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TUJUAN PERKULIAHAN
✦  Mahasiswa memahami beberapa tipe persoalan yang penting.

✦  Binary Search

✦  Binary Search Experiments

✦  Merge Sort

✦  Merge Sort Experiments

✦  Recursive Methods

Breaking large problems into smaller subproblems
Divide and Conquer



Iterative Searches

✦  The previous slides on iterative algorithms introduced search algorithms 
that did a “linear scan” through a list
❖  to find a particular item:  search(a,x)
‣  start at the front of a, scan right until x found

❖  to find the largest item:  max(a)
‣  set place-holder to a[0], scan from a[1] to a[n-1], updating place-holder



Simple Sorts

✦  Those slides also introduced a sorting algorithm that used a similar 
strategy

✦  Scan the list from left to right, and for each item x:
❖  remove x from the list
❖  scan left to find a place for x
❖  re-insert x into the list

✦  This “insertion sort” algorithm has nested loops
❖  outer loop is a linear progression left to right
❖  inner loop scans back to find a place for x

✦  The number of comparisons made when sorting  
a list of n items is as high as 



Divide and Conquer

✦  The common theme for the previous slides: iterate over every location in 
the list

✦  The common theme for this chapter’s slides: divide and conquer
❖  break a problem into smaller pieces and solve the smaller sub-problems

✦  It may not seem like that big a deal, but the improvement can be dramatic
❖  approximate number of comparisons (worst case):

search


n = 100
 n = 1,000


search 100 
 1,000


bsearch 7
 10


sort


n = 100
 n = 1,000


isort 5,000
 500,000


msort 700
 10,000




Searching a Dictionary

✦  To get a general sense of how the divide  
and conquer strategy improves search, 
consider how people find information in  
a phone book or dictionary
❖  suppose you want to find “janissary” in 

a dictionary
❖  open the book near the middle
❖  the heading on the top left page is “kiwi”,  

so move back a small number of pages
❖  here you find “hypotenuse”, so move forward
❖  find “ichthyology”, move forward again

✦  The number of pages you move gets 
smaller (or at least adjusts in response  
to the words you find)



Searching a Dictionary

✦  A detailed specification of this process:
1.  the goal is to search for a word w in region  

of the book
2.  the initial region is the entire book
3.  at each step pick a word x in the middle of 

the current region
4.  there are now two smaller regions: the part  

before x and the part after x
5.  if w comes before x, repeat the search on the  

region before x, otherwise search the region  
following x (go back to step 3)

✦  Note: at first a “region” is of a group of pages, 
but eventually a region is a set of words on  
a single page



A Note About Organization 

✦  An important note:  an efficient search depends on having the data 
organized in some fashion 
❖  if books in a library are scattered all over the place we would have to do an iterative search
❖  start at one end of the room and progress toward the other

✦  If books are sorted or carefully cataloged we can try a binary search or 
other method

http://www.endlessbookshelf.net/shelves.html



Binary Search

✦  The binary search algorithm uses the divide-and-conquer strategy to 
search through an array

✦  The array must be sorted

❖  the “zeroing in” strategy for looking up a  
word in the dictionary won’t work it the  
words are not in alphabetical order

❖  binary search will not work unless the  
array is sorted



Binary Search

✦  To search a list of n items, first look at the item in location n/2
❖  then search either the region from 0 to n/2-1  

or the region from n/2+1 to n-1

✦  Example: searching for 57 in a sorted list of 15 numbers

①

②

③

start in the middle 




Detailed Description

✦  The algorithm uses two variables to keep track of the boundaries of the 
region to search
lower the index one below the leftmost item in the region
upper the index one above the rightmost region

[
 ]


initial values when searching an array of n items:

lower = -1

upper = n



Detailed Description

✦  The algorithm is based on an iteration (“loop”) that keeps making the 
region smaller and smaller
❖  the initial region is the complete array
❖  the next one is either the upper half or lower half
❖  the one after that is one quarter, then one eighth, then...

