
Explorations in Computing
© 2012 John S. Conery

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 12

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

Explorations in Computing
© 2012 John S. Conery

TOPIK DALAM PEMROGRAMAN  
Brute Force & Exhaustive Search

Pertemuan 12

Explorations in Computing
© 2012 John S. Conery

TUJUAN PERKULIAHAN
✦  Mahasiswa memahami beberapa tipe persoalan yang penting.

✦  Binary Search

✦  Binary Search Experiments

✦  Merge Sort

✦  Merge Sort Experiments

✦  Recursive Methods

Breaking large problems into smaller subproblems
Divide and Conquer

Iterative Searches

✦  The previous slides on iterative algorithms introduced search algorithms
that did a “linear scan” through a list
❖  to find a particular item: search(a,x)
‣  start at the front of a, scan right until x found

❖  to find the largest item: max(a)
‣  set place-holder to a[0], scan from a[1] to a[n-1], updating place-holder

Simple Sorts

✦  Those slides also introduced a sorting algorithm that used a similar
strategy

✦  Scan the list from left to right, and for each item x:
❖  remove x from the list
❖  scan left to find a place for x
❖  re-insert x into the list

✦  This “insertion sort” algorithm has nested loops
❖  outer loop is a linear progression left to right
❖  inner loop scans back to find a place for x

✦  The number of comparisons made when sorting  
a list of n items is as high as

Divide and Conquer

✦  The common theme for the previous slides: iterate over every location in
the list

✦  The common theme for this chapter’s slides: divide and conquer
❖  break a problem into smaller pieces and solve the smaller sub-problems

✦  It may not seem like that big a deal, but the improvement can be dramatic
❖  approximate number of comparisons (worst case):

search

n = 100
 n = 1,000

search 100
 1,000

bsearch 7
 10

sort

n = 100
 n = 1,000

isort 5,000
 500,000

msort 700
 10,000

Searching a Dictionary

✦  To get a general sense of how the divide  
and conquer strategy improves search, 
consider how people find information in  
a phone book or dictionary
❖  suppose you want to find “janissary” in 

a dictionary
❖  open the book near the middle
❖  the heading on the top left page is “kiwi”,  

so move back a small number of pages
❖  here you find “hypotenuse”, so move forward
❖  find “ichthyology”, move forward again

✦  The number of pages you move gets 
smaller (or at least adjusts in response  
to the words you find)

Searching a Dictionary

✦  A detailed specification of this process:
1.  the goal is to search for a word w in region  

of the book
2.  the initial region is the entire book
3.  at each step pick a word x in the middle of 

the current region
4.  there are now two smaller regions: the part  

before x and the part after x
5.  if w comes before x, repeat the search on the  

region before x, otherwise search the region  
following x (go back to step 3)

✦  Note: at first a “region” is of a group of pages, 
but eventually a region is a set of words on  
a single page

A Note About Organization

✦  An important note: an efficient search depends on having the data
organized in some fashion
❖  if books in a library are scattered all over the place we would have to do an iterative search
❖  start at one end of the room and progress toward the other

✦  If books are sorted or carefully cataloged we can try a binary search or
other method

http://www.endlessbookshelf.net/shelves.html

Binary Search

✦  The binary search algorithm uses the divide-and-conquer strategy to
search through an array

✦  The array must be sorted

❖  the “zeroing in” strategy for looking up a  
word in the dictionary won’t work it the  
words are not in alphabetical order

❖  binary search will not work unless the  
array is sorted

Binary Search

✦  To search a list of n items, first look at the item in location n/2
❖  then search either the region from 0 to n/2-1  

or the region from n/2+1 to n-1

✦  Example: searching for 57 in a sorted list of 15 numbers

①

②

③

start in the middle

Detailed Description

✦  The algorithm uses two variables to keep track of the boundaries of the
region to search
lower the index one below the leftmost item in the region
upper the index one above the rightmost region

[
]

initial values when searching an array of n items:

lower = -1

upper = n

Detailed Description

✦  The algorithm is based on an iteration (“loop”) that keeps making the
region smaller and smaller
❖  the initial region is the complete array
❖  the next one is either the upper half or lower half
❖  the one after that is one quarter, then one eighth, then...

