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DICTIONARIES AND TOLERANT RETRIEVAL 
 
 
A. Kemampuan Akhir Yang Diharapkan 

 
After reading this session, you will be able to answer the following questions: 

1. What are the relative frequencies with which various keys will be accessed? 
2. How many terms are we likely to have? 
3. Tolerant retrieval: what to do if there is no exact match between query term and 

document term? 
 
 
B. Uraian dan Contoh  
 
1.1. Search structures for dictionaries 

Given an inverted index and a query, our first task is to determine whether each 
query term exists in the vocabulary and if so, identify the pointer to the 
corresponding postings. This vocabulary lookup operation uses a classical data 
structure called the dictionary and has two broad classes of solutions: hashing, 
and search trees. In the literature of data structures, the entries in the 
vocabulary (in our case, terms) are often referred to as keys. The choice of 
solution (hashing, or search trees) is governed by a number of questions: (1) 
How many keys are we likely to have? (2) Is the number likely to remain static, 
or change a lot – and in the case of changes, are we likely to only have new 
keys inserted, or to also have some keys in the dictionary be deleted? (3) What 
are the relative frequencies with which various keys will be accessed? 
 
Hashing has been used for dictionary lookup in some search engines. Each 
vocabulary term (key) is hashed into an integer over a large enough space that 
hash collisions are unlikely; collisions if any are resolved by auxiliary structures 
that can demand care to maintain. At query time, we hash each query term 
separately and following a pointer to the corresponding postings, taking into 
account any logic for resolving hash collisions. There is no easy way to find 
minor variants of a query term (such as the accented and non-accented 
versions of a word like resume), since these could be hashed to very different 
integers. In particular, we cannot seek (for instance) all terms beginning with the 
prefix automat, an operation that we will require below in Section 1.2. Finally, in 
a setting (such as the Web) where the size of the vocabulary keeps growing, a 
hash function designed for current needs may not suffice in a few years’ time. 

 
Search trees overcome many of these issues – for instance, they permit us to 
enumerate all vocabulary terms beginning with automat. The best-known search 
tree is the binary tree, in which each internal node has two children. The search 
for a term begins at the root of the tree. Each internal node (including the root) 
represents a binary test, based on whose outcome the search proceeds to one 
of the two sub-trees below that node. Figure 1.1 gives an example of a binary 
search tree used for a dictionary. Efficient search (with a number of 
comparisons that is O(log M)) hinges on the tree being balanced: the numbers 
of terms under the two sub-trees of any node are either equal or differ by one. 
The principal issue here is that of rebalancing: as terms are inserted into or 

BINARY TREE 
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deleted from the binary search tree, it needs to be rebalanced so that the 
balance property is maintained. 

 

To mitigate rebalancing, one approach is to allow the number of sub-trees under 
an internal node to vary in a fixed interval. A search tree commonly used for a 
dictionary is the B-tree – a search tree in which every internal node has a 
number of children in the interval [a, b], where a and b are appropriate positive 
integers; Figure 1.2 shows an example with a = 2 and b = 4. Each branch under 
an internal node again represents a test for a range of character sequences, as 
in the binary tree example of Figure 1.1. A B-tree may be viewed as “collapsing” 
multiple levels of the binary tree into one; this is especially advantageous when 
some of the dictionary is disk-resident, in which case this collapsing serves the 
function of pre-fetching imminent binary tests. In such cases, the integers a and 
b are determined by the sizes of disk blocks. Section 1.5 contains pointers to 
further background on search trees and B-trees. 

 
 
 
 
 

 
 

 

 
 

B-TREE 

► Figure 1.1  A binary search tree. In this example the branch at the root partitions 
vocabulary terms into two subtrees, those whose first letter is between a and m, and 
the rest. 

► Figure 1.2   A B-tree. In this example every internal node has between 2 and 4 children. 
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It should be noted that unlike hashing, search trees demand that the characters 
used in the document collection have a prescribed ordering; for instance, the 26 
letters of the English alphabet are always listed in the specific order A through 
Z. Some Asian languages such as Chinese do not always have a unique 
ordering, although by now all languages (including Chinese and Japanese) have 
adopted a standard ordering system for their character sets. 

