

Universitas Esa Unggul

http://esaunggul.ac.id 0 / 15

MODUL TOPIK DALAM INFORMATION RETRIEVAL

(CMA 102)

MODUL PERTEMUAN 13

Dictionaries and Tolerant Retrieval

DISUSUN OLEH

Dr. Fransiskus Adikara, S.Kom, MMSI

UNIVERSITAS ESA UNGGUL

2019

Universitas Esa Unggul

http://esaunggul.ac.id 1 / 15

DICTIONARIES AND TOLERANT RETRIEVAL

A. Kemampuan Akhir Yang Diharapkan

After reading this session, you will be able to answer the following questions:

1. What are the relative frequencies with which various keys will be accessed?
2. How many terms are we likely to have?
3. Tolerant retrieval: what to do if there is no exact match between query term and

document term?

B. Uraian dan Contoh

1.1. Search structures for dictionaries

Given an inverted index and a query, our first task is to determine whether each
query term exists in the vocabulary and if so, identify the pointer to the
corresponding postings. This vocabulary lookup operation uses a classical data
structure called the dictionary and has two broad classes of solutions: hashing,
and search trees. In the literature of data structures, the entries in the
vocabulary (in our case, terms) are often referred to as keys. The choice of
solution (hashing, or search trees) is governed by a number of questions: (1)
How many keys are we likely to have? (2) Is the number likely to remain static,
or change a lot – and in the case of changes, are we likely to only have new
keys inserted, or to also have some keys in the dictionary be deleted? (3) What
are the relative frequencies with which various keys will be accessed?

Hashing has been used for dictionary lookup in some search engines. Each
vocabulary term (key) is hashed into an integer over a large enough space that
hash collisions are unlikely; collisions if any are resolved by auxiliary structures
that can demand care to maintain. At query time, we hash each query term
separately and following a pointer to the corresponding postings, taking into
account any logic for resolving hash collisions. There is no easy way to find
minor variants of a query term (such as the accented and non-accented
versions of a word like resume), since these could be hashed to very different
integers. In particular, we cannot seek (for instance) all terms beginning with the
prefix automat, an operation that we will require below in Section 1.2. Finally, in
a setting (such as the Web) where the size of the vocabulary keeps growing, a
hash function designed for current needs may not suffice in a few years’ time.

Search trees overcome many of these issues – for instance, they permit us to
enumerate all vocabulary terms beginning with automat. The best-known search
tree is the binary tree, in which each internal node has two children. The search
for a term begins at the root of the tree. Each internal node (including the root)
represents a binary test, based on whose outcome the search proceeds to one
of the two sub-trees below that node. Figure 1.1 gives an example of a binary
search tree used for a dictionary. Efficient search (with a number of
comparisons that is O(log M)) hinges on the tree being balanced: the numbers
of terms under the two sub-trees of any node are either equal or differ by one.
The principal issue here is that of rebalancing: as terms are inserted into or

BINARY TREE

Universitas Esa Unggul

http://esaunggul.ac.id 2 / 15

deleted from the binary search tree, it needs to be rebalanced so that the
balance property is maintained.

To mitigate rebalancing, one approach is to allow the number of sub-trees under
an internal node to vary in a fixed interval. A search tree commonly used for a
dictionary is the B-tree – a search tree in which every internal node has a
number of children in the interval [a, b], where a and b are appropriate positive
integers; Figure 1.2 shows an example with a = 2 and b = 4. Each branch under
an internal node again represents a test for a range of character sequences, as
in the binary tree example of Figure 1.1. A B-tree may be viewed as “collapsing”
multiple levels of the binary tree into one; this is especially advantageous when
some of the dictionary is disk-resident, in which case this collapsing serves the
function of pre-fetching imminent binary tests. In such cases, the integers a and
b are determined by the sizes of disk blocks. Section 1.5 contains pointers to
further background on search trees and B-trees.

B-TREE

► Figure 1.1 A binary search tree. In this example the branch at the root partitions
vocabulary terms into two subtrees, those whose first letter is between a and m, and
the rest.

► Figure 1.2 A B-tree. In this example every internal node has between 2 and 4 children.

