

Universitas Esa Unggul

http://esaunggul.ac.id 0 / 8

MODUL TOPIK DALAM INFORMATION RETRIEVAL

(CMA 102)

MODUL PERTEMUAN 08

Boolean Retrieval

DISUSUN OLEH

Dr. Fransiskus Adikara, S.Kom, MMSI

UNIVERSITAS ESA UNGGUL

2019

Universitas Esa Unggul

http://esaunggul.ac.id 1 / 8

INVERTED INDEX

A. Kemampuan Akhir Yang Diharapkan

After reading this session, you will be able to answer the following questions:

1. Index construction: how can we create inverted indexes for large collections?
2. How much space do we need for dictionary and index?
3. Index compression: how can we efficiently store and process indexes for large

collections?
4. Ranked retrieval: what does the inverted index look like when we want the

“best” answer?

B. Uraian dan Contoh

1.1. Introduction
Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collections
(usually stored on computers).

The field of information retrieval covers supporting users in browsing or filtering
document collections or further processing a set of retrieved documents. Given a set
of documents, clustering is the task of coming up with a good grouping of the
documents based on their contents. It is similar to arranging books on a bookshelf
according to their topic. Given a set of topics, standing information needs, or other
categories (such as suitability of texts for different age groups), classification is the
task of deciding which class(es), if any, each of a set of documents belongs to. It is
often approached by first manually classifying some documents and then hoping to
be able to classify new documents automatically.

In this chapter we begin with a very simple example of an information retrieval
problem, and introduce the idea of a term-document matrix (Section 1.2) and the
central inverted index data structure (Section 1.3). We will then examine the Boolean
retrieval model and how Boolean queries are processed (Sections 2).

1.2. An example information retrieval problem
A fat book which many people own is Shakespeare’s Collected Works. Suppose
You wanted to determine which plays of Shakespeare contain the words Brutus AND
Caesar AND NOT Calpurnia. One way to do that is to start at the beginning and to
read through all the text, noting for each play whether it contains Brutus and Caesar
and excluding it from consideration if it contains Calpurnia. The simplest form of
document retrieval is for a computer to do this sort of linear scan through documents.
This process is commonly referred to as grepping through text, after the Unix
command grep, which performs this process. Grepping through text can be a very
effective process, especially given the speed of modern computers, and often allows
useful possibilities for wildcard pattern matching through the use of regular
expressions. With modern computers, for simple querying of modest collections (the
size of Shakespeare’s Collected Works is a bit under one million words of text in
total), you really need nothing more.

Universitas Esa Unggul

http://esaunggul.ac.id 2 / 8

But for many purposes, you do need more:
1) To process large document collections quickly. The amount of online data has

grown at least as quickly as the speed of computers, and we would now like to
be able to search collections that total in the order of billions to trillions of words.

2) To allow more flexible matching operations. For example, it is impractical to
perform the query Romans NEAR countrymen with grep, where NEAR might be
defined as “within 5 words” or “within the same sentence”.

3) To allow ranked retrieval: in many cases you want the best answer to an
information need among many documents that contain certain words.

The way to avoid linearly scanning the texts for each query is to index the documents
in advance. Let us stick with Shakespeare’s Collected Works, and use it to introduce
the basics of the Boolean retrieval model. Suppose we record for each document –
here a play of Shakespeare’s – whether it contains each word out of all the words
Shakespeare used (Shakespeare used about 32,000 different words). The result is a
binary term-document incidence TERM matrix, as in Figure 1.1.

Terms are the indexed units; they are usually words, and for the moment you can
think of them as words, but the information retrieval literature normally speaks of
terms because some of them, such as perhaps I-9 or Hong Kong are not usually
thought of as words. Now, depending on whether we look at the matrix rows or
columns, we can have a vector for each term, which shows the documents it appears
in, or a vector for each document, showing the terms that occur in it.

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the vectors
for Brutus, Caesar and Calpurnia, complement the last, and then do a bitwise AND:

The answers for this query are thus Antony and Cleopatra and Hamlet (Figure 1.2).
The Boolean retrieval model is a model for information retrieval in which we can pose
any query which is in the form of a Boolean expression of terms, that is, in which
terms are combined with the operators AND, OR, and NOT. The model views each
document as just a set of words.

