Universitas

Esa Unggul . Smart, Creative and Entrepreneurial

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 13
PROGRAM STUDI MAGISTER ILMU KOMPUTER

: l.ac.i
MR ceatlcetLale FAKULTAS ILMU KOMPUTER

(OE"S'; Unggul Smart, Creative and Entrepreneurial

TOPIK DALAM PEMROGRAMAN
Greedy Algorithms & Dynamic
Programming

Pertemuan 13

(OE”S'; Unggul Smart, Creative and Entrepreneurial

TUJUAN PERKULIAHAN

* Mahasiswa memahami beberapa tipe persoalan
vang penting.

* Greedy Algorithms

* Dynamic Programming

(0555 Unggul Smart, Creative and Entrepreneurial

Greedy Algorithms

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Optimization problems —

* An optimization problem is one in which you
want to find, not just a solution, but the best
solution

* A “greedy algorithm” sometimes works well
for optimization problems

* A greedy algorithm works in phases. At each
phase:

— You take the best you can get right now, without
regard for future consequences

— You hope that by choosing a local optimum at
each step, you will end up at a global optimum

I S———————————

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

xample: Counting money

* Suppose you want to count out a certain
amount of money, using the fewest possible
bills and coins

* A greedy algorithm would do this would be:
At each step, take the largest possible bill or
coin that does not overshoot

— Example: To make $6.39, you can choose:
a S5 bill

a S1 bill, to make S6

a 25¢ coin, to make $6.25

A 10¢ coin, to make $6.35

four 1¢ coins, to make $6.39

 For US money, the greedy algorithm always
gives the optimum solution

I S—————————————

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

A fallure of the greedy algor

* In some (fictional) monetary system, “krons”
come in 1 kron, 7 kron, and 10 kron coins

e Using a greedy algorithm to count out 15 krons,
you would get
— A 10 kron piece
— Five 1 kron pieces, for a total of 15 krons
— This requires six coins

* A better solution would be to use two 7 kron
pieces and one 1 kron piece
— This only requires three coins

* The greedy algorithm results in a solution, but
- not in an optimal solution —

I ————

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

— A'scheduling problem

* You have to run nine jobs, with running times of 3, 5, 6, 10, 11,
14,15, 18, and 20 minutes

* You have three processors on which you can run these jobs

* You decide to do the longest-running jobs first, on whatever
processor is available

P1 20 10 3
P2 18 11 6
P3 15 14 5

e Time to completion: 18 + 11 + 6 = 35 minutes

s IV

(OEHSE Unggul Smart, Creative and Entrepreneurial

— Another approac —

 What would be the result if you ran the shortest job first?
e Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20

minutes

P1 3 10 15

P2 5 11 18

P3 6 14 20

* That wasn’ t such a good idea; time to completion is now
6 + 14 + 20 = 40 minutes

 Note, however, that the greedy algorithm itself is fast
~— — Allwe had to do at each stage was pick the minimum or maximurmn

(OEHSE Unggul Smart, Creative and Entrepreneurial

— An optimum solution —

Better solutions do exist:

P1 20 14
P2 18 11 5
P3 15 10 6 3

This solution is clearly optimal (why?)

Clearly, there are other optimal solutions (why?)

How do we find such a solution?
— One way: Try all possible assignments of jobs to processors
— Unfortunately, this approach can take exponential time

E— . BR—

I S——————————

(@/Esﬁ Unggul Smart, Creative and Entrepreneurial

| | Hutfman encoding

* The Huffman encoding algorithm is a greedy algorithm
* You always pick the two smallest numbers to combine

* Average bits/char:

P 0.22*2 + 0.12%3 +
\54 0.24*2 + 0.06*4 +
— A=00 0.2772 + 0.09*4
2 _ = 2.42

B=100
46 \1 5 C=01 The Huffman
/ / D=1010 algorithm finds an
E=11 optimal solution
A B CID E F F=1011

(0555 Unggul Smart, Creative and Entrepreneurial

— vViinimum spanning tree

* A minimum spanning tree is a least-cost subset of the edges of a
graph that connects all the nodes

— Start by picking any node and adding it to the tree

— Repeatedly: Pick any least-cost edge from a node in the tree to a
node not in the tree, and add the edge and new node to the tree

— Stop when all nodes have been added to the tree

6 The resultis a least-cost

2 (3+3+2+2+2=12) spanning tree

] 4 5 ° If you think some other edge should be
3 in the spanning tree:

— Try adding that edge

3 3 2 — Note that the edge is part of a cycle

4 — To break the cycle, you must remove
O 4 the edge with the greatest cost

____.u“

L - Thiswillbe the edge you just addefii

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

- | raveling salesman —

* A salesman must visit every city (starting from city A), and wants
to cover the least possible distance
— He can revisit a city (and reuse a road) if necessary

* He does this by using a greedy algorithm: He goes to the next
nearest city from wherever he is

* From A he goestoB
A, B . C * From B he goesto D

* This is not going to resultin a
shortest path!