 
 
1.2. Wildcard queries 

Wildcard queries are used in any of the following situations: (1) the user is 
uncertain of the spelling of a query term (e.g., Sydney vs. Sidney, which leads to 
the wildcard query S*dney); (2) the user is aware of multiple variants of spelling 
a term and (consciously) seeks documents containing any of the variants (e.g., 
color vs. colour); (3) the user seeks documents containing variants of a term 
that would be caught by stemming, but is unsure whether the search engine 
performs stemming (e.g., judicial vs. judiciary, leading to the wildcard query 
judicia*); (4) the user is uncertain of the correct rendition of a foreign word or 
phrase (e.g., the query Universit* Stuttgart). 

 
A query such as mon* is known as a trailing wildcard query, because the * 
symbol occurs only once, at the end of the search string. A search tree on the 
dictionary is a convenient way of handling trailing wildcard queries: we walk 
down the tree following the symbols m, o and n in turn, at which point we can 
enumerate the set W of terms in the dictionary with the prefix mon. Finally, we 
use |W| lookups on the standard inverted index to retrieve all documents 
containing any term in W. 
 
But what about wildcard queries in which the * symbol is not constrained to be 
at the end of the search string? Before handling this general case, we mention a 
slight generalization of trailing wildcard queries. First, consider leading wildcard 
queries, or queries of the form *mon. Consider a reverse B-tree on the 
dictionary – one in which each root-to-leaf path of the B-tree corresponds to a 
term in the dictionary written backwards: thus, the term lemon would, in the B-
tree, be represented by the path root-n-o-m-e-l. A walk down the reverse B-tree 
then enumerates all terms R in the vocabulary with a given prefix. 
 
In fact, using a regular B-tree together with a reverse B-tree, we can handle an 
even more general case: wildcard queries in which there is a single * symbol, 
such as se*mon. To do this, we use the regular B-tree to enumerate the set W 
of dictionary terms beginning with the prefix se, then the reverse B-tree to 
enumerate the set R of terms ending with the suffix mon. Next, we take the 

intersection W  R of these two sets, to arrive at the set of terms that begin with 
the prefix se and end with the suffix mon. Finally, we use the standard inverted 
index to retrieve all documents containing any terms in this intersection. We can 
thus handle wildcard queries that contain a single * symbol using two B-trees, 
the normal B-tree and a reverse B-tree. 
 

 
 
 
 

WILDCARD QUERY 
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1.2.1. General wildcard queries 

We now study two techniques for handling general wildcard queries. Both 

techniques share a common strategy: express the given wildcard query qw as 

a Boolean query Q on a specially constructed index, such that the answer to 

Q is a superset of the set of vocabulary terms matching qw. Then, we check 

each term in the answer to Q against qw, discarding those vocabulary terms 

that do not match qw. At this point we have the vocabulary terms matching qw 

and can resort to the standard inverted index. 
 

Permuterm indexes 

Our first special index for general wildcard queries is the permuterm index, a 
form of inverted index. First, we introduce a special symbol $ into our 
character set, to mark the end of a term. Thus, the term hello is shown here as 
the augmented term hello$. Next, we construct a permuterm index, in which 
the various rotations of each term (augmented with $) all link to the original 
vocabulary term. Figure 1.3 gives an example of such a permuterm index 
entry for the term hello.  
 
We refer to the set of rotated terms in the permuterm index as the per- muterm 
vocabulary. 
 
How does this index help us with wildcard queries? Consider the wild card 
query m*n. The key is to rotate such a wildcard query so that the * symbol 
appears at the end of the string – thus the rotated wildcard query becomes 
n$m*. Next, we look up this string in the permuterm index, where seeking 
n$m* (via a search tree) leads to rotations of (among others) the terms man 
and moron. 

 
 
 
 
Now that the permuterm index enables us to identify the original vocabulary 
terms matching a wildcard query, we look up these terms in the standard 
inverted index to retrieve matching documents. We can thus handle any 
wildcard query with a single * symbol. But what about a query such as 
fi*mo*er? In this case we first enumerate the terms in the dictionary that are in 
the permuterm index of er$fi*. Not all such dictionary terms will have the string 

► Figure 1.3   A portion of a permuterm index. 

PERMUTERM INDEX 
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mo in the middle - we filter these out by exhaustive enumeration, checking 
each candidate to see if it contains mo. In this example, the term fishmonger 
would survive this filtering but filibuster would not. We then run the surviving 
terms through the standard inverted index for document retrieval. One 
disadvantage of the permuterm index is that its dictionary becomes quite 
large, including as it does all rotations of each term. 
 
