register 
  When memory is accessed, 

results are returned to 
Memory Data Register 

  Notice that data and 
instruction addresses can 
be the same - both just 
address memory 

   

0x00  00101101 
0x01  00100001 
0x02  00110000 
0x03  00001111 
0x04  11010101 
0x05  01010101 
0x06  00101010 
0x07  01010101 
0x08  11110011 
0x09  00111100 
0x0A  00001100 
0x0B  00000000 
0x0C  00011000 
0x0D  11111111 

ALU 

  
 

C ontr ol  
 L o gic 

Register File Program Counter 

Memory Address Register 

Memory Data Register 
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0x14 

Memory Operations - Loads 

  Loading data from memory 
R6 <-- mem[0x14] 
Assume &A = 0x14 

 
 0x00 addi R5,R0,0x14 

0x04 lw R6,R5  
0x08  
0x0C 
0x10 
0x14 0x12345678 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000000 

addi R5, R0,0x14 

0x00000014 

addi:  adds 16-bit constant to  
 source register  
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Memory Operations - Loads 

 
 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000004 

    lw  R6,R5 

0x00000014 

0x12345678 

0x12345678 
0x00000014 

  Loading data from memory 
R6 <-- mem[0x14] 
Assume &A = 0x14 

0x00 addi R5,R0,0x14 
0x04 lw R6,R5  
0x08  
0x0C 
0x10 
0x14 0x12345678 
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0x00 

Memory Operations - Loads (con’t) 

  Address can also be computed by adding an offset to register  
LW  R6, 0(R5) 
R6 <-- memory[0 + R5] 

 
 0x00 addi R5,R0,0x14  

0x04 lw   R6, 0( R5)  
0x08 
0x0C 
0x10  

0x14  0x12345678              
                 

4 bytes wide 

   

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 

0x00000004 

     lw  R6,0(R5) 

0x00000014 

0x00000014 

0x12345678 

0x12345678 



   28 

Try This: Memory Operations - Stores 

  Storing data to memory works essentially the same way 
A = 200;   let’s assume &A = 0x18 
mem[0x18] <-- 200 

 
 0x00 addi R5,R0,0x18 

0x04 addi R6,R0,200 
0x08 sw   R6,0( R5)  
0x0C 
0x10 
0x14 0x12345678     .  
0x18 we store A here 
0x20 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

to memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 
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Try This: Memory Operations - Stores 

  Storing data to memory works essentially the same way 
A = 200;   let’s assume &A = 0x18 
mem[0x18] <-- 200 

 
 0x00 addi R5,R0,0x18 

0x04 addi R6,R0,200 
0x08 sw   R6,0( R5)  
0x0C 
0x10 
0x14 0x12345678     .  
0x18 we store A here 
0x20 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

to memory 

control 
logic 

reg 0 
reg 1 
reg 2 
reg 3 
reg 4      
reg 5 
reg 6 
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  add  R8, R17, R18 
  is stored in binary format as 

00000010    00110010    01000000   00100000 
  MIPS lays out instructions into “fields” 
 

 
 
 
  

  op  operation of the instruction 
  rs  first register source operand 
  rt  second register source operand 
  rd  register destination operand 
  shamt  shift amount 
  funct  function (select type of operation) 

  add = 3210 
  sub = 3410 

31         26  25         21  20          16  15           11  10            6  5           0  
000000     10001       10010       01000       00000   100000 
    op              rs                 rt                rd            shamt          funct 

Instruction Format (Machine Language) 

Why are there 
5 bits in the 

register field? 
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MIPS Instruction Formats 

  More than more than one format for instructions, usually 
  Different kinds of instructions need different kinds of fields, data 
  Example:  3 MIPS instruction formats 

 
 
 
 

N a me F iel d s C o m m e nt s 
F i e l d   Si ze 6 bi ts 5   bi ts 5   bi ts 5   bi ts 5   bi ts 6  b i t s A l l MIPS instructions 32 bits 
R -f or m at o p rs rt rd s h mt f un c t Arithmetic instruction format 

I -f or m at o p rs rt a d dr e ss / i m m ed iat e Transfer (load/store), branch, 
immediate format 

    

J- f o r m at o p tar ge t a d dr e ss J ump instruction  format 

Questions: 
 I-format:  How big an immediate can you have? 
   Is that big enough? (What’s the maximum value?) 
 J-format:  How far can you jump in instructions? 
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Constants 

    Small constants are used quite frequently (50% of operands)  
 e.g.,  A = A + 5; 
  B = B + 1; 
  C = C - 18; 

  Solutions?  Why not…. 
  …just put 'typical constants' in memory and load them.   
  …just create hard-wired registers (like $zero) for constants like one. 

