
MODUL

STANDARISASI DAN INTEROPERABILITAS

Argonaut Profiles

● FHIR allows a large amount of variability between systems

● Most EHR applications require very little variability in order to work correctly

● To address this fact, US implementors have created a set of profiles for this purpose in the

US called the “Argonaut Profiles”

Argonaut provides constraints on a set of FHIR types commonly used for EHR Applications:

● Patient

● Condition

● Observation, DiagnosticReport

● Medication, MedicationStatement, MedicationOrder

● AllergyIntolerance

● Immunization

● CarePlan

● Goal

Each resource is constrained for use by an EHR Application. For example:

● Patient must have a name, gender, date of birth, and at least 1 identifier

● Extensions are specified for race and ethnicity

● A communication language should be specified

These requirements may not be perfect for Vietnam, but they are a great starting point

FHIR Testing : Technical and community

FHIR Testing

One of the best parts of working with FHIR is the existence of great test servers

● The following servers are available for free for testing around the world (and there are many

more):

Grahame’s Server:

http://test.fhir.org/r3

James’s Server:

http://hapi.fhir.org/baseDstu3

FHIR Community

Another great thing about FHIR is the large, helpful, international community.

● The focal point of this community is chat.fhir.org (Zulip)

http://test.fhir.org/r3
http://hapi.fhir.org/baseDstu3

● We have created a “stream” in Zulip for Vietnam, but there are many others as well

http://chat.fhir.org

Community Projects

FHIR also has a very large open source community devoted to helping implementors on various

platforms:

● Java: HAPI FHIR (We will cover this tomorrow)

● .NET / C# API: https://github.com/ewoutkramer/fhir-net-api

● JavaScript FHIR.js: https://github.com/FHIR/fhir.js

● Python Client: https://github.com/smart-on-fhir/client-py

● iOS / Swift: https://github.com/smart-on-fhir/Swift-FHIR

● Android / Java: https://github.com/jamesagnew/hapi-fhir

● Pascal: https://github.com/grahamegrieve/fhirserver

Testing

● FHIR defines a special resource called TestScript which can be used to specify client and

server tests

● There are currently two platforms for executing these tests:

○ Crucible (free tool): https://projectcrucible.org/

○ Touchstone (paid tool): http://touchstone.com

Community Starter Projects

The following link has a collection of starter projects in various languages:

https://github.com/furore-fhir/fhirstarters

Validation

● You are only interoperable if you can produce valid FHIR

● There are several kinds of valid:

○ Valid JSON / XML

○ Valid FHIR

○ Valid FHIR for a specific purpose

● FHIR servers define an endpoint called /$validate which can be used to validate FHIR

payloads, e.g.

POST /base/Patient/$validate

Content-Type: application/fhir+json

{

http://chat.fhir.org/
https://github.com/ewoutkramer/fhir-net-api
https://github.com/FHIR/fhir.js
https://github.com/smart-on-fhir/client-py
https://github.com/smart-on-fhir/Swift-FHIR
https://github.com/jamesagnew/hapi-fhir
https://github.com/grahamegrieve/fhirserver
https://projectcrucible.org/
https://github.com/furore-fhir/fhirstarters

 “resourceType”: “Patient”

 “name”: * +

}

Profiles

● To make FHIR useful in a specific context, we often want to create Profiles

○ E.g. “In my system, Observations will use LOINC codes”

● FHIR defines a special set of resources which may be used to constrain FHIR for a specific

use:

○ StructureDefinition: Set field cardinality, add terminology binding, add extensions

○ CodeSystem & ValueSet: Define sets of codes for a given purpose

● Tools exist to validate against a Profile (we will cover HAPI on Thursday)

FHIR Versions

Versions

● The FHIR specification itself has had several releases:

○ FHIR DSTU1 (v0.0.82) - 2014

○ FHIR DSTU2 (v1.0.2) - 2015

○ FHIR STU3 - (v3.0.1) - 2017

○ FHIR R4 - Under development

● The version names mean slightly different things but people often use them interchangeably

(DSTU3 / STU3 / R3)

Vietnam Affiliate and Implementation Guide

Making FHIR work for you

• International Specification defines overall framework

• Countries / Regions / Vendors / Institutions publish adaptations to local culture/regulations

etc

• Individual projects use conformance resources to describe the project rules

• Terminology usage rules

• Rules about elements, usage, content flows

• Extensions

• All of this can be published through http://registry.fhir.org

Example National Profiles

• US: http://www.hl7.org/fhir/us/core/

• Australia: http://build.fhir.org/ig/hl7au/au-fhir-base/

• Concerns:

• National identifiers

• National code systems

• Specific additional patient information (race/ethnicity)