Universitas Esa Unggul

http://esaunggul.ac.id 3 / 8

Let us now consider a more realistic scenario, simultaneously using the opportunity
to introduce some terminology and notation. Suppose we have N = 1 million
documents. By documents we mean whatever units we have decided to build a
retrieval system over. They might be individual memos or chapters of a book. We will
refer to the group of documents over which we perform retrieval as the (document)
collection. It is sometimes also referred to as a corpus (a body of texts). Suppose
each document is about 1000 words long (2–3 book pages). If we assume an
average of 6 bytes per word including spaces and punctuation, then this is a
document collection about 6 GB in size. Typically, there might be about M = 500,000
distinct terms in these documents. There is nothing special about the numbers we
have chosen, and they might vary by an order of magnitude or more, but they give us
some idea of the dimensions of the kinds of problems we need to handle.

Our goal is to develop a system to address the ad hoc retrieval task. This is the most
standard IR task. In it, a system aims to provide documents from within the collection
that are relevant to an arbitrary user information need, communicated to the system
by means of a one-off, user-initiated query. An information need is the topic about
which the user desires to know more, and is differentiated from a query, which is
what the user conveys to the computer in an attempt to communicate the information
need. A document is relevant if it is one that the user perceives as containing
information of value with respect to their personal information need. Our example
above was rather artificial in that the information need was defined in terms of
particular words, whereas usually a user is interested in a topic like “pipeline leaks”
and would like to find relevant documents regardless of whether they precisely use
those words or express the concept with other words such as pipeline rupture. To
assess the effectiveness of an IR system (i.e., the quality of its search results), a user
will usually want to know two key statistics about the system’s returned results for a
query:

Precision: What fraction of the returned results are relevant to the information need?

Recall: What fraction of the relevant documents in the collection were returned by the
system?

We now cannot build a term-document matrix in a naive way. A 500K ×1M matrix has
half-a-trillion 0’s and 1’s – too many to fit in a computer’s memory. But the crucial
observation is that the matrix is extremely sparse, that is, it has few non-zero entries.
Because each document is 1000 words long, the matrix has no more than one billion
1’s, so a minimum of 99.8% of the cells are zero. A much better representation is to
record only the things that do occur, that is, the 1 positions.

This idea is central to the first major concept in information retrieval, the inverted
index. The name is actually redundant: an index always maps back from terms to the
parts of a document where they occur. Nevertheless, inverted index, or sometimes
inverted file, has become the standard term in information retrieval. The basic idea of
an inverted index is shown in Figure 1.3. We keep a dictionary of terms (sometimes
also referred to as a vocabulary or lexicon; in this book, we use dictionary for the
data structure and vocabulary for the set of terms). Then for each term, we have a list
that records which documents the term occurs in. Each item in the list – which
records that a term appeared in a document (and, later, often, the positions in the
document) – is conventionally called a posting. The list is then called a postings list

Universitas Esa Unggul

http://esaunggul.ac.id 4 / 8

(or inverted list), and all the postings lists taken together are referred to as the
postings. The dictionary in Figure 1.3 has been sorted alphabetically and each
postings list is sorted by document ID. We will see why this is useful in Section 1.3,
below, but later we will also consider alternatives to doing this.

1.3. A First take at building an inverted index
To gain the speed benefits of indexing at retrieval time, we have to build the index in
advance. The major steps in this are:

1. Collect the documents to be indexed:

2. Tokenize the text, turning each document into

3. Do linguistic preprocessing, producing a list of normalized tokens, which are the

indexing terms:

4. Index the documents that each term occurs in by creating an inverted index,

consisting of a dictionary and postings.

Here, we assume that the first 3 steps have already been done, and we examine
building a basic inverted index by sort-based indexing.