[
 ]


initial values when searching an array of n items:

lower = -1

upper = n



Detailed Description

✦  The heart of the algorithm contains these operations:

    mid = (lower + upper) / 2

    return mid if k == a[mid]

    upper = mid if k < a[mid]

    lower = mid if k > a[mid]

✦  The first iteration when searching for 57 in a list of size 15:

[
 ]


lower = -1

upper = 15

mid = 14 / 2 = 7




*


upper for next 
iteration: 7






Detailed Description

✦  The remaining iterations when  
searching for 57:

lower = -1  
upper = 7  
mid = 3  
lower = 3

lower = 3  
upper = 7  
mid = 5  
found it!

[
 ]


[
 ]


*


*


This search required only 3 comparisons:

   a[7], a[3], a[5]

mid = (lower + upper) / 
2return mid if k == 
a[mid]upper = mid if k < 
a[mid]lower = mid if k > 
a[mid]



Unsuccessful Searches

✦  What happens in this algorithm 
if the item we’re looking for 
is not in the array?

✦  Example: search for 58
lower = 3  
upper = 7  
mid = 5  
lower = 5

lower = 5  
upper = 7  
mid = 6  
upper = 6

lower = 5  
upper = 6  
mid = 5  
lower = 5

mid = (lower + upper) / 
2return mid if k == 
a[mid]upper = mid if k < 
a[mid]lower = mid if k > 
a[mid]

[
 ]
*


[
 ]
*


[
 ]

uh-oh... lower  
didn’t change!




Unsuccessful Searches

✦  To fix this problem we have to add another condition to the loop
❖  we want the result to be nil if the region shrinks to 0 items
❖  this happens when upper equals lower + 1 

  mid = (lower + upper) / 2

  return nil if upper == lower + 1

  return mid if k == a[mid]

  upper = mid if k < a[mid]

  lower = mid if k > a[mid]



if Statements

✦  Usually when a program has tests for opposite conditions the test is written 
in the form of an if statement

✦  Instead of
  upper = mid if k < a[mid]

  lower = mid if k > a[mid]

we normally write
    if k < a[mid]
    upper = mid

  else

    lower = mid

  end

if and else are keywords




if Statements

✦  If there are three conditions we can use elsif (a combination of if and 
else):

    if k == a[mid]

    return mid 

  elsif k < a[mid]

    upper = mid

  else

    lower = mid

  end



Binary Search Method

✦  The full definition of a method  
that does a binary search of an  
array a to look for an item x is  
shown at right
❖  the name is bsearch to 

distinguish it from the  
search method shown  
in the previous slides

def bsearch(a, k)  lower = -1  upper 
= a.length  while true    mid = 
(lower + upper) / 2    return nil if 
upper == lower + 1    if k == a[mid]      
return mid     elsif k < a[mid]      
upper = mid    else      lower = mid    
end  endend

Is this an infinite loop??




Examples with bsearch

✦  The bsearch method is part of a module named RecursionLab

>> include RecursionLab

=> Object

>> a = TestArray.new(15).sort

=> [2, 8, 10, 25, 28, 29, 40, 43, 54, 55, 59, 68, 88, 90, 91]

>> bsearch(a, 10)

=> 2

>> bsearch(a, 42)

=> nil

Make sure the array to search is sorted!




Experiments with bsearch

✦  The brackets method used to monitor the progress of search and 
isort can also be used here

>> a = TestArray.new(7).sort

=> [8, 12, 18, 20, 32, 34, 36] 

>> puts brackets(a,0)

[8  12  18  20  32  34  36] 

>> puts brackets(a,0,2)

[8  12  18] 20  32  34  36

>> puts brackets(a,0,2,1)

[8 *12  18] 20  32  34  36

print bracket before a[0]

print bracket before a[0], after a[2]

as above, but include a * at a[1]



Experiments with bsearch (cont’d)

✦  Print a listing of the method to find a line number to attach a probe:
>> Source.listing("bsearch")

          ...