• Basic Documentation, Community Governance

Candidate National Vietnamese IG

• Found at: http://build.fhir.org/ig/grahamegrieve/vietnam-poc/index.html

• Demonstration of the production of this

HL7 Affiliate for Vietnam

• Some formal organization needs to manage the vietnamese national implementation guide

• Needs to be connected to HL7

• Best to be an HL7 Affiliate

• Registration in process

Affiliate Requirements

• Must be an NGO

• Must accept any Vietnamese organization as a member

• Must have a constitution with leadership elected by members

• Can work very closely with Department of Health

Welcome to the First FHIR Connectathon In Vietnam

Connectathon Goals

The FHIR Connectathon is an event for implementers. It is held 3 times each year by HL7, and often

in other contexts like this one.

We have 2 equally important goals:

● Helping implementers learn to use the FHIR specification

● Helping to develop the FHIR specification

(We often use Connectathons to try new ideas too!)

http://build.fhir.org/ig/hl7au/au-fhir-base/index.html
http://build.fhir.org/ig/grahamegrieve/vietnam-poc/index.html

Where To Start

If you are a beginner:

● Do the Postman tutorial with James: https://goo.gl/5a5RQg

If you have your own application:

● Enter your details into the spreadsheet: http://tiny.cc/tu15oy

Advanced features:

● Security, Mapping existing data,

FHIR and HAPI FHIR

The FHIR Data Model

• FHIR’s model is available online

• http://hl7.org/fhir/

• The FHIR data model is useful even by itself

• Take advantage of the collective work of 100s of people!

Data Types: Primitives

https://goo.gl/5a5RQg
http://tiny.cc/tu15oy
http://hl7.org/fhir/

Other Model Concepts: Identifiers

• FHIR resources are scoped around identifiable things (Patients, Orders, Locations, etc.)

• Identifiers consist of a System and an Identifier

• For example:

• System (URI): http://uhn.ca/ns/mrn

• Identifier: 7000135

• Other systems:

• http://hl7.org/fhir/sid/us-ssn (US SSN)

• urn:oid:2.16.840.1.113883.4.3.1 (Alabama Driver’s License)

Identifier Systems

● Old identifiers are sometimes OIDs, example: 0.1.2.3.4.5

● New identifiers are URLs

● Creating your own is fine!

http://hospital.vn/patient

Other Model Concepts: Coded Values

• Many things are drawn from a set of allowable coded values

• A coded value consists of a Code System and a Code, and optionally a Display Text

• For example:

• System: http://snomed.info/sct

• Code: 267038008

• Display: Edema (finding)

Examples

HAPI

● HAPI FHIR Beginner? Intermediate? Expert?

● Using FHIR today?

Design Goals

● Use Anywhere

● Apache 2.0 License for all components

● Minimal dependencies

● Be Flexible

● Loosely coupled, pluggable components

● Be Powerful

● “Borrow” all the best ideas from existing frameworks: JAX-WS, Springframework,

.NET FHIR API ☺

 ..etc..

Structure Classes:

Docs

● JavaDocs for structures are available here:

 http://hapifhir.io/apidocs-dstu2/index.html

 http://hapifhir.io/apidocs-dstu3/index.html

Creating A Resource

public class Example01_CreateAPatient {

 public static void main(String[] theArgs) {

 // Create a resource instance

 Patient pat = new Patient();

 // Add a "name" element

 HumanName name = pat.addName();

 name.setFamily("Simpson").addGiven("Homer").addGiven("J");

 // Add an "identifier" element

 Identifier identifier = pat.addIdentifier();

 identifier.setSystem("http://acme.org/MRNs").setValue("7000135");

http://hapifhir.io/apidocs-dstu2/index.html
http://hapifhir.io/apidocs-dstu3/index.html

 // Model is designed to be chained

 pat.addIdentifier().setSystem("http://acme.org/MRNs").setValue("12345");

 }

}

Use your IDE Autocomplete

public class Example01_CreateAPatient {

 public static void main(String[] theArgs) {

 // Create a resource instance

 Patient pat = new Patient();

 // Add a "name" element

 HumanName name = pat.addName();

 name.setFamily("Simpson").addGiven("Homer").addGiven("J");

 // Add an "identifier" element

 Identifier identifier = pat.addIdentifier();

 identifier.setSystem("http://acme.org/MRNs").setValue("7000135");

 // Model is designed to be chained

 pat.addIdentifier().setSystem("http://acme.org/MRNs").setValue("12345");

 }

}

Enumerated Types

public class Example02_EnumeratedTypes {

 public static void main(String[] theArgs) {

 Patient pat = new Patient();

 pat.addName().setFamily("Simpson").addGiven("Homer").addGiven("J");

 pat.addIdentifier().setSystem("http://acme.org/MRNs").setValue("7000135");