Notice the close interplay between the B-tree and the permuterm index above. 
Indeed, it suggests that the structure should perhaps be viewed as a 
permuterm B-tree. However, we follow traditional terminology here in 
describing the permuterm index as distinct from the B-tree that allows us to 
select the rotations with a given prefix. 
 
 

1.2.2. k-gram indexes for a wildcard queries 

Whereas the permuterm index is simple, it can lead to a considerable blowup 
from the number of rotations per term; for a dictionary of English terms, this 
can represent an almost ten-fold space increase. We now present a second 
technique, known as the k-gram index, for processing wildcard queries. We 
will also use k-gram indexes in Section 1.3.4. A k-gram is a sequence of k 
characters. Thus cas, ast and stl are all 3-grams occurring in the term castle. 
We use a special character $ to denote the beginning or end of a term, so the 
full set of 3-grams generated for castle is: $ca, cas, ast, stl, tle, le$. 
 
In a k-gram index, the dictionary contains all k-grams that occur in any term in 
the vocabulary. Each postings list points from a k-gram to all vocabulary terms 
containing that k-gram. For instance, the 3-gram etr would point to vocabulary 
terms such as metric and retrieval. An example is given in Figure 1.4. 

 
 
 
 
How does such an index help us with wildcard queries? Consider the wildcard 
query re*ve. We are seeking documents containing any term that begins with 
re and ends with ve. Accordingly, we run the Boolean query $re AND ve$. 
This is looked up in the 3-gram index and yields a list of matching terms such 
as relive, remove and retrieve. Each of these matching terms is then looked 
up in the standard inverted index to yield documents matching the query. 
 
There is however a difficulty with the use of k-gram indexes, that demands 
one further step of processing. Consider using the 3-gram index described 
above for the query red*. Following the process described above, we first 
issue the Boolean query $re AND red to the 3-gram index. This leads to a 
match on terms such as retired, which contain the conjunction of the two 3-
grams $re and red, yet do not match the original wildcard query red*. 
 
To cope with this, we introduce a post-filtering step, in which the terms 
enumerated by the Boolean query on the 3-gram index are checked 
individually against the original query red*. This is a simple string-matching 

► Figure 1.4   Example of a postings list in a 3-gram index. Here the 3-gram etr is 
illustrated. Matching vocabulary terms are lexicographically ordered in the postings. 

k-GRAM INDEX 
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operation and weeds out terms such as retired that do not match the original 
query. Terms that survive are then searched in the standard inverted index as 
usual.  
 
We have seen that a wildcard query can result in multiple terms being 
enumerated, each of which becomes a single-term query on the standard 
inverted index. Search engines do allow the combination of wildcard queries 
using Boolean operators, for example, re*d AND fe*ri. What is the appropriate 
semantics for such a query? Since each wildcard query turns into a disjunction 
of single-term queries, the appropriate interpretation of this example is that we 
have a conjunction of disjunctions: we seek all documents that contain any 
term matching re*d and any term matching fe*ri. 
 
Even without Boolean combinations of wildcard queries, the processing of a 
wildcard query can be quite expensive, because of the added lookup in the 
special index, filtering and finally the standard inverted index. A search engine 
may support such rich functionality, but most commonly, the capability is 
hidden behind an interface (say an “Advanced Query” interface) that most 
users never use. Exposing such functionality in the search interface often 
encourages users to invoke it even when they do not require it (say, by typing 
a prefix of their query followed by a *), increasing the processing load on the 
search engine. 
 
Exercise 1.1 
In the permuterm index, each permuterm vocabulary term points to the original 
vocabulary term(s) from which it was derived. How many original vocabulary 
terms can there be in the postings list of a permuterm vocabulary term? 
 
Exercise 1.2 
Write down the entries in the permuterm index dictionary that are generated 
by the term mama. 
 
Exercise 1.3 
If you wanted to search for s*ng in a permuterm wildcard index, what key(s) 
would one do the lookup on? 
 
Exercise 1.4 
Refer to Figure 1.4; it is pointed out in the caption that the vocabulary terms in 
the postings are lexicographically ordered. Why is this ordering useful? 
 
Exercise 1.5 
Consider again the query fi*mo*er from Section 1.2.1. What Boolean query on 
a bigram index would be generated for this query? Can you think of a term 
that matches the permuterm query in Section 1.2.1, but does not satisfy this 
Boolean query? 
 
