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DETERMINING THE VOCABULARY OF TERMS (Part 2) 
 
 
A. Kemampuan Akhir Yang Diharapkan 

 
After reading this session, you will be able to answer the following questions: 

1. Understanding of the basic unit of classical information retrieval systems: words 
and documents: What is a document, what is a term? 

2. Tokenization: how to get from raw text to words (or tokens) 
3. More complex indexes: skip pointers and phrases 

 
 
B. Uraian dan Contoh  
 
2.3. Normalization (equivalence classing of terms) 

Having broken up our documents (and also our query) into tokens, the easy 
case is if tokens in the query just match tokens in the token list of the document. 
However, there are many cases when two character sequences are not quite 
the same but you would like a match to occur. For instance, if you search for 
USA, you might hope to also match documents containing U.S.A. 

 

Token normalization is the process of canonicalizing tokens so that matches 
occur despite superficial differences in the character sequences of the tokens. 
The most standard way to normalize is to implicitly create equivalence classes, 
which are normally named after one member of the set. For instance, if the 
tokens anti-discriminatory and antidiscriminatory are both mapped onto the term 

antidiscriminatory, in both the document text and queries, then searches for one 

term will retrieve documents that contain either. 
 

The advantage of just using mapping rules that remove characters like hyphens 
is that the equivalence classing to be done is implicit, rather than being fully 
calculated in advance: the terms that happen to become identical as the result 
of these rules are the equivalence classes. It is only easy to write rules of this 
sort that remove characters. Since the equivalence classes are implicit, it is not 
obvious when you might want to add characters. For instance, it would be hard 
to know to turn antidiscriminatory into anti-discriminatory. 
 
An alternative to creating equivalence classes is to maintain relations between 
unnormalized tokens. This method can be extended to hand-constructed lists of 
synonyms such as car and automobile. These term relationships can be 
achieved in two ways. The usual way is to index unnormalized tokens and to 
maintain a query expansion list of multiple vocabulary entries to consider for a 
certain query term. A query term is then effectively a disjunction of several 
postings lists. The alternative is to perform the expansion during index 
construction. When the document contains automobile, we index it under car as 
well (and, usually, also vice-versa). Use of either of these methods is 
considerably less efficient than equivalence classing, as there are more 
postings to store and merge. The first method adds a query expansion 
dictionary and requires more processing at query time, while the second method 
requires more space for storing postings. Traditionally, expanding the space 
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required for the postings lists was seen as more disadvantageous, but with 
modern storage costs, the increased flexibility that comes from distinct postings 
lists is appealing. 

 

These approaches are more flexible than equivalence classes because the 
expansion lists can overlap while not being identical. This means there can be 
an asymmetry in expansion. An example of how such an asymmetry can be 
exploited is shown in Figure 2.4: if the user enters windows, we wish to allow 
matches with the capitalized Windows operating system, but this is not plausible 
if the user enters window, even though it is plausible for this query to also match 
lowercase windows. 

 
 
 

 

The best amount of equivalence classing or query expansion to do is a fairly 
open question. Doing some definitely seems a good idea. But doing a lot can 
easily have unexpected consequences of broadening queries in unintended 
ways. For instance, equivalence-classing U.S.A. and USA to the latter by 
deleting periods from tokens might at first seem very reasonable, given the 
prevalent pattern of optional use of periods in acronyms. However, if I put in as 
my query term C.A.T., I might be rather upset if it matches every appearance of 
the word cat in documents. 
 
Below we present some of the forms of normalization that are commonly 
employed and how they are implemented. In many cases they seem helpful, but 
they can also do harm. In fact, you can worry about many details of equivalence 
classing, but it often turns out that providing processing is done consistently to 
the query and to documents, the fine details may not have much aggregate 
effect on performance. 
 
Accents and diacritics. Diacritics on characters in English have a fairly 
marginal status, and we might well want cliché and cliche to match, or naive and 
naïve. This can be done by normalizing tokens to remove diacritics. In many 
other languages, diacritics are a regular part of the writing system and 
distinguish different sounds. Occasionally words are distinguished only by their 
accents. For instance, in Spanish, peña is ‘a cliff’, while pena is ‘sorrow’. 
Nevertheless, the important question is usually not prescriptive or linguistic but 
is a question of how users are likely to write queries for these words. In many 
cases, users will enter queries for words without diacritics, whether for reasons 
of speed, laziness, limited software, or habits born of the days when it was hard 
to use non-ASCII text on many computer systems. In these cases, it might be 
best to equate all words to a form without diacritics. 

