

Universitas Esa Unggul

http://esaunggul.ac.id 1 / 10

MODUL TOPIK DALAM INFORMATION RETRIEVAL

(CMA 102)

MODUL PERTEMUAN 11

The Term Vocabulary and Postings Lists (Part 2)

DISUSUN OLEH

Dr. Fransiskus Adikara, S.Kom, MMSI

UNIVERSITAS ESA UNGGUL

2019

Universitas Esa Unggul

http://esaunggul.ac.id 2 / 10

DETERMINING THE VOCABULARY OF TERMS (Part 2)

A. Kemampuan Akhir Yang Diharapkan

After reading this session, you will be able to answer the following questions:

1. Understanding of the basic unit of classical information retrieval systems: words
and documents: What is a document, what is a term?

2. Tokenization: how to get from raw text to words (or tokens)
3. More complex indexes: skip pointers and phrases

B. Uraian dan Contoh

2.3. Normalization (equivalence classing of terms)

Having broken up our documents (and also our query) into tokens, the easy
case is if tokens in the query just match tokens in the token list of the document.
However, there are many cases when two character sequences are not quite
the same but you would like a match to occur. For instance, if you search for
USA, you might hope to also match documents containing U.S.A.

Token normalization is the process of canonicalizing tokens so that matches
occur despite superficial differences in the character sequences of the tokens.
The most standard way to normalize is to implicitly create equivalence classes,
which are normally named after one member of the set. For instance, if the
tokens anti-discriminatory and antidiscriminatory are both mapped onto the term

antidiscriminatory, in both the document text and queries, then searches for one

term will retrieve documents that contain either.

The advantage of just using mapping rules that remove characters like hyphens
is that the equivalence classing to be done is implicit, rather than being fully
calculated in advance: the terms that happen to become identical as the result
of these rules are the equivalence classes. It is only easy to write rules of this
sort that remove characters. Since the equivalence classes are implicit, it is not
obvious when you might want to add characters. For instance, it would be hard
to know to turn antidiscriminatory into anti-discriminatory.

An alternative to creating equivalence classes is to maintain relations between
unnormalized tokens. This method can be extended to hand-constructed lists of
synonyms such as car and automobile. These term relationships can be
achieved in two ways. The usual way is to index unnormalized tokens and to
maintain a query expansion list of multiple vocabulary entries to consider for a
certain query term. A query term is then effectively a disjunction of several
postings lists. The alternative is to perform the expansion during index
construction. When the document contains automobile, we index it under car as
well (and, usually, also vice-versa). Use of either of these methods is
considerably less efficient than equivalence classing, as there are more
postings to store and merge. The first method adds a query expansion
dictionary and requires more processing at query time, while the second method
requires more space for storing postings. Traditionally, expanding the space

TOKEN

NORMALIZATION

EQUIVALENCE

CLASSES

Universitas Esa Unggul

http://esaunggul.ac.id 3 / 10

required for the postings lists was seen as more disadvantageous, but with
modern storage costs, the increased flexibility that comes from distinct postings
lists is appealing.

These approaches are more flexible than equivalence classes because the
expansion lists can overlap while not being identical. This means there can be
an asymmetry in expansion. An example of how such an asymmetry can be
exploited is shown in Figure 2.4: if the user enters windows, we wish to allow
matches with the capitalized Windows operating system, but this is not plausible
if the user enters window, even though it is plausible for this query to also match
lowercase windows.

The best amount of equivalence classing or query expansion to do is a fairly
open question. Doing some definitely seems a good idea. But doing a lot can
easily have unexpected consequences of broadening queries in unintended
ways. For instance, equivalence-classing U.S.A. and USA to the latter by
deleting periods from tokens might at first seem very reasonable, given the
prevalent pattern of optional use of periods in acronyms. However, if I put in as
my query term C.A.T., I might be rather upset if it matches every appearance of
the word cat in documents.

Below we present some of the forms of normalization that are commonly
employed and how they are implemented. In many cases they seem helpful, but
they can also do harm. In fact, you can worry about many details of equivalence
classing, but it often turns out that providing processing is done consistently to
the query and to documents, the fine details may not have much aggregate
effect on performance.

Accents and diacritics. Diacritics on characters in English have a fairly
marginal status, and we might well want cliché and cliche to match, or naive and
naïve. This can be done by normalizing tokens to remove diacritics. In many
other languages, diacritics are a regular part of the writing system and
distinguish different sounds. Occasionally words are distinguished only by their
accents. For instance, in Spanish, peña is ‘a cliff’, while pena is ‘sorrow’.
Nevertheless, the important question is usually not prescriptive or linguistic but
is a question of how users are likely to write queries for these words. In many
cases, users will enter queries for words without diacritics, whether for reasons
of speed, laziness, limited software, or habits born of the days when it was hard
to use non-ASCII text on many computer systems. In these cases, it might be
best to equate all words to a form without diacritics.