[
]

initial values when searching an array of n items:

lower = -1

upper = n

Detailed Description

✦  The heart of the algorithm contains these operations:

 mid = (lower + upper) / 2

 return mid if k == a[mid]

 upper = mid if k < a[mid]

 lower = mid if k > a[mid]

✦  The first iteration when searching for 57 in a list of size 15:

[
]

lower = -1

upper = 15

mid = 14 / 2 = 7

*

upper for next
iteration: 7

Detailed Description

✦  The remaining iterations when  
searching for 57:

lower = -1  
upper = 7  
mid = 3  
lower = 3

lower = 3  
upper = 7  
mid = 5  
found it!

[
]

[
]

*

*

This search required only 3 comparisons:

 a[7], a[3], a[5]

mid = (lower + upper) /
2return mid if k ==
a[mid]upper = mid if k <
a[mid]lower = mid if k >
a[mid]

Unsuccessful Searches

✦  What happens in this algorithm 
if the item we’re looking for 
is not in the array?

✦  Example: search for 58
lower = 3  
upper = 7  
mid = 5  
lower = 5

lower = 5  
upper = 7  
mid = 6  
upper = 6

lower = 5  
upper = 6  
mid = 5  
lower = 5

mid = (lower + upper) /
2return mid if k ==
a[mid]upper = mid if k <
a[mid]lower = mid if k >
a[mid]

[
]
*

[
]
*

[
]

uh-oh... lower  
didn’t change!

Unsuccessful Searches

✦  To fix this problem we have to add another condition to the loop
❖  we want the result to be nil if the region shrinks to 0 items
❖  this happens when upper equals lower + 1

 mid = (lower + upper) / 2

 return nil if upper == lower + 1

 return mid if k == a[mid]

 upper = mid if k < a[mid]

 lower = mid if k > a[mid]

if Statements

✦  Usually when a program has tests for opposite conditions the test is written
in the form of an if statement

✦  Instead of
 upper = mid if k < a[mid]

 lower = mid if k > a[mid]

we normally write
 if k < a[mid]
 upper = mid

 else

 lower = mid

 end

if and else are keywords

if Statements

✦  If there are three conditions we can use elsif (a combination of if and
else):

 if k == a[mid]

 return mid

 elsif k < a[mid]

 upper = mid

 else

 lower = mid

 end

Binary Search Method

✦  The full definition of a method  
that does a binary search of an  
array a to look for an item x is  
shown at right
❖  the name is bsearch to 

distinguish it from the  
search method shown  
in the previous slides

def bsearch(a, k) lower = -1 upper
= a.length while true mid =
(lower + upper) / 2 return nil if
upper == lower + 1 if k == a[mid]
return mid elsif k < a[mid]
upper = mid else lower = mid
end endend

Is this an infinite loop??

Examples with bsearch

✦  The bsearch method is part of a module named RecursionLab

>> include RecursionLab

=> Object

>> a = TestArray.new(15).sort

=> [2, 8, 10, 25, 28, 29, 40, 43, 54, 55, 59, 68, 88, 90, 91]

>> bsearch(a, 10)

=> 2

>> bsearch(a, 42)

=> nil

Make sure the array to search is sorted!

Experiments with bsearch

✦  The brackets method used to monitor the progress of search and
isort can also be used here

>> a = TestArray.new(7).sort

=> [8, 12, 18, 20, 32, 34, 36]

>> puts brackets(a,0)

[8 12 18 20 32 34 36]

>> puts brackets(a,0,2)

[8 12 18] 20 32 34 36

>> puts brackets(a,0,2,1)

[8 *12 18] 20 32 34 36

print bracket before a[0]

print bracket before a[0], after a[2]

as above, but include a * at a[1]

Experiments with bsearch (cont’d)

✦  Print a listing of the method to find a line number to attach a probe:
>> Source.listing("bsearch")

 ...

