
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 14-a

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK DALAM PEMROGRAMAN
Struktur Data Dasar

Pertemuan 9

TUJUAN PERKULIAHAN
• Mahasiswa memahami beberapa tipe persoalan

yang penting, dan beberapa jenis struktur data
utama

Definition

• Data structure is representation of the logical
relationship existing between individual
elements of data.

• In other words, a data structure is a way of
organizing all data items that considers not
only the elements stored but also their
relationship to each other.

Introduction

• Data structure affects the design of both
structural & functional aspects of a program.

Program=algorithm + Data Structure
• You know that a algorithm is a step by step

procedure to solve a particular function.

Introduction

• That means, algorithm is a set of instruction
written to carry out certain tasks & the data
structure is the way of organizing the data
with their logical relationship retained.

• To develop a program of an algorithm, we
should select an appropriate data structure
for that algorithm.

• Therefore algorithm and its associated data
structures from a program.

Classification of Data Structure

• Data structure are normally divided into two
broad categories:
–Primitive Data Structure
–Non-Primitive Data Structure

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

Classification of Data Structure

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

Primitive Data Structure

• There are basic structures and directly operated
upon by the machine instructions.

• In general, there are different representation on
different computers.

• Integer, Floating-point number, Character
constants, string constants, pointers etc, fall in
this category.

Non-Primitive Data Structure

• There are more sophisticated data structures.
• These are derived from the primitive data

structures.
• The non-primitive data structures emphasize

on structuring of a group of homogeneous
(same type) or heterogeneous (different type)
data items.

Non-Primitive Data Structure

• Lists, Stack, Queue, Tree, Graph are example
of non-primitive data structures.

• The design of an efficient data structure must
take operations to be performed on the data
structure.

Non-Primitive Data Structure

• The most commonly used operation on data
structure are broadly categorized into
following types:
– Create
– Selection
– Updating
– Searching
– Sorting
–Merging
– Destroy or Delete

Different between them

• A primitive data structure is generally a basic
structure that is usually built into the language,
such as an integer, a float.

• A non-primitive data structure is built out of
primitive data structures linked together in
meaningful ways, such as a or a linked-list,
binary search tree, AVL Tree, graph etc.

Description of various
Data Structures : Arrays

• An array is defined as a set of finite number of
homogeneous elements or same data items.

• It means an array can contain one type of data
only, either all integer, all float-point number
or all character.

Arrays

• Simply, declaration of array is as follows:
int arr[10]

• Where int specifies the data type or type of
elements arrays stores.

• “arr” is the name of array & the number
specified inside the square brackets is the
number of elements an array can store, this is
also called sized or length of array.

Arrays

• Following are some of the concepts to be
remembered about arrays:
–The individual element of an array can be

accessed by specifying name of the array,
following by index or subscript inside
square brackets.
–The first element of the array has index

zero[0]. It means the first element and last
element will be specified as:arr[0] & arr[9]
Respectively.

Arrays

–The elements of array will always be
stored in the consecutive (continues)
memory location.
–The number of elements that can be stored

in an array, that is the size of array or its
length is given by the following equation:
(Upperbound-lowerbound)+1

Arrays

–For the above array it would be
(9-0)+1=10,where 0 is the lower bound of

array and 9 is the upper bound of array.
–Array can always be read or written through

loop. If we read a one-dimensional array it
require one loop for reading and other for
writing the array.

Arrays

–For example: Reading an array
For(i=0;i<=9;i++)

scanf(“%d”,&arr[i]);
–For example: Writing an array

For(i=0;i<=9;i++)
printf(“%d”,arr[i]);

Arrays

– If we are reading or writing two-
dimensional array it would require two
loops. And similarly the array of a N
dimension would required N loops.
–Some common operation performed on

array are:
• Creation of an array
• Traversing an array

Arrays

– Insertion of new element
–Deletion of required element
–Modification of an element
–Merging of arrays

Lists

• A lists (Linear linked list) can be defined as a
collection of variable number of data items.

• Lists are the most commonly used non-
primitive data structures.

• An element of list must contain at least two
fields, one for storing data or information and
other for storing address of next element.

• As you know for storing address we have a
special data structure of list the address must
be pointer type.

Lists

• Technically each such element is referred to as
a node, therefore a list can be defined as a
collection of nodes as show bellow:

Head

AAA BBB CCC

Information field Pointer field

[Linear Liked List]

Lists

• Types of linked lists:
– Single linked list
– Doubly linked list
– Single circular linked list
– Doubly circular linked list

Stack

• A stack is also an ordered collection of
elements like arrays, but it has a special feature
that deletion and insertion of elements can be
done only from one end called the top of the
stack (TOP)

• Due to this property it is also called as last in
first out type of data structure (LIFO).

Stack

• It could be through of just like a stack of plates
placed on table in a party, a guest always takes
off a fresh plate from the top and the new plates
are placed on to the stack at the top.

• It is a non-primitive data structure.
• When an element is inserted into a stack or

removed from the stack, its base remains fixed
where the top of stack changes.

Stack

• Insertion of element into stack is called PUSH
and deletion of element from stack is called
POP.

• The bellow show figure how the operations
take place on a stack:

PUSH POP

[STACK]

Stack

• The stack can be implemented into two ways:
–Using arrays (Static implementation)
–Using pointer (Dynamic implementation)

Queue

• Queue are first in first out type of data
structure (i.e. FIFO)

• In a queue new elements are added to the
queue from one end called REAR end and
the element are always removed from other
end called the FRONT end.

• The people standing in a railway reservation
row are an example of queue.

Queue

• Each new person comes and stands at the
end of the row and person getting their
reservation confirmed get out of the row
from the front end.

• The bellow show figure how the
operations take place on a stack:

10 20 30 40 50

front rear

Queue

• The queue can be implemented into two ways:
–Using arrays (Static implementation)
–Using pointer (Dynamic implementation)

Trees

• A tree can be defined as finite set of data items
(nodes).

• Tree is non-linear type of data structure in
which data items are arranged or stored in a
sorted sequence.

• Tree represent the hierarchical relationship
between various elements.

Trees

• In trees:
• There is a special data item at the top of

hierarchy called the Root of the tree.
• The remaining data items are partitioned into

number of mutually exclusive subset, each of
which is itself, a tree which is called the sub
tree.

• The tree always grows in length towards
bottom in data structures, unlike natural trees
which grows upwards.

Trees

• The tree structure organizes the data into
branches, which related the information.

A

B C

D E F G

root

Graph

• Graph is a mathematical non-linear data
structure capable of representing many kind of
physical structures.

• It has found application in Geography,
Chemistry and Engineering sciences.

• Definition: A graph G(V,E) is a set of vertices
V and a set of edges E.

Graph

• An edge connects a pair of vertices and many
have weight such as length, cost and another
measuring instrument for according the graph.

• Vertices on the graph are shown as point or
circles and edges are drawn as arcs or line
segment.

Graph

• Example of graph:

v2

v1

v4

v5

v3

10

15

8

6

11

9 v4

v1

v2 v4

v3

[a] Directed & Weighted Graph [b] Undirected Graph

Graph

• Types of Graphs:
–Directed graph
–Undirected graph
–Simple graph
–Weighted graph
–Connected graph
–Non-connected graph