Universitas Esa Unggul

http://esaunggul.ac.id 3 / 15

It should be noted that unlike hashing, search trees demand that the characters
used in the document collection have a prescribed ordering; for instance, the 26
letters of the English alphabet are always listed in the specific order A through
Z. Some Asian languages such as Chinese do not always have a unique
ordering, although by now all languages (including Chinese and Japanese) have
adopted a standard ordering system for their character sets.

1.2. Wildcard queries

Wildcard queries are used in any of the following situations: (1) the user is
uncertain of the spelling of a query term (e.g., Sydney vs. Sidney, which leads to
the wildcard query S*dney); (2) the user is aware of multiple variants of spelling
a term and (consciously) seeks documents containing any of the variants (e.g.,
color vs. colour); (3) the user seeks documents containing variants of a term
that would be caught by stemming, but is unsure whether the search engine
performs stemming (e.g., judicial vs. judiciary, leading to the wildcard query
judicia*); (4) the user is uncertain of the correct rendition of a foreign word or
phrase (e.g., the query Universit* Stuttgart).

A query such as mon* is known as a trailing wildcard query, because the *
symbol occurs only once, at the end of the search string. A search tree on the
dictionary is a convenient way of handling trailing wildcard queries: we walk
down the tree following the symbols m, o and n in turn, at which point we can
enumerate the set W of terms in the dictionary with the prefix mon. Finally, we
use |W| lookups on the standard inverted index to retrieve all documents
containing any term in W.

But what about wildcard queries in which the * symbol is not constrained to be
at the end of the search string? Before handling this general case, we mention a
slight generalization of trailing wildcard queries. First, consider leading wildcard
queries, or queries of the form *mon. Consider a reverse B-tree on the
dictionary – one in which each root-to-leaf path of the B-tree corresponds to a
term in the dictionary written backwards: thus, the term lemon would, in the B-
tree, be represented by the path root-n-o-m-e-l. A walk down the reverse B-tree
then enumerates all terms R in the vocabulary with a given prefix.

In fact, using a regular B-tree together with a reverse B-tree, we can handle an
even more general case: wildcard queries in which there is a single * symbol,
such as se*mon. To do this, we use the regular B-tree to enumerate the set W
of dictionary terms beginning with the prefix se, then the reverse B-tree to
enumerate the set R of terms ending with the suffix mon. Next, we take the

intersection W R of these two sets, to arrive at the set of terms that begin with
the prefix se and end with the suffix mon. Finally, we use the standard inverted
index to retrieve all documents containing any terms in this intersection. We can
thus handle wildcard queries that contain a single * symbol using two B-trees,
the normal B-tree and a reverse B-tree.

WILDCARD QUERY

Universitas Esa Unggul

http://esaunggul.ac.id 4 / 15

1.2.1. General wildcard queries

We now study two techniques for handling general wildcard queries. Both

techniques share a common strategy: express the given wildcard query qw as

a Boolean query Q on a specially constructed index, such that the answer to

Q is a superset of the set of vocabulary terms matching qw. Then, we check

each term in the answer to Q against qw, discarding those vocabulary terms

that do not match qw. At this point we have the vocabulary terms matching qw

and can resort to the standard inverted index.

Permuterm indexes

Our first special index for general wildcard queries is the permuterm index, a
form of inverted index. First, we introduce a special symbol $ into our
character set, to mark the end of a term. Thus, the term hello is shown here as
the augmented term hello$. Next, we construct a permuterm index, in which
the various rotations of each term (augmented with $) all link to the original
vocabulary term. Figure 1.3 gives an example of such a permuterm index
entry for the term hello.

We refer to the set of rotated terms in the permuterm index as the per- muterm
vocabulary.

How does this index help us with wildcard queries? Consider the wild card
query m*n. The key is to rotate such a wildcard query so that the * symbol
appears at the end of the string – thus the rotated wildcard query becomes
n$m*. Next, we look up this string in the permuterm index, where seeking
n$m* (via a search tree) leads to rotations of (among others) the terms man
and moron.

Now that the permuterm index enables us to identify the original vocabulary
terms matching a wildcard query, we look up these terms in the standard
inverted index to retrieve matching documents. We can thus handle any
wildcard query with a single * symbol. But what about a query such as
fi*mo*er? In this case we first enumerate the terms in the dictionary that are in
the permuterm index of er$fi*. Not all such dictionary terms will have the string

► Figure 1.3 A portion of a permuterm index.