 4: while true

 5: mid = (lower + upper) / 2

 6: return nil if upper == lower + 1

 7: return mid if k == a[mid]

 ...

✦  The goal is to count the number of iterations
❖ any statement inside the loop will do
❖ but display is more informative if we probe line 6, after computing mid

★

Experiments with bsearch (cont’d)

✦  Attach a probe that shows brackets around the current region and an
asterisk in front of the mid point:
>> Source.probe("bsearch", 6,  
 "puts brackets(a, lower+1, upper-1, mid)")

>> a = TestArray.new(15).sort

=> [3, 6, 11, 18, 55, 62, 63, 67, 84, 85, 87, 95, 97, 98, 99]

>> trace { bsearch(a,62) }

[3 6 11 18 55 62 63 *67 84 85 87 95 97 98 99]

[3 6 11 *18 55 62 63] 67 84 85 87 95 97 98 99

 3 6 11 18 [55 *62 63] 67 84 85 87 95 97 98 99

=> 5

Experiments with bsearch (cont’d)

✦  Here is a trace of an unsuccessful search:
>> a = TestArray.new(15).sort

=> [2, 9, 12, 13, 14, 20, 36, 54, 67, 70, 75, 78, 91, 92, 96]

>> x = a.random(:fail)

=> 88

>> trace { bsearch(a,x) }

[2 9 12 13 14 20 36 *54 67 70 75 78 91 92 96]

 2 9 12 13 14 20 36 54 [67 70 75 *78 91 92 96]

 2 9 12 13 14 20 36 54 67 70 75 78 [91 *92 96]

 2 9 12 13 14 20 36 54 67 70 75 78 [91] 92 96

 2 9 12 13 14 20 36 54 67 70 75 78 [] 91 92 96

=> nil

What Happens if the Array is Not Sorted?

✦  Here is an unsorted test array (the kind of array used for search):

>> a = TestArray.new(15)

=> [11, 0, 99, 17, 50, 18, 2, 85, 19, 25, 9, 54, 21, 87, 10]

>> trace { bsearch(a,21) }

[11 0 99 17 50 18 2 *85 19 25 9 54 21 87 10]

[11 0 99 *17 50 18 2] 85 19 25 9 54 21 87 10

 11 0 99 17 [50 *18 2] 85 19 25 9 54 21 87 10

 11 0 99 17 50 18 [2] 85 19 25 9 54 21 87 10

 11 0 99 17 50 18 2 [] 85 19 25 9 54 21 87 10

=> nil
The search target is in the array, but the

algorithm doesn’t find it...

Cutting the Problem Down to Size

✦  It should be clear why we say the binary search uses a divide and conquer
strategy
❖  the problem is to find an item within a given range
‣  initial range: entire array

❖  at each step the problem is split into two equal sub-problems
❖  focus turns to one sub-problem for the next step

* = value of mid on each iteration

in a search for 57

*

*

*

Number of Comparisons

✦  The number of iterations made by this algorithm when it searches an array of n
items is roughly

✦  To see why, consider the question  
from the other direction
❖  suppose we have an array 

that starts out with 1 item
❖  suppose each step of an iteration  

doubles the size of the array
❖  after n steps we will have  

2n items in the array

Number of Comparisons

✦  By definition, if 

then

array size = n

#steps = log2 n

Number of Comparisons

✦  When we’re searching we’re  
reducing an area of size n down 
to an area of size 1
  e.g. n = 8 in this diagram

✦  A successful search might return  
after the first comparison

✦  An unsuccessful search does 
all iterations

Counting

>> Source.probe("bsearch", 6, :count)

=> true

>> a = TestArray.new(127).sort

=> [2, 5, 18, ... 949, 957, 960]

>> a = TestArray.new(127).sort; nil

=> nil

>> count { bsearch(a, a.random(:fail)) }

=> 8

>> count { bsearch(a, a.random(:success)) }

=> 7

>> count { bsearch(a, a.random(:success)) }

=> 5

attach counting probe 
anywhere inside the loop

128 = 27

a useful “trick” -- Ruby won’t
print the array

failed search will always be 8
iterations when n = 127

successful search will take
between 1 and 7 iterations

Timing

✦  Here are the results from a test on a laptop:

