Universitas

Esa Unggul . Smart, Creative and Entrepreneurial

TOPIK DALAM INFORMATION RETRIEVAL
PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER
Pertemuan — 4 #7329-Dr. Gerry Firmansyah

www.esaunggul.ac.id

(agga Unggul Smart, Creative and Entrepreneurial

Index Construction

Sumber : Information Retrieval, Pandu Nayak and Prabhakar Raghavan
. ! S —

I S—————————.

Introduction to Information Retrieval

Plan

= Last lecture:

= Dictionary data structures

= Tolerant retrieval
= Wildcards
= Spell correction
= Soundex

= This time:

* |ndex construction

$m

on

a-hu

\ 4

mace

madden

among >

amortize

»

abandon

among

Introduction to Information Retrieval Ch. 4

Index construction

= How do we construct an index?

= What strategies can we use with limited main
memory?

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Many design decisions in information retrieval are
based on the characteristics of hardware

= We begin by reviewing hardware basics

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Access to data in memory is much faster than access
to data on disk.

= Disk seeks: No data is transferred from disk while the
disk head is being positioned.

* Therefore: Transferring one large chunk of data from

disk to memory is faster than transferring many small
chunks.

= Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks).

= Block sizes: 8KB to 256 KB.

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Servers used in IR systems now typically have several
GB of main memory, sometimes tens of GB.

= Available disk space is several (2—3) orders of
magnitude larger.

= Fault tolerance is very expensive: It’s much cheaper
to use many regular machines rather than one fault
tolerant machine.

Introduction to Information Retrieval Sec. 4.1

Hardware assumptions for this lecture

= symbol statistic value

=S average seek time 5ms=5x1073s

= b transfer time per byte 0.02 us=2x1038s
- processor’s clock rate 10° s71

"p low-level operation 0.01 us=10"3s

(e.g., compare & swap a word)
: size of main memory several GB
- size of disk space 1 TB or more

Introduction to Information Retrieval Sec. 4.2

RCV1: Our collection for this lecture

= Shakespeare’s collected works definitely aren’t large
enough for demonstrating many of the points in this
course.

* The collection we’ll use isn’t really large enough
either, but it’s publicly available and is at least a more
plausible example.

= As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

" This is one year of Reuters newswire (part of 1995
and 1996)

Introduction to Information Retrieval Sec. 4.2

A Reuters RCV1 document

REUTERS B

You are here: Home > News > Science > Article

Gotoa Section: U.S. International Business Markets Poltics Entertainment Technology Sports Oddly Enouc

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Article Print This Article | Reprints

[-] Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a

possible indication of global warming, Australian scientists said on
Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Introduction to Information Retrieval Sec. 4.2

Reuters RCV1 statistics

= symbol statistic value
= N documents 800,000
= L avg. # tokens per doc 200
= M terms (= word types) 400,000
- avg. # bytes per token 6
(incl. spaces/punct.)
- avg. # bytes per token 4.5
(without spaces/punct.)
- avg. # bytes per term 7.5
- non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Introduction to Information Retrieval Sec. 4.2

O
o
(9]
H

Term

Recall IR 1 index construction

did
enact
julius
= Documents are parsed to extract words and these caesar
are saved with the Document ID. was
killed
)
the
capitol
brutus
killed

Doc 1 Doc 2 — <0

let
it
be

| did enact Julius So let it be with with
Caesar | was killed| | cgesar. The noble caesar

the

I" the Capitol, Brutus hath told you noble

brutus
Brutus killed me. Caesar was ambitious hath

you
caesar
was
ambitious

NNNNMMNMNMMNMMNMMNMNMNMNDMNMMNMNBMNMNN_R,R a2 2 adaadaadaadaa

Introduction to Information Retrieval Sec. 4.2

O
o
0
**

Key step ferm . Desk e e

1 2
did 1 be 2_
enact 1 brutus 1
julius 1 brutus 2
= After all documents have been caesar ! capitol :
parsed, the inverted file is was 1 caesar 2
killed 1 caesar 2
sorted by terms. i 1 did 1
the 1 enact 1
capitol 1 hath 1
% brutus 1 | 1
killed 1 | 1
We focus on this sort step. e : ' :
We have 100M items to sort. ot 2 -> utlus 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 SO 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

Introduction to Information Retrieval Sec. 4.2

Scaling index construction

" |[n-memory index construction does not scale

= Can’t stuff entire collection into memory, sort, then write
back

* How can we construct an index for very large
collections?

= Taking into account the hardware constraints we just
learned about . ..

