1.3 Computer-System Architecture 15

is restarted. This solution is expensive, since it involves special hardware and
considerable hardware duplication.

The multiple-processor systems in use today are of two types. Some
systems use asymmetric multiprocessing, in which each processor is assigned
a specific task. A boss processor controls the system; the other processors either
look to the boss for instruction or have predefined tasks. This scheme defines
a boss—worker relationship. The boss processor schedules and allocates work
to the worker processors.

The most common systems use symmetric multiprocessing (SMP), in
which each processor performs all tasks within the operating system. SMP
means that all processors are peers; no boss—worker relationship exists
between processors. Figure 1.6 illustrates a typical SMP architecture. Notice
that each processor has its own set of registers, as well as a private—or local
—-cache. However, all processors share physical memory. An example of an
SMP system is AIX, a commercial version of UNIX designed by IBM. An AIX
system can be configured to employ dozens of processors. The benefit of this
model is that many processes can run simultaneously—N processes can run
if there are N CPUs—without causing performance to deteriorate significantly.
However, we must carefully control I/0 to ensure that the data reach the
appropriate processor. Also, since the CPUs are separate, one may be sitting
idle while another is overloaded, resulting in inefficiencies. These inefficiencies
can be avoided if the processors share certain data structures. A multiprocessor
system of this form will allow processes and resources—such as memory —
to be shared dynamically among the various processors and can lower the
variance among the processors. Such a system must be written carefully, as
we shall see in Chapter 5. Virtually all modern operating systems—including
Windows, Mac OS X, and Linux—now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one boss and
multiple workers. For instance, Sun Microsystems’ operating system SunOS
Version 4 provided asymmetric multiprocessing, whereas Version 5 (Solaris) is
symmetric on the same hardware.

Multiprocessing adds CPUs to increase computing power. If the CPU has an
integrated memory controller, then adding CPUs can also increase the amount

CPUg CPU; CPU,
registers registers registers
cache cache cache
memory

Figure 1.6 Symmetric multiprocessing architecture.



16

Chapter 1 Introduction

of memory addressable in the system. Either way, multiprocessing can cause
a system to change its memory access model from uniform memory access
(UMA) to non-uniform memory access (NUMA). UMA is defined as the situation
in which access to any RAM from any CPU takes the same amount of time. With
NUMA, some parts of memory may take longer to access than other parts,
creating a performance penalty. Operating systems can minimize the NUMA
penalty through resource management, as discussed in Section 9.5.4.

A recent trend in CPU design is to include multiple computing cores
on a single chip. Such multiprocessor systems are termed multicore. They
can be more efficient than multiple chips with single cores because on-chip
communication is faster than between-chip communication. In addition, one
chip with multiple cores uses significantly less power than multiple single-core
chips.

It is important to note that while multicore systems are multiprocessor
systems, not all multiprocessor systems are multicore, as we shall see in Section
1.3.3. In our coverage of multiprocessor systems throughout this text, unless
we state otherwise, we generally use the more contemporary term multicore,
which excludes some multiprocessor systems.

In Figure 1.7, we show a dual-core design with two cores on the same
chip. In this design, each core has its own register set as well as its own local
cache. Other designs might use a shared cache or a combination of local and
shared caches. Aside from architectural considerations, such as cache, memory,
and bus contention, these multicore CPUs appear to the operating system as
N standard processors. This characteristic puts pressure on operating system
designers—and application programmers—to make use of those processing
cores.

Finally, blade servers are a relatively recent development in which multiple
processor boards, I/O boards, and networking boards are placed in the same
chassis. The difference between these and traditional multiprocessor systems
is that each blade-processor board boots independently and runs its own
operating system. Some blade-server boards are multiprocessor as well, which
blurs the lines between types of computers. In essence, these servers consist of
multiple independent multiprocessor systems.

CPU coreq CPU core4
registers registers
cache cache
memory

Figure 1.7 A dual-core design with two cores placed on the same chip.