>> a = TestArray.new(1000000).sort

=> [0, 9, 29 ... 9999965, 9999981, 9999993]

>> time {search(a, a.random(:fail))}

=> 1.009458

>> time {bsearch(a, a.random(:fail))}

=> 0.000126

oops -- forgot the “; nil” trick

1,000,000 iterations takes about 1 second

log2 1,000,000 ≈ 20 iterations takes about 1/10,000th second

Recursion

✦  In computer science a recursive description of a problem is one where
❖  a problem can be broken into smaller parts
❖  each part is a smaller version of the original problem
❖  there is a “base case” that can be solved immediately (i.e. it has no sub-problems)

✦  Binary search can be described recursively:

search(a, k, lower, upper):

 mid = (lower + upper) / 2

 return nil if mid == lower

 return mid if k == a[mid]

 return search(a, k, lower, mid) if k < a[mid]

 return search(a, k, mid, upper) if k > a[mid]

base cases -- no further
breakdown required

recursion-- smaller instances of the
original problem

Recursive Methods

✦  We can write recursive methods in Ruby
❖  the body of a method will have a call to itself
❖  see rsearch in RecursionLab

def rsearch(a, k, lower = -1, upper = a.length)
mid = (lower + upper) / 2 if mid == lower
return nil elsif a[mid] == k return mid elsif
k < a[mid] return rsearch(a, k, lower, mid)
else return rsearch(a, k, mid, upper) endend

default values for
lower, upper

method calls itself...

Recursive Methods (cont’d)

>> rsearch(a, 29)
[12 19 29 *58 68 72 96 98]
[12 *19 29] 58 68 72 96 98
12 19 [*29] 58 68 72 96 98
=> 2

def rsearch(a, k, lower = -1, upper = a.length)
mid = (lower + upper) / 2 if mid == lower
return nil elsif a[mid] == k return mid elsif
k < a[mid] return rsearch(a, k, lower, mid)
else return rsearch(a, k, mid, upper) endend

recursive call, lower = -1, upper = 3

recursive call, lower = 1, upper = 3

location where 29 was found

initial call, lower = -1, upper = 8

Recursion (cont’d)

✦  Understanding recursive methods takes some getting used to
❖  it’s easy to get lost, especially if you mentally trace what the system is doing

✦  It’s a powerful tool as part of a programmer’s “toolbox”
❖  many complex problems are much easier to solve when one realizes there is a recursive

description

✦  Key points to remember about recursion:
❖  a recursive problem is one that can be broken into pieces
❖  each piece is a smaller instance of the original problem
❖  a recursive method calls itself to solve one of the smaller subproblems
❖  there must be a base case, otherwise the result is an infinite recursion

Divide and Conquer Sorting Algorithms

✦  The divide and conquer strategy used to make a more efficient search
algorithm can also be applied to sorting

✦  Two well-known sorting algorithms:

QuickSort
❖  divide a list into big values and small values, then sort each part

Merge Sort
❖  sort subgroups of size 2, merge them into sorted groups of size 4, merge those into sorted

groups of size 8, ...

✦  The remaining slides will have an overview of each algorithm, and a look at
how Merge Sort can be implemented in Ruby

Merge Sort

✦  The merge sort algorithm works from “the bottom up”
❖  start by solving the smallest pieces of the main problem
❖  keep combining their results into larger solutions
❖  eventually the original problem will be solved

✦  Example: sorting playing cards
❖  divide the cards into groups of two
❖  sort each group -- put the smaller of the two on the top
❖  merge groups of two into groups of four
❖  merge groups of four into groups of eight
❖  ...