► Figure 2.4 An example of how asymmetric expansion of query terms can usefully model
users’ expectations.

Universitas Esa Unggul

http://esaunggul.ac.id 4 / 10

Capitalization/case-folding. A common strategy is to do case-folding by
reducing all letters to lower case. Often this is a good idea: it will allow instances
of Automobile at the beginning of a sentence to match with a query of
automobile. It will also help on a web search engine when most of your users
type in ferrari when they are interested in a Ferrari car. On the other hand, such
case folding can equate words that might better be kept apart. Many proper
nouns are derived from common nouns and so are distinguished only by case,
including companies (General Motors, The Associated Press), government
organizations (the Fed vs. fed) and person names (Bush, Black). We already
mentioned an example of unintended query expansion with acronyms, which
involved not only acronym normalization (C.A.T. → CAT) but also case-folding
(CAT →cat).

For English, an alternative to making every token lowercase is to just make
some tokens lowercase. The simplest heuristic is to convert to lowercase words
at the beginning of a sentence and all words occurring in a title that is all
uppercase or in which most or all words are capitalized. These words are
usually ordinary words that have been capitalized. Mid-sentence capitalized
words are left as capitalized (which is usually correct). This will mostly avoid
case-folding in cases where distinctions should be kept apart. The same task
can be done more accurately by a machine learning sequence model which
uses more features to make the decision of when to case-fold. This is known as
truecasing. However, trying to get capitalization right in this way probably
doesn’t help if your users usually use lowercase regardless of the correct case
of words. Thus, lowercasing everything often remains the most practical
solution.

Other issues in English. Other possible normalizations are quite idiosyncratic
and particular to English. For instance, you might wish to equate ne’er and
never or the British spelling colour and the American spelling color. Dates, times
and similar items come in multiple formats, presenting additional challenges.
You might wish to collapse together 3/12/91 and Mar. 12, 1991. However,
correct processing here is complicated by the fact that in the U.S., 3/12/91 is
Mar. 12, 1991, whereas in Europe it is 3 Dec 1991.

Other languages. English has maintained a dominant position on the WWW;
approximately 60% of web pages are in English (Gerrand 2007). But that still
leaves 40% of the web, and the non-English portion might be expected to grow
over time, since less than one third of Internet users and less than 10% of the
world’s population primarily speak English. And there are signs of change: Sifry
(2007) reports that only about one third of blog posts are in English.

Other languages again present distinctive issues in equivalence classing. The
French word for the has distinctive forms based not only on the gender
(masculine or feminine) and number of the following noun, but also depending
on whether the following word begins with a vowel: le, la, l’, les. We may well
wish to equivalence class these various forms of the. German has a convention
whereby vowels with an umlaut can be rendered instead as a two vowel
digraph. We would want to treat Schütze and Schuetze as equivalent.

TRUECASING

CASE-FOLDING

Universitas Esa Unggul

http://esaunggul.ac.id 5 / 10

Japanese is a well-known difficult writing system, as illustrated in Figure 2.5.
Modern Japanese is standardly an intermingling of multiple alphabets,
principally Chinese characters, two syllabaries (hiragana and katakana) and
western characters (Latin letters, Arabic numerals, and various symbols). While
there are strong conventions and standardization through the education system
over the choice of writing system, in many cases the same word can be written
with multiple writing systems. For example, a word may be written in katakana
for emphasis (somewhat like italics). Or a word may sometimes be written in
hiragana and sometimes in Chinese characters. Successful retrieval thus
requires complex equivalence classing across the writing systems. In particular,
an end user might commonly present a query entirely in hiragana, because it is
easier to type, just as Western end users commonly use all lowercase.

Document collections being indexed can include documents from many different
languages. Or a single document can easily contain text from multiple
languages. For instance, a French email might quote clauses from a contract
document written in English. Most commonly, the language is detected and
language-particular tokenization and normalization rules are applied at a
predetermined granularity, such as whole documents or individual paragraphs,
but this still will not correctly deal with cases where language changes occur for
brief quotations. When document collections contain multiple languages, a
single index may have to contain terms of several languages. One option is to
run a language identification classifier on documents and then to tag terms in
the vocabulary for their language. Or this tagging can simply be omitted, since it
is relatively rare for the exact same character sequence to be a word in different
languages.

When dealing with foreign or complex words, particularly foreign names, the
spelling may be unclear or there may be variant transliteration standards giving
different spellings (for example, Chebyshev and Tchebycheff or Beijing and
Peking). One way of dealing with this is to use heuristics to equivalence class or
expand terms with phonetic equivalents. The traditional and best known such
algorithm is the Soundex algorithm.

