
Introduction to Information Retrieval

TOPIK DALAM INFORMATION RETRIEVAL
PROGRAM STUDI MAGISTER ILMU KOMPUTER

FAKULTAS ILMU KOMPUTER
Pertemuan – 6 #7329-Dr. Gerry Firmansyah

Introduction to Information Retrieval

Introduction to

Information Retrieval

Scoring, Term Weighting and the Vector Space
Model

Sumber : Information Retrieval, Pandu Nayak and Prabhakar Raghavan

Introduction to Information Retrieval

This lecture; IIR Sections 6.2-6.4.3
§ Ranked retrieval
§ Scoring documents
§ Term frequency
§ Collection statistics
§ Weighting schemes
§ Vector space scoring

Introduction to Information Retrieval

Ranked retrieval
§ Thus far, our queries have all been Boolean.

§ Documents either match or don’t.

§ Good for expert users with precise understanding of
their needs and the collection.
§ Also good for applications: Applications can easily

consume 1000s of results.

§ Not good for the majority of users.
§ Most users incapable of writing Boolean queries (or they

are, but they think it’s too much work).
§ Most users don’t want to wade through 1000s of results.

§ This is particularly true of web search.

Ch. 6

Introduction to Information Retrieval

Problem with Boolean search:
feast or famine
§ Boolean queries often result in either too few (=0) or

too many (1000s) results.
§ Query 1: “standard user dlink 650” → 200,000 hits
§ Query 2: “standard user dlink 650 no card found”: 0

hits
§ It takes a lot of skill to come up with a query that

produces a manageable number of hits.
§ AND gives too few; OR gives too many

Ch. 6

Introduction to Information Retrieval

Ranked retrieval models
§ Rather than a set of documents satisfying a query

expression, in ranked retrieval, the system returns an
ordering over the (top) documents in the collection
for a query

§ Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

§ In principle, there are two separate choices here, but
in practice, ranked retrieval has normally been
associated with free text queries and vice versa

6

Introduction to Information Retrieval

Feast or famine: not a problem in
ranked retrieval
§ When a system produces a ranked result set, large

result sets are not an issue
§ Indeed, the size of the result set is not an issue
§ We just show the top k (≈ 10) results
§ We don’t overwhelm the user

§ Premise: the ranking algorithm works

Ch. 6

Introduction to Information Retrieval

Scoring as the basis of ranked retrieval
§ We wish to return in order the documents most likely

to be useful to the searcher
§ How can we rank-order the documents in the

collection with respect to a query?
§ Assign a score – say in [0, 1] – to each document
§ This score measures how well document and query

“match”.

Ch. 6

Introduction to Information Retrieval

Query-document matching scores
§ We need a way of assigning a score to a

query/document pair
§ Let’s start with a one-term query
§ If the query term does not occur in the document:

score should be 0
§ The more frequent the query term in the document,

the higher the score (should be)
§ We will look at a number of alternatives for this.

Ch. 6

Introduction to Information Retrieval

Take 1: Jaccard coefficient
§ Recall from Lecture 3: A commonly used measure of

overlap of two sets A and B
§ jaccard(A,B) = |A ∩ B| / |A ∪ B|
§ jaccard(A,A) = 1
§ jaccard(A,B) = 0 if A ∩ B = 0
§ A and B don’t have to be the same size.
§ Always assigns a number between 0 and 1.

Ch. 6

Introduction to Information Retrieval

Jaccard coefficient: Scoring example
§ What is the query-document match score that the

Jaccard coefficient computes for each of the two
documents below?

§ Query: ides of march
§ Document 1: caesar died in march
§ Document 2: the long march

Ch. 6

Introduction to Information Retrieval

Issues with Jaccard for scoring
§ It doesn’t consider term frequency (how many times

a term occurs in a document)
§ Rare terms in a collection are more informative than

frequent terms. Jaccard doesn’t consider this
information

§ We need a more sophisticated way of normalizing for
length

§ Later in this lecture, we’ll use
§ . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length

normalization.

| B A|/| B A| !"