 
  MIPS Instructions: 
  addi $29, $29, 4   

 slti $8,  $18, 10  
 andi $29, $29, 6 
 ori  $29, $29, 4 

 
  How do we make this work? 

How do we get these 
constants in a efficient way? 
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Loading Immediate Values 

  How do we put a constant (immediate) value into a register? 
  Put the value 100 into register R6:    R6 <- R0 + 100 = 0+100 = 100 

 
 0x00 addi R6,R0,100  

0x04 

4 bytes wide 

  
 

Program Counter 

Instruction register 

Memory Address  Register 

from memory 

control 
logic 

reg 5     
reg 6 
reg 7 
reg 8 
reg 9 
reg 10 
reg 11 
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MIPS Machine Language  

  From back cover of Patterson and Hennessy 
N am e F orm at E x a mp le C o mm en t s 

6b it s 5 b i ts 5  b i ts 5  b i ts 5 b i ts 6b it s 
a d d R 0 2 3 1 0 3 2 a d d $ 1, $ 2, $3 
s u b R 0 2 3 1 0 3 4 s u b  $ 1, $ 2, $3 
a d d i I 8 2 1 1 0 0 a d d i  $ 1, $ 2, 1 0 0 
a d du R 0 2 3 1 0 3 5 a d d u $ 1,  $ 2,  $ 3 
a n d R 0 2 3 1 0 3 6 a n d $ 1,  $ 2,  $ 3 
o r R 0 2 3 1 0 3 7 o r  $ 1 ,  $ 2,  $ 3 
l w I 3 5 2 1 1 0 0 l w  $ 1,  1 0 0 ( $ 2 ) 
s w I 4 3 2 1 1 0 0 s w $1 ,   10 0 ( $ 2 ) 
beq I 4 1 2 25 beq  $1 , $2 ,   10 0 
j J 2 25 0 0 j  1 0 0 0 0 
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Loading Immediate Values 

  What’s the largest immediate value that can be  
loaded into a register? 
 
 
 
 
 
 
 
 

  But, then, how do we load larger numbers? 

N a me F iel d s C o m m e nt s 
F i e l d   Si ze 6 bi ts 5   bi ts 5   bi ts 5   bi ts 5   bi ts 6  b i t s A l l M I P S   i n s t r u c t i o n s   3 2   bi ts 
R -f or m at o p rs rt rd s h mt f un c t Ar i th me ti c  instru c ti o n  f or m at 

I -f or m at o p rs rt a d dr e ss / i m m ed iat e T rans fe r,  b ra n c h , i mme diat e 
f or m at 

J- f o r m at o p tar ge t a d dr e ss J u mp  instr u cti o n  f or m at 
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  Example:  lui    R8, 255 
 
 
 
 
 
Transfers the immediate field into the register’s top (upper) 16 
bits and fills the register’s lower 16 bits with zeros 
R8[31:16] <--  IR[15:0]  ; top 16 bits of R8 <-- bottom 16 bits of the IR 
R8[15:0]   <-- 0  ; bottom 16 bits of R8 are zeroed 

Load Upper Immediate 

31         26  25         21  20          16  15           11   10            6  5           0  
001111     00000      01000        0000 0000   1111    1111 
op              rs             rt              immediate 

31                                                16  15                                                   0  

 0000  0000   1111   1111  0000  0000   0000  0000 Reg. 8 
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  We'd like to be able to load a 32 bit constant into a register 
  Must use 2 instructions: first, new "load upper immediate" instruction 

 lui $t0, 1010101010101010 

Larger Constants? 

