

Universitas Esa Unggul

http://esaunggul.ac.id 0 / 11

MODUL TOPIK DALAM INFORMATION RETRIEVAL

(CMA 102)

MODUL PERTEMUAN 09

Boolean Retrieval (Part 2)

DISUSUN OLEH

Dr. Fransiskus Adikara, S.Kom, MMSI

UNIVERSITAS ESA UNGGUL

2019

Universitas Esa Unggul

http://esaunggul.ac.id 1 / 11

INVERTED INDEX – QUERY PROCESSING

A. Kemampuan Akhir Yang Diharapkan

After reading this session, you will be able to answer the following questions:

1. Index construction: how can we create inverted indexes for large collections?
2. How much space do we need for dictionary and index?
3. Index compression: how can we efficiently store and process indexes for large

collections?
4. Ranked retrieval: what does the inverted index look like when we want the

“best” answer?

B. Uraian dan Contoh

2.1. Processing Boolean queries

How do we process a query using an inverted index and the basic Boolean
retrieval model? Consider processing the simple conjunctive query:

Brutus AND Calpurnia

over the inverted index partially shown in Figure 2.1. We:
1. Locate Brutus in the Dictionary
2. Retrieve its postings
3. Locate Calpurnia in the Dictionary
4. Retrieve its postings
5. Intersect the two postings lists, as shown in Figure 2.2.

SIMPLE CONJUNCTIVE

QUERIES

(2.1)

► Figure 2.1 The two parts of an inverted index. The dictionary is commonly kept in

memory, with pointers to each postings list, which is stored on disk.

► Figure 2.2 Intersecting the postings lists for Brutus AND Calpurnia from Figure 2.1.

Universitas Esa Unggul

http://esaunggul.ac.id 2 / 11

The intersection operation is the crucial one: we need to efficiently intersect
postings lists so as to be able to quickly find documents that contain both terms.
(This operation is sometimes referred to as merging postings lists: this slightly
counterintuitive name reflects using the term merge algorithm for a general
family of algorithms that combine multiple sorted lists by interleaved advancing
of pointers through each; here we are merging the lists with a logical AND

operation.)

There is a simple and effective method of intersecting postings lists using the
merge algorithm (see Figure 2.3): we maintain pointers into both lists and walk
through the two postings lists simultaneously, in time linear in the total number
of postings entries. At each step, we compare the docID pointed to by both
pointers. If they are the same, we put that docID in the results list, and advance
both pointers. Otherwise we advance the pointer pointing to the smaller docID.

If the lengths of the postings lists are x and y, the intersection takes O(x + y)

operations. Formally, the complexity of querying is (N), where N is the number

of documents in the collection.6 Our indexing methods gain us just a constant,

not a difference in  time complexity compared to a linear scan, but in practice
the constant is huge. To use this algorithm, it is crucial that postings be sorted
by a single global ordering. Using a numeric sort by docID is one simple way to
achieve this.

We can extend the intersection operation to process more complicated queries
like:

(Brutus OR Caesar) AND NOT Calpurnia

Query optimization is the process of selecting how to organize the work of
answering a query so that the least total amount of work needs to be done by
the system. A major element of this for Boolean queries is the order in which
postings lists are accessed. What is the best order for query processing?
Consider a query that is an AND of t terms, for instance:

Brutus AND Caesar AND Calpurnia

6. The notation (·), is used to express an asy asymptotically tight bound on the complexity of

an algorithm. Informally, this is often written as O(・), but this notation really expresses an

asymptotic upper bound, which need not be tight.

POSTINGS MERGE

► Figure 2.3 Algorithm for the intersection of two postings lists p 1 dan p 2.