Ch. 6

Introduction to Information Retrieval

Recall (Lecture 1): Binary term-
document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2

Introduction to Information Retrieval

Term-document count matrices
§ Consider the number of occurrences of a term in a

document:
§ Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Introduction to Information Retrieval

Bag of words model
§ Vector representation doesn’t consider the ordering

of words in a document
§ John is quicker than Mary and Mary is quicker than

John have the same vectors
§ This is called the bag of words model.
§ In a sense, this is a step back: The positional index

was able to distinguish these two documents.
§ We will look at “recovering” positional information

later in this course.
§ For now: bag of words model

Introduction to Information Retrieval

Term frequency tf
§ The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.
§ We want to use tf when computing query-document

match scores. But how?
§ Raw term frequency is not what we want:

§ A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

§ But not 10 times more relevant.

§ Relevance does not increase proportionally with
term frequency.

NB: frequency = count in IR

Introduction to Information Retrieval

Log-frequency weighting
§ The log frequency weight of term t in d is

§ 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
§ Score for a document-query pair: sum over terms t in

both q and d:
§ score

§ The score is 0 if none of the query terms is present in
the document.

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

å ÇÎ
+=

dqt dt) tflog (1 ,

Sec. 6.2

Introduction to Information Retrieval

Document frequency

§ Rare terms are more informative than frequent terms
§ Recall stop words

§ Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

§ A document containing this term is very likely to be
relevant to the query arachnocentric

§ → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Introduction to Information Retrieval

Document frequency, continued
§ Frequent terms are less informative than rare terms
§ Consider a query term that is frequent in the

collection (e.g., high, increase, line)
§ A document containing such a term is more likely to

be relevant than a document that doesn’t
§ But it’s not a sure indicator of relevance.
§ → For frequent terms, we want high positive weights

for words like high, increase, and line
§ But lower weights than for rare terms.
§ We will use document frequency (df) to capture this.

Sec. 6.2.1

Introduction to Information Retrieval

idf weight
§ dft is the document frequency of t: the number of

documents that contain t
§ dft is an inverse measure of the informativeness of t
§ dft £ N

§ We define the idf (inverse document frequency) of t
by

§ We use log (N/dft) instead of N/dft to “dampen” the effect
of idf.

)/df(log idf 10 tt N=

Will turn out the base of the log is immaterial.

Sec. 6.2.1

Introduction to Information Retrieval

idf example, suppose N = 1 million
term dft idft
calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

Introduction to Information Retrieval

Effect of idf on ranking
§ Does idf have an effect on ranking for one-term

queries, like
§ iPhone

§ idf has no effect on ranking one term queries
§ idf affects the ranking of documents for queries with at

least two terms
§ For the query capricious person, idf weighting makes

occurrences of capricious count for much more in the final
document ranking than occurrences of person.

22

Introduction to Information Retrieval

Collection vs. Document frequency

§ The collection frequency of t is the number of
occurrences of t in the collection, counting
multiple occurrences.

§ Example:

§ Which word is a better search term (and should
get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

Introduction to Information Retrieval

tf-idf weighting

§ The tf-idf weight of a term is the product of its tf
weight and its idf weight.

§ Best known weighting scheme in information retrieval
§ Note: the “-” in tf-idf is a hyphen, not a minus sign!
§ Alternative names: tf.idf, tf x idf

§ Increases with the number of occurrences within a
document

§ Increases with the rarity of the term in the collection

)df/(log)tf1log(w 10,, tdt N
dt

´+=

Sec. 6.2.2

Introduction to Information Retrieval

Score for a document given a query

§ There are many variants
§ How “tf” is computed (with/without logs)
§ Whether the terms in the query are also weighted
§ …

25

Score(q,d) = tf.idft,dtÎqÇdå

Sec. 6.2.2

Introduction to Information Retrieval

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

Sec. 6.3

Introduction to Information Retrieval

Documents as vectors
§ So we have a |V|-dimensional vector space
§ Terms are axes of the space
§ Documents are points or vectors in this space
§ Very high-dimensional: tens of millions of

dimensions when you apply this to a web search
engine

§ These are very sparse vectors - most entries are zero.