1010101010101010 0000000000000000 

ori 0000000000000000 1010101010101010 

1010101010101010 1010101010101010 

1010101010101010 0000000000000000 

filled with zeros 

  Second,  must then get the lower order bits right, i.e., 
         ori $t0, $t0, 1010101010101010 
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Branch here if 
$s0 != $s1 

Control (Instruction Sequencing) 

    Decision making instructions 
  These instructions alter the “control flow” 
  Means they  change the "next" instruction to be executed 

 
  MIPS conditional branch instructions: 

 
 bne $t0, $t1, Label  
 beq $t0, $t1, Label  

 
  Example:   if (i==j) h = i + j;  

  
  bne $s0, $s1, Label 
  add $s3, $s0, $s1 
 Label:  .... 
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Go here  
always 

Go here if  
$s4 != $s5 

Control (Instruction Sequencing) 

  MIPS unconditional branch instructions: 
 j  label 

  Example: 
 

 if (i!=j)   beq $s4, $s5, Lab1 
     h=i+j;   add $s3, $s4, $s5 
 else    j Lab2 
     h=i-j;   Lab1: sub $s3, $s4, $s5 
    Lab2: ... 

 

  OK, so with these--Can you build a simple  for(…) {…}   
loop? 
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Branch Instructions 

  They exist because we need to change the program counter 
 if ( a == b)  c = 1; 
 else  c = 2; 

  bne  (branch not equal) compares regs and branches if regs “!=“ 
       j  (jump) goto address, unconditional branch 

 
 

Assume  R5 == a;  R6 == b;  R7 == c 
 
Add   Mnemonic  Description (comment) 
0x00  bne   R5, R6, 0x0C  ; if ( R5 != R6) goto 0x0C    
0x04  addi  R7, R0, 1  ; R7 <-- 1 + 0     
0x08  j     0x10  ; goto 0x10                   
0x0C  addi  R7, R0, 2  ; R7 <-- 2 + 0 
0x10                                                                                          
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Branch Instructions 

  Branch instructions are used to implement C-style loops 
 for ( j = 0; j < 10; j++){ 
        b = b +  j; 
 } 

 
 

assume R5 == j;  R6 == b;  
 
Add  Mnemonic  Description (comment) 
0x00  addi R5, R0, 0  ; R5  0 + 0 
0x04  addi R1, R0, 10  ; R1  0 + 10 
0x08  beq  R5, R1, 0x18  ; if ( R5 == 10) goto 0x18 
0x0C  add  R6, R6, R5  ; R6  R6 + R5 
0x10  addi R5, R5, 1  ; R5  R5 + 1 
0x14  j    0x08  ; goto 0x08 
0x18  …  ; pop out of loop, continue 
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Addresses in Branches and Jumps 

    Instructions: 
 bne $t4,$t5,Label  Next instruction is at Label if $t4 != $t5 
 beq $t4,$t5,Label  Next instruction is at Label if  $t4 == $t5 
 j Label    Next instruction is at Label  
 

  Formats: 
 
 
 
 

  Hey, the addresses in these fields are not 32 bits ! 
 — How do we handle this? 

   op    rs    rt    16 bit address 

    op       26 bit address 

I 

J 
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  Instructions: 
 bne $t4,$t5,Label  Next instruction is at Label if $t4 != $t5 
 beq $t4,$t5,Label  Next instruction is at Label if  $t4 == $t5 
 j Label    Next instruction is at Label  
 

  Formats: 
 
 

  Could specify a register and add it to this 16b address 
  Use the PC + (16-bit relative word address to find the address to jump to) 
  Note:  most branches are local (“principle of locality”) 

  Jump instructions just use the high order bits of PC  
  32-bit jump address = 4 (most significant) bits of PC concatenated with 26-bit word 

address (or 28-bit byte address) 
  Address boundaries of 256 MB 

 

Addresses in Branches 

   op    rs    rt    16 bit address 

 
I 

J    op       26 bit address 
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Branch Instructions 

  Example 
 for ( j = 0; j < 10; j++){ 
        b = b +  j; 
 } 

assume R5 == j;  R6 == b;  
Add  Mnemonic  Description (comment) 
0x00  addi R5, R0, 0  ; R5 <-- 0 + 0 
0x04  addi R1, R0, 10  ; R1 <-- 0 + 10 
0x08  beq  R5, R1, 0x18  ; if ( R5 == 10) goto 0x18 
0x0C  add  R6, R6, R5  ; R6 <-- R6 + R5 
0x10  addi R5, R5, 1  ; R5  R5 + 1 
0x14  j    0x08  ; goto 0x08 
0x18  …  ; pop out of loop, continue 
 