POSTINGS LIST

INTERSECTION

(2.2)

(2.3)

QUERY OPTIMIZATION

Universitas Esa Unggul

http://esaunggul.ac.id 3 / 11

For each of the t terms, we need to get its postings, then AND them together.
The standard heuristic is to process terms in order of increasing document
frequency: if we start by intersecting the two smallest postings lists, then all
intermediate results must be no bigger than the smallest postings list, and we
are therefore likely to do the least amount of total work. So, for the postings lists
in Figure 2.1, we execute the above query as:

(Calpurnia AND Brutus) AND Caesar

This is a first justification for keeping the frequency of terms in the dictionary: it
allows us to make this ordering decision based on in-memory data before
accessing any postings list.

Consider now the optimization of more general queries, such as:

(madding OR crowd) AND (ignoble OR strife) AND (killed OR slain)

As before, we will get the frequencies for all terms, and we can then
(conservatively) estimate the size of each OR by the sum of the frequencies of
its disjuncts. We can then process the query in increasing order of the size of
each disjunctive term.

For arbitrary Boolean queries, we have to evaluate and temporarily store the
answers for intermediate expressions in a complex expression. However, in
many circumstances, either because of the nature of the query language, or just
because this is the most common type of query that users submit, a query is
purely conjunctive. In this case, rather than viewing merging postings lists as a
function with two inputs and a distinct output, it is more efficient to intersect
each retrieved postings list with the current intermediate result in memory,
where we initialize the intermediate result by loading the postings list of the least
frequent term. This algorithm is shown in Figure 2.4. The intersection operation
is then asymmetric: the intermediate results list is in memory while the list it is
being intersected with is being read from disk. Moreover the intermediate results
list is always at least as short as the other list, and in many cases it is orders of
magnitude shorter. The postings intersection can still be done by the algorithm
in Figure 2.3, but when the difference between the list lengths is very large,
opportunities to use alternative techniques open up. The intersection can be
calculated in place by destructively modifying or marking invalid items in the
intermediate results list. Or the intersection can be done as a sequence of
binary searches in the long postings lists for each posting in the intermediate
results list. Another possibility is to store the long postings list as a hash table,
so that membership of an intermediate result item can be calculated in constant
rather than linear or log time.

(2.4)

(2.5)

► Figure 2.4 Algorithm for conjunctive queries that returns the set of documents containing
each term in the input list of terms.

Universitas Esa Unggul

http://esaunggul.ac.id 4 / 11

Exercise 2.1 [⋆]

For the queries below, can we still run through the intersection in time O(x + y),

where x and y are the lengths of the postings lists for Brutus and Caesar? If not,

what can we achieve?

a. Brutus AND NOT Caesar

b. Brutus OR NOT Caesar

Exercise 2.2 [⋆]

Extend the postings merge algorithm to arbitrary Boolean query formulas. What
is its time complexity? For instance, consider:

a. (Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

Can we always merge in linear time? Linear in what? Can we do better than
this?

Exercise 2.3 [⋆⋆]

We can use distributive laws for AND and OR to rewrite queries.

a. Show how to rewrite the query in Exercise 2.2 into disjunctive normal form
using the distributive laws.

b. Would the resulting query be more or less efficiently evaluated than the
original form of this query?

c. Is this result true in general or does it depend on the words and the
contents of the document collection?

Exercise 2.4 [⋆]

Recommend a query processing order for

a. (tangerine OR trees) AND (marmalade OR skies) AND (kaleidoscope OR
eyes)

given the following postings list sizes:

Exercise 2.5 [⋆]

If the query is:

a. friends AND romans AND (NOT countrymen)

?

Universitas Esa Unggul

http://esaunggul.ac.id 5 / 11

how could we use the frequency of countrymen in evaluating the best query
evaluation order? In particular, propose a way of handling negation in
determining the order of query processing.

Exercise 2.6 [⋆⋆]

For a conjunctive query, is processing postings lists in order of size guaranteed
to be optimal? Explain why it is, or give an example where it isn’t.

Exercise 2.7 [⋆⋆]

Write out a postings merge algorithm, in the style of Figure 2.3, for an x OR y

query.