 The best result he can get now
will be ABDBCE, at a cost of 16

* An actual least-cost path from A
is ADBCE, at a cost of 14

(OEHSE Unggul Smart, Creative and Entrepreneurial

— Analysis —

* A greedy algorithm typically makes (approximately) n choices
for a problem of size n

— (The first or last choice may be forced)
* Hence the expected running time is:
O(n * O(choice(n))), where choice(n) is making a choice
among N objects
— Counting: Must find largest useable coin from among Kk sizes of coin (k
is a constant), an O(k)=0(1) operation;
* Therefore, coin counting is (n)
— Huffman: Must sort n values before making n choices
« Therefore, Huffmanis O(n log n) + O(n) = O(n log n)

— Minimum spanning tree: At each new node, must include new edges
and keep them sorted, which is O(n log n) overall

« Therefore, MsTis O(n log n) + O(n) = O(n log n)

E— . BR—

I —————————————

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

Other greedy algorithms

* Dijkstra’ s algorithm for finding the shortest path
in a graph

— Always takes the shortest edge connecting a known
node to an unknown node

* Kruskal’ s algorithm for finding a minimum-cost
spanning tree
— Always tries the lowest-cost remaining edge

* Prim’ s algorithm for finding a minimum-cost
spanning tree

— Always takes the lowest-cost edge between nodes in
the spanning tree and nodes not yet in the spanning
tree

| ! B—

I ————————————

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Dijkstra’ s shortest-path algorithm

* Dijkstra’ s algorithm finds the shortest paths from a given
node to all other nodes in a graph
— Initially,
* Mark the given node as known (path length is zero)

* For each out-edge, set the distance in each neighboring node equal to the
cost (length) of the out-edge, and set its predecessor to the initially given
node

— Repeatedly (until all nodes are known),
* Find an unknown node containing the smallest distance
* Mark the new node as known

* For each node adjacent to the new node, examine its neighbors to see
whether their estimated distance can be reduced (distance to known
node plus cost of out-edge)

— If so, also reset the predecessor of the new node

B | : —

I ————————————,

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Analysis of Dijkstra’ s algorithm |

* Assume that the average out-degree of a

node is some constant k
— Initially,
* Mark the given node as known (path length is zero)
— This takes O(1) (constant) time
* For each out-edge, set the distance in each neighboring
node equal to the cost (length) of the out-edge, and set

its predecessor to the initially given node

— If each node refers to a list of k adjacent node/edge pairs, this
takes O(k) = O(1) time, that is, constant time

— Notice that this operation takes longer if we have to extract a
list of names from a hash table

B | ! E—

I ——————————,

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Analysis of Dijkstra s algor!

 Repeatedly (until all nodes are known), (n times)
— Find an unknown node containing the smallest distance

* Probably the best way to do this is to put the unknown nodes into a
priority queue; this takes k * O(log n) time each time a new node is
marked “known” (and this happens n times)

— Mark the new node as known -- O(1) time

— For each node adjacent to the new node, examine its neighbors to
see Whether their estimated distance can be reduced (distance to
known node plus cost of out-edge)

* If so, also reset the predecessor of the new node
* There are k adjacent nodes (on average), operation requires constant
time at each, therefore O(k) (constant) time

— Combining all the parts, we get:
O(1) + n*(k*O(log n)+0O(k)), that is, O(nk log n) time

I ———————————"

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Connecting wires

* There are n white dots and n black dots, equally spaced, in a line
* You want to connect each white dot with some one black dot,
with a minimum total length of “wire”

 Example:

e 6 0 6 b b b5 &

e Total wire length aboveis1 +1 +1 +5=28
Do you see a greedy algorithm for doing this?

* Does the algorithm guarantee an optimal solution?
— Canyou prove it?
— Can you find a counterexample?

]

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Collecting coins

A checkerboard has a certain number of coins on it

* Arobot starts in the upper-left corner, and walks to the
bottom left-hand corner

— The robot can only move in two directions: right and down
— The robot collects coins as it goes

* You want to collect all the coins using the minimum
number of robots

* Example: Do you see a greedy algorithm for
2 5 doing this?
i oI5 0« Does the algorithm guarantee an
Q @) optimal solution?
S — Canyou prove it?
— O

(0555 Unggul Smart, Creative and Entrepreneurial

Dynamic Programming

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Counting coins

To find the minimum number of US coins to make any
amount, the greedy method always works

— At each step, just choose the largest coin that does not overshoot the
desired amount: 31¢=25

* The greedy method would not work if we did not have 5¢
coins

— For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1),
but we can do it with four (10+10+10+1)

* The greedy method also would not work if we had a 21¢ coin

— For 63 cents, the greedy method gives six coins (25+25+10+1+1+1),
but we can do it with three (21+21+21)

* How can we find the minimum number of coins for any given
coin set?