= Memory, disk, speed, etc.

Introduction to Information Retrieval Sec. 4.2

Sort-based index construction

As we build the index, we parse docs one at a time.

= While building the index, we cannot easily exploit
compression tricks (you can, but much more complex)

The final postings for any term are incomplete until the end.

At 12 bytes per non-positional postings entry (term, doc,
freq), demands a lot of space for large collections.

T =100,000,000 in the case of RCV1

= So ... we can do this in memory in 2009, but typical
collections are much larger. E.g., the New York Times
provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.

Introduction to Information Retrieval Sec. 4.2

Sort using disk as “memory”?

= Can we use the same index construction algorithm
for larger collections, but by using disk instead of
memory?

= No: Sorting T = 100,000,000 records on disk is too
slow — too many disk seeks.

= We need an external sorting algorithm.

Introduction to Information Retrieval Sec. 4.2

Bottleneck

= Parse and build postings entries one doc at a time
* Now sort postings entries by term (then by doc
within each term)

" Doing this with random disk seeks would be too slow
— must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log,N comparisons, how long would this take?

BSBI: Blocked sort-based Indexing

(Sorting with fewer disk seeks)

= 12-byte (4+4+4) records (term, doc, freq).

= These are generated as we parse docs.

= Must now sort 100M such 12-byte records by term.
= Define a Block|™~ 10M ‘such records

= Can easily fWuple into memory.
= Will have| 10 such blocks to start with.

= Basic idea of algorithm:
= Accumulate postings for each block, sort, write to disk.
= Then merge the blocks into one long sorted order.

Introduction to Information Retrieval Sec. 4.2

postings

to be merged brutus d2
- brutus d3 -

brutus d3 brutus d2 caesar dl
caesar d4 caesar dl caesar d4 merged
noble d3 julius d1 julius d1 postings

with d4 killed d2 killed d2

noble d3

with d4

< —

disk

Introduction to Information Retrieval Sec. 4.2

Sorting 10 blocks of 10M records

= First, read each block and sort within:

= Quicksort takes 2N In N expected steps
" |In our case 2 x (10M In 10M) steps

» Exercise: estimate total time to read each block from
disk and and quicksort it.

= 10 times this estimate — gives us 10 sorted runs of
10M records each.

* Done straightforwardly, need 2 copies of data on disk

= But can optimize this

Introduction to Information Retrieval Sec. 4.2

BSBINDEXCONSTRUCTION()

1 n<0

2 while (all documents have not been processed)
3 don+—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, fp)

7 MERGEBLOCKS(f1,.. ., fn; fmerged)

Introduction to Information Retrieval Sec. 4.2

How to merge the sorted runs?

= Can do binary merges, with a merge tree of log,10 = 4 layers.

* During each layer, read into memory runs in blocks of 10M,
merge, write back.

1
2
! » | 2 | | Merged run.
3 4
/ 3
Runs being 4

merged.

Introduction to Information Retrieval Sec. 4.2

How to merge the sorted runs?

= But it is more efficient to do a multi-way merge, where you
are reading from all blocks simultaneously

= Providing you read decent-sized chunks of each block into
memory and then write out a decent-sized output chunk,
then you're not killed by disk seeks

Introduction to Information Retrieval

Remaining problem with sort-based
algorithm

Our assumption was: we can keep the dictionary in
memory.

We need the dictionary (which grows dynamically) in
order to implement a term to termID mapping.

Actually, we could work with term,doclID postings
instead of termID,doclID postings. ..

... but then intermediate files become very large.
(We would end up with a scalable, but very slow
index construction method.)

SPIMI:

Single-pass in-memory indexing

= Key idea 1: Generate separate dictionaries for each
block — no need to maintain term-termID mapping
across blocks.

= Keyidea 2: Don’t sort. Accumulate postings in
postings lists as they occur.

= With these two ideas we can generate a complete
inverted index for each block.

" These separate indexes can then be merged into one
big index.

Introduction to Information Retrieval Sec. 4.3

SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token <« next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADDTODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
13 return output_file

O NO O & Wi

= Merging of blocks is analogous to BSBI.

Introduction to Information Retrieval Sec. 4.3

SPIMI: Compression

= Compression makes SPIMI even more efficient.

= Compression of terms
= Compression of postings

= See next lecture

Introduction to Information Retrieval Sec. 4.4

Distributed indexing

" For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster

* |ndividual machines are fault-prone

* Can unpredictably slow down or fail

= How do we exploit such a pool of machines?