PERMUTERM INDEX

Universitas Esa Unggul

http://esaunggul.ac.id 5 / 15

mo in the middle - we filter these out by exhaustive enumeration, checking
each candidate to see if it contains mo. In this example, the term fishmonger
would survive this filtering but filibuster would not. We then run the surviving
terms through the standard inverted index for document retrieval. One
disadvantage of the permuterm index is that its dictionary becomes quite
large, including as it does all rotations of each term.

Notice the close interplay between the B-tree and the permuterm index above.
Indeed, it suggests that the structure should perhaps be viewed as a
permuterm B-tree. However, we follow traditional terminology here in
describing the permuterm index as distinct from the B-tree that allows us to
select the rotations with a given prefix.

1.2.2. k-gram indexes for a wildcard queries

Whereas the permuterm index is simple, it can lead to a considerable blowup
from the number of rotations per term; for a dictionary of English terms, this
can represent an almost ten-fold space increase. We now present a second
technique, known as the k-gram index, for processing wildcard queries. We
will also use k-gram indexes in Section 1.3.4. A k-gram is a sequence of k
characters. Thus cas, ast and stl are all 3-grams occurring in the term castle.
We use a special character $ to denote the beginning or end of a term, so the
full set of 3-grams generated for castle is: $ca, cas, ast, stl, tle, le$.

In a k-gram index, the dictionary contains all k-grams that occur in any term in
the vocabulary. Each postings list points from a k-gram to all vocabulary terms
containing that k-gram. For instance, the 3-gram etr would point to vocabulary
terms such as metric and retrieval. An example is given in Figure 1.4.

How does such an index help us with wildcard queries? Consider the wildcard
query re*ve. We are seeking documents containing any term that begins with
re and ends with ve. Accordingly, we run the Boolean query $re AND ve$.
This is looked up in the 3-gram index and yields a list of matching terms such
as relive, remove and retrieve. Each of these matching terms is then looked
up in the standard inverted index to yield documents matching the query.

There is however a difficulty with the use of k-gram indexes, that demands
one further step of processing. Consider using the 3-gram index described
above for the query red*. Following the process described above, we first
issue the Boolean query $re AND red to the 3-gram index. This leads to a
match on terms such as retired, which contain the conjunction of the two 3-
grams $re and red, yet do not match the original wildcard query red*.

To cope with this, we introduce a post-filtering step, in which the terms
enumerated by the Boolean query on the 3-gram index are checked
individually against the original query red*. This is a simple string-matching

► Figure 1.4 Example of a postings list in a 3-gram index. Here the 3-gram etr is
illustrated. Matching vocabulary terms are lexicographically ordered in the postings.

k-GRAM INDEX

Universitas Esa Unggul

http://esaunggul.ac.id 6 / 15

operation and weeds out terms such as retired that do not match the original
query. Terms that survive are then searched in the standard inverted index as
usual.

We have seen that a wildcard query can result in multiple terms being
enumerated, each of which becomes a single-term query on the standard
inverted index. Search engines do allow the combination of wildcard queries
using Boolean operators, for example, re*d AND fe*ri. What is the appropriate
semantics for such a query? Since each wildcard query turns into a disjunction
of single-term queries, the appropriate interpretation of this example is that we
have a conjunction of disjunctions: we seek all documents that contain any
term matching re*d and any term matching fe*ri.

Even without Boolean combinations of wildcard queries, the processing of a
wildcard query can be quite expensive, because of the added lookup in the
special index, filtering and finally the standard inverted index. A search engine
may support such rich functionality, but most commonly, the capability is
hidden behind an interface (say an “Advanced Query” interface) that most
users never use. Exposing such functionality in the search interface often
encourages users to invoke it even when they do not require it (say, by typing
a prefix of their query followed by a *), increasing the processing load on the
search engine.

Exercise 1.1
In the permuterm index, each permuterm vocabulary term points to the original
vocabulary term(s) from which it was derived. How many original vocabulary
terms can there be in the postings list of a permuterm vocabulary term?

Exercise 1.2
Write down the entries in the permuterm index dictionary that are generated
by the term mama.

Exercise 1.3
If you wanted to search for s*ng in a permuterm wildcard index, what key(s)
would one do the lookup on?

Exercise 1.4
Refer to Figure 1.4; it is pointed out in the caption that the vocabulary terms in
the postings are lexicographically ordered. Why is this ordering useful?