1.3 Computer-System Architecture 17

1.3.3 Clustered Systems

Another type of multiprocessor system is a clustered system, which gathers
together multiple CPUs. Clustered systems differ from the multiprocessor
systems described in Section 1.3.2 in that they are composed of two or more
individual systems—or nodes—joined together. Such systems are considered
loosely coupled. Each node may be a single processor system or a multicore
system. We should note that the definition of clustered is not concrete; many
commercial packages wrestle to define a clustered system and why one form
is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network LAN
(as described in Chapter 17) or a faster interconnect, such as InfiniBand.

Clustering is usually used to provide high-availability service—that is,
service will continue even if one or more systems in the cluster fail. Generally,
we obtain high availability by adding a level of redundancy in the system.
A layer of cluster software runs on the cluster nodes. Each node can monitor
one or more of the others (over the LAN). If the monitored machine fails,
the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes
the active server. In symmetric clustering, two or more hosts are running
applications and are monitoring each other. This structure is obviously more
efficient, as it uses all of the available hardware. However it does require that
more than one application be available to run.

Since a cluster consists of several computer systems connected via a
network, clusters can also be used to provide high-performance computing
environments. Such systems can supply significantly greater computational
power than single-processor or even SMP systems because they can run an
application concurrently on all computers in the cluster. The application must
have been written specifically to take advantage of the cluster, however. This
involves a technique known as parallelization, which divides a program into
separate components that run in parallel on individual computers in the cluster.
Typically, these applications are designed so that once each computing node in
the cluster has solved its portion of the problem, the results from all the nodes
are combined into a final solution.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Chapter 17). Parallel clusters allow
multiple hosts to access the same data on shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters usually require the use of special versions of software and
special releases of applications. For example, Oracle Real Application Cluster
is a version of Oracle’s database that has been designed to run on a parallel
cluster. Each machine runs Oracle, and a layer of software tracks access to the
shared disk. Each machine has full access to all data in the database. To provide
this shared access, the system must also supply access control and locking to



18

Chapter 1 Introduction

BEOWULF CLUSTERS

Beowulf clusters are designed to solve high-performance computing tasks.
A Beowulf cluster consists of commodity hardware—such as personal
computers—connected via a simple local-area network. No single specific
software package is required to construct a cluster. Rather, the nodes use a
set of open-source software libraries to communicate with one another. Thus,
there are a variety of approaches to constructing a Beowulf cluster. Typically,
though, Beowulf computing nodes run the Linux operating system. Since
Beowulf clusters require no special hardware and operate using open-source
software that is available free, they offer a low-cost strategy for building
a high-performance computing cluster. In fact, some Beowulf clusters built
from discarded personal computers are using hundreds of nodes to solve
computationally expensive scientific computing problems.

ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 10.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability. Figure 1.8 depicts the general structure
of a clustered system.

interconnect interconnect
computer computer computer

>

storage area
network
v

Figure 1.8 General structure of a clustered system.



1.4

1.4 Operating-System Structure 19

: operating system
job 1
job 2
job 3
job 4
Max

Figure 1.9 Memory layout for a multiprogramming system.

Operating-System Structure

Now that we have discussed basic computer-system organization and archi-
tecture, we are ready to talk about operating systems. An operating system
provides the environment within which programs are executed. Internally,
operating systems vary greatly in their makeup, since they are organized
along many different lines. There are, however, many commonalities, which
we consider in this section.

One of the most important aspects of operating systems is the ability
to multiprogram. A single program cannot, in general, keep either the CPU
or the I/0 devices busy at all times. Single users frequently have multiple
programs running. Multiprogramming increases CPU utilization by organizing
jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.9). Since, in general, main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the job pool.
This pool consists of all processes residing on disk awaiting allocation of main
memory.