Within a document collection, we assume that each document has a unique serial
number, known as the document identifier (docID). During index construction, we can
simply assign successive integers to each new document when it is first
encountered. The input to indexing is a list of normalized tokens for each document,
which we can equally think of as a list of pairs of term and docID, as in Figure 1.4.
The core indexing step is sorting this list so that the terms are alphabetical, giving us
the representation in the middle column of Figure 1.4. Multiple occurrences of the
same term from the same document are then merged. Instances of the same term
are then grouped, and the result is split into a dictionary and postings, as shown in
the right column of Figure 1.4. Since a term generally occurs in a number of
documents, this data organization already reduces the storage requirements of the
index. The dictionary also records some statistics, such as the number of documents
which contain each term (the document frequency, which is here also the length of

Universitas Esa Unggul

http://esaunggul.ac.id 5 / 8

each postings list). This information is not vital for a basic Boolean search engine, but
it allows us to improve the efficiency of the search engine at query time, and it is a
statistic later used in many ranked retrieval models. The postings are secondarily
sorted by docID. This provides the basis for efficient query processing. This inverted
index structure is essentially without rivals as the most efficient structure for
supporting ad hoc text search.

Universitas Esa Unggul

http://esaunggul.ac.id 6 / 8

In the resulting index, we pay for storage of both the dictionary and the postings lists.
The latter are much larger, but the dictionary is commonly kept in memory, while
postings lists are normally kept on disk, so the size of each is important. What data
structure should be used for a postings list? A fixed length array would be wasteful as
some words occur in many documents, and others in very few. For an in-memory
postings list, two good alternatives are singly linked lists or variable length arrays.
Singly linked lists allow cheap insertion of documents into postings lists (following
updates, such as when recrawling the web for updated documents), and naturally
extend to more advanced indexing strategies such as skip lists, which require
additional pointers. Variable length arrays win in space requirements by avoiding the
overhead for pointers and in time requirements because their use of contiguous
memory increases speed on modern processors with memory caches. Extra pointers
can in practice be encoded into the lists as offsets. If updates are relatively
infrequent, variable length arrays will be more compact and faster to traverse. We
can also use a hybrid scheme with a linked list of fixed length arrays for each term.
When postings lists are stored on disk, they are stored (perhaps compressed) as a
contiguous run of postings without explicit pointers (as in Figure 1.3), so as to
minimize the size of the postings list and the number of disk seeks to read a postings
list into memory.

C. Latihan dan Jawaban

1) How good are the retrieved docs?

• Precision : Fraction of retrieved docs that are relevant to user’s
 information need.

• Recall : Fraction of relevant docs in collection that are retrieved.

• More precise definitions and measurements to follow in another
lecture on evaluation.

2) Example of Input Collection :
Doc 1 = English tutorial and fast track
Doc 2 = learning latent semantic indexing
Doc 3 = Book on semantic indexing
Doc 4 = Advance in structure and semantic indexing
Doc 5 = Analysis of latent structures

Query Problem : advance and structure AND NOT analysis

Universitas Esa Unggul

http://esaunggul.ac.id 7 / 8

First we build the term-document incidence matrix which represents a list
of all the distinct terms and their presence on each document (incidence
vector). If the document contains the term than incidence vector is 1
otherwise 0.

 Doc
Terms Doc1 Doc2 Doc3 Doc4 Doc5

English 1 0 0 0 0

Tutorial 1 0 0 0 0

Fast 1 0 0 0 0

Track 1 0 0 0 0

Books 0 0 1 0 0

Semantic 0 1 1 1 0

Analysis 0 0 0 0 1

Learning 0 1 0 0 0

Latent 0 1 0 0 1

Indexing 0 1 1 1 0

Advance 0 0 0 1 0

Structures 0 0 0 1 1

So now we have 0/1 vector for each term. To answer the query we take
the vectors for advance, structure, and analysis, complement the last,
and the do a bitwise AND.

Doc1 Doc2 Doc3 Doc4 Doc5

0 0 0 1 0

0 0 0 1 1 (AND)

0 0 0 1 0

1 1 1 1 0 (NOT analysis)

0 0 0 1 0

 Hence Doc4 is retrieved here.

D. Daftar Pustaka

1. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to

Information Retrieval. Cambridge University Press.

Doc4

