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Introduction to Information Retrieval

This lecture; IIR Sections 6.2-6.4.3
§ Ranked retrieval
§ Scoring documents
§ Term frequency
§ Collection statistics
§ Weighting schemes
§ Vector space scoring
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Ranked retrieval
§ Thus far, our queries have all been Boolean.

§ Documents either match or don’t.

§ Good for expert users with precise understanding of 
their needs and the collection.
§ Also good for applications: Applications can easily 

consume 1000s of results.

§ Not good for the majority of users.
§ Most users incapable of writing Boolean queries (or they 

are, but they think it’s too much work).
§ Most users don’t want to wade through 1000s of results.

§ This is particularly true of web search.

Ch. 6
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Problem with Boolean search:
feast or famine
§ Boolean queries often result in either too few (=0) or 

too many (1000s) results.
§ Query 1: “standard user dlink 650” → 200,000 hits
§ Query 2: “standard user dlink 650 no card found”: 0 

hits
§ It takes a lot of skill to come up with a query that 

produces a manageable number of hits.
§ AND gives too few; OR gives too many

Ch. 6
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Ranked retrieval models
§ Rather than a set of documents satisfying a query 

expression, in ranked retrieval, the system returns an 
ordering over the (top) documents in the collection 
for a query

§ Free text queries: Rather than a query language of 
operators and expressions, the user’s query is just 
one or more words in a human language

§ In principle, there are two separate choices here, but 
in practice, ranked retrieval has normally been 
associated with free text queries and vice versa
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Feast or famine: not a problem in 
ranked retrieval
§ When a system produces a ranked result set, large 

result sets are not an issue
§ Indeed, the size of the result set is not an issue
§ We just show the top k ( ≈ 10) results
§ We don’t overwhelm the user

§ Premise: the ranking algorithm works

Ch. 6
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Scoring as the basis of ranked retrieval
§ We wish to return in order the documents most likely 

to be useful to the searcher
§ How can we rank-order the documents in the 

collection with respect to a query?
§ Assign a score – say in [0, 1] – to each document
§ This score measures how well document and query 

“match”.

Ch. 6
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Query-document matching scores
§ We need a way of assigning a score to a 

query/document pair
§ Let’s start with a one-term query
§ If the query term does not occur in the document: 

score should be 0
§ The more frequent the query term in the document, 

the higher the score (should be)
§ We will look at a number of alternatives for this.

Ch. 6
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Take 1: Jaccard coefficient
§ Recall from Lecture 3: A commonly used measure of 

overlap of two sets A and B
§ jaccard(A,B) = |A ∩ B| / |A ∪ B|
§ jaccard(A,A) = 1
§ jaccard(A,B) = 0 if A ∩ B = 0
§ A and B don’t have to be the same size.
§ Always assigns a number between 0 and 1.

Ch. 6
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Jaccard coefficient: Scoring example
§ What is the query-document match score that the 

Jaccard coefficient computes for each of the two 
documents below?

§ Query: ides of march
§ Document 1: caesar died in march
§ Document 2: the long march

Ch. 6
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Issues with Jaccard for scoring
§ It doesn’t consider term frequency (how many times 

a term occurs in a document)
§ Rare terms in a collection are more informative than 

frequent terms. Jaccard doesn’t consider this 
information

§ We need a more sophisticated way of normalizing for 
length

§ Later in this lecture, we’ll use 
§ . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length 

normalization.

| B A|/| B A| !"

Ch. 6
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Recall (Lecture 1): Binary term-
document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2
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Term-document count matrices
§ Consider the number of occurrences of a term in a 

document: 
§ Each document is a count vector in ℕv: a column below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2



Introduction to Information Retrieval

Bag of words model
§ Vector representation doesn’t consider the ordering 

of words in a document
§ John is quicker than Mary and Mary is quicker than 

John have the same vectors
§ This is called the bag of words model.
§ In a sense, this is a step back: The positional index 

was able to distinguish these two documents.
§ We will look at “recovering” positional information 

later in this course.
§ For now: bag of words model
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Term frequency tf
§ The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d.
§ We want to use tf when computing query-document 

match scores. But how?
§ Raw term frequency is not what we want:

§ A document with 10 occurrences of the term is more 
relevant than a document with 1 occurrence of the term.

§ But not 10 times more relevant.

§ Relevance does not increase proportionally with 
term frequency.

NB: frequency = count in IR
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Log-frequency weighting
§ The log frequency weight of term t in d is

§ 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
§ Score for a document-query pair: sum over terms t in 

both q and d:
§ score

§ The score is 0 if none of the query terms is present in 
the document.

î
í
ì >+

=
otherwise 0,

0   tfif, tflog  1
  10 t,dt,d

t,dw

å ÇÎ
+=

dqt dt ) tflog  (1 ,

Sec. 6.2



Introduction to Information Retrieval

Document frequency

§ Rare terms are more informative than frequent terms
§ Recall stop words

§ Consider a term in the query that is rare in the 
collection (e.g., arachnocentric)

§ A document containing this term is very likely to be 
relevant to the query arachnocentric

§ → We want a high weight for rare terms like 
arachnocentric.

Sec. 6.2.1
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Document frequency, continued
§ Frequent terms are less informative than rare terms
§ Consider a query term that is frequent in the 

collection (e.g., high, increase, line)
§ A document containing such a term is more likely to 

be relevant than a document that doesn’t
§ But it’s not a sure indicator of relevance.
§ → For frequent terms, we want high positive weights 

for words like high, increase, and line
§ But lower weights than for rare terms.
§ We will use document frequency (df) to capture this.