B | : —

I S——————————————,

(OEHSE Unggul Smart, Creative and Entrepreneurial

Coin set for examples

* For the following examples, we will assume coins
in the following denominations:
1¢ 5¢ 10¢ 21¢ 25¢

* We' |l use 63¢ as our goal

e This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

E— . BR—

I S—————————————

(0555 Unggul Smart, Creative and Entrepreneurial

A simple solution

 We always need a 1¢ coin, otherwise no solution exists for making one
cent

 To make K cents:
— If there is a K-cent coin, then that one coin is the minimum

— Otherwise, for each value i < K,
* Find the minimum number of coins needed to make i
cents
* Find the minimum number of coins needed to make K - i
cents
— Choose the i that minimizes this sum
* This algorithm can be viewed as divide-and-conquer, or as brute force
— This solution is very recursive

— It requires exponential work

— ltisinfeasible to solve for 63¢
. E—

—

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Another solution

* We can reduce the problem recursively by choosing
the first coin, and solving for the amount that is left

* For 63¢:
— One 1¢ coin plus the best solution for 62¢
— One 5¢ coin plus the best solution for 58¢
— One 10¢ coin plus the best solution for 53¢
— One 21¢ coin plus the best solution for 42¢
— One 25¢ coin plus the best solution for 38¢

* Choose the best solution from among the 5 given
above

* |nstead of solving 62 recursive problems, we solve 5
* This is still a very expensive algorithm

B | ! E—

I S—————————————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

A dynamic programming solution

——

* |dea: Solve first for one cent, then two cents, then three cents,
etc., up to the desired amount

— Save each answer in an array !

* For each new amount N, compute all the possible pairs of

previous answers which sum to N

— For example, to find the solution for 13¢,

* First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
* Next, choose the best solution among:

— Solution for 1¢ +
— Solution for 2¢ +
— Solution for 3¢ +
— Solution for 4¢ +
— Solution for 5¢ +

+

— — Solution for 6¢

solution for 12¢
solution for 11¢
solution for 10¢
solution for 9¢
solution for 8¢
solution for 7¢

I S————————————,

(OEHSE Unggul Smart, Creative and Entrepreneurial

Example —
|
e Suppose coins are 1¢, 3¢, and 4¢
— There’ s only one way to make 1¢ (one coin)
— To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
— To make 3¢, just use the 3¢ coin (one coin)
— To make 4¢, just use the 4¢ coin (one coin)
— To make 5¢, try
* 1¢ +4¢ (1 coin + 1 coin =2 coins)
* 2¢+ 3¢ (2 coins + 1 coin = 3 coins)
* The first solution is better, so best solution is 2 coins
— To make 6¢, try
* 1¢+5¢ (1 coin + 2 coins = 3 coins)
 2¢+4¢ (2 coins + 1 coin = 3 coins)
* 3¢+ 3¢ (1coin+1coin =2 coins) — best solution
- mambtc | e

I S————————————_—,

(oss’a Unggul Smart, Creative and Entrepreneurial

[—

The algorithm in Java

« public static void makeChange(int[] coins, int differentCoins,
int maxChange, int[] coinsUsed,
int[] lastCoin) {

coinsUsed[0] = 0; lastCoin[0] = 1;
for (int cents = 1; cents < maxChange; cents++) {
int minCoins = cents;
int newCoin = 1;
for (int j = 0; j < differentCoins; j++) {
if (coins[j] > cents) continue; // cannot use coin
if (coinsUsed[cents - coins[j]] + 1 < minCoins) {
minCoins = coinsUsed[cents - coins[j]] + 1;
newCoin = coins[j];
3
3

coinsUsed[cents] = minCoins;
lastCoin[cents] = newCoin;

‘}L_ | B ——

I S—————————————

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

How good is the algorithm?