► Figure 2.5 Japanese makes use of multiple intermingled writing systems and, like
Chinese, does not segment words. The text is mainly Chinese characters with the
hiragana syllabary for inflectional endings and function words. The part in latin letters is
actually a Japanese expression, but has been taken up as the name of an environmental
campaign by 2004 Nobel Peace Prize winner Wangari Maathai. His name is written using
the katakana syllabary in the middle of the first line. The first four characters of the final
line express a monetary amount that we would want to match with ¥500,000 (500,000
Japanese yen).

Universitas Esa Unggul

http://esaunggul.ac.id 6 / 10

2.4. Stemming and lemmatization

For grammatical reasons, documents are going to use different forms of a word,
such as organize, organizes, and organizing. Additionally, there are families of
derivationally related word swith similar meanings, such as democracy,
democratic, and democratization. In many situations, it seems as if it would be
useful for a search for one of these words to return documents that contain
another word in the set.

The goal of both stemming and lemmatization is to reduce inflectional forms and
sometimes derivationally related forms of a word to a common base form. For
instance:

The result of this mapping of text will be something like:

However, the two words differ in their flavor. Stemming usually refers to a crude
heuristic process that chops off the ends of words in the hope of achieving this
goal correctly most of the time, and often includes the removal of derivational
affixes. Lemmatization usually refers to doing things properly with the use of a
vocabulary and morphological analysis of words, normally aiming to remove
inflectional endings only and to return the base or dictionary form of a word,
which is known as the lemma. If confronted with the token saw, stemming might
return just s, whereas lemmatization would attempt to return either see or saw
depending on whether the use of the token was as a verb or a noun. The two
may also differ in that stemming most commonly collapses derivationally related
words, whereas lemmatization commonly only collapses the different inflectional
forms of a lemma. Linguistic processing for stemming or lemmatization is often
done by an additional plug-in component to the indexing process, and a number
of such components exist, both commercial and open-source.

The most common algorithm for stemming English, and one that has repeatedly
been shown to be empirically very effective, is Porter’s algorithm (Porter 1980).
The entire algorithm is too long and intricate to present here, but we will indicate
its general nature. Porter’s algorithm consists of 5 phases of word reductions,
applied sequentially. Within each phase there are various conventions to select
rules, such as selecting the rule from each rule group that applies to the longest
suffix. In the first phase, this convention is used with the following rule group:

STEMMING

LEMMATIZATION

LEMMA

PORTER STEMMER

(2.1)

Universitas Esa Unggul

http://esaunggul.ac.id 7 / 10

Many of the later rules use a concept of the measure of a word, which loosely
checks the number of syllables to see whether a word is long enough that it is
reasonable to regard the matching portion of a rule as a suffix rather than as
part of the stem of a word. For example, the rule:

(m > 1) EMENT →

would map replacement to replac, but not cement to c. The official site for the
Porter Stemmer is:

http://www.tartarus.org/˜martin/PorterStemmer/

Other stemmers exist, including the older, one-pass Lovins stemmer (Lovins
1968), and newer entrants like the Paice/Husk stemmer (Paice 1990); see:

http://www.cs.waikato.ac.nz/˜eibe/stemmers/
http://www.comp.lancs.ac.uk/computing/research/stemming/

Figure 2.6 presents an informal comparison of the different behaviors of these
stemmers. Stemmers use language-specific rules, but they require less
knowledge than a lemmatizer, which needs a complete vocabulary and
morphological analysis to correctly lemmatize words. Particular domains may
also require special stemming rules. However, the exact stemmed form does
not matter, only the equivalence classes it forms.

Sample text: Such an analysis can reveal features that are not easily visible from the variations

in the individual genes and can lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu
gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the
individu gene and can lead to a pictur of express that is more biolog transpar and access to
interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ
gen and can lead to a pict of express that is mor biolog transp and access to interpret

Rather than using a stemmer, you can use a lemmatizer, a tool from Natural
Language Processing which does full morphological analysis to accurately
identify the lemma for each word. Doing full morphological analysis produces at
most very modest benefits for retrieval. It is hard to say more, because either
form of normalization tends not to improve English information retrieval
performance in aggregate – at least not by very much. While it helps a lot for
some queries, it equally hurts performance a lot for others. Stemming increases
recall while harming precision. As an example of what can go wrong, note that
the Porter stemmer stems all of the following words:

operate operating operates operation operative operatives operational

to oper. However, since operate in its various forms is a common verb, we
would expect to lose considerable precision on queries such as the following
with Porter stemming:

operational AND research
operating AND system
operative AND dentistry

► Figure 2.6 A comparison of three stemming algorithms on a sample text.