Introduction to Information Retrieval Sec. 4.4

Web search engine data centers

* Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

= Data centers are distributed around the world.

= Estimate: Google ~1 million servers, 3 million
processors/cores (Gartner 2007)

Introduction to Information Retrieval Sec. 4.4

Massive data centers

" |fin a non-fault-tolerant system with 1000 nodes,

each node has 99.9% uptime, what is the uptime of
the system?

= Answer: 63%

= Exercise: Calculate the number of servers failing per
minute for an installation of 1 million servers.

Introduction to Information Retrieval Sec. 4.4

Distributed indexing

= Maintain a master machine directing the indexing job
— considered “safe”.

" Break up indexing into sets of (parallel) tasks.

= Master machine assighs each task to an idle machine
from a pool.

Introduction to Information Retrieval Sec. 4.4

Parallel tasks

= We will use two sets of parallel tasks

= Parsers
" |nverters

= Break the input document collection into splits

= Each split is a subset of documents (corresponding to
blocks in BSBI/SPIMI)

Introduction to Information Retrieval Sec. 4.4

Parsers

= Master assigns a split to an idle parser machine

= Parser reads a document at a time and emits (term,
doc) pairs

= Parser writes pairs into j partitions

= Each partition is for a range of terms’ first letters
" (e.g., a-f, g-p, g-z) — here j = 3.

= Now to complete the index inversion

Introduction to Information Retrieval Sec. 4.4

Inverters

= An inverter collects all (term,doc) pairs (= postings)
for one term-partition.

= Sorts and writes to postings lists

Introduction to Information Retrieval Sec. 4.4

Data flow
ian..-| Master [-__ '
ass:gn [} ass:gn Postings
Craser s —fadlasla g
I
219292 “Clnverter - gp
| plozCinerer) {5
SpO|ItS : : O T:I;
) Cparser »—{af|gp|az —
Map Segment files Reduce
phase phase

Introduction to Information Retrieval Sec. 4.4

MapReduce

= The index construction algorithm we just described is
an instance of MapReduce.

* MapReduce (Dean and Ghemawat 2004) is a robust
and conceptually simple framework for distributed
computing ...

= ... without having to write code for the distribution
part.

* They describe the Google indexing system (ca. 2002)
as consisting of a number of phases, each
implemented in MapReduce.

Introduction to Information Retrieval Sec. 4.4

MapReduce

" [ndex construction was just one phase.

= Another phase: transforming a term-partitioned
index into a document-partitioned index.

= Term-partitioned: one machine handles a subrange of
terms

" Document-partitioned: one machine handles a subrange of
documents
= As we'll discuss in the web part of the course, most
search engines use a document-partitioned index ...
better load balancing, etc.

Schema for index construction in

MapReduce

= Schema of map and reduce functions

* map: input = list(k, v) reduce: (k,list(v)) = output
= |nstantiation of the schema for index construction
* map: collection = list(termID, docID)

= reduce: (<termlID1, list(docID)>, <termID2, list(docID)>, ...) =
(postings list1, postings list2, ...)

Introduction to Information Retrieval

Example for index construction

= Map:

= dl1:Ccame, Cc'ed.

= d2:Cdied. 5

" <C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>,
<died,d2>

= Reduce:

= (<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)
- (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>,
<c’ed,(d1:1)>)

39

Introduction to Information Retrieval Sec. 4.5

Dynamic indexing

= Up to now, we have assumed that collections are
static.
= They rarely are:

= Documents come in over time and need to be inserted.
= Documents are deleted and modified.

= This means that the dictionary and postings lists have
to be modified:
= Postings updates for terms already in dictionary
= New terms added to dictionary

Introduction to Information Retrieval Sec. 4.5

Simplest approach

= Maintain “big” main index

= New docs go into “small” auxiliary index
= Search across both, merge results

= Deletions

= |nvalidation bit-vector for deleted docs

= Filter docs output on a search result by this invalidation
bit-vector

= Periodically, re-index into one main index

Introduction to Information Retrieval Sec. 4.5

Issues with main and auxiliary indexes

" Problem of frequent merges — you touch stuff a lot
= Poor performance during merge

= Actually:

= Merging of the auxiliary index into the main index is efficient if we
keep a separate file for each postings list.

= Merge is the same as a simple append.
= But then we would need a lot of files — inefficient for OS.

= Assumption for the rest of the lecture: The index is one big
file.

" |n reality: Use a scheme somewhere in between (e.g., split
very large postings lists, collect postings lists of length 1 in one
file etc.)