Exercise 2.8 [⋆⋆]

How should the Boolean query x AND NOT y be handled? Why is naive

evaluation of this query normally very expensive? Write out a postings merge
algorithm that evaluates this query efficiently.

2.2. The extended Boolean model versus ranked retrieval

The Boolean retrieval model contrasts with ranked retrieval models such as the
vector space model, in which users largely use free text queries, that is, just
typing one or more words rather than using a precise language with operators
for building up query expressions, and the system decides which documents
best satisfy the query. Despite decades of academic research on the
advantages of ranked retrieval, systems implementing the Boolean retrieval
model were the main or only search option provided by large commercial
information providers for three decades until the early 1990s (approximately the
date of arrival of the World Wide Web). However, these systems did not have
just the basic Boolean operations (AND, OR, and NOT) which we have presented
so far. A strict Boolean expression over terms with an unordered results set is
too limited for many of the information needs that people have, and these
systems implemented extended Boolean retrieval models by incorporating
additional operators such as term proximity operators. A proximity operator is a
way of specifying that two terms in a query must occur close to each other in a
document, where closeness may be measured by limiting the allowed number of
intervening words or by reference to a structural unit such as a sentence or
paragraph.

Example 1.1: Commercial Boolean searching: Westlaw.

Westlaw (http://www.westlaw.com/) is the largest commercial legal search
service (in terms of the number of paying subscribers), with over half a million
subscribers performing millions of searches a day over tens of terabytes of text
data. The service was started in 1975. In 2005, Boolean search (called “Terms
and Connectors” by Westlaw) was still the default, and used by a large
percentage of users, although ranked free text querying (called “Natural
Language” by Westlaw) was added in 1992.

RANKED RETRIEVAL

MODEL
FREE TEXT QUERIES

PROXIMITY OPERATOR

http://www.westlaw.com/

Universitas Esa Unggul

http://esaunggul.ac.id 6 / 11

Here are some example Boolean queries on Westlaw:

Information need: Information on the legal theories involved in preventing
the disclosure of trade secrets by employees formerly employed by a
competing company.
Query: "trade secret" /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to access a
workplace.
Query: disab! /p access! /s work-site work-place (employment /3 place)

Information need: Cases about a host’s responsibility for drunk guests.
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Note the long, precise queries and the use of proximity operators, both
uncommon in web search. Submitted queries average about ten words in
length. Unlike web search conventions, a space between words represents
disjunction (the tightest binding operator), & is AND and /s, /p, and /k ask for
matches in the same sentence, same paragraph or within k words respectively.
Double quotes give a phrase search (consecutive words). The exclamation
mark (!) gives a trailing wildcard query; thus liab! matches all words starting with
liab. Additionally work-site matches any of worksite, work-site or work site.
Typical expert queries are usually carefully defined and incrementally developed
until they obtain what look to be good results to the user.

Many users, particularly professionals, prefer Boolean query models. Boolean
queries are precise: a document either matches the query or it does not. This
offers the user greater control and transparency over what is retrieved. And
some domains, such as legal materials, allow an effective means of document
ranking within a Boolean model: Westlaw returns documents in reverse
chronological order, which is in practice quite effective. In 2007, the majority of
law librarians still seem to recommend terms and connectors for high recall
searches, and the majority of legal users think they are getting greater control
by using them. However, this does not mean that Boolean queries are more
effective for professional searchers. Indeed, experimenting on a Westlaw
subcollection, found that free text queries produced better results than Boolean
queries prepared by Westlaw’s own reference librarians for the majority of the
information needs in his experiments. A general problem with Boolean search is
that using AND operators tends to produce high precision but low recall
searches, while using OR operators gives low precision but high recall searches,
and it is difficult or impossible to find a satisfactory middle ground.

In this chapter, we have looked at the structure and construction of a basic
inverted index, comprising a dictionary and postings lists. We introduced the
Boolean retrieval model, and examined how to do efficient retrieval via linear
time merges and simple query optimization. Here we just mention a few of the
main additional things we would like to be able to do:

1. We would like to better determine the set of terms in the dictionary and to
provide retrieval that is tolerant to spelling mistakes and inconsistent
choice of words.