 
 
 

► Figure 2.4   An example of how asymmetric expansion of query terms can usefully model 
users’ expectations. 
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Capitalization/case-folding. A common strategy is to do case-folding by 
reducing all letters to lower case. Often this is a good idea: it will allow instances 
of Automobile at the beginning of a sentence to match with a query of 
automobile. It will also help on a web search engine when most of your users 
type in ferrari when they are interested in a Ferrari car. On the other hand, such 
case folding can equate words that might better be kept apart. Many proper 
nouns are derived from common nouns and so are distinguished only by case, 
including companies (General Motors, The Associated Press), government 
organizations (the Fed vs. fed) and person names (Bush, Black). We already 
mentioned an example of unintended query expansion with acronyms, which 
involved not only acronym normalization (C.A.T. → CAT) but also case-folding 
(CAT →cat). 
 
For English, an alternative to making every token lowercase is to just make 
some tokens lowercase. The simplest heuristic is to convert to lowercase words 
at the beginning of a sentence and all words occurring in a title that is all 
uppercase or in which most or all words are capitalized. These words are 
usually ordinary words that have been capitalized. Mid-sentence capitalized 
words are left as capitalized (which is usually correct). This will mostly avoid 
case-folding in cases where distinctions should be kept apart. The same task 
can be done more accurately by a machine learning sequence model which 
uses more features to make the decision of when to case-fold. This is known as 
truecasing. However, trying to get capitalization right in this way probably 
doesn’t help if your users usually use lowercase regardless of the correct case 
of words. Thus, lowercasing everything often remains the most practical 
solution. 

 
Other issues in English. Other possible normalizations are quite idiosyncratic 
and particular to English. For instance, you might wish to equate ne’er and 
never or the British spelling colour and the American spelling color. Dates, times 
and similar items come in multiple formats, presenting additional challenges. 
You might wish to collapse together 3/12/91 and Mar. 12, 1991. However, 
correct processing here is complicated by the fact that in the U.S., 3/12/91 is 
Mar. 12, 1991, whereas in Europe it is 3 Dec 1991. 
 
Other languages. English has maintained a dominant position on the WWW; 
approximately 60% of web pages are in English (Gerrand 2007). But that still 
leaves 40% of the web, and the non-English portion might be expected to grow 
over time, since less than one third of Internet users and less than 10% of the 
world’s population primarily speak English. And there are signs of change: Sifry 
(2007) reports that only about one third of blog posts are in English. 

 
Other languages again present distinctive issues in equivalence classing. The 
French word for the has distinctive forms based not only on the gender 
(masculine or feminine) and number of the following noun, but also depending 
on whether the following word begins with a vowel: le, la, l’, les. We may well 
wish to equivalence class these various forms of the. German has a convention 
whereby vowels with an umlaut can be rendered instead as a two vowel 
digraph. We would want to treat Schütze and Schuetze as equivalent. 

 
 

TRUECASING 

CASE-FOLDING 
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Japanese is a well-known difficult writing system, as illustrated in Figure 2.5. 
Modern Japanese is standardly an intermingling of multiple alphabets, 
principally Chinese characters, two syllabaries (hiragana and katakana) and 
western characters (Latin letters, Arabic numerals, and various symbols). While 
there are strong conventions and standardization through the education system 
over the choice of writing system, in many cases the same word can be written 
with multiple writing systems. For example, a word may be written in katakana 
for emphasis (somewhat like italics). Or a word may sometimes be written in 
hiragana and sometimes in Chinese characters. Successful retrieval thus 
requires complex equivalence classing across the writing systems. In particular, 
an end user might commonly present a query entirely in hiragana, because it is 
easier to type, just as Western end users commonly use all lowercase. 
 

 
 

 
 
 
 
 

 

 
Document collections being indexed can include documents from many different 
languages. Or a single document can easily contain text from multiple 
languages. For instance, a French email might quote clauses from a contract 
document written in English. Most commonly, the language is detected and 
language-particular tokenization and normalization rules are applied at a 
predetermined granularity, such as whole documents or individual paragraphs, 
but this still will not correctly deal with cases where language changes occur for 
brief quotations. When document collections contain multiple languages, a 
single index may have to contain terms of several languages. One option is to 
run a language identification classifier on documents and then to tag terms in 
the vocabulary for their language. Or this tagging can simply be omitted, since it 
is relatively rare for the exact same character sequence to be a word in different 
languages. 
 
When dealing with foreign or complex words, particularly foreign names, the 
spelling may be unclear or there may be variant transliteration standards giving 
different spellings (for example, Chebyshev and Tchebycheff or Beijing and 
Peking). One way of dealing with this is to use heuristics to equivalence class or 
expand terms with phonetic equivalents. The traditional and best known such 
algorithm is the Soundex algorithm. 
 
