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TUJUAN PERKULIAHAN

* Mahasiswa memahami beberapa tipe persoalan
vang penting.

* Greedy Algorithms

* Dynamic Programming
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Greedy Algorithms
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Optimization problems —

* An optimization problem is one in which you
want to find, not just a solution, but the best
solution

* A “greedy algorithm” sometimes works well
for optimization problems

* A greedy algorithm works in phases. At each
phase:

— You take the best you can get right now, without
regard for future consequences

— You hope that by choosing a local optimum at
each step, you will end up at a global optimum

I S———————————
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xample: Counting money

* Suppose you want to count out a certain
amount of money, using the fewest possible
bills and coins

* A greedy algorithm would do this would be:
At each step, take the largest possible bill or
coin that does not overshoot

— Example: To make $6.39, you can choose:
a S5 bill

a S1 bill, to make S6

a 25¢ coin, to make $6.25

A 10¢ coin, to make $6.35

four 1¢ coins, to make $6.39

 For US money, the greedy algorithm always
gives the optimum solution

I S—————————————
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A fallure of the greedy algor

* In some (fictional) monetary system, “krons”
come in 1 kron, 7 kron, and 10 kron coins

e Using a greedy algorithm to count out 15 krons,
you would get
— A 10 kron piece
— Five 1 kron pieces, for a total of 15 krons
— This requires six coins

* A better solution would be to use two 7 kron
pieces and one 1 kron piece
— This only requires three coins

* The greedy algorithm results in a solution, but
- not in an optimal solution —

I ————
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— A'scheduling problem

* You have to run nine jobs, with running times of 3, 5, 6, 10, 11,
14,15, 18, and 20 minutes

* You have three processors on which you can run these jobs

* You decide to do the longest-running jobs first, on whatever
processor is available

P1 20 10 3
P2 18 11 6
P3 15 14 5

e Time to completion: 18 + 11 + 6 = 35 minutes

s IV
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— Another approac —

 What would be the result if you ran the shortest job first?
e Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20

minutes

P1 3 10 15

P2 5 11 18

P3 6 14 20

* That wasn’ t such a good idea; time to completion is now
6 + 14 + 20 = 40 minutes

 Note, however, that the greedy algorithm itself is fast
~— — Allwe had to do at each stage was pick the minimum or maximurmn
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— An optimum solution —

Better solutions do exist:

P1 20 14
P2 18 11 5
P3 15 10 6 3

This solution is clearly optimal (why?)

Clearly, there are other optimal solutions (why?)

How do we find such a solution?
— One way: Try all possible assignments of jobs to processors
— Unfortunately, this approach can take exponential time

E— . BR—
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| | Hutfman encoding

* The Huffman encoding algorithm is a greedy algorithm
* You always pick the two smallest numbers to combine

* Average bits/char:

P 0.22*2 + 0.12%3 +
\54 0.24*2 + 0.06*4 +
— A=00 0.2772 + 0.09*4
2 _ = 2.42

B=100
46 \1 5 C=01  The Huffman
/ / D=1010 algorithm finds an
E=11 optimal solution
A B CID E F F=1011
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— vViinimum spanning tree

* A minimum spanning tree is a least-cost subset of the edges of a
graph that connects all the nodes

— Start by picking any node and adding it to the tree

— Repeatedly: Pick any least-cost edge from a node in the tree to a
node not in the tree, and add the edge and new node to the tree

— Stop when all nodes have been added to the tree

6  The resultis a least-cost

2 (3+3+2+2+2=12) spanning tree

] 4 5 ° If you think some other edge should be
3 in the spanning tree:

— Try adding that edge

3 3 2 — Note that the edge is part of a cycle

4 — To break the cycle, you must remove
O 4 the edge with the greatest cost

____.u“

L - Thiswillbe the edge you just addefii
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- | raveling salesman —

* A salesman must visit every city (starting from city A), and wants
to cover the least possible distance
— He can revisit a city (and reuse a road) if necessary

* He does this by using a greedy algorithm: He goes to the next
nearest city from wherever he is

* From A he goestoB
A, B . C * From B he goesto D

* This is not going to resultin a
shortest path!