Exercise 1.6 
Give an example of a sentence that falsely matches the wildcard query mon*h 
if the search were to simply use a conjunction of bigrams. 
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1.3. Spelling correction 

We next look at the problem of correcting spelling errors in queries. For 
instance, we may wish to retrieve documents containing the term carrot when 
the user types the query carot. Google reports 
(http://www.google.com/jobs/britney.html) that the following are all treated as 
misspellings of the query britney spears: britian spears, britney’s spears, brandy 
spears and prittany spears. We look at two steps to solving this problem: the 
first based on edit distance and the second based on k-gram overlap. Before 
getting into the algorithmic details of these methods, we first reviewhow search 
engines provide spell-correction as part of a user experience. 
 
 

1.3.1. Implementing Spelling Correction 

There are two basic principles underlying most spelling correction algorithms. 
 

1. Of various alternative correct spellings for a mis-spelled query, choose 
the “nearest” one. This demands that we have a notion of nearness or 
proximity between a pair of queries. We will develop these proximity 
measures in Section 1.3.3. 
 

2. When two correctly spelled queries are tied (or nearly tied), select the 
one that is more common. For instance, grunt and grant both seem 
equally plausible as corrections for grnt. Then, the algorithm should 
choose the more common of grunt and grant as the correction. The 
simplest notion of more common is to consider the number of 
occurrences of the term in the collection; thus if grunt occurs more often 
than grant, it would be the chosen correction. A different notion of more 
common is employed in many search engines, especially on the web. 
The idea is to use the correction that is most common among queries 
typed in by other users. The idea here is that if grunt is typed as a query 
more often than grant, then it is more likely that the user who typed grnt 
intended to type the query grunt. 

 
Beginning in Section 1.3.3 we describe notions of proximity between queries, 
as well as their efficient computation. Spelling correction algorithms build on 
these computations of proximity; their functionality is then exposed to users in 
one of several ways: 
 

1. On the query carot always retrieve documents containing carot as well as 
any “spell-corrected” version of carot, including carrot and tarot. 
 

2. As in (1) above, but only when the query term carot is not in the 
dictionary. 

 
3. As in (1) above, but only when the original query returned fewer than a 

preset number of documents (say fewer than five documents). 
 

4. When the original query returns fewer than a preset number of 
documents, the search interface presents a spelling suggestion to the 
end user: this suggestion consists of the spell-corrected query term(s). 

http://www.google.com/jobs/britney.html
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Thus, the search engine might respond to the user: “Did you mean 
carrot?” 

 
 

1.3.2. Forms of spelling correction 

We focus on two specific forms of spelling correction that we refer to as 
isolated-term correction and context-sensitive correction. In isolated-term 
correction, we attempt to correct a single query term at a time – even when we 
have a multiple-term query. The carot example demonstrates this type of 
correction. Such isolated-term correction would fail to detect, for instance, that 
the query flew form Heathrow contains amis-spelling of the term from – 
because each term in the query is correctly spelled in isolation. 
 
We begin by examining two techniques for addressing isolated-term 
correction: edit distance, and k-gram overlap. We then proceed to context 
sensitive correction. 

 
 

1.3.3. Edit distance 

Given two character strings s1 and s2, the edit distance between them is the 
minimum number of edit operations required to transform s1 into s2. Most 
commonly, the edit operations allowed for this purpose are: (i) insert a 
character into a string; (ii) delete a character from a string and (iii) replace a 
character of a string by another character; for these operations, edit distance 
is sometimes known as Levenshtein distance. For example, the edit distance 
between cat and dog is 3. In fact, the notion of edit distance can be 
generalized to allowing different weights for different kinds of edit operations, 
for instance a higher weight may be placed on replacing the character s by the 
character p, than on replacing it by the character a (the latter being closer to s 
on the keyboard). Setting weights in this way depending on the likelihood of 
letters substituting for each other is very effective in practice (see Section 1.4 
for the separate issue of phonetic similarity). However, the remainder of our 
treatment here will focus on the case in which all edit operations have the 
same weight. 
 