Exercise 1.5
Consider again the query fi*mo*er from Section 1.2.1. What Boolean query on
a bigram index would be generated for this query? Can you think of a term
that matches the permuterm query in Section 1.2.1, but does not satisfy this
Boolean query?

Exercise 1.6
Give an example of a sentence that falsely matches the wildcard query mon*h
if the search were to simply use a conjunction of bigrams.

Universitas Esa Unggul

http://esaunggul.ac.id 7 / 15

1.3. Spelling correction

We next look at the problem of correcting spelling errors in queries. For
instance, we may wish to retrieve documents containing the term carrot when
the user types the query carot. Google reports
(http://www.google.com/jobs/britney.html) that the following are all treated as
misspellings of the query britney spears: britian spears, britney’s spears, brandy
spears and prittany spears. We look at two steps to solving this problem: the
first based on edit distance and the second based on k-gram overlap. Before
getting into the algorithmic details of these methods, we first reviewhow search
engines provide spell-correction as part of a user experience.

1.3.1. Implementing Spelling Correction

There are two basic principles underlying most spelling correction algorithms.

1. Of various alternative correct spellings for a mis-spelled query, choose
the “nearest” one. This demands that we have a notion of nearness or
proximity between a pair of queries. We will develop these proximity
measures in Section 1.3.3.

2. When two correctly spelled queries are tied (or nearly tied), select the
one that is more common. For instance, grunt and grant both seem
equally plausible as corrections for grnt. Then, the algorithm should
choose the more common of grunt and grant as the correction. The
simplest notion of more common is to consider the number of
occurrences of the term in the collection; thus if grunt occurs more often
than grant, it would be the chosen correction. A different notion of more
common is employed in many search engines, especially on the web.
The idea is to use the correction that is most common among queries
typed in by other users. The idea here is that if grunt is typed as a query
more often than grant, then it is more likely that the user who typed grnt
intended to type the query grunt.

Beginning in Section 1.3.3 we describe notions of proximity between queries,
as well as their efficient computation. Spelling correction algorithms build on
these computations of proximity; their functionality is then exposed to users in
one of several ways:

1. On the query carot always retrieve documents containing carot as well as
any “spell-corrected” version of carot, including carrot and tarot.

2. As in (1) above, but only when the query term carot is not in the
dictionary.

3. As in (1) above, but only when the original query returned fewer than a

preset number of documents (say fewer than five documents).

4. When the original query returns fewer than a preset number of
documents, the search interface presents a spelling suggestion to the
end user: this suggestion consists of the spell-corrected query term(s).

http://www.google.com/jobs/britney.html

Universitas Esa Unggul

http://esaunggul.ac.id 8 / 15

Thus, the search engine might respond to the user: “Did you mean
carrot?”

1.3.2. Forms of spelling correction

We focus on two specific forms of spelling correction that we refer to as
isolated-term correction and context-sensitive correction. In isolated-term
correction, we attempt to correct a single query term at a time – even when we
have a multiple-term query. The carot example demonstrates this type of
correction. Such isolated-term correction would fail to detect, for instance, that
the query flew form Heathrow contains amis-spelling of the term from –
because each term in the query is correctly spelled in isolation.

We begin by examining two techniques for addressing isolated-term
correction: edit distance, and k-gram overlap. We then proceed to context
sensitive correction.

1.3.3. Edit distance

Given two character strings s1 and s2, the edit distance between them is the
minimum number of edit operations required to transform s1 into s2. Most
commonly, the edit operations allowed for this purpose are: (i) insert a
character into a string; (ii) delete a character from a string and (iii) replace a
character of a string by another character; for these operations, edit distance
is sometimes known as Levenshtein distance. For example, the edit distance
between cat and dog is 3. In fact, the notion of edit distance can be
generalized to allowing different weights for different kinds of edit operations,
for instance a higher weight may be placed on replacing the character s by the
character p, than on replacing it by the character a (the latter being closer to s
on the keyboard). Setting weights in this way depending on the likelihood of
letters substituting for each other is very effective in practice (see Section 1.4
for the separate issue of phonetic similarity). However, the remainder of our
treatment here will focus on the case in which all edit operations have the
same weight.