Universitas Esa Unggul

http://esaunggul.ac.id 7 / 11

2. It is often useful to search for compounds or phrases that denote a concept
such as “operating system”. As the Westlaw examples show, we might also
wish to do proximity queries such as Gates NEAR Microsoft. To answer
such queries, the index has to be augmented to capture the proximities of
terms in documents.

3. A Boolean model only records term presence or absence, but often we
would like to accumulate evidence, giving more weight to documents that
have a term several times as opposed to ones that contain it only once. To
be able to do this we need term frequency information (the number of
times a term occurs in a document) in postings lists.

4. Boolean queries just retrieve a set of matching documents, but commonly
we wish to have an effective method to order (or “rank”) the returned
results. This requires having a mechanism for determining a document
score which encapsulates how good a match a document is for a query.

With these additional ideas, we will have seen most of the basic technology that
supports ad hoc searching over unstructured information. Ad hoc searching over
documents has recently conquered the world, powering not only web search
engines but the kind of unstructured search that lies behind the large
eCommerce websites. Although the main web search engines differ by
emphasizing free text querying, most of the basic issues and technologies of
indexing and querying remain the same, as we will see in later chapters.
Moreover, over time, web search engines have added at least partial
implementations of some of the most popular operators from extended Boolean
models: phrase search is especially popular and most have a very partial
implementation of Boolean operators. Nevertheless, while these options are
liked by expert searchers, they are little used by most people and are not the
main focus in work on trying to improve web search engine performance.

Exercise 2.9 [⋆]

Write a query using Westlaw syntax which would find any of the words
professor, teacher, or lecturer in the same sentence as a form of the verb
explain.

Exercise 2.10 [⋆]

Try using the Boolean search features on a couple of major web search
engines. For instance, choose a word, such as burglar, and submit the queries
(i) burglar, (ii) burglar AND burglar, and (iii) burglar OR burglar. Look at the
estimated number of results and top hits. Do they make sense in terms of
Boolean logic? Often they haven’t for major search engines. Can you make
sense of what is going on? What about if you try different words? For example,
query for (i) knight, (ii) conquer, and then (iii) knight OR conquer. What bound
should the number of results from the first two queries place on the third query?
Is this bound observed?

TERM FREQUENCY

?

Universitas Esa Unggul

http://esaunggul.ac.id 8 / 11

2.3. References and further reading

The practical pursuit of computerized information retrieval began in the late
1940s (Cleverdon 1991, Liddy 2005). A great increase in the production of
scientific literature, much in the form of less formal technical reports rather than
traditional journal articles, coupled with the availability of computers, led to
interest in automatic document retrieval. However, in those days, document
retrieval was always based on author, title, and keywords; full-text search came
much later.

The article of Bush (1945) provided lasting inspiration for the new field:

“Consider a future device for individual use, which is a sort of mechanized
private file and library. It needs a name, and, to coin one at random,
‘memex’ will do. A memex is a device in which an individual stores all his
books, records, and communications, and which is mechanized so that
itmay be consulted with exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.”

The term Information Retrieval was coined by Calvin Mooers in 1948/1950
(Mooers 1950).

In 1958, much newspaper attention was paid to demonstrations at a conference
(see Taube and Wooster 1958) of IBM “auto-indexing” machines, based
primarily on the work of H. P. Luhn. Commercial interest quickly gravitated
towards Boolean retrieval systems, but the early years saw a heady debate over
various disparate technologies for retrieval systems. For example Mooers
(1961) dissented:

“It is a common fallacy, underwritten at this date by the investment of
several million dollars in a variety of retrieval hardware, that the algebra of
George Boole (1847) is the appropriate formalism for retrieval system
design. This view is as widely and uncritically accepted as it is wrong.”

The observation of AND vs. OR giving you opposite extremes in a precision/
recall tradeoff, but not the middle ground comes from (Lee and Fox 1988).