[see example next slide]

Merge Sort (cont’d)

✦  Example with a hand of seven cards

Merge Sort

✦  What makes this method more  
effective than simple insertion sort?
❖  merging two piles is a very simple  

operation
❖  only need to look at the two cards 

currently on the top of each pile
❖  no need to look deeper into either 

group

✦  In this example:
❖  compare 2 with 5, pick up the 2
❖  compare 5 with 7, pick up the 5
❖  compare 7 with 10, pick up the 7
❖ 

Merge Sort

✦  Another example, using an array of numbers
❖  sorted blocks are indicated by adjacent cells with the same color

msort Demo

✦  The merge sort algorithm has been implemented in RubyLabs as a method
named msort
❖  more complicated than most algorithms in the book
❖  described in the text, if you want to learn more (but it’s optional reading)

✦  What you should know:
❖  size, the variable that defines the group size, is initialized to 1
❖  group size doubles on each successive iteration of the main loop
❖  a helper procedure named merge, called from the main loop, does the hard work

✦  The first statement in the main loop is on line 5
❖  we’ll attach a probe here to look at the array at the start of each iteration
❖  a special version of brackets will draw pairs of brackets around each group

msort Demo

✦  An example of how to call msort_brackets

>> a = TestArray.new(8)

=> [38, 45, 24, 13, 52, 25, 48, 26]

>> puts msort_brackets(a, 2)

[38 45] [24 13] [52 25] [48 26]

>> puts msort_brackets(a, 4)

[38 45 24 13] [52 25 48 26]

>> Source.probe("msort", 5, "puts msort_brackets(a,size)")

=> true

msort Demo

✦  After attaching the probe we can trace a call to msort

>> a = TestArray.new(16)

=> [60, 83, 6, 89, 67, 56, 40, 68, 13, 52, 96, 41, 25, 64, 37, 59]

>> trace { msort(a) }

[60] [83] [6] [89] [67] [56] [40] [68] [13] [52] [96] [41] [25] [64]
[37] [59]

[60 83] [6 89] [56 67] [40 68] [13 52] [41 96] [25 64] [37 59]

[6 60 83 89] [40 56 67 68] [13 41 52 96] [25 37 59 64]

[6 40 56 60 67 68 83 89] [13 25 37 41 52 59 64 96]

=> [6, 13, 25, 37, 40, 41, 52, 56, 59, 60, 64, 67, 68, 83, 89, 96]

Comparisons in Merge Sort

✦  To completely sort an array with n items requires log2 n iterations
❖  the group size starts at 1 and  

doubles on each iteration

✦  During each iteration there are  
at most n comparisons
❖  comparisons occur in the  

merge method
❖  compare values at the front  

of each group
❖  may have to work all the way 

to the end of each group, but  
might stop early (e.g. with cards 
one pile is emptied but more  
than one left in the other pile) Total comparisons ≈

Scalability of Merge Sort

✦  Is this new formula that much  
better than the  
comparisons made by isort?

❖  not that big of a difference  
for small arrays

>> a = TestArray.new(10)

=> [22, 44, 51, ...]

>> count { isort(a) }

=> 36

>> count { msort(a) }

=> 23

Note: both methods use less; attach
counting probe to line 2 of less

Scalability of Merge Sort (cont’d)

✦  But for larger arrays the difference  
is clear
>> a = TestArray.new(1000)

>> count { isort(a) }

=> 250770

>> count { msort(a) }

=> 8743

>> time { isort(a) }

=> 0.790905

>> time { msort(a) }

=> 0.057595

Warning: methods are a lot slower when
called via trace or count

QuickSort

✦  QuickSort is another divide-and-conquer sorting algorithm

✦  The main idea is to partition the array into two regions:
❖  small items are moved to the left side of the array
❖  large items are moved to the right side

✦  After partitioning, repeat the sort on the left and right sides
❖  each region is a sub-problem, a smaller version of the original problem

✦  Main question: how do we decide which items are “small” and which are
“large”?