 The best result he can get now
will be ABDBCE, at a cost of 16

* An actual least-cost path from A
is ADBCE, at a cost of 14
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— Analysis —

* A greedy algorithm typically makes (approximately) n choices
for a problem of size n

— (The first or last choice may be forced)
* Hence the expected running time is:
O(n * O(choice(n))), where choice(n) is making a choice
among N objects
— Counting: Must find largest useable coin from among Kk sizes of coin (k
is a constant), an O(k)=0(1) operation;
* Therefore, coin counting is (n)
— Huffman: Must sort n values before making n choices
« Therefore, Huffmanis O(n log n) + O(n) = O(n log n)

— Minimum spanning tree: At each new node, must include new edges
and keep them sorted, which is O(n log n) overall

« Therefore, MsTis O(n log n) + O(n) = O(n log n)

E— . BR—
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Other greedy algorithms

* Dijkstra’ s algorithm for finding the shortest path
in a graph

— Always takes the shortest edge connecting a known
node to an unknown node

* Kruskal’ s algorithm for finding a minimum-cost
spanning tree
— Always tries the lowest-cost remaining edge

* Prim’ s algorithm for finding a minimum-cost
spanning tree

— Always takes the lowest-cost edge between nodes in
the spanning tree and nodes not yet in the spanning
tree

| ! B—
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Dijkstra’ s shortest-path algorithm

* Dijkstra’ s algorithm finds the shortest paths from a given
node to all other nodes in a graph
— Initially,
* Mark the given node as known (path length is zero)

* For each out-edge, set the distance in each neighboring node equal to the
cost (length) of the out-edge, and set its predecessor to the initially given
node

— Repeatedly (until all nodes are known),
* Find an unknown node containing the smallest distance
* Mark the new node as known

* For each node adjacent to the new node, examine its neighbors to see
whether their estimated distance can be reduced (distance to known
node plus cost of out-edge)

— If so, also reset the predecessor of the new node

B | : —
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Analysis of Dijkstra’ s algorithm |

* Assume that the average out-degree of a

node is some constant k
— Initially,
* Mark the given node as known (path length is zero)
— This takes O(1) (constant) time
* For each out-edge, set the distance in each neighboring
node equal to the cost (length) of the out-edge, and set

its predecessor to the initially given node

— If each node refers to a list of k adjacent node/edge pairs, this
takes O(k) = O(1) time, that is, constant time

— Notice that this operation takes longer if we have to extract a
list of names from a hash table

B | ! E—
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Analysis of Dijkstra s algor!

 Repeatedly (until all nodes are known), (n times)
— Find an unknown node containing the smallest distance

* Probably the best way to do this is to put the unknown nodes into a
priority queue; this takes k * O(log n) time each time a new node is
marked “known” (and this happens n times)

— Mark the new node as known -- O(1) time

— For each node adjacent to the new node, examine its neighbors to
see Whether their estimated distance can be reduced (distance to
known node plus cost of out-edge)

* If so, also reset the predecessor of the new node
* There are k adjacent nodes (on average), operation requires constant
time at each, therefore O(k) (constant) time

— Combining all the parts, we get:
O(1) + n*(k*O(log n)+0O(k)), that is, O(nk log n) time

I ———————————"
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Connecting wires

* There are n white dots and n black dots, equally spaced, in a line
* You want to connect each white dot with some one black dot,
with a minimum total length of “wire”

 Example:

e 6 0 6 b b b5 &

e Total wire length aboveis1 +1 +1 +5=28
Do you see a greedy algorithm for doing this?

* Does the algorithm guarantee an optimal solution?
— Canyou prove it?
— Can you find a counterexample?

]
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Collecting coins

A checkerboard has a certain number of coins on it

* Arobot starts in the upper-left corner, and walks to the
bottom left-hand corner

— The robot can only move in two directions: right and down
— The robot collects coins as it goes

* You want to collect all the coins using the minimum
number of robots

* Example: Do you see a greedy algorithm for
2 5 doing this?
i oI5 0« Does the algorithm guarantee an
Q @) optimal solution?
S — Canyou prove it?
— O
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Dynamic Programming
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Counting coins

To find the minimum number of US coins to make any
amount, the greedy method always works

— At each step, just choose the largest coin that does not overshoot the
desired amount: 31¢=25

* The greedy method would not work if we did not have 5¢
coins

— For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1),
but we can do it with four (10+10+10+1)

* The greedy method also would not work if we had a 21¢ coin

— For 63 cents, the greedy method gives six coins (25+25+10+1+1+1),
but we can do it with three (21+21+21)

* How can we find the minimum number of coins for any given
coin set?