  4:      while true

  5:        mid = (lower + upper) / 2

  6:        return nil if upper == lower + 1

  7:        return mid if k == a[mid]

         ...

✦  The goal is to count the number of iterations
❖ any statement inside the loop will do
❖ but display is more informative if we probe line 6, after computing mid

★



Experiments with bsearch (cont’d)

✦  Attach a probe that shows brackets around the current region and an 
asterisk in front of the mid point:
>> Source.probe( "bsearch", 6,  
         "puts brackets(a, lower+1, upper-1, mid)" )

>> a = TestArray.new(15).sort

=> [3, 6, 11, 18, 55, 62, 63, 67, 84, 85, 87, 95, 97, 98, 99]

>> trace { bsearch(a,62) }

[3  6  11  18  55  62  63 *67  84  85  87  95  97  98  99] 

[3  6  11 *18  55  62  63] 67  84  85  87  95  97  98  99

 3  6  11  18 [55 *62  63] 67  84  85  87  95  97  98  99

=> 5



Experiments with bsearch (cont’d)

✦  Here is a trace of an unsuccessful search:
>> a = TestArray.new(15).sort

=> [2, 9, 12, 13, 14, 20, 36, 54, 67, 70, 75, 78, 91, 92, 96]

>> x = a.random(:fail)

=> 88

>> trace { bsearch(a,x) }

[2  9  12  13  14  20  36 *54  67  70  75  78  91  92  96] 

 2  9  12  13  14  20  36  54 [67  70  75 *78  91  92  96] 

 2  9  12  13  14  20  36  54  67  70  75  78 [91 *92  96] 

 2  9  12  13  14  20  36  54  67  70  75  78 [91] 92  96

 2  9  12  13  14  20  36  54  67  70  75  78 [] 91  92  96

=> nil



What Happens if the Array is Not Sorted?

✦  Here is an unsorted test array (the kind of array used for search):

>> a = TestArray.new(15)

=> [11, 0, 99, 17, 50, 18, 2, 85, 19, 25, 9, 54, 21, 87, 10]

>> trace { bsearch(a,21) }

[11  0  99  17  50  18  2 *85  19  25  9  54  21  87  10] 

[11  0  99 *17  50  18  2] 85  19  25  9  54  21  87  10

 11  0  99  17 [50 *18  2] 85  19  25  9  54  21  87  10

 11  0  99  17  50  18 [2] 85  19  25  9  54  21  87  10

 11  0  99  17  50  18  2 [] 85  19  25  9  54  21  87  10

=> nil
The search target is in the array, but the 

algorithm doesn’t find it...



Cutting the Problem Down to Size

✦  It should be clear why we say the binary search uses a divide and conquer 
strategy
❖  the problem is to find an item within a given range
‣  initial range: entire array

❖  at each step the problem is split into two equal sub-problems
❖  focus turns to one sub-problem for the next step

* = value of mid on each iteration

in a search for 57


*


*


*




Number of Comparisons

✦  The number of iterations made by this algorithm when it searches an array of n 
items is roughly  

✦  To see why, consider the question  
from the other direction
❖  suppose we have an array 

that starts out with 1 item
❖  suppose each step of an iteration  

doubles the size of the array
❖  after n steps we will have  

2n items in the array 



Number of Comparisons

✦  By definition, if 

then

array size = n

#steps = log2 n



Number of Comparisons

✦  When we’re searching we’re  
reducing an area of size n down 
to an area of size 1
  e.g. n = 8 in this diagram

✦  A successful search might return  
after the first comparison

✦  An unsuccessful search does 
all                     iterations  



Counting

>> Source.probe( "bsearch", 6, :count )

=> true

>> a = TestArray.new(127).sort

=> [2, 5, 18, ... 949, 957, 960]