Introduction to Information Retrieval Sec. 4.5

Logarithmic merge

= Maintain a series of indexes, each twice as large as
the previous one

= At any time, some of these powers of 2 are instantiated
= Keep smallest (Z,) in memory
= Larger ones (ly, I, ...) on disk
= If Z, gets too big (> n), write to disk as I,
= or merge with |, (if I, already exists) as Z,
= Either write merge Z, to disk as I, (if no I,)
= Or merge with I; to form Z,

Introduction to Information Retrieval Sec. 4.5

LMERGEADDTOKEN(indexes, Zy, token)
1 Zy < MERGE(Zy, {token})

2 if |Zo|=n
3 then for / — 0 to oo
4 do if /; € indexes
5 then Z; .1 — MERGE(/;, Z;)
6 (Zi+1 is a temporary index on disk.)
7 indexes «— indexes — {l;}
8 else [— Z; (Z; becomes the permanent index I;.)
9 indexes «— indexes U {I;}
10 BREAK
11 Zo — ()
LOGARITHMICMERGE()

Zo— 0 (Z is the in-memory index.)

indexes « ()

while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

B WO NN =

Introduction to Information Retrieval Sec. 4.5

Logarithmic merge

= Auxiliary and main index: index construction time is
O(T?2) as each posting is touched in each merge.

" Logarithmic merge: Each posting is merged O(log T)
times, so complexity is O(T log T)

= So logarithmic merge is much more efficient for
index construction

= But query processing now requires the merging of
O(log T) indexes

* Whereas itis O(1) if you just have a main and auxiliary
index

Introduction to Information Retrieval Sec. 4.5

Further issues with multiple indexes

= Collection-wide statistics are hard to maintain

= E.g., when we spoke of spell-correction: which of
several corrected alternatives do we present to the
user?

= We said, pick the one with the most hits

= How do we maintain the top ones with multiple
indexes and invalidation bit vectors?

" One possibility: ignore everything but the main index for
such ordering

= Will see more such statistics used in results ranking

Introduction to Information Retrieval Sec. 4.5

Dynamic indexing at search engines

= All the large search engines now do dynamic
indexing

* Their indices have frequent incremental changes

= News items, blogs, new topical web pages
= Sarah Palin, ...
= But (sometimes/typically) they also periodically
reconstruct the index from scratch

" Query processing is then switched to the new index, and
the old index is deleted

Introduction to Information Retrieval Sec. 4.5

Get Search News Recaps!

email: [

U paily & Monthly

& Feeds and more info

’ Go agle ' YaHoO! ' Microsoft: " Columns | Marketing Searching Ask, AOL & | Newsletters | Confe
Land Land Land Land Land Land More Lands & Feeds &) & Wel

« Local Store And Inventory Data Poised To Transform "Online Shopping” | Main | SEO Company,
Fathom Online, Acquired By Geary Interactive »

netkli

Click here for

Google Dance Is Back? Plus Google’s First Live Chat Recap $40 Free
& Hyperactive Yahoo Slurp Advertising

Is the Google Dance back? Well, not really, but | am noticing Google Dance-like behavior from
Google based on reading some of the feedback at a WebmasterWorld thread.

The Google Dance refers to how years ago, a change to Google's ranking algorithm often began

showing up slowly across data centers as they reflected different results, a sign of coming changes. Q SearCh M
These days Google's data centers are typically always showing small changes and differences, but the leading
the differences between this data center and this one seem to be more like the extremes of the past provider of search
Google Dances. marketing jobs

So either Google is preparing for a massive update or just messing around with our heads. As of
now, these results have not yet moved over to the main Google.com results.

PREMIUM MEMBERSHIP

Introduction to Information Retrieval Sec. 4.5

Other sorts of indexes

= Positional indexes

= Same sort of sorting problem ... just larger @Why?
= Building character n-gram indexes:

= As text is parsed, enumerate n-grames.

= For each n-gram, need pointers to all dictionary terms
containing it — the “postings”.

= Note that the same “postings entry” will arise repeatedly

in parsing the docs — need efficient hashing to keep track
of this.

= E.g., that the trigram uou occurs in the term deciduous will be
discovered on each text occurrence of deciduous

" Only need to process each term once

Introduction to Information Retrieval Ch. 4

Resources for today’s lecture

* Chapter 4 of lIR

= MG Chapter 5

= QOriginal publication on MapReduce: Dean and
Ghemawat (2004)

= QOriginal publication on SPIMI: Heinz and Zobel (2003)