LEMMATIZER

Universitas Esa Unggul

http://esaunggul.ac.id 8 / 10

For a case like this, moving to using a lemmatizer would not completely fix the
problem because particular inflectional forms are used in particular collocations:
a sentence with the words operate and system is not a good match for the query
operating AND system. Getting better value from term normalization depends
more on pragmatic issues of word use than on formal issues of linguistic
morphology.

The situation is different for languages with much more morphology (such as
Spanish, German, and Finnish). Results in the European CLEF evaluations
have repeatedly shown quite large gains from the use of stemmers (and
compound splitting for languages like German).

Exercise 2.1 [⋆]

Are the following statements true or false?
a. In a Boolean retrieval system, stemming never lowers precision.
b. In a Boolean retrieval system, stemming never lowers recall.
c. Stemming increases the size of the vocabulary.
d. Stemming should be invoked at indexing time but not while processing a

query.

Exercise 2.2 [⋆]

Suggest what normalized form should be used for these words (including the
word itself as a possibility):

a. ’Cos
b. Shi’ite
c. cont’d
d. Hawai’i
e. O’Rourke

Exercise 2.3 [⋆]

The following pairs of words are stemmed to the same form by the Porter
stemmer. Which pairs would you argue shouldn’t be conflated. Give your
reasoning.

a. abandon/abandonment
b. absorbency/absorbent
c. marketing/markets
d. university/universe
e. volume/volumes

Exercise 2.4 [⋆]

For the Porter stemmer rule group shown in (2.1):
a. What is the purpose of including an identity rule such as SS →SS?
b. Applying just this rule group, what will the following words be stemmed to?

circus canaries boss
c. What rule should be added to correctly stem pony?
d. The stemming for ponies and pony might seem strange. Does it have a

deleterious effect on retrieval? Why or why not?

Universitas Esa Unggul

http://esaunggul.ac.id 9 / 10

C. Latihan dan Jawaban

1. Penerapan Case-Folding, Tokenisasi, Filtering, dan Stemming.

Input : Dalam setahun belakangan ini, pengaksesan KRS diganti ke
SIAM (sebelumnya menggunakan SINERGI). Saat
menggunakan SINERGI, fitur serta kecepatan akses sangat
handal dan nyaman. Tapi setelah diganti menggunakan SIAM,
keadaan berbalik menjadi buruk (lambat dan bahkan sampai
keluar dengan sendirinya). *KRS tidak hanya berpengaruh bagi
mahasiswa semester muda, tapi juga keseluruhan mahasiswa.

Output : ...

Dokumen

Dalam setahun belakangan ini, pengaksesan KRS diganti ke SIAM
(sebelumnya menggunakan SINERGI). Saat menggunakan SINERGI,
fitur serta kecepatan akses sangat handal dan nyaman. Tapi setelah
diganti menggunakan SIAM, keadaan berbalik menjadi buruk (lambat dan
bahkan sampai keluar dengan sendirinya). *KRS tidak hanya
berpengaruh bagi mahasiswa semester muda, tapi juga keseluruhan
mahasiswa.

Case-Folding

Tokenisasi

dalam setahun belakangan ini pengaksesan krs diganti ke siam
sebelumnya menggunakan sinergi saat menggunakan sinergi fitur serta
kecepatan akses sangat handal dan nyaman tapi setelah diganti
menggunakan siam keadaan berbalik menjadi buruk lambat dan bahkan
sampai keluar dengan sendirinya krs tidak hanya berpengaruh bagi
mahasiswa semester muda tapi juga keseluruhan mahasiswa

dalam setahun belakangan ini, pengaksesan krs diganti ke siam
(sebelumnya menggunakan sinergi). saat menggunakan sinergi, fitur
serta kecepatan akses sangat handal dan nyaman. tapi setelah diganti
menggunakan siam, keadaan berbalik menjadi buruk (lambat dan bahkan
sampai keluar dengan sendirinya). *krs tidak hanya berpengaruh bagi
mahasiswa semester muda, tapi juga keseluruhan mahasiswa.

Universitas Esa Unggul

http://esaunggul.ac.id 10 / 10

D. Daftar Pustaka

1. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to

Information Retrieval. Cambridge University Press.

Filtering

setahun belakangan pengaksesan krs diganti siam sinergi sinergi fitur
kecepatan akses handal nyaman diganti siam keadaan berbalik buruk
lambat sendirinya krs berpengaruh mahasiswa semester muda
keseluruhan mahasiswa

Stemming

tahun belakang akses krs ganti siam sinergi sinergi fitur cepat akses
handal nyaman ganti siam ada balik buruk lambat sendiri krs pengaruh
mahasiswa semester muda luruh mahasiswa