B | : —
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Coin set for examples

* For the following examples, we will assume coins
in the following denominations:
1¢ 5¢ 10¢ 21¢ 25¢

* We' |l use 63¢ as our goal

e This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

E— . BR—
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A simple solution

 We always need a 1¢ coin, otherwise no solution exists for making one
cent

 To make K cents:
— If there is a K-cent coin, then that one coin is the minimum

— Otherwise, for each value i < K,
* Find the minimum number of coins needed to make i
cents
* Find the minimum number of coins needed to make K - i
cents
— Choose the i that minimizes this sum
* This algorithm can be viewed as divide-and-conquer, or as brute force
— This solution is very recursive

— It requires exponential work

— ltisinfeasible to solve for 63¢
. E—

—
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Another solution

* We can reduce the problem recursively by choosing
the first coin, and solving for the amount that is left

* For 63¢:
— One 1¢ coin plus the best solution for 62¢
— One 5¢ coin plus the best solution for 58¢
— One 10¢ coin plus the best solution for 53¢
— One 21¢ coin plus the best solution for 42¢
— One 25¢ coin plus the best solution for 38¢

* Choose the best solution from among the 5 given
above

* |nstead of solving 62 recursive problems, we solve 5
* This is still a very expensive algorithm

B | ! E—
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A dynamic programming solution

——

* |dea: Solve first for one cent, then two cents, then three cents,
etc., up to the desired amount

— Save each answer in an array !

* For each new amount N, compute all the possible pairs of

previous answers which sum to N

— For example, to find the solution for 13¢,

* First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
* Next, choose the best solution among:

— Solution for 1¢ +
— Solution for 2¢ +
— Solution for 3¢ +
— Solution for 4¢ +
— Solution for 5¢ +

+

— — Solution for 6¢

solution for 12¢
solution for 11¢
solution for 10¢
solution for 9¢
solution for 8¢
solution for 7¢

I S————————————,
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Example —
|
e Suppose coins are 1¢, 3¢, and 4¢
— There’ s only one way to make 1¢ (one coin)
— To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
— To make 3¢, just use the 3¢ coin (one coin)
— To make 4¢, just use the 4¢ coin (one coin)
— To make 5¢, try
* 1¢ +4¢ (1 coin + 1 coin =2 coins)
* 2¢+ 3¢ (2 coins + 1 coin = 3 coins)
* The first solution is better, so best solution is 2 coins
— To make 6¢, try
* 1¢+5¢ (1 coin + 2 coins = 3 coins)
 2¢+4¢ (2 coins + 1 coin = 3 coins)
* 3¢+ 3¢ (1coin+1coin =2 coins) — best solution
- mambtc | e

I S————————————_—,
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[ —

The algorithm in Java

« public static void makeChange(int[] coins, int differentCoins,
int maxChange, int[] coinsUsed,
int[] lastCoin) {

coinsUsed[0] = 0; lastCoin[0] = 1;
for (int cents = 1; cents < maxChange; cents++) {
int minCoins = cents;
int newCoin = 1;
for (int j = 0; j < differentCoins; j++) {
if (coins[j] > cents) continue; // cannot use coin
if (coinsUsed[cents - coins[j]] + 1 < minCoins) {
minCoins = coinsUsed[cents - coins[j]] + 1;
newCoin = coins[j];
3
3

coinsUsed[cents] = minCoins;
lastCoin[cents] = newCoin;

‘}L_ | B ——
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How good is the algorithm?

* The first algorithm is recursive, with a branching
factor of up to 62

— Possibly the average branching factor is somewhere
around half of that (31)

— 'Ik;he algorithm takes exponential time, with a large
ase

 The second algorithm is much better—it has a
branching factor of 5
— This is exponential time, with base 5

* The dynamic programming algorithm is O(N*K),
where N is the desired amount and K is the
number of different kinds of coins

| B—
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Smart, Creative and Entrepreneurial

(@Eﬁﬁnggul

Comparison with divide-and-conquer

* Divide-and-conquer algorithms split a problem into separate
subproblems, solve the subproblems, and combine the results

for a solution to the original problem
— Example: Quicksort
— Example: Mergesort
— Example: Binary search
* Divide-and-conquer algorithms can be thought of as top-
down algorithms