The book (Witten et al. 1999) is the standard reference for an in-depth
comparison of the space and time efficiency of the inverted index versus other
possible data structures; a more succinct and up-to-date presentation appears
in Zobel and Moffat (2006).

Friedl (2006) covers the practical usage of regular expressions for searching.
The underlying computer science appears in (Hopcroft et al. 2000).

REGULAR

EXPRESSIONS

Universitas Esa Unggul

http://esaunggul.ac.id 9 / 11

C. Latihan dan Jawaban

1. Perhatikan beberapa dokumen berikut :

- Doc1

Algoritma Genetik dapat digunakan untuk Optimasi Fuzzy

1 2 3 4 5 6 7

- Doc2

Optimasi fungsi keanggotaan pada Fuzzy

1 2 3 4 5

- Doc3

Algoritma Genetik merupakan algoritma Learning

1 2 3 4 5

Boolean Query Retrieval : Fuzzy OR NOT (Genetik AND Learning)

➢ Set vocabulary :
{algoritma, genetik, dapat, digunakan, untuk, optimasi, fuzzy, fungsi,
keanggotaan, pada, merupakan, learning}

➢ Inverted Index sederhana :

Term Inverted List

algoritma Doc1, Doc3

genetik Doc1, Doc3

dapat Doc1

digunakan Doc1

untuk Doc1

optimasi Doc1, Doc2

fuzzy Doc1, Doc2

fungsi Doc2

keanggotaan Doc2

pada Doc2

merupakan Doc3

learning Doc3

➢ Bentuk kompleks dari Inverted Index :

Term Inverted List

algoritma <Doc1, 1, [1]>, <Doc3, 2, [1, 4]>

genetik <Doc1, 1, [2]>, <Doc3, 1, [2]>

dapat <Doc1, 1, [3]>

digunakan <Doc1, 1, [4]>

untuk <Doc1, 1, [5]>

optimasi <Doc1, 1, [6]>, <Doc2, 1, [1]>

fuzzy <Doc1, 1, [7]>, <Doc2, 1, [5]>

fungsi <Doc2, 1, [2]>

keanggotaan <Doc2, 1, [3]>

pada <Doc2, 1, [4]>

merupakan <Doc3, 1, [3]>

learning <Doc3, 1, [5]>

Universitas Esa Unggul

http://esaunggul.ac.id 10 / 11

➢ Tentukan biner dari Boolean Query Retrieval : Fuzzy OR NOT (Genetik

AND Learning)

• TFbiner(Fuzzy) = 110

• TFbiner(Genetik) = 101

• TFbiner(Learning) = 001

➢ Fuzzy OR NOT (Genetik AND Learning)

= 110 OR NOT (101 AND 001)
= 110 OR NOT (001)
= 110 OR 110
= 110

➢ Jadi, hasil Boolean Query Retrieval : Fuzzy OR NOT (Genetik AND

Learning) adalah Dokumen 1 dan Dokumen 2.

2. Term postings :

white → [1, 2, 7, 19, 174, 210, 331, 2046]
black → [2, 3, 7, 11, 94, 210]
blue → [2, 7, 24, 2001]
red → [8, 19, 94]

Query :

(white AND black AND blue) OR (white AND red) OR (black AND red)

➢ Conjuction postings :
(white AND black AND blue) → [2, 7]
(white AND red) → [19]
(black AND red) → [94]

➢ OR merges :

First = (white AND red) OR (black AND red) → [19, 94]
Second= (white AND black AND blue) OR result-First → [2, 7, 19, 94]

➢ Intersection ➔ [2, 7, 19, 94]

D. Daftar Pustaka

1. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to

Information Retrieval. Cambridge University Press.

Term Inverted List

genetik <Doc1, 1, [2]>, <Doc3, 1, [2]>

fuzzy <Doc1, 1, [7]>, <Doc2, 1, [5]>

learning <Doc3, 1, [5]>