It is well-known how to compute the (weighted) edit distance between two
strings in time O(|s1| × |s2|), where |si | denotes the length of a string si. The
idea is to use the dynamic programming algorithm in Figure 1.5, where the
characters in s1 and s2 are given in array form. The algorithm fills the (integer)
entries in a matrix m whose two dimensions equal the lengths of the two
strings whose edit distances is being computed; the (i, j) entry of the matrix will
hold (after the algorithm is executed) the edit distance between the strings
consisting of the first i characters of s1 and the first j characters of s2. The
central dynamic programming step is depicted in Lines 8-10 of Figure 3.5,
where the three quantities whose minimum is taken correspond to substituting
a character in s1, inserting a character in s1 and inserting a character in s2.

EDIT DISTANCE

LEVENSHTEIN

DISTANCE

Universitas Esa Unggul

http://esaunggul.ac.id 9 / 15

Figure 1.6 shows an example Levenshtein distance computation of Figure 1.5.
The typical cell [i, j] has four entries formatted as a 2 × 2 cell. The lower right
entry in each cell is the min of the other three, corresponding to the main
dynamic programming step in Figure 1.5. The other three entries are the three
entries m[i − 1, j − 1] + 0 or 1 depending on whether s1[i] = s2[j],m[i−1, j]+1 and
m[i, j−1]+1. The cells with numbers in italics depict the path by which we
determine the Levenshtein distance.

The spelling correction problem however demands more than computing edit
distance: given a set S of strings (corresponding to terms in the vocabulary)
and a query string q, we seek the string(s) in V of least edit distance from q.
We may view this as a decoding problem, in which the codewords (the strings
in V) are prescribed in advance. The obvious way of doing this is to compute
the edit distance from q to each string in V, before selecting the string(s) of
minimum edit distance. This exhaustive search is inordinately expensive.
Accordingly, a number of heuristics are used in practice to efficiently retrieve
vocabulary terms likely to have low edit distance to the query term(s).

► Figure 1.5 Dynamic programming algorithm for computing the edit distance between
strings s1 and s2.

► Figure 1.6 Example Levenshtein distance computation. The 2 × 2 cell in the [i, j] entry of
the table shows the three numbers whose minimum yields the fourth. The cells in italics
determine the edit distance in this example.

Universitas Esa Unggul

http://esaunggul.ac.id 10 / 15

The simplest such heuristic is to restrict the search to dictionary terms
beginning with the same letter as the query string; the hope would be that
spelling errors do not occur in the first character of the query. A more
sophisticated variant of this heuristic is to use a version of the permuterm
index, in which we omit the end-of-word symbol $. Consider the set of all
rotations of the query string q. For each rotation r from this set, we traverse
the B-tree into the permuterm index, thereby retrieving all dictionary terms that
have a rotation beginning with r. For instance, if q is mase and we consider
the rotation r = sema, we would retrieve dictionary terms such as semantic
and semaphore that do not have a small edit distance to q. Unfortunately, we
would miss more pertinent dictionary terms such as mare and mane. To
address this, we refine this rotation scheme: for each rotation, we omit a suffix
of ℓ characters before performing the B-tree traversal. This ensures that each
term in the set R of terms retrieved from the dictionary includes a “long”
substring in common with q. The value of ℓ could depend on the length of q.
Alternatively, we may set it to a fixed constant such as 2.

1.3.4. k-gram indexes for spelling correction

To further limit the set of vocabulary terms for which we compute edit
distances to the query term, we now show how to invoke the k-gram index of
Section 1.2.2 to assist with retrieving vocabulary terms with low edit distance
to the query q. Once we retrieve such terms, we can then find the ones of
least edit distance from q.

In fact, we will use the k-gram index to retrieve vocabulary terms that have
many k-grams in common with the query. We will argue that for reasonable
definitions of “many k-grams in common,” the retrieval process is essentially
that of a single scan through the postings for the k-grams in the query string q.

The 2-gram (or bigram) index in Figure 1.7 shows (a portion of) the postings
for the three bigrams in the query bord. Suppose we wanted to retrieve
vocabulary terms that contained at least two of these three bigrams. A single
scan of the postings would let us enumerate all such terms; in the example of
Figure 1.7 we would enumerate aboard, boardroom and border.