 

 

► Figure 2.5   Japanese makes use of multiple intermingled writing systems and, like 
Chinese, does not segment words. The text is mainly Chinese characters with the 
hiragana syllabary for inflectional endings and function words. The part in latin letters is 
actually a Japanese expression, but has been taken up as the name of an environmental 
campaign by 2004 Nobel Peace Prize winner Wangari Maathai. His name is written using 
the katakana syllabary in the middle of the first line. The first four characters of the final 
line express a monetary amount that we would want to match with ¥500,000 (500,000 
Japanese yen). 
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2.4. Stemming and lemmatization 

For grammatical reasons, documents are going to use different forms of a word, 
such as organize, organizes, and organizing. Additionally, there are families of 
derivationally related word swith similar meanings, such as democracy, 
democratic, and democratization. In many situations, it seems as if it would be 
useful for a search for one of these words to return documents that contain 
another word in the set. 
 
The goal of both stemming and lemmatization is to reduce inflectional forms and 
sometimes derivationally related forms of a word to a common base form. For 
instance: 

 
 

The result of this mapping of text will be something like: 

 
 
However, the two words differ in their flavor. Stemming usually refers to a crude 
heuristic process that chops off the ends of words in the hope of achieving this 
goal correctly most of the time, and often includes the removal of derivational 
affixes. Lemmatization usually refers to doing things properly with the use of a 
vocabulary and morphological analysis of words, normally aiming to remove 
inflectional endings only and to return the base or dictionary form of a word, 
which is known as the lemma. If confronted with the token saw, stemming might 
return just s, whereas lemmatization would attempt to return either see or saw 
depending on whether the use of the token was as a verb or a noun. The two 
may also differ in that stemming most commonly collapses derivationally related 
words, whereas lemmatization commonly only collapses the different inflectional 
forms of a lemma. Linguistic processing for stemming or lemmatization is often 
done by an additional plug-in component to the indexing process, and a number 
of such components exist, both commercial and open-source. 
 
The most common algorithm for stemming English, and one that has repeatedly 
been shown to be empirically very effective, is Porter’s algorithm (Porter 1980). 
The entire algorithm is too long and intricate to present here, but we will indicate 
its general nature. Porter’s algorithm consists of 5 phases of word reductions, 
applied sequentially. Within each phase there are various conventions to select 
rules, such as selecting the rule from each rule group that applies to the longest 
suffix. In the first phase, this convention is used with the following rule group: 
 

 
 

 

STEMMING 

LEMMATIZATION 

LEMMA 

PORTER STEMMER 

(2.1) 
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Many of the later rules use a concept of the measure of a word, which loosely 
checks the number of syllables to see whether a word is long enough that it is 
reasonable to regard the matching portion of a rule as a suffix rather than as 
part of the stem of a word. For example, the rule: 

(m > 1) EMENT → 

would map replacement to replac, but not cement to c. The official site for the 
Porter Stemmer is: 

http://www.tartarus.org/˜martin/PorterStemmer/ 

Other stemmers exist, including the older, one-pass Lovins stemmer (Lovins 
1968), and newer entrants like the Paice/Husk stemmer (Paice 1990); see: 

http://www.cs.waikato.ac.nz/˜eibe/stemmers/ 
http://www.comp.lancs.ac.uk/computing/research/stemming/ 

 
Figure 2.6 presents an informal comparison of the different behaviors of these 
stemmers. Stemmers use language-specific rules, but they require less 
knowledge than a lemmatizer, which needs a complete vocabulary and 
morphological analysis to correctly lemmatize words. Particular domains may 
also require special stemming rules. However, the exact stemmed form does 
not matter, only the equivalence classes it forms. 
 
Sample text: Such an analysis can reveal features that are not easily visible from the variations 

in the individual genes and can lead to a picture of expression that is more biologically 
transparent and accessible to interpretation 

Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu 
gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres 

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the 
individu gene and can lead to a pictur of express that is more biolog transpar and access to 
interpret 

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ 
gen and can lead to a pict of express that is mor biolog transp and access to interpret 

 
 

Rather than using a stemmer, you can use a lemmatizer, a tool from Natural 
Language Processing which does full morphological analysis to accurately 
identify the lemma for each word. Doing full morphological analysis produces at 
most very modest benefits for retrieval. It is hard to say more, because either 
form of normalization tends not to improve English information retrieval 
performance in aggregate – at least not by very much. While it helps a lot for 
some queries, it equally hurts performance a lot for others. Stemming increases 
recall while harming precision. As an example of what can go wrong, note that 
the Porter stemmer stems all of the following words: 

operate operating operates operation operative operatives operational 

to oper. However, since operate in its various forms is a common verb, we 
would expect to lose considerable precision on queries such as the following 
with Porter stemming: 

operational AND research 
operating AND system 
operative AND dentistry 

 

► Figure 2.6   A comparison of three stemming algorithms on a sample text. 

