
MODUL STANDARISASI DAN INTEROPERABILITAS

Modul 9

Disusun Oleh

 Tim Dosen

MODUL FHIR

Fast Health Interoperable Resources
(FHIR) Orientation / Specific objectives

Orientation / Specific objectives

● Introductions

● Plan for today and tomorrow

● Goals:

○ Learn how to use the FHIR RESTful API to read / write Patients & medical
information

○ Know what the Argonaut specifiation does

○ Create a FHIR Community

○ Create a national Implementation Guide

○ Discuss the use of FHIR for national health record

● Today: Mainly Tutorial

● Tomorrow: Mainly Practical exercises

○ Using POSTMan (https://www.getpostman.com/)

○ Or your own software if you want

What is FHIR?

• Fast Health Interoperable Resources

• A Community

• Meets under the umbrella of HL7 International

• Dedicated to making it easier to exchange healthcare information

• Uses web infrastructure to solve problems about healthcare

• A specification

• Freely available on the web (http://hl7.org/fhir)

• Describes how to exchange information about healthcare

• Adds healthcare knowledge to web standard infrastructure

FHIR : The Web for Healthcare

• A standard for a RESTful API based access to healthcare records

https://www.getpostman.com/
http://hl7.org/fhir

• Both read and write supported

• Different servers all provide the same API

• A client can use different servers without having to be rewritten

• Connects API to wider context of health

Understanding HTTP

● The protocol underlying the web

● Client (e.g. Web Browser) opens a connection to the server

● Client sends a „request‟ to the server asking for some content

● Server responds with an answer

● Client and Server disconnect

Client Request

● GET /resource HTTP/1.0
Accept: text/html
Accept-Language: en-ID

HTTP Method Codes

GET “/resource”

● Request for the server to return the content for “/document”

● The most common HTTP method

POST /handler
<content>

● Ask the server to do whatever it does with <content>

● Ue the method at /handler to do it

● E.g. when a user fills out a form on the browser

Server Response

● HTTP 200 OK
Accept: text/html
Accept-Language: vi-VI

● Content-Type: text/html

● Server: Apache 6.0

● <html>

● ….

● </html>

Understanding HTTP

● That‟s how the web works - built on top of the simple HTTP protocol

● Value comes from networks of content built on top of the „resources‟

Fetching a patient

● Start POSTMAN on your computer

● Choose GET

● Request URL = http://test.fhir.org/r3/Patient/Brian

● Add Header “Accept” = “application/fhir+xml”

● Hit “Send”

Patient Response

● 200 OK

● Headers:

○ Content-Type: application/fhir+xml

○ etc

● + a Patient resource in the body

Patient Response

● 200 OK

● Headers:

○ Content-Type: application/fhir+xml

○ etc

● + a Patient resource in the body

Patient Resource

<Patient xmlns="http://hl7.org/fhir">

 <id value="vietnam"/>

● “Patient” - identifies the resource

● “Id” - the local identifier (identifier assigned by this server)

Patient Resource

 <meta>

 <versionId value="2"/>

 <lastUpdated value="2017-10-22T15:18:17Z"/>

 </meta>

● “Meta” - information about the resource (rather than about the patient)

● “versionId” - assigned by the server - changes if the content changes

● “lastUpdated” - assigned by the server - to show to the user

 <text>

 <status value="generated"/>

 <div xmlns="http://www.w3.org/1999/xhtml">

 <!-- some xHTML -->

 </div>

 </text>

● Human readable display

● for if system doesn‟t understand the content - it can still display the content to a
user

<identifier>

 <active/>

 <name/>

 <address/>

 <telecom/>

 <gender/>

http://www.w3.org/1999/xhtml

 <birthDate/>

● Data about the patient (as in the specification)

● See http://hl7.org/fhir/patient.html

Server Failure

HTTP/1.1 422 Unprocessable Entity

Content-Length: 161

Content-Type: application/json+fhir

Date: Mon, 18 Aug 2014 01:43:30 GMT

{

 "resourceType": "OperationOutcome",

 "text": {

 "status": "generated",

 "div": "<div xmlns=\"http://www.w3.org/1999/xhtml\">MRN conflict

 - the MRN 123456 is already assigned to a different patient</div>"

 },

}

Finding the patient record

● Before you get Patient/vietnam - where did the „vietnam‟ come from?