0x08    PC = PC + 4 + (3<<2) 
 
0x14                                  PC=[PC(31:28):2]<<2 

5 1 3 4 

2 2 
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Conditional Branch Distance 

Bits of Branch Displacement 

0% 
10% 
20% 
30% 
40% 

0 1 2 3 4 5 6 7 8 9 
10

 
11

 
12

 
13

 
14

 
15

 

Int. Avg. FP Avg. 
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Conditional Branch Addressing 

  PC-relative since most branches  are relatively close  to the 
current PC address 

  At least 8 bits suggested  (± 128 instructions) 
  Compare Equal/Not Equal most important for integer programs 

(86%) 

Frequency of comparison   
types in branches  

0% 50% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.
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Full MIPS Instruction Set 
 

add add $1, $2, $3 $1 = $2+$3
sub sub $1,$2, $3 $1 = $2 - $3
add immediate addi $1, $2, 100 $1 = $2 + 100
add unsigned addu $1, $2, $3 $1 = $2 + $3
subtract unsigned subu $1, $2, $3 $1 = $2 - $3
add imm. unsigned addiu $1, $2, 100 $1 = $2 + 100
multiply mult $2, $3 hi, lo = $2 * $3
multiply unsigned multu $2, $3 hi, lo = $2 * $3
divide div $2, $3 lo = $2/$3, hi  = $2 mod $3
divide unsigned divu $2, $3 lo = $2/$3, hi  = $2 mod $3
move from hi mfhi $1 $1 = hi
move from low mflo $1 $1 = lo
and and $1, $2, $3 $1 = $2 & $3
or or $1, $2, $3 $1 = $2 | $3
and immediate andi $1, $2, 100 $1 = $2 & 100
or immediate ori $1, $2, 100 $1 = $2 | 100
shift left logical sll $1, $2, 10 $1 = $2 << 10
shift right logical srl $1, $2, 10 $1 = $2 >> 10
load word lw $1, 100($2) $1 = memory[$2+100]
store word sw $1, 100($2) memory[$2 + 100] = $1
load upper immediate lui $1, 100 $1 = 100 * 2^16
branch on equal beq $1, $2, 100 if ($1 == $2) go to PC + 4 + 100*4
branch on not equal bne $1, $2, 100 if ($1 != $2) go to PC + 4 + 100*4
set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
set less than unsigned sltui $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set less than immediate unsigned sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
jump j 10000 goto 10000
jump register jr $31 goto $31
jump and link jal 100000 $31 = PC + 4; goto 10000
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Generic Examples of Instruction Format Widths 

Variable: 
… 

… 

Better for generating compact code 

Easier to use for generating assembly code 

Fixed: 
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Summary of Instruction Formats 

  If code size is most important, use variable length instructions 

  If performance is most important, use fixed length instructions 

  Recent embedded machines (ARM, MIPS) have  an optional mode to 
execute subset of 16-bit wide instructions (Thumb, MIPS16); per 
procedure, decide which one of performance or density is more 
important 
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Observation 

  “Simple” computations, movements of data, etc., are not always 
“simple” in terms of a single, obvious assembly instruction 
  Often requires a sequence of even more primitive instructions 
  One options is to try to “anticipate” every such computation, and try to 

provide an assembly instruction for it 
(Complex Instruction Set Computing = CISC) 

  PRO:  assembly programs are easier to write by hand 
  CON:  hardware gets really, really complicated by instructions 

           used very rarely.  Compilers might be harder to write 
  Other option is to provide a small set of essential primitive instructions 

(Reduced Instruction Set Computing = RISC) 
  CON:  anything in a high level language turns into LOTS of 

           instructions in assembly language 
  PRO:  hardware and compiler become easier to design, cleaner,  

           easier to optimize for speed, performance 
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Summary 

  Architecture = what’s visible to the program about the machine 
  Not everything in the deep implementation is “visible” 

  Microarchitecture = what’s invisible in the deep implementation 

A big piece of the ISA = assembly language structure 
  Primitive instructions, execute sequentially, atomically 
  Issues are formats, computations, addressing modes, etc 

  We do one example in some detail:  MIPS  (from P&H Chap 3) 
  A RISC machine, its virtue is that it is pretty simple 
  Can pick up the assembly language without too much memorization 

  Next lecture 
  Addressing modes 
 


