
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 9

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK	DALAM	PEMROGRAMAN	
Struktur	Data	Dasar	

Pertemuan	9	

TUJUAN	PERKULIAHAN	
•  Mahasiswa	memahami	beberapa	Bpe	persoalan	yang	
penBng.	

•  Framework	Analisis	
–  Pengukuran	Input	
–  Unit	untuk	mengukur	running	Bme	
–  Orde	pertumbuhan	
–  Efisiensi	kasus	terburuk,	kasus	terbaik,	dan	kasus	rata-rata	

•  Notasi	AsimptoBk	
–  Notasi	O	
–  Notasi	Ω	
–  Notasi	Θ	

•  Kelas	efisiensi	dasar		

4	

Algorithm	Efficiency,	Big	O	NotaBon,	ADT’s,	
and	Role	of	data	Structures	

•  Algorithm	Efficiency	
•  Big	O	NotaBon	
•  Role	of	Data	Structures	
•  Abstract	Data	Types	(ADTs)	
•  Data	Structures	
•  The	Java	CollecBons	API	

5	

Algorithm	Efficiency	

•  Let’s	look	at	the	following	algorithm	for	
iniBalizing	the	values	in	an	array:	
final int N = 500;

int [] counts = new int[N];

for (int i=0; i<counts.length; i++)

 counts[i] = 0;

•  The	length	of	Bme	the	algorithm	takes	to	
execute	depends	on	the	value	of	N	

6	

Algorithm	Efficiency	

•  In	that	algorithm,	we	have	one	loop	that	
processes	all	of	the	elements	in	the	array		

•  IntuiBvely:	
–  If	N	was	half	of	its	value,	we	would	expect	the	
algorithm	to	take	half	the	Bme	

–  If	N	was	twice	its	value,	we	would	expect	the	
algorithm	to	take	twice	the	Bme	

•  That	is	true	and	we	say	that	the	algorithm	
efficiency	relaBve	to	N	is	linear	

7	

Algorithm	Efficiency	

•  Let’s	look	at	another	algorithm	for	iniBalizing	the	
values	in	a	different	array:	
final int N = 500;
int [] [] counts = new int[N][N];
for (int i=0; i<N; i++)
 for (int j=0; j<N; j++)
 counts[i][j] = 0;

•  The	length	of	Bme	the	algorithm	takes	to	execute	
sBll	depends	on	the	value	of	N	

8	

Algorithm	Efficiency	
•  However,	in	the	second	algorithm,	we	have	
two	nested	loops	to	process	the	elements	in	
the	two	dimensional	array		

•  IntuiBvely:	
–  If	N	is	half	its	value,	we	would	expect	the	
algorithm	to	take	one	quarter	the	Bme	

–  If	N	is	twice	its	value,	we	would	expect	the	
algorithm	to	take	quadruple	the	Bme	

•  That	is	true	and	we	say	that	the	algorithm	
efficiency	relaBve	to	N	is	quadraBc	

9	

Big-O	NotaBon	
•  We	use	a	shorthand	mathemaBcal	notaBon	to	
describe	the	efficiency	of	an	algorithm	relaBve	to	
any	parameter	n	as	its	“Order”	or	Big-O	
– We	can	say	that	the	first	algorithm	is	O(n)	
– We	can	say	that	the	second	algorithm	is	O(n2)	

•  Let	T(n)	be	a	funcBon	that	formulates	the	Bme	an	
algorithm	needs	to	be	completed,	where	n	is	the	
parameter	that	specifies	the	size	of	the	problem,	
we	say	that	the	algorithm	is	O(T(n))	[or	the	
algorithm	has	the	Bme-complexity	of	O(T(n))].		