The set of jobs in memory can be a subset of the jobs kept in the job
pool. The operating system picks and begins to execute one of the jobs in
memory. Eventually, the job may have to wait for some task, such as an 1/0
operation, to complete. In a non-multiprogrammed system, the CPU would sit
idle. In a multiprogrammed system, the operating system simply switches to,
and executes, another job. When that job needs to wait, the CPU switches to
another job, and so on. Eventually, the first job finishes waiting and gets the
CPU back. As long as at least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy:.)



20

Chapter 1 Introduction

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Time sharing (or multitasking) is a logical extension of
multiprogramming. In time-sharing systems, the CPU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive computer system, which provides
direct communication between the user and the system. The user gives
instructions to the operating system or to a program directly, using a input
device such as a keyboard, mouse, touch pad, or touch screen, and waits for
immediate results on an output device. Accordingly, the response time should
be short—typically less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only a little CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into
memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform 1/0.
I/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive 1/0
typically runs at “people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user’s typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time sharing and multiprogramming require that several jobs be kept
simultaneously in memory. If several jobs are ready to be brought into memory,
and if there is not enough room for all of them, then the system must choose
among them. Making this decision involves job scheduling, which we discuss
in Chapter 6. When the operating system selects a job from the job pool, it loads
that job into memory for execution. Having several programs in memory at
the same time requires some form of memory management, which we cover in
Chapters 8 and 9. In addition, if several jobs are ready to run at the same time,
the system must choose which job will run first. Making this decision is CPU
scheduling, which is also discussed in Chapter 6. Finally, running multiple
jobs concurrently requires that their ability to affect one another be limited in
all phases of the operating system, including process scheduling, disk storage,
and memory management. We discuss these considerations throughout the
text.

In a time-sharing system, the operating system must ensure reasonable
response time. This goal is sometimes accomplished through swapping,
whereby processes are swapped in and out of main memory to the disk. A more
common method for ensuring reasonable response time is virtual memory, a
technique that allows the execution of a process that is not completely in



1.5

1.5 Operating-System Operations 21

memory (Chapter 9). The main advantage of the virtual-memory scheme is that
it enables users to run programs that are larger than actual physical memory.
Further, it abstracts main memory into a large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This arrangement frees programmers from concern over memory-storage
limitations.

A time-sharing system must also provide a file system (Chapters 11 and
12). The file system resides on a collection of disks; hence, disk management
must be provided (Chapter 10). In addition, a time-sharing system provides
a mechanism for protecting resources from inappropriate use (Chapter 14).
To ensure orderly execution, the system must provide mechanisms for job
synchronization and communication (Chapter 5), and it may ensure that jobs
do not get stuck in a deadlock, forever waiting for one another (Chapter 7).

Operating-System Operations

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no I/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
or a trap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
be performed. The interrupt-driven nature of an operating system defines
that system’s general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided to deal with the interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a
user program could cause problems only for the one program running. With
sharing, many processes could be adversely affected by a bug in one program.
For example, if a process gets stuck in an infinite loop, this loop could prevent
the correct operation of many other processes. More subtle errors can occur
in a multiprogramming system, where one erroneous program might modify
another program, the data of another program, or even the operating system
itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

1.5.1 Dual-Mode and Multimode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.



22

Chapter 1 Introduction

user process
user mode
user process executing calls system call return from system call (mode bit =1)
\ /
\ V4
A 7
k | trap return
ermne mode bit =0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Figure 1.10 Transition from user to kernel mode.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer
to indicate the current mode: kernel (0) or user (1). With the mode bit, we can
distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill
the request. This is shown in Figure 1.10. As we shall see, this architectural
enhancement is useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged
instruction. Some other examples include 1/0 control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

The concept of modes can be extended beyond two modes (in which case
the CPU uses more than one bit to set and test the mode). CPUs that support
virtualization (Section 16.1) frequently have a separate mode to indicate when
the virtual machine manager (VMM)—and the virtualization management
software—is in control of the system. In this mode, the VMM has more
privileges than user processes but fewer than the kernel. It needs that level
of privilege so it can create and manage virtual machines, changing the CPU
state to do so. Sometimes, too, different modes are used by various kernel