LEMMATIZER 
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For a case like this, moving to using a lemmatizer would not completely fix the 
problem because particular inflectional forms are used in particular collocations: 
a sentence with the words operate and system is not a good match for the query 
operating AND system. Getting better value from term normalization depends 
more on pragmatic issues of word use than on formal issues of linguistic 
morphology. 

 
The situation is different for languages with much more morphology (such as 
Spanish, German, and Finnish). Results in the European CLEF evaluations 
have repeatedly shown quite large gains from the use of stemmers (and 
compound splitting for languages like German). 

 
 

Exercise 2.1           [⋆] 

Are the following statements true or false? 
a. In a Boolean retrieval system, stemming never lowers precision. 
b. In a Boolean retrieval system, stemming never lowers recall. 
c. Stemming increases the size of the vocabulary. 
d. Stemming should be invoked at indexing time but not while processing a 

query. 
 

Exercise 2.2           [⋆] 

Suggest what normalized form should be used for these words (including the 
word itself as a possibility): 

a. ’Cos 
b. Shi’ite 
c. cont’d 
d. Hawai’i 
e. O’Rourke 

 
Exercise 2.3           [⋆] 

The following pairs of words are stemmed to the same form by the Porter 
stemmer. Which pairs would you argue shouldn’t be conflated. Give your 
reasoning. 

a. abandon/abandonment 
b. absorbency/absorbent 
c. marketing/markets 
d. university/universe 
e. volume/volumes 

 
Exercise 2.4           [⋆] 

For the Porter stemmer rule group shown in (2.1): 
a. What is the purpose of including an identity rule such as SS →SS? 
b. Applying just this rule group, what will the following words be stemmed to? 

circus canaries boss 
c. What rule should be added to correctly stem pony? 
d. The stemming for ponies and pony might seem strange. Does it have a 

deleterious effect on retrieval? Why or why not? 
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C. Latihan dan Jawaban 
 

1. Penerapan Case-Folding, Tokenisasi, Filtering, dan Stemming. 

Input  : Dalam setahun belakangan ini, pengaksesan KRS diganti ke 
SIAM (sebelumnya menggunakan SINERGI). Saat 
menggunakan SINERGI, fitur serta kecepatan akses sangat 
handal dan nyaman. Tapi setelah diganti menggunakan SIAM, 
keadaan berbalik menjadi buruk (lambat dan bahkan sampai 
keluar dengan sendirinya). *KRS tidak hanya berpengaruh bagi 
mahasiswa semester muda, tapi juga keseluruhan mahasiswa. 

Output  :  ... 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dokumen 

Dalam setahun belakangan ini, pengaksesan KRS diganti ke SIAM 
(sebelumnya menggunakan SINERGI). Saat menggunakan SINERGI, 
fitur serta kecepatan akses sangat handal dan nyaman. Tapi setelah 
diganti menggunakan SIAM, keadaan berbalik menjadi buruk (lambat dan 
bahkan sampai keluar dengan sendirinya). *KRS tidak hanya 
berpengaruh bagi mahasiswa semester muda, tapi juga keseluruhan 
mahasiswa. 

Case-Folding 

Tokenisasi 

dalam setahun belakangan ini pengaksesan krs diganti ke siam 
sebelumnya menggunakan sinergi saat menggunakan sinergi fitur serta 
kecepatan akses sangat handal dan nyaman tapi setelah diganti 
menggunakan siam keadaan berbalik menjadi buruk lambat dan bahkan 
sampai keluar dengan sendirinya krs tidak hanya berpengaruh bagi 
mahasiswa semester muda tapi juga keseluruhan mahasiswa 

 

dalam setahun belakangan ini, pengaksesan krs diganti ke siam 
(sebelumnya menggunakan sinergi). saat menggunakan sinergi, fitur 
serta kecepatan akses sangat handal dan nyaman. tapi setelah diganti 
menggunakan siam, keadaan berbalik menjadi buruk (lambat dan bahkan 
sampai keluar dengan sendirinya). *krs tidak hanya berpengaruh bagi 
mahasiswa semester muda, tapi juga keseluruhan mahasiswa. 
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Information Retrieval. Cambridge University Press. 

Filtering 

setahun belakangan pengaksesan krs diganti siam sinergi sinergi fitur 
kecepatan akses handal nyaman diganti siam keadaan berbalik buruk 
lambat sendirinya krs berpengaruh mahasiswa semester muda 
keseluruhan mahasiswa 

 

Stemming 

tahun belakang akses krs ganti siam sinergi sinergi fitur cepat akses 
handal nyaman ganti siam ada balik buruk lambat sendiri krs pengaruh 
mahasiswa semester muda luruh mahasiswa 

 