Sec. 6.3

Introduction to Information Retrieval

Queries as vectors
§ Key idea 1: Do the same for queries: represent them

as vectors in the space
§ Key idea 2: Rank documents according to their

proximity to the query in this space
§ proximity = similarity of vectors
§ proximity ≈ inverse of distance
§ Recall: We do this because we want to get away from

the you’re-either-in-or-out Boolean model.
§ Instead: rank more relevant documents higher than

less relevant documents

Sec. 6.3

Introduction to Information Retrieval

Formalizing vector space proximity
§ First cut: distance between two points

§ (= distance between the end points of the two vectors)

§ Euclidean distance?
§ Euclidean distance is a bad idea . . .
§ . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Introduction to Information Retrieval

Why distance is a bad idea

The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and the
distribution of
terms in the
document d2 are
very similar.

Sec. 6.3

Introduction to Information Retrieval

Use angle instead of distance
§ Thought experiment: take a document d and append

it to itself. Call this document dʹ.
§ “Semantically” d and dʹ have the same content
§ The Euclidean distance between the two documents

can be quite large
§ The angle between the two documents is 0,

corresponding to maximal similarity.

§ Key idea: Rank documents according to angle with
query.

Sec. 6.3

Introduction to Information Retrieval

From angles to cosines
§ The following two notions are equivalent.

§ Rank documents in decreasing order of the angle between
query and document

§ Rank documents in increasing order of
cosine(query,document)

§ Cosine is a monotonically decreasing function for the
interval [0o, 180o]

Sec. 6.3

Introduction to Information Retrieval

From angles to cosines

§ But how – and why – should we be computing cosines?

Sec. 6.3

Introduction to Information Retrieval

Length normalization
§ A vector can be (length-) normalized by dividing each

of its components by its length – for this we use the
L2 norm:

§ Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

§ Effect on the two documents d and dʹ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.
§ Long and short documents now have comparable weights

å=
i i
xx 2

2

!

Sec. 6.3

Introduction to Information Retrieval

cosine(query,document)

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!

!

!!

!!!!

Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

Introduction to Information Retrieval

Cosine for length-normalized vectors
§ For length-normalized vectors, cosine similarity is

simply the dot product (or scalar product):

for q, d length-normalized.

36

!!

cos("!q ,
"!
d) =
"!q •
"!
d = qidii=1

Vå

Introduction to Information Retrieval

Cosine similarity illustrated

37

Introduction to Information Retrieval

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

Introduction to Information Retrieval

3 documents example contd.

Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After length normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Sec. 6.3

Introduction to Information Retrieval

Computing cosine scores

Sec. 6.3

Introduction to Information Retrieval

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4

Introduction to Information Retrieval

Weighting may differ in queries vs
documents
§ Many search engines allow for different weightings

for queries vs. documents
§ SMART Notation: denotes the combination in use in

an engine, with the notation ddd.qqq, using the
acronyms from the previous table

§ A very standard weighting scheme is: lnc.ltc
§ Document: logarithmic tf (l as first character), no idf

and cosine normalization

§ Query: logarithmic tf (l in leftmost column), idf (t in
second column), no normalization …

A bad idea?

Sec. 6.4

Introduction to Information Retrieval

tf-idf example: lnc.ltc

Term Query Document Pro
d

tf-
raw

tf-wt df idf wt n’liz
e

tf-raw tf-wt wt n’liz
e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 + 02 +12 +1.32 »1.92

Sec. 6.4

Introduction to Information Retrieval

Summary – vector space ranking

§ Represent the query as a weighted tf-idf vector
§ Represent each document as a weighted tf-idf vector
§ Compute the cosine similarity score for the query

vector and each document vector
§ Rank documents with respect to the query by score
§ Return the top K (e.g., K = 10) to the user

Introduction to Information Retrieval

Resources for today’s lecture
§ IIR 6.2 – 6.4.3

§ http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html
§ Term weighting and cosine similarity tutorial for SEO folk!

Ch. 6

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