✦  A common technique: use the first item in the region as a pivot
❖  everything less than the pivot ends up in the left region
❖  items greater than or equal to the pivot go in the right region

Partition Example

The partitioning algorithm
works from both ends

When it finds a large item on
the left and a small item on
the right it swaps them

When there are no more
exchanges to make the two
regions are complete

Numbers below 79
 Numbers 79 and above

QuickSort Algorithm

✦  Since the partition step does all the hard work the QuickSort algorithm is
straightforward

✦  Here is the outline:
qsort(a, lower, upper):

 if lower < upper

 mid = partition(a, lower, upper)

 qsort(a, lower, mid)

 qsort(a, mid+1, upper) The call to partition
returns the location of the
boundary between sub-
regions

Recursive calls to sort
each sub-region

Base case: empty region

QuickSort Performance

✦  QuickSort is not guaranteed to be more efficient than Insertion Sort
❖  if it makes an unlucky choice for the pivot the array will not be divided equally
❖  worst case: sorting an array that is already in order

✦  The analysis of the average number of steps for random lists is fairly
complex

✦  Bottom line: to sort a list of n items requires approximately

✦  Many tests on real-world data show that QuickSort is very effective in
practice and it is a popular choice in many applications

The qsort Method

✦  The RecursionLab module has a method named qsort
❖  use it the same way you do isort and msort

>> Source.listing("qsort")

 1: def qsort(a, p = 0, r = a.length-1)

 2: if p < r

 ...

✦  To trace the execution of qsort, print brackets around the current region
at the beginning of each call
❖  parameters p and r define the boundaries

>> Source.probe("qsort", 2, "puts brackets(a,p,r)")

=> true

Sort Algorithms in Real Life

✦  These algorithms can be used in the real world
❖  it might be fun to try merge sort on a deck of cards

✦  For QuickSort you’ll need a lot of room to lay out all the cards

✦  Merge sort can be done in a very small space
❖  pick up the smaller of the two top cards
❖  lay it face down in a new pile
❖  when merging the next two groups the new  

pile should be at right angles so you know  
where the group starts

❖  turn the deck over and repeat

The way most people sort a full deck
(make one pile for aces, one for
kings, ...) is known as radix sort

Probably more efficient than merge sort
for this problem....

Sort Algorithms in Real Life

✦  A place where merge sort might be the best method is sorting stacks of
papers

✦  Example: sorting a set of exams from a class with 45 students

✦  Use the method sketched on the  
previous slide for cards
❖  new groups are formed face  

down below existing groups
❖  alternate the orientation of  

each new group
❖  turn the stack over and repeat

Recap: Divide and Conquer Algorithms

✦  The divide and conquer strategy often reduces the number of iterations of
the main loop from n to log2 n

❖  binary search:

❖  merge sort:

❖  QuickSort:

✦  It may not look like much, but the reduction  
in the number of iterations is significant for  
larger problems

Summary

✦  These slides introduced the divide and conquer strategy
❖  for searching: binary search
‣  requires list to be sorted

❖  for sorting: QuickSort and merge sort

✦  Binary search will find an item using at most comparisons

✦  QuickSort and merge sort do at most comparisons

✦  An algorithm that uses divide and conquer can be written using iteration or
recursion
❖  recursive = “self-similar”
❖  a problem that can be divided into smaller subproblems of the same type
❖  a recursive method calls itself

Note to Instructors

License
The slides in this Keynote document are based on copyrighted material from Explorations in
Computing: An Introduction to Computer Science, by John S. Conery.
These slides are provided free of charge to instructors who are using the textbook for their courses.
Instructors may alter the slides for use in their own courses, including but not limited to: adding new
slides, altering the wording or images found on these slides, or deleting slides.
Instructors may distribute printed copies of the slides, either in hard copy or as electronic copies in
PDF form, provided the copyright notice below is reproduced on the first slide.

This Keynote document contains the slides for “Divide and Conquer”, Chapter 5 of Explorations in
Computing: An Introduction to Computer Science.
The book invites students to explore ideas in computer science through interactive tutorials where
they type expressions in Ruby and immediately see the results, either in a terminal window or a 2D
graphics window.
Instructors are strongly encouraged to have a Ruby session running concurrently with Keynote
in order to give live demonstrations of the Ruby code shown on the slides.

Sumber : © 2012 John S. Conery