10	

Big-O	NotaBon	
•  		Big-O	nota+on	measures	how	fast	the	the	
running	+me	of	the	algorithm	grows	with	
increase	in	the	size	of	the	problem	,	not	how	
long	will	it	take	for	our	algorithm	to	run	as	a	
func+on	of	the	size	of	the	problem.	Therefore,	
–  	We	only	include	the	fastest	growing	term	and	ignore	
any	mulBplying	by	or	adding	of	constants.	Since	they	
are	not	dependent	on	the	size	of	the	problem.	

–  	If	our	Bme	growth	funcBon	has	mulBple	terms	
dependent	on	the	problem	size	n,	we	only	take	the	
dominaBng	term	as	the	Big-O	measure.	

–  Example				

11	

Seven	Growth	FuncBons	

•  Eight	funcBons	O(n)	that	occur	frequently	in	
the	analysis	of	algorithms	(in	order	of	
increasing	rate	of	growth	relaBve	to	n):	
– Constant	≈	1
– Logarithmic	≈	log	n
– Linear	≈	n
– Log	Linear	≈	n log	n
– QuadraBc	≈	n2

– Cubic	≈	n3

– ExponenBal	≈	2n

– Factorial	≈	n!

12	

Growth	Rates	Compared	
n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1
logn 0 1 2 3 4 5
n 1 2 4 8 16 32
nlogn 0 2 8 24 64 160
n2 1 4 16 64 256 1024
n3 1 8 64 512 4096 32768
2n 2 4 16 256 65536 4294967296
n! 1 2 24 40320 2.09e+13 2.63e+35

13	

Big-O	for	a	Problem	

•  O(T(n))	for	a	problem	means	there	is	some	
O(T(n))	algorithm	that	solves	the	problem	

•  Don’t	assume	that	the	specific	algorithm	that	you	
are	currently	using	is	the	best	soluBon	for	the	
problem	

•  There	may	be	other	correct	algorithms	that	grow	
at	a	smaller	rate	with	increasing	n	

•  Many	Bmes,	the	goal	is	to	find	an	algorithm	with	
the	smallest	possible	growth	rate	

14	

Data	Structures	

•  That	brings	up	the	topic	of	the	Data	structure		
on	which	the	algorithm	operates.	

•  Data	Structure	is	a	parBcular	way	of	
organizing	the	data	in	computer	memory	so	
that	it	can	be	used	efficiently.			

15	

Role	of	Data	Structures	

•  If	we	are	using	an	algorithm	manually	on	
some	amount	of	data,	we	intuiBvely	try	to	
organize	the	data	in	a	way	that	minimizes	the	
number	of	steps	that	we	need	to	take.	As	an	
example,	publishers	offer	dicBonaries	with	
the	words	listed	in	alphabeBcal	order	to	
minimize	the	length	of	Bme	it	takes	us	to	look	
up	a	word.	

16	

Role	of	Data	Structures	

•  We	can	do	the	same	thing	for	algorithms	in	our	
computer	programs	

•  Example:	Finding	a	numeric	value	in	a	list	
–  If	we	assume	that	the	list	is	unordered,	we	must	
search	from	the	beginning	to	the	end		

– On	average,	we	will	search	half	the	list	
– Worst	case,	we	will	search	the	enBre	list	
– Algorithm	is	O(n),	where	n	is	size	of	array	or	list.	

17	

Role	of	Data	Structures	

•  Find	a	match	with	value	in	an	unordered	list	
int [] list = {7, 2, 9, 5, 6, 4};

for (int i=0; i<list.length, i++)

 if (value == list[i])

 return true; // found it

return false; //did not find it.