This straightforward application of the linear scan intersection of postings
immediately reveals the shortcoming of simply requiring matched vocabulary
terms to contain a fixed number of k-grams from the query q: terms like
boardroom, an implausible “correction” of bord, get enumerated.

► Figure 1.7 Matching at least two of the three 2-grams in the query bord.

Universitas Esa Unggul

http://esaunggul.ac.id 11 / 15

Consequently, we require more nuanced measures of the overlap in k-grams
between a vocabulary term and q. The linear scan intersection can be adapted
when the measure of overlap is the Jaccard coefficient for measuring the

overlap between two sets A and B, defined to be |A B|/|A B|. The two sets
we consider are the set of k-grams in the query q, and the set of k-grams in a
vocabulary term. As the scan proceeds, we proceed from one vocabulary term
t to the next, computing on the fly the Jaccard coefficient between q and t. If
the coefficient exceeds a preset threshold, we add t to the output; if not, we
move on to the next term in the postings. To compute the Jaccard coefficient,
we need the set of k-grams in q and t.

Since we are scanning the postings for all k-grams in q, we immediately have
these k-grams on hand. What about the k-grams of t? In principle, we could
enumerate these on the fly from t; in practice this is not only slow but
potentially infeasible since, in all likelihood, the postings entries themselves do
not contain the complete string t but rather some encoding of t. The crucial
observation is that to compute the Jaccard coefficient, we only need the length
of the string t. To see this, recall the example of Figure 1.7 and consider the
point when the postings scan for query q = bord reaches term t = boardroom.
We know that two bigrams match. If the postings stored the (pre-computed)
number of bigrams in boardroom (namely, 8), we have all the information we
require to compute the Jaccard coefficient to be 2/(8+3−2); the numerator is
obtained from the number of postings hits (2, from bo and rd) while the
denominator is the sum of the number of bigrams in bord and boardroom, less
the number of postings hits.

We could replace the Jaccard coefficient by other measures that allow efficient
on the fly computation during postings scans. How do we use these for
spelling correction? One method that has some empirical support is to first use
the k-gram index to enumerate a set of candidate vocabulary terms that are
potential corrections of q. We then compute the edit distance from q to each
term in this set, selecting terms from the set with small edit distance to q.

1.3.5. Context sensitive spelling correction

Isolated-term correction would fail to correct typographical errors such as flew
form Heathrow, where all three query terms are correctly spelled. When a
phrase such as this retrieves few documents, a search engine may like to offer
the corrected query flew from Heathrow. The simplest way to do this is to
enumerate corrections of each of the three query terms (using the methods
leading up to Section 1.3.4) even though each query term is correctly spelled,
then try substitutions of each correction in the phrase. For the example flew
form Heathrow, we enumerate such phrases as fled form Heathrow and flew
fore Heathrow. For each such substitute phrase, the search engine runs the
query and determines the number of matching results.

This enumeration can be expensive if we find many corrections of the
individual terms, since we could encounter a large number of combinations of
alternatives. Several heuristics are used to trim this space. In the example
above, as we expand the alternatives for flew and form, we retain only the
most frequent combinations in the collection or in the query logs, which
contain previous queries by users. For instance, we would retain flew from as

JACCARD COEFFICIENT

Universitas Esa Unggul

http://esaunggul.ac.id 12 / 15

an alternative to try and extend to a three-term corrected query, but perhaps
not fled fore or flea form. In this example, the biword fled fore is likely to be
rare compared to the biword flew from. Then, we only attempt to extend the
list of top biwords (such as flew from), to corrections of Heathrow. As an
alternative to using the biword statistics in the collection, we may use the logs
of queries issued by users; these could of course include queries with spelling
errors.

Exercise1.7
If |si| denotes the length of string si, show that the edit distance between s1
and s2 is never more than max{|s1|, |s2|}.

Exercise 1.8
Compute the edit distance between paris and alice. Write down the 5 × 5 array
of distances between all prefixes as computed by the algorithm in Figure 1.5.

Exercise 1.9
Write pseudocode showing the details of computing on the fly the Jaccard
coefficient while scanning the postings of the k-gram index, as mentioned on
page 11.

Exercise 1.10
Compute the Jaccard coefficients between the query bord and each of the
terms in Figure 1.7 that contain the bigram or.