● You have to know that (by magic)

○ You already knew it in your database from past interactions

○ You looked it up

● Looking up a patient: searching

Finding a patient

● Go to POSTMAN

● Choose GET (as before)

● Request URL = http://test.fhir.org/r3/Patient?name=XXXX

● Add Header “Accept” = “application/fhir+xml” (if not already present)

http://hl7.org/fhir/patient.html

● Hit “Send”

Patient Search Bundle

<Bundle xmlns="http://hl7.org/fhir">

 <id value="1fe46e90-79c9-411e-8e40-eec8425648"/>

 <meta>

 <lastUpdated value="2017-11-22T04:00:15Z"/>

 </meta>

 <type value="searchset"/>

 <total value="235"/>

● “Bundle” - a set of resources

● “Id” / “lastUpdated” - identifies the search

● “Type” - this is the result of a search

“Total” - the number of matching resources

 <link>

 <relation value="self"/>

 <url value="..."/>

 </link>

 <link>

 <relation value="last"/>

 <url value="..."/>

 </link>

● “link” - more information about the search

● “self” - what the server actually did for this search

● “First / last / prev / next” - paging through the result if there‟s too many

 <entry>

 <fullUrl value="http://test.fhir.org/r3/Patient/vietnam"/>

 <resource>

 <Patient xmlns="http://hl7.org/fhir">

● “Entry” - one for each match in the search

Since we searched Patients, each entry will contain a Patient

Finding a particular patient

● Go to POSTMAN

● Choose GET (as before)

● Request URL = http://test.fhir.org/r3/Patient?identifier=123456

● Add Header “Accept” = “application/fhir+xml”

● Hit “Send”

● You‟ll only get 0 or 1 patient back - if the server is enforcing identifiers are unique

Creating a patient

● Go to POSTMAN

● Choose POST this time

● Request URL = http://test.fhir.org/r3/Patient

● Add Header “Accept” = “application/fhir+xml”

● Copy patient from before into “body”

● Hit “Send”

Patient Response

● 201 Created

● Headers:

○ Location: http://test.fhir.org/r3/Patient/[new id]

○ Content-Type: application/fhir+xml

○ etc

● + The patient resource in the body

○ Usually what you just sent to the server

Other Operations

● PUT - update a patient resource

● DELETE - delete the patient resource

● Transaction

● Batch

● History

● Operations (later)

Security

● FHIR API doesn‟t say anything about security

● But you need security (nearly always)

● Add an authorization header:

Authorization: Basic Z2c6cGFzc3dvcmQ=

● Authorization header can be set lots of ways.

● We recommend OAuth using Smart:
http://hl7.org/fhir/smart-app-launch/

● Can test this using https://test.fhir.org/r3

Understanding Resources

Resources

Common characteristics of all FHIR resources:

• A URL that identifies it

• Common metadata

• A human-readable XHTML summary

• A set of defined common data elements

• An extensibility framework

Represented as either XML or JSON (or RDF)

JSON vs XML vs RDF

• Both JSON and XML represent exactly the same content

• Structure is the same, content can be interconverted

• XML and JSON have different tools, can be used differently

• JSON use more common than XML

http://hl7.org/fhir/smart-app-launch/

• Specification prefers XML because of comments (no comments in JSON)

• RDF research interest for rich hospitals. Ignore it

Web of resources

Steve ballmer – It‟s all about the developers

References

Procedure xmlns="http://hl7.org/fhir">

 <subject>

Lab

Report Related

Person

Patient

Practitioner

Location

 <reference value="Patient/23"/>

 </subject>

• Resources are independent – don‟t need to other resources to correctly interpret
a resource

• But resources reference each other extensively to form a web of information

• Need to resolve references to fully understand the data

• Reference is relative to server base URL

Rules for references

• References can be relative or absolute

• References don‟t have to be to the same server

• Server does not have to enforce integrity

• Clients need to cater for broken links

Narrative

• All resources carry an html representation of their content

• It‟s a clinical safety issue

• The receiver has a fall back option if the system is not sure it fully
understands the content

• It is not mandatory, but SHOULD be present

• In a closed eco-system, with extremely tight control and strong conformance
testing, it may not be necessary

• But things often change over time

• So using narrative is highly recommended

• Saves a lot of money downstream from the author

Narrative XHTML

• Narrative is XHTML. Formatting allowed:

• Tables, lists, divs, spans

• Bold, Italics, styles etc

• E.g. all static content

• Features not allowed:

• Objects, scripts, forms – any active content

• Links, Stylesheets, iframes – web context

• Local storage, Microdata (no active content)

• Concerns are security and clinical safety

Extensions

• FHIR has a standard framework for extensions

• Every FHIR element can be extended

• Every extension has:

• Reference to a computable definition

• Value – from a set of known types

• Every system can read, write, store and exchange all legal extensions

• All extensions are valid by schema etc.

Problems we face

• No central authorities

• High variation due to culture / jurisdiction

• Permutation of biological and sociological complexity

• Fractal use cases

• Economics favours balkinization

• Externalizing complexity

• Much confusion about the problem

• Bad Legacy design