 // Enumerated types are provided for many coded elements

 ContactPoint contact = pat.addTelecom();

 contact.setUse(ContactPoint.ContactPointUse.HOME);

 contact.setSystem(ContactPoint.ContactPointSystem.PHONE);

 contact.setValue("1 (416) 340-4800");

 pat.setGender(Enumerations.AdministrativeGender.MALE);

 }

}

Primitive Types

Server Framework

Server Architecture

● HAPI FHIR provides a REST Server framework

● Based on standard JEE/Servlet 2.5+

(Tomcat, Glassfish, Websphere, JBoss, etc)

● Inspired by (but not based on) JAX-RS, RestEasy, Spring REST, etc.

* A JAX-RS HAPI module is available but it is not covered here

Server Architecture (2)

● You supply Java code for CRUD operations you want to support in your server

○ Read

○ Create

○ Update

○ Delete

○ Search

○ etc…

Server Architecture (3)

● HAPI FHIR will:

○ Handle parsing and encoding

○ Route URLs, Verbs, and parameters to appropriate methods

○ Understand FHIR escaping rules

public class Example01_StubResourceProvider implements IResourceProvider {

 public Class<? extends IBaseResource> getResourceType() {

 return Patient.class;

 }

 @Read

 public Patient read(@IdParam IdType theId) {

 return null; // populate this

 }

 @Create

 void create(@ResourceParam Patient thePatient) {

 // save the resource

 }

 @Search

 List<Patient> search(

 @OptionalParam(name="family") StringParam theFamily,

 @OptionalParam(name="given") StringParam theGiven

) {

 return null; // populate this

 }

}

Built-in Interceptors

● LoggingInterceptor

○ Log requests as they come in (highly configurable)

○ http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/LoggingIntercepto

r.html

● CorsInterceptor

○ Allow CORS (JavaScript requests from another server)

● RequestValidatingInterceptor and ResponseValidatingInterceptor

○ Validate payoads (more on validation later)

● ResponseHighlighterInterceptor

○ Use a nice HTML response for browsers

● AuthorizationInterceptor

○ Authorize individual requests (more shortly)

http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/LoggingInterceptor.html
http://hapifhir.io/apidocs/ca/uhn/fhir/rest/server/interceptor/LoggingInterceptor.html

Authorization Interceptor

● AuthorizationInterceptor is a class you extend to provide authorization (AuthZ) and

possibly authentication (AuthN) on your FHIR server

● You supply permissions that the requestor should have

● HAPI enforces these permissions

● E.g:

○ Based on an incoming header, the user has read access but not write access

public class Example03_AuthorizationInterceptor extends AuthorizationInterceptor {

 @Override

 public List<IAuthRule> buildRuleList(RequestDetails theRequestDetails) {

 // Process this header

 String authHeader = theRequestDetails.getHeader("Authorization");

 // Apply rules

 RuleBuilder builder = new RuleBuilder();

 builder

 .allow().metadata().andThen()

 .allow().read().allResources().withAnyId().andThen()

 .allow().write().resourcesOfType(Observation.class).inCompartment("Patient", new

IdType("Patient/123"));

 return builder.build();

 }

}

JPA Server Framework

JPA Server Framework

● HAPI JPA Server is a complete server implementation from the database schema up

● It includes:

○ All standard REST verbs (create, read, update, delete)

○ Many fancy REST features (ETag, conditional, patch, etc.)

○ Extensive search support including custom parameters

○ Terminology services

○ Subscription services

○ Many configurable settings

Lucene

● HAPI uses Apache Lucene to provide two features:

● Fulltext searching within resources (_text and _content parameters)

● Terminology Services

● Lucene stores its files on the filesystem

● Lucene can be safely disabled

Using JPA

● JPA Server is a collection of components that need to be “glued together”

● Examples are available which provide this glue

https://github.com/furore-fhir/fhirstarters/tree/master/java/hapi-fhirstarters-jpaserver-example

HAPI as a Potential Architecture for a National HER

Model: Service Façade

● This refers to building reusable services on existing sources of data

● Examples include:

○ Hospital and doctor EHRs

○ Laboratory systems

○ Radiology

● This pattern allows you to create consistent APIs (consistent in terms of data, API, Security,

etc.)

● HAPI RestfulServer can act as a bridge between existing databases and your FHIR interfaces

Model: Repository

● The HAPI Server can also act as a complete FHIR repository

● This could be useful as:

○ A Patient index

○ A central store of lab tests, radiology reports

○ A backend for applications

https://github.com/furore-fhir/fhirstarters/tree/master/java/hapi-fhirstarters-jpaserver-example