It is well-known how to compute the (weighted) edit distance between two 
strings in time O(|s1| × |s2|), where |si | denotes the length of a string si. The 
idea is to use the dynamic programming algorithm in Figure 1.5, where the 
characters in s1 and s2 are given in array form. The algorithm fills the (integer) 
entries in a matrix m whose two dimensions equal the lengths of the two 
strings whose edit distances is being computed; the (i, j) entry of the matrix will 
hold (after the algorithm is executed) the edit distance between the strings 
consisting of the first i characters of s1 and the first j characters of s2. The 
central dynamic programming step is depicted in Lines 8-10 of Figure 3.5, 
where the three quantities whose minimum is taken correspond to substituting 
a character in s1, inserting a character in s1 and inserting a character in s2. 

EDIT DISTANCE 

LEVENSHTEIN 

DISTANCE 
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Figure 1.6 shows an example Levenshtein distance computation of Figure 1.5. 
The typical cell [i, j] has four entries formatted as a 2 × 2 cell. The lower right 
entry in each cell is the min of the other three, corresponding to the main 
dynamic programming step in Figure 1.5. The other three entries are the three 
entries m[i − 1, j − 1] + 0 or 1 depending on whether s1[i] = s2[j],m[i−1, j]+1 and 
m[i, j−1]+1. The cells with numbers in italics depict the path by which we 
determine the Levenshtein distance. 

 
The spelling correction problem however demands more than computing edit 
distance: given a set S of strings (corresponding to terms in the vocabulary) 
and a query string q, we seek the string(s) in V of least edit distance from q. 
We may view this as a decoding problem, in which the codewords (the strings 
in V) are prescribed in advance. The obvious way of doing this is to compute 
the edit distance from q to each string in V, before selecting the string(s) of 
minimum edit distance. This exhaustive search is inordinately expensive. 
Accordingly, a number of heuristics are used in practice to efficiently retrieve 
vocabulary terms likely to have low edit distance to the query term(s). 

 

 

► Figure 1.5   Dynamic programming algorithm for computing the edit distance between 
strings s1 and s2. 

► Figure 1.6   Example Levenshtein distance computation. The 2 × 2 cell in the [i, j] entry of 
the table shows the three numbers whose minimum yields the fourth. The cells in italics 
determine the edit distance in this example. 
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The simplest such heuristic is to restrict the search to dictionary terms 
beginning with the same letter as the query string; the hope would be that 
spelling errors do not occur in the first character of the query. A more 
sophisticated variant of this heuristic is to use a version of the permuterm 
index, in which we omit the end-of-word symbol $. Consider the set of all 
rotations of the query string q. For each rotation r from this set, we traverse 
the B-tree into the permuterm index, thereby retrieving all dictionary terms that 
have a rotation beginning with r. For instance, if q is mase and we consider 
the rotation r = sema, we would retrieve dictionary terms such as semantic 
and semaphore that do not have a small edit distance to q. Unfortunately, we 
would miss more pertinent dictionary terms such as mare and mane. To 
address this, we refine this rotation scheme: for each rotation, we omit a suffix 
of ℓ characters before performing the B-tree traversal. This ensures that each 
term in the set R of terms retrieved from the dictionary includes a “long” 
substring in common with q. The value of ℓ could depend on the length of q. 
Alternatively, we may set it to a fixed constant such as 2. 

 
 

1.3.4. k-gram indexes for spelling correction 

To further limit the set of vocabulary terms for which we compute edit 
distances to the query term, we now show how to invoke the k-gram index of 
Section 1.2.2 to assist with retrieving vocabulary terms with low edit distance 
to the query q. Once we retrieve such terms, we can then find the ones of 
least edit distance from q.  
 
In fact, we will use the k-gram index to retrieve vocabulary terms that have 
many k-grams in common with the query. We will argue that for reasonable 
definitions of “many k-grams in common,” the retrieval process is essentially 
that of a single scan through the postings for the k-grams in the query string q. 
 
The 2-gram (or bigram) index in Figure 1.7 shows (a portion of) the postings 
for the three bigrams in the query bord. Suppose we wanted to retrieve 
vocabulary terms that contained at least two of these three bigrams. A single 
scan of the postings would let us enumerate all such terms; in the example of 
Figure 1.7 we would enumerate aboard, boardroom and border. 

 

 
 

 
This straightforward application of the linear scan intersection of postings 
immediately reveals the shortcoming of simply requiring matched vocabulary 
terms to contain a fixed number of k-grams from the query q: terms like 
boardroom, an implausible “correction” of bord, get enumerated. 