>> a = TestArray.new(127).sort; nil

=> nil

>> count { bsearch(a, a.random(:fail)) }

=> 8

>> count { bsearch(a, a.random(:success)) }

=> 7

>> count { bsearch(a, a.random(:success)) }

=> 5

attach counting probe 
anywhere inside the loop


128 = 27


a useful “trick” -- Ruby won’t 
print the array


failed search will always be 8 
iterations when n = 127


successful search will take 
between 1 and 7 iterations




Timing

✦  Here are the results from a test on a laptop:

>> a = TestArray.new(1000000).sort

=> [0, 9, 29 ... 9999965, 9999981, 9999993]

>> time {search(a, a.random(:fail))}

=> 1.009458

>> time {bsearch(a, a.random(:fail))}

=> 0.000126

oops -- forgot the “; nil”  trick


1,000,000 iterations takes about 1 second


log2 1,000,000 ≈ 20 iterations takes about 1/10,000th second




Recursion

✦  In computer science a recursive description of a problem is one where
❖  a problem can be broken into smaller parts
❖  each part is a smaller version of the original problem
❖  there is a “base case” that can be solved immediately (i.e. it has no sub-problems)

✦  Binary search can be described recursively:

search(a, k, lower, upper):

  mid = (lower + upper) / 2

  return nil if mid == lower

  return mid if k == a[mid]

  return search(a, k, lower, mid) if k < a[mid]

  return search(a, k, mid, upper) if k > a[mid]

base cases -- no further 
breakdown required


recursion-- smaller instances of the 
original problem




Recursive Methods

✦  We can write recursive methods in Ruby
❖  the body of a method will have a call to itself
❖  see rsearch in RecursionLab

def rsearch(a, k, lower = -1, upper = a.length)  
mid = (lower + upper) / 2  if mid == lower    
return nil  elsif a[mid] == k    return mid  elsif 
k < a[mid]    return rsearch(a, k, lower, mid)  
else    return rsearch(a, k, mid, upper)  endend

default values for 
lower, upper

method calls itself...




Recursive Methods (cont’d)

>> rsearch(a, 29)
[ 12 19 29 *58 68 72 96 98 ]
[ 12 *19 29 ] 58 68 72 96 98
12 19 [ *29 ] 58 68 72 96 98
=> 2

def rsearch(a, k, lower = -1, upper = a.length)  
mid = (lower + upper) / 2  if mid == lower    
return nil  elsif a[mid] == k    return mid  elsif 
k < a[mid]    return rsearch(a, k, lower, mid)  
else    return rsearch(a, k, mid, upper)  endend

recursive call, lower = -1, upper = 3

recursive call, lower = 1, upper = 3

location where 29 was found


initial call, lower = -1, upper = 8




Recursion (cont’d)

✦  Understanding recursive methods takes some getting used to
❖  it’s easy to get lost, especially if you mentally trace what the system is doing

✦  It’s a powerful tool as part of a programmer’s “toolbox”
❖  many complex problems are much easier to solve when one realizes there is a recursive 

description

✦  Key points to remember about recursion:
❖  a recursive problem is one that can be broken into pieces
❖  each piece is a smaller instance of the original problem
❖  a recursive method calls itself to solve one of the smaller subproblems
❖  there must be a base case, otherwise the result is an infinite recursion



Divide and Conquer Sorting Algorithms

✦  The divide and conquer strategy used to make a more efficient search 
algorithm can also be applied to sorting

✦  Two well-known sorting algorithms:

QuickSort
❖  divide a list into big values and small values, then sort each part

Merge Sort
❖  sort subgroups of size 2, merge them into sorted groups of size 4, merge those into sorted 

groups of size 8, ...