* The first algorithm is recursive, with a branching
factor of up to 62

— Possibly the average branching factor is somewhere
around half of that (31)

— 'Ik;he algorithm takes exponential time, with a large
ase

 The second algorithm is much better—it has a
branching factor of 5
— This is exponential time, with base 5

* The dynamic programming algorithm is O(N*K),
where N is the desired amount and K is the
number of different kinds of coins

| B—

I S———————————

Smart, Creative and Entrepreneurial

(@Eﬁﬁnggul

Comparison with divide-and-conquer

* Divide-and-conquer algorithms split a problem into separate
subproblems, solve the subproblems, and combine the results

for a solution to the original problem
— Example: Quicksort
— Example: Mergesort
— Example: Binary search
* Divide-and-conquer algorithms can be thought of as top-
down algorithms

* Incontrast, a dynamic programming algorithm proceeds by
solving small problems, then combining them to find the

solution to larger problems
* Dynamic programming can be thought of as bottom-up

E—

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Example 2: Binomial Coefficients

(X +y)? =x?+ 2xy + y?, coefficients are 1,2,1

o (x+vy)?=x3+ 3xy + 3xy? + y3, coefficients are 1,3,3,1

(X + y)* = x* + 43y + 6X2y% + 4xy3 + y4,
coefficients are 1,4,6,4,1

« (X +y)?=x+5x% + 10x3y? + 10x%y? + Sxy* + y,
coefficients are 1,5,10,10,5,1

* The n+1 coefficients can be computed for (X + y)" according to

the formulac(n, i) =n! / (i1 * (n - 1)!)

foreach of 1 =0..n

* The repeated computation of all the factorials gets to be
expensive

 We can use dynamic programming to save the factorials as we go

‘.ﬁ__ I —

I ——————y

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

Solution by dynamic programming

* n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
« 0 1

o 1 1 1

2 1 2 1

¢ 3 1 3 3 1

c 4 1 4 6 4 1

e 5 1 5 10 10 5 1

c 6 1 6 15 20 15 6 1

* Each row depends only on the preceding row
* Only linear space and quadratic time are needed

e This algorithm is known as Pascal’ s Triangle
E— ! BE————

I ———————————

(agga Unggul Smart, Creative and Entrepreneurial

p—

The algorithm in Java
 public static int binom(int n, int m) {
int[] b = new int[n + 1];
b[0] = 1;
for (inti=1;1<=n;i++) {
b[i] = 1;
for (intj=1-1;3>0; j--) {
} b[j] +=b[j - 1];

3

return b[m];

‘ —_“
%

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

The principle of optimality, |

* Dynamic programming is a technique for finding an optimal
solution

* The principle of optimality applies if the optimal solution to a
problem always contains optimal solutions to all subproblems

 Example: Consider the problem of making N¢ with the fewest
number of coins

— Either there is an N¢ coin, or
— The set of coins making up an optimal solution for N¢ can be divided
into two nonempty subsets, n,¢ and n,¢

* If either subset, n,¢ or n,¢, can be made with fewer coins, then clearly N¢
can be made with fewer coins, hence solution was not optimal

I ———————

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

The principle of optimality, Il

* The principle of optimality holds if
— Every optimal solution to a problem contains...
— ...optimal solutions to all subproblems

* The principle of optimality does not say

— If you have optimal solutions to all subproblems...
— ...then you can combine them to get an optimal solution

 Example: In US coinage,
— The optimal solutionto 7Cis 5¢ + 1¢ + 1¢, and
— The optimal solution to 6€C is 5¢ + 1¢, but
— The optimal solutionto 13¢€isnot5¢ +1¢+1¢ +5¢C + 1¢

* But there is some way of dividing up 13¢ into subsets with
optimal solutions (say, 11¢ + 2¢) that will give an optimal
solution for 13¢

— Hence, the principle of optimality holds for this problem

T

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

e The longest simple path (path not containing a cycle) from A
toDisABCD

 However, the subpath A B is not the longest simple path
from Ato B (A C Bis longer)

* The principle of optimality is not satisfied for this problem

* Hence, the longest simple path problem cannot be solved
by a dynamic programming approach

I —————————————

(@”ﬁég'bnggul Smart, Creative and Entrepreneurial

The 0-1 knapsack problem

* Athief breaks into a house, carrying a knapsack...
— He can carry up to 25 pounds of loot

— He has to choose which of N items to steal
* Each item has some weight and some value
« “0-1" because each item is stolen (1) or not stolen (0)

— He has to select the items to steal in order to maximize the value of his
loot, but cannot exceed 25 pounds
* A greedy algorithm does not find an optimal solution
A dynamic programming algorithm works well

e This is similar to, but not identical to, the coins problem
— In the coins problem, we had to make an exact amount of change

— In the 0-1 knapsack problem, we can’ t exceed the weight limit, but the

optimal solution may be /ess than the weight limit
| : B—

i e

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Comments

e Dynamic programming relies on working “from the bottom
up~ and saving the results of solving simpler problems

— These solutions to simpler problems are then used to compute the
solution to more complex problems

 Dynamic programming solutions can often be quite complex
and tricky

* Dynamic programming is used for optimization problems,
especially ones that would otherwise take exponential time
— Only problems that satisfy the principle of optimality are suitable for
dynamic programming solutions
* Since exponential time is unacceptable for all but the smallest
problems, dynamic programming is sometimes essential

B | ! E—

I ———