► Figure 1.7   Matching at least two of the three 2-grams in the query bord. 
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Consequently, we require more nuanced measures of the overlap in k-grams 
between a vocabulary term and q. The linear scan intersection can be adapted 
when the measure of overlap is the Jaccard coefficient for measuring the 

overlap between two sets A and B, defined to be |A  B|/|A  B|. The two sets 
we consider are the set of k-grams in the query q, and the set of k-grams in a 
vocabulary term. As the scan proceeds, we proceed from one vocabulary term 
t to the next, computing on the fly the Jaccard coefficient between q and t. If 
the coefficient exceeds a preset threshold, we add t to the output; if not, we 
move on to the next term in the postings. To compute the Jaccard coefficient, 
we need the set of k-grams in q and t. 
 
Since we are scanning the postings for all k-grams in q, we immediately have 
these k-grams on hand. What about the k-grams of t? In principle, we could 
enumerate these on the fly from t; in practice this is not only slow but 
potentially infeasible since, in all likelihood, the postings entries themselves do 
not contain the complete string t but rather some encoding of t. The crucial 
observation is that to compute the Jaccard coefficient, we only need the length 
of the string t. To see this, recall the example of Figure 1.7 and consider the 
point when the postings scan for query q = bord reaches term t = boardroom. 
We know that two bigrams match. If the postings stored the (pre-computed) 
number of bigrams in boardroom (namely, 8), we have all the information we 
require to compute the Jaccard coefficient to be 2/(8+3−2); the numerator is 
obtained from the number of postings hits (2, from bo and rd) while the 
denominator is the sum of the number of bigrams in bord and boardroom, less 
the number of postings hits. 
 
We could replace the Jaccard coefficient by other measures that allow efficient 
on the fly computation during postings scans. How do we use these for 
spelling correction? One method that has some empirical support is to first use 
the k-gram index to enumerate a set of candidate vocabulary terms that are 
potential corrections of q. We then compute the edit distance from q to each 
term in this set, selecting terms from the set with small edit distance to q. 

 
1.3.5. Context sensitive spelling correction 

Isolated-term correction would fail to correct typographical errors such as flew 
form Heathrow, where all three query terms are correctly spelled. When a 
phrase such as this retrieves few documents, a search engine may like to offer 
the corrected query flew from Heathrow. The simplest way to do this is to 
enumerate corrections of each of the three query terms (using the methods 
leading up to Section 1.3.4) even though each query term is correctly spelled, 
then try substitutions of each correction in the phrase. For the example flew 
form Heathrow, we enumerate such phrases as fled form Heathrow and flew 
fore Heathrow. For each such substitute phrase, the search engine runs the 
query and determines the number of matching results. 
 
This enumeration can be expensive if we find many corrections of the 
individual terms, since we could encounter a large number of combinations of 
alternatives. Several heuristics are used to trim this space. In the example 
above, as we expand the alternatives for flew and form, we retain only the 
most frequent combinations in the collection or in the query logs, which 
contain previous queries by users. For instance, we would retain flew from as 

JACCARD COEFFICIENT 
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an alternative to try and extend to a three-term corrected query, but perhaps 
not fled fore or flea form. In this example, the biword fled fore is likely to be 
rare compared to the biword flew from. Then, we only attempt to extend the 
list of top biwords (such as flew from), to corrections of Heathrow. As an 
alternative to using the biword statistics in the collection, we may use the logs 
of queries issued by users; these could of course include queries with spelling 
errors. 

 
Exercise1.7 
If |si| denotes the length of string si, show that the edit distance between s1 
and s2 is never more than max{|s1|, |s2|}. 
 
Exercise 1.8 
Compute the edit distance between paris and alice. Write down the 5 × 5 array 
of distances between all prefixes as computed by the algorithm in Figure 1.5. 
 
Exercise 1.9 
Write pseudocode showing the details of computing on the fly the Jaccard 
coefficient while scanning the postings of the k-gram index, as mentioned on 
page 11. 
 
Exercise 1.10 
Compute the Jaccard coefficients between the query bord and each of the 
terms in Figure 1.7 that contain the bigram or. 

 

Exercise 1.11 
Consider the four-term query catched in the rye and suppose that each of the 
query terms has five alternative terms suggested by isolated-term correction. 
How many possible corrected phrases must we consider if we do not trim the 
space of corrected phrases, but instead try all six variants for each of the 
terms? 
 