✦  The remaining slides will have an overview of each algorithm, and a look at 
how Merge Sort can be implemented in Ruby



Merge Sort

✦  The merge sort algorithm works from “the bottom up”
❖  start by solving the smallest pieces of the main problem
❖  keep combining their results into larger solutions
❖  eventually the original problem will be solved

✦  Example: sorting playing cards
❖  divide the cards into groups of two
❖  sort each group -- put the smaller of the two on the top
❖  merge groups of two into groups of four
❖  merge groups of four into groups of eight
❖  ...

[ see example next slide ]



Merge Sort (cont’d)

✦  Example with a hand of seven cards



Merge Sort

✦  What makes this method more  
effective than simple insertion sort?
❖  merging two piles is a very simple  

operation
❖  only need to look at the two cards 

currently on the top of each pile
❖  no need to look deeper into either 

group

✦  In this example:
❖  compare 2 with 5, pick up the 2
❖  compare 5 with 7, pick up the 5
❖  compare 7 with 10, pick up the 7
❖  .... 



Merge Sort

✦  Another example, using an array of numbers
❖  sorted blocks are indicated by adjacent cells with the same color



msort Demo

✦  The merge sort algorithm has been implemented in RubyLabs as a method 
named msort
❖  more complicated than most algorithms in the book
❖  described in the text, if you want to learn more (but it’s optional reading)

✦  What you should know:
❖  size, the variable that defines the group size, is initialized to 1
❖  group size doubles on each successive iteration of the main loop
❖  a helper procedure named merge, called from the main loop, does the hard work

✦  The first statement in the main loop is on line 5
❖  we’ll attach a probe here to look at the array at the start of each iteration
❖  a special version of brackets will draw pairs of brackets around each group



msort Demo

✦  An example of how to call msort_brackets

>> a = TestArray.new(8)

=> [38, 45, 24, 13, 52, 25, 48, 26]

>> puts msort_brackets(a, 2)

[38 45] [24 13] [52 25] [48 26]

>> puts msort_brackets(a, 4)

[38 45 24 13] [52 25 48 26]

>> Source.probe( "msort", 5, "puts msort_brackets(a,size)" )

=> true



msort Demo

✦  After attaching the probe we can trace a call to msort

>> a = TestArray.new(16)

=> [60, 83, 6, 89, 67, 56, 40, 68, 13, 52, 96, 41, 25, 64, 37, 59]

>> trace { msort(a) }

[60] [83] [6] [89] [67] [56] [40] [68] [13] [52] [96] [41] [25] [64] 
[37] [59]

[60 83] [6 89] [56 67] [40 68] [13 52] [41 96] [25 64] [37 59]

[6 60 83 89] [40 56 67 68] [13 41 52 96] [25 37 59 64]

[6 40 56 60 67 68 83 89] [13 25 37 41 52 59 64 96]

=> [6, 13, 25, 37, 40, 41, 52, 56, 59, 60, 64, 67, 68, 83, 89, 96]



Comparisons in Merge Sort

✦  To completely sort an array with n items requires log2 n iterations
❖  the group size starts at 1 and  

doubles on each iteration

✦  During each iteration there are  
at most n comparisons
❖  comparisons occur in the  

merge method
❖  compare values at the front  

of each group
❖  may have to work all the way 

to the end of each group, but  
might stop early (e.g. with cards 
one pile is emptied but more  
than one left in the other pile) Total comparisons  ≈ 




Scalability of Merge Sort

✦  Is this new formula that much  
better than the  
comparisons made by isort?

❖  not that big of a difference  
for small arrays

>> a = TestArray.new(10)

=> [22, 44, 51, ... ]

>> count { isort(a) }

=> 36

>> count { msort(a) }

=> 23

Note: both methods use less; attach 
counting probe to line 2 of less



Scalability of Merge Sort (cont’d)

✦  But for larger arrays the difference  
is clear
>> a = TestArray.new(1000)

>> count { isort(a) }

=> 250770

>> count { msort(a) }

=> 8743

>> time { isort(a) }

=> 0.790905

>> time { msort(a) }

=> 0.057595

Warning: methods are a lot slower when 
called via trace or count



QuickSort

✦  QuickSort is another divide-and-conquer sorting algorithm

✦  The main idea is to partition the array into two regions:
❖  small items are moved to the left side of the array
❖  large items are moved to the right side

✦  After partitioning, repeat the sort on the left and right sides
❖  each region is a sub-problem, a smaller version of the original problem

✦  Main question: how do we decide which items are “small” and which are 
“large”?