* Incontrast, a dynamic programming algorithm proceeds by
solving small problems, then combining them to find the

solution to larger problems
* Dynamic programming can be thought of as bottom-up

E—
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Example 2: Binomial Coefficients

(X +y)? =x?+ 2xy + y?, coefficients are 1,2,1

o (x+vy)?=x3+ 3xy + 3xy? + y3, coefficients are 1,3,3,1

(X + y)* = x* + 43y + 6X2y% + 4xy3 + y4,
coefficients are 1,4,6,4,1

« (X +y)?=x+5x% + 10x3y? + 10x%y? + Sxy* + y,
coefficients are 1,5,10,10,5,1

* The n+1 coefficients can be computed for (X + y)" according to

the formulac(n, i) =n! / (i1 * (n - 1)!)

foreach of 1 =0..n

* The repeated computation of all the factorials gets to be
expensive

 We can use dynamic programming to save the factorials as we go

‘.ﬁ__ I —
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Solution by dynamic programming

* n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
« 0 1

o 1 1 1

2 1 2 1

¢ 3 1 3 3 1

c 4 1 4 6 4 1

e 5 1 5 10 10 5 1

c 6 1 6 15 20 15 6 1

* Each row depends only on the preceding row
* Only linear space and quadratic time are needed

e This algorithm is known as Pascal’ s Triangle
E— ! BE————
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p—

The algorithm in Java
 public static int binom(int n, int m) {
int[ ] b = new int[n + 1];
b[0] = 1;
for (inti=1;1<=n;i++) {
b[i] = 1;
for (intj=1-1;3>0; j--) {
} b[j] +=b[j - 1];

3

return b[m];

‘ —_“
%
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The principle of optimality, |

* Dynamic programming is a technique for finding an optimal
solution

* The principle of optimality applies if the optimal solution to a
problem always contains optimal solutions to all subproblems

 Example: Consider the problem of making N¢ with the fewest
number of coins

— Either there is an N¢ coin, or
— The set of coins making up an optimal solution for N¢ can be divided
into two nonempty subsets, n,¢ and n,¢

* If either subset, n,¢ or n,¢, can be made with fewer coins, then clearly N¢
can be made with fewer coins, hence solution was not optimal

I ———————
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The principle of optimality, Il

* The principle of optimality holds if
— Every optimal solution to a problem contains...
— ...optimal solutions to all subproblems

* The principle of optimality does not say

— If you have optimal solutions to all subproblems...
— ...then you can combine them to get an optimal solution

 Example: In US coinage,
— The optimal solutionto 7Cis 5¢ + 1¢ + 1¢, and
— The optimal solution to 6€C is 5¢ + 1¢, but
— The optimal solutionto 13¢€isnot5¢ +1¢+1¢ +5¢C + 1¢

* But there is some way of dividing up 13¢ into subsets with
optimal solutions (say, 11¢ + 2¢) that will give an optimal
solution for 13¢

— Hence, the principle of optimality holds for this problem

T
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e The longest simple path (path not containing a cycle) from A
toDisABCD

 However, the subpath A B is not the longest simple path
from Ato B (A C Bis longer)

* The principle of optimality is not satisfied for this problem

* Hence, the longest simple path problem cannot be solved
by a dynamic programming approach

I —————————————
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The 0-1 knapsack problem

* Athief breaks into a house, carrying a knapsack...
— He can carry up to 25 pounds of loot

— He has to choose which of N items to steal
* Each item has some weight and some value
« “0-1" because each item is stolen (1) or not stolen (0)

— He has to select the items to steal in order to maximize the value of his
loot, but cannot exceed 25 pounds
* A greedy algorithm does not find an optimal solution
A dynamic programming algorithm works well

e This is similar to, but not identical to, the coins problem
— In the coins problem, we had to make an exact amount of change

— In the 0-1 knapsack problem, we can’ t exceed the weight limit, but the

optimal solution may be /ess than the weight limit
| : B—
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Comments

e Dynamic programming relies on working “from the bottom
up~ and saving the results of solving simpler problems

— These solutions to simpler problems are then used to compute the
solution to more complex problems

 Dynamic programming solutions can often be quite complex
and tricky

* Dynamic programming is used for optimization problems,
especially ones that would otherwise take exponential time
— Only problems that satisfy the principle of optimality are suitable for
dynamic programming solutions
* Since exponential time is unacceptable for all but the smallest
problems, dynamic programming is sometimes essential

B | ! E—
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