18	

Role	of	Data	Structures	

•  If	we	assume	that	the	list	is	ordered,	we	can	sBll	
search	the	enBre	list	from	the	beginning	to	the	
end	to	determine	if	we	have	a	match	

•  But,	we	do	not	need	to	search	that	way	
•  Because	the	values	are	in	numerical	order,	we	
can	use	a	binary	search	algorithm	

•  Like	the	old	parlor	game	“Twenty	QuesBons”	
•  Algorithm	is	O(log2n),	where	n	is	size	of	array	

19	

Role	of	Data	Structures	
•  Find	a	match	with	value	in	an	ordered	list	

int [] list = {2, 4, 5, 6, 7, 9};
int min = 0, max = list.length-1;
while (min <= max) {
 if (value == list[(min+max)/2])
 return true; // found it
 else
 if (value < list[(min+max)/2])
 max = (min+max)/2 - 1;
 else
 min = (min+max)/2 + 1;
}
return false; // didn’t find it

20	

Role	of	Data	Structures	

•  The	difference	in	the	structure	of	the	data	
between	an	unordered	list	and	an	ordered	list	
can	be	used	to	reduce	algorithm	Big-O	

•  This	is	the	role	of	data	structures	and	why	we	
study	them	

•  We	need	to	be	as	clever	in	organizing	our	data	
efficiently	as	we	are	in	designing	an	algorithm	
for	processing	it	efficiently.	In	fact	we	can	not	
separate	one	task	from	another.	

21	

Abstract	Data	Types	(ADT’s)	

•  A	data	type	is	a	set	of	values	and	operaBons	that	
can	be	performed	on	those	values.	

•  The	Java	primiBve	data	types	(e.g.	int)	have	values	
and	operaBons	defined	in	Java	itself.	

•  An	Abstract	Data	Type	(ADT)	is	a	(usually	more	
sophisBcated)	data	type	that	has	values	and	
operaBons	that	are	not	defined	in	the	language	
itself.	Instead,	in	Java,	an	ADT	is	implemented	
using	a	class	or	an	interface.	

22	

Abstract	Data	Types	(ADT’s)	

•  The	code	for	Arrays.sort	is	designed	to	sort	an	
array	of	Comparable	objects:	
public static void sort (Comparable [] data)

•  The	Comparable	interface	defines	an	ADT		
•  There	are	no	objects	of	Comparable	“class”	
•  There	are	objects	of	classes	that	implement	the	
Comparable	interface.		

•  Arrays.sort	only	uses	methods	defined	in	the	
Comparable	interface,	i.e.	compareTo().	

23	

ADT’s	and	Data	Structures	
•  Data	structures	are	used	to	implement	an	
Abstract	Data	Type.	A	data	structure	is	used	to:		
–  to	organize	the	data	that	the	ADT	is	encapsulaBng.	

•  The	type	of	data	structure	should	be	hidden	by	
the	API	(the	methods)	of	the	ADT.					

Class	that		
uses	

	an	ADT	

Class that
implements

an ADT

Data
Structure

Interface (ADT)

24	

CollecBons	
•  A	collecBon	is	a	typical	example	of	Abstract	Data	Type.		
•  A	collecBon	is	a	data	type	that	contains	and	allows	
access	to	a	group	of	objects.	

•  The	CollecBon	ADT	is	the	most	general	form	of	ADTs	
designed	for	containing/accessing	a	group	of	objects.	

•  We	have	more	specific	forms	of	CollecBon	ADTs	which	
describe	the	access	“strategy”	that	models	that	
collecBon:	
– A	Set	is	a	group	of	things	without	any	duplicates	
– A	Stack	is	the	abstract	idea	of	a	pile	of	things,	LIFO	
– A	Queue	is	the	abstract	idea	of	a	waiBng	line,	FIFO	
– A	List	is	an	indexed	group	of	things		

25	

The	Java	CollecBons	API	

•  The	classes	and	interfaces	in	the	Java	
CollecBons	Library	are	named	to	indicate	the	
underlying	data	structure	and	the	abstract	Data	
type.	

•  For	example,	the	ArrayList	we	studied	in	
CS110	uses	an	underlying	array	as	the	data	
structure	for	storing	its	objects	and	implements	
its	access	model	as	a	list	

•  However,	from	the	user’s	code	point	of	view,	
the	data	structure	is	hidden	by	the	API.	

26	

Sumber	:	hnps://www.cs.umb.edu	