✦  A common technique: use the first item in the region as a pivot
❖  everything less than the pivot ends up in the left region
❖  items greater than or equal to the pivot go in the right region



Partition Example

The partitioning algorithm 
works from both ends


When it finds a large item on 
the left and a small item on 
the right it swaps them


When there are no more 
exchanges to make the two 
regions are complete


Numbers below 79
 Numbers 79 and above




QuickSort Algorithm

✦  Since the partition step does all the hard work the QuickSort algorithm is 
straightforward

✦  Here is the outline:
qsort(a, lower, upper):

  if lower < upper

    mid = partition(a, lower, upper)

    qsort(a, lower, mid)

    qsort(a, mid+1, upper) The call to partition 
returns the location of the 
boundary between sub-
regions


Recursive calls to sort 
each sub-region


Base case: empty region




QuickSort Performance

✦  QuickSort is not guaranteed to be more efficient than Insertion Sort
❖  if it makes an unlucky choice for the pivot the array will not be divided equally
❖  worst case: sorting an array that is already in order

✦  The analysis of the average number of steps for random lists is fairly 
complex

✦  Bottom line:  to sort a list of n items requires approximately 

✦  Many tests on real-world data show that QuickSort is very effective in 
practice and it is a popular choice in many applications



The qsort Method

✦  The RecursionLab module has a method named qsort
❖  use it the same way you do isort and msort

>> Source.listing("qsort")

  1:    def qsort(a, p = 0, r = a.length-1)

  2:      if p < r

          ...

✦  To trace the execution of qsort, print brackets around the current region 
at the beginning of each call
❖  parameters p and r define the boundaries

>> Source.probe( "qsort", 2, "puts brackets(a,p,r)" )

=> true



Sort Algorithms in Real Life

✦  These algorithms can be used in the real world
❖  it might be fun to try merge sort on a deck of cards

✦  For QuickSort you’ll need a lot of room to lay out all the cards

✦  Merge sort can be done in a very small space
❖  pick up the smaller of the two top cards
❖  lay it face down in a new pile
❖  when merging the next two groups the new  

pile should be at right angles so you know  
where the group starts

❖  turn the deck over and repeat

The way most people sort a full deck 
(make one pile for aces, one for 
kings, ...) is known as radix sort


Probably more efficient than merge sort 
for this problem.... 




Sort Algorithms in Real Life

✦  A place where merge sort might be the best method is sorting stacks of 
papers

✦  Example: sorting a set of exams from a class with 45 students

✦  Use the method sketched on the  
previous slide for cards
❖  new groups are formed face  

down below existing groups
❖  alternate the orientation of  

each new group
❖  turn the stack over and repeat



Recap:  Divide and Conquer Algorithms

✦  The divide and conquer strategy often reduces the number of iterations of 
the main loop from n to log2 n

❖  binary search: 

❖  merge sort:

❖  QuickSort: 

✦  It may not look like much, but the reduction  
in the number of iterations is significant for  
larger problems



Summary

✦  These slides introduced the divide and conquer strategy
❖  for searching: binary search
‣  requires list to be sorted

❖  for sorting:  QuickSort and merge sort

✦  Binary search will find an item using at most            comparisons

✦  QuickSort and merge sort do at most                  comparisons

✦  An algorithm that uses divide and conquer can be written using iteration or 
recursion
❖  recursive = “self-similar”
❖  a problem that can be divided into smaller subproblems of the same type
❖  a recursive method calls itself
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