Exercise 1.11
Consider the four-term query catched in the rye and suppose that each of the
query terms has five alternative terms suggested by isolated-term correction.
How many possible corrected phrases must we consider if we do not trim the
space of corrected phrases, but instead try all six variants for each of the
terms?

Exercise 1.12
For each of the prefixes of the query—catched, catched in and catched in
the—we have a number of substitute prefixes arising from each term and its
alternatives. Suppose that we were to retain only the top 10 of these substitute
prefixes, as measured by its number of occurrences in the collection. We
eliminate the rest from consideration for extension to longer prefixes: thus, if
batched in is not one of the 10 most common 2-termqueries in the collection,
we do not consider any extension of batched in as possibly leading to a
correction of catched in the rye. How many of the possible substitute prefixes
are we eliminating at each phase?

Exercise 1.13
Are we guaranteed that retaining and extending only the 10 commonest
substitute prefixes of catched in will lead to one of the 10 commonest
substitute prefixes of catched in the?

Universitas Esa Unggul

http://esaunggul.ac.id 13 / 15

1.4. Phonetic correction

Our final technique for tolerant retrieval has to do with phonetic correction:
misspellings that arise because the user types a query that sounds like the
target term. Such algorithms are especially applicable to searches on the names
of people. The main idea here is to generate, for each term, a “phonetic hash”
so that similar-sounding terms hash to the same value. The idea owes its origins
to work in international police departments from the early 20th century, seeking
to match names for wanted criminals despite the names being spelled differently
in different countries. It is mainly used to correct phonetic misspellings in proper
nouns.

Algorithms for such phonetic hashing are commonly collectively known as
soundex algorithms. However, there is an original soundex algorithm, with
various variants, built on the following scheme:

1. Turn every term to be indexed into a 4-character reduced form. Build an
inverted index from these reduced forms to the original terms; call this the
soundex index.

2. Do the same with query terms.
3. When the query calls for a soundex match, search this soundex index.

The variations in different soundex algorithms have to do with the conversion of
terms to 4-character forms. A commonly used conversion results in a 4-
character code, with the first character being a letter of the alphabet and the
other three being digits between 0 and 9.

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): ’A’, E’, ’I’,
’O’,’U’, ’H’, ’W’, ’Y’.

3. Change letters to digits as follows:

B, F, P, V to 1.
C, G, J, K, Q, S, X, Z to 2.
D,T to 3.
L to 4.
M, N to 5.
R to 6.

4. Repeatedly remove one out of each pair of consecutive identical digits.

5. Remove all zeros from the resulting string. Pad the resulting string with

trailing zeros and return the first four positions, which will consist of a
letter followed by three digits.

For an example of a soundex map, Hermann maps to H655. Given a query (say
herman), we compute its soundex code and then retrieve all vocabulary terms
matching this soundex code from the soundex index, before running the
resulting query on the standard inverted index.

SOUNDEX

Universitas Esa Unggul

http://esaunggul.ac.id 14 / 15

This algorithm rests on a few observations: (1) vowels are viewed as
interchangeable, in transcribing names; (2) consonants with similar sounds
(e.g., D and T) are put in equivalence classes. This leads to related names often
having the same soundex codes. While these rules work for many cases,
especially European languages, such rules tend to be writing system
dependent. For example, Chinese names can be written in Wade-Giles or
Pinyin transcription. While soundex works for some of the differences in the two
transcriptions, for instance mapping both Wade-Giles hs and Pinyin x to 2, it
fails in other cases, for example Wade-Giles j and Pinyin r are mapped
differently.

Exercise 1.14
Find two differently spelled proper nouns whose soundex codes are the same.

Exercise 1.15
Find two phonetically similar proper nouns whose soundex codes are different.

C. Latihan dan Jawaban

1. Levenshtein distance : Admissible operations are insert, delete, and

replace.
a. dog – do → 1 (delete)
b. cat – cart → 1 (insert)
c. cat – cut → 1 (replace)
d. cat – act → 2 (delete + insert)

2. Levenshtein distance for OSLO – SNOW.

cost operation input output

1 delete o *

0 (copy) s s

1 replace l n

0 (copy) o o

1 insert * w

Edit distance OSLO – SNOW is 3.

*notes : cost = 0, apabila data sama. 1 apabila data tidak sama.

D. Daftar Pustaka

1. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to

Information Retrieval. Cambridge University Press.