Sec. 6.2.1
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idf weight
§ dft is the document frequency of t: the number of 

documents that contain t
§ dft is an inverse measure of the informativeness of t
§ dft £ N

§ We define the idf (inverse document frequency) of t
by

§ We use log (N/dft) instead of N/dft to “dampen” the effect 
of idf.

)/df( log  idf 10 tt N=

Will turn out the base of the log is immaterial.

Sec. 6.2.1
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idf example, suppose N = 1 million
term dft idft
calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1
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Effect of idf on ranking
§ Does idf have an effect on ranking for one-term 

queries, like
§ iPhone

§ idf has no effect on ranking one term queries
§ idf affects the ranking of documents for queries with at 

least two terms
§ For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the final 
document ranking than occurrences of person.
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Collection vs. Document frequency

§ The collection frequency of t is the number of 
occurrences of t in the collection, counting 
multiple occurrences.

§ Example:

§ Which word is a better search term (and should 
get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1
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tf-idf weighting

§ The tf-idf weight of a term is the product of its tf 
weight and its idf weight.

§ Best known weighting scheme in information retrieval
§ Note: the “-” in tf-idf is a hyphen, not a minus sign!
§ Alternative names: tf.idf, tf x idf

§ Increases with the number of occurrences within a 
document

§ Increases with the rarity of the term in the collection

)df/(log)tf1log(w 10,, tdt N
dt

´+=

Sec. 6.2.2
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Score for a document given a query

§ There are many variants
§ How “tf” is computed (with/without logs)
§ Whether the terms in the query are also weighted
§ … 

25
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Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V|

Sec. 6.3
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Documents as vectors
§ So we have a |V|-dimensional vector space
§ Terms are axes of the space
§ Documents are points or vectors in this space
§ Very high-dimensional: tens of millions of 

dimensions when you apply this to a web search 
engine

§ These are very sparse vectors - most entries are zero.

Sec. 6.3
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Queries as vectors
§ Key idea 1: Do the same for queries: represent them 

as vectors in the space
§ Key idea 2: Rank documents according to their 

proximity to the query in this space
§ proximity = similarity of vectors
§ proximity ≈ inverse of distance
§ Recall: We do this because we want to get away from 

the you’re-either-in-or-out Boolean model.
§ Instead: rank more relevant documents higher than 

less relevant documents

Sec. 6.3
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Formalizing vector space proximity
§ First cut: distance between two points

§ ( = distance between the end points of the two vectors)

§ Euclidean distance?
§ Euclidean distance is a bad idea . . .
§ . . . because Euclidean distance is large for vectors of 

different lengths.

Sec. 6.3
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Why distance is a bad idea

The Euclidean 
distance between q
and d2 is large even 
though the
distribution of terms 
in the query q and the 
distribution of
terms in the 
document d2 are
very similar.

Sec. 6.3
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Use angle instead of distance
§ Thought experiment: take a document d and append 

it to itself. Call this document dʹ.
§ “Semantically” d and dʹ have the same content
§ The Euclidean distance between the two documents 

can be quite large
§ The angle between the two documents is 0, 

corresponding to maximal similarity.

§ Key idea: Rank documents according to angle with 
query.

Sec. 6.3
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From angles to cosines
§ The following two notions are equivalent.

§ Rank documents in decreasing order of the angle between 
query and document

§ Rank documents in increasing order  of 
cosine(query,document)

§ Cosine is a monotonically decreasing function for the 
interval [0o, 180o]

Sec. 6.3
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From angles to cosines

§ But how – and why – should we be computing cosines?

Sec. 6.3
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Length normalization
§ A vector can be (length-) normalized by dividing each 

of its components by its length – for this we use the 
L2 norm:

§ Dividing a vector by its L2 norm makes it a unit 
(length) vector (on surface of unit hypersphere)

§ Effect on the two documents d and dʹ (d appended 
to itself) from earlier slide: they have identical 
vectors after length-normalization.
§ Long and short documents now have comparable weights
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Sec. 6.3
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cosine(query,document)
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Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3
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Cosine for length-normalized vectors
§ For length-normalized vectors, cosine similarity is 

simply the dot product (or scalar product):

for q, d length-normalized.

36
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Cosine similarity illustrated

37
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Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.



Introduction to Information Retrieval

3 documents example contd.

Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After length normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Sec. 6.3
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Computing cosine scores

Sec. 6.3
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tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4
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Weighting may differ in queries vs 
documents
§ Many search engines allow for different weightings 

for queries vs. documents
§ SMART Notation: denotes the combination in use in 

an engine, with the notation ddd.qqq, using the 
acronyms from the previous table

§ A very standard weighting scheme is: lnc.ltc
§ Document: logarithmic tf (l as first character), no idf 

and cosine normalization

§ Query: logarithmic tf (l in leftmost column), idf (t in 
second column), no normalization …

A bad idea?

Sec. 6.4
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tf-idf example: lnc.ltc

Term Query Document Pro
d

tf-
raw

tf-wt df idf wt n’liz
e

tf-raw tf-wt wt n’liz
e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

 

12 + 02 +12 +1.32 »1.92

Sec. 6.4
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Summary – vector space ranking

§ Represent the query as a weighted tf-idf vector
§ Represent each document as a weighted tf-idf vector
§ Compute the cosine similarity score for the query 

vector and each document vector
§ Rank documents with respect to the query by score
§ Return the top K (e.g., K = 10) to the user
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Resources for today’s lecture
§ IIR 6.2 – 6.4.3

§ http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html
§ Term weighting and cosine similarity tutorial for SEO folk!

Ch. 6
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