Exercise 1.12 
For each of the prefixes of the query—catched, catched in and catched in 
the—we have a number of substitute prefixes arising from each term and its 
alternatives. Suppose that we were to retain only the top 10 of these substitute 
prefixes, as measured by its number of occurrences in the collection. We 
eliminate the rest from consideration for extension to longer prefixes: thus, if 
batched in is not one of the 10 most common 2-termqueries in the collection, 
we do not consider any extension of batched in as possibly leading to a 
correction of catched in the rye. How many of the possible substitute prefixes 
are we eliminating at each phase? 
 
Exercise 1.13 
Are we guaranteed that retaining and extending only the 10 commonest 
substitute prefixes of catched in will lead to one of the 10 commonest 
substitute prefixes of catched in the? 
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1.4. Phonetic correction 

Our final technique for tolerant retrieval has to do with phonetic correction: 
misspellings that arise because the user types a query that sounds like the 
target term. Such algorithms are especially applicable to searches on the names 
of people. The main idea here is to generate, for each term, a “phonetic hash” 
so that similar-sounding terms hash to the same value. The idea owes its origins 
to work in international police departments from the early 20th century, seeking 
to match names for wanted criminals despite the names being spelled differently 
in different countries. It is mainly used to correct phonetic misspellings in proper 
nouns. 

 
Algorithms for such phonetic hashing are commonly collectively known as 
soundex algorithms. However, there is an original soundex algorithm, with 
various variants, built on the following scheme: 

1. Turn every term to be indexed into a 4-character reduced form. Build an 
inverted index from these reduced forms to the original terms; call this the 
soundex index. 

2. Do the same with query terms. 
3. When the query calls for a soundex match, search this soundex index. 

 
 

The variations in different soundex algorithms have to do with the conversion of 
terms to 4-character forms. A commonly used conversion results in a 4-
character code, with the first character being a letter of the alphabet and the 
other three being digits between 0 and 9. 
 

1. Retain the first letter of the term. 
 

2. Change all occurrences of the following letters to ’0’ (zero): ’A’, E’, ’I’, 
’O’,’U’, ’H’, ’W’, ’Y’. 

 
3. Change letters to digits as follows: 

B, F, P, V to 1. 
C, G, J, K, Q, S, X, Z to 2. 
D,T to 3. 
L to 4. 
M, N to 5. 
R to 6. 

 
4. Repeatedly remove one out of each pair of consecutive identical digits. 

 
5. Remove all zeros from the resulting string. Pad the resulting string with 

trailing zeros and return the first four positions, which will consist of a 
letter followed by three digits. 

 
For an example of a soundex map, Hermann maps to H655. Given a query (say 
herman), we compute its soundex code and then retrieve all vocabulary terms 
matching this soundex code from the soundex index, before running the 
resulting query on the standard inverted index. 
 

SOUNDEX 
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This algorithm rests on a few observations: (1) vowels are viewed as 
interchangeable, in transcribing names; (2) consonants with similar sounds 
(e.g., D and T) are put in equivalence classes. This leads to related names often 
having the same soundex codes. While these rules work for many cases, 
especially European languages, such rules tend to be writing system 
dependent. For example, Chinese names can be written in Wade-Giles or 
Pinyin transcription. While soundex works for some of the differences in the two 
transcriptions, for instance mapping both Wade-Giles hs and Pinyin x to 2, it 
fails in other cases, for example Wade-Giles j and Pinyin r are mapped 
differently. 

 
Exercise 1.14 
Find two differently spelled proper nouns whose soundex codes are the same. 
 
Exercise 1.15 
Find two phonetically similar proper nouns whose soundex codes are different. 
 
 

 
C. Latihan dan Jawaban 

 
1. Levenshtein distance : Admissible operations are insert, delete, and 

replace. 
a. dog – do   → 1 (delete) 
b. cat – cart   → 1 (insert) 
c. cat – cut  → 1 (replace) 
d. cat – act   → 2 (delete + insert)  

 
2. Levenshtein distance for OSLO – SNOW. 

cost operation input output 

1 delete o * 

0 (copy) s s 

1 replace l n 

0 (copy) o o 

1 insert * w 

Edit distance OSLO – SNOW is 3. 
 
*notes : cost = 0, apabila data sama. 1 apabila data tidak sama. 
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