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ABSTRACT 

The purpose of this article is to review where we stand with regard to 
modeling the kind of cognition involved in human-computer interaction. 
Card, Moran, and Newell's pioneering work on cognitive engineering models 
and explicit analyses of the knowledge people need to perform a procedure 
was a significant advance from the kind of modeling cognitive psychology 
offered at the time. Since then, coordinated bodies of research have both 
confirmed the basic set of parameters and advanced the number of parame- 
ters that account for the time of certain component activities. Formal 
modeling in grammars and production systems has provided an account for 
error production in some cases, as well as a basis for calculating how long a 
system will take to learn and how much savings there is from previous 
learning. Recently, we were given a new tool for modeling nonsequential 
component processes, adapting the "critical path analysis" from engineering to 
the specification of interacting processes and their consequent durations. 

Though these advances have helped, there are still significant gaps in our 
understanding of the whole process of interacting with computers. The 
cumulative nature of this empirical body and its associated modeling frarne- 
work has further highlighted important issues central to research in cognitive 
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psychology: how people move smoothly between skilled performance and 
problem solving, how people learn, how to design for consistent user 
interfaces, how people produce and manage errors, how we interpret visual 
displays for meaning, and what processes run concurrently and which depend 
on the completion of prior processes. 

In the bigger picture, cognitive modeling is a method that is useful in both 
initial design (it can narrow the design space and provide early analyses of 
design alternatives), evaluation, and training. But it does not extend to 
broader aspects of the context in which people use computers, partly because 
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there are significant gaps in contemporary cognitive theory to inform the 
modeling and partly because it is the wrong form of model for certain kinds 
of more global questions in human-computer interaction. Notably, it fails to 
capture the user's fatigue, individual differences, or mental workload. And it 
is not the type of model that will aid the designer in designating the set of 
functions the software ought to contain, to assess the user's judgment of the 
acceptability of the software, or the change that could be expected in work life 
and the organization in which this work and person fits. Clearly, these kinds 
of considerations require modeling and tools of a different granularity and 
form. 

1. GOMS AS COGNITIVE MODELING 

The ability to predict how users will interact with proposed designs is a 
useful tool for the system designer. Being able to make such predictions is one 
of the principal goals of a class of cognitive models that has emerged following 
on the work of Card, Moran, and Newel1 (1980a, 1980b, 1983). In this 
article, we examine the strengths and weaknesses of such models, focusing in 
particular on confirmations and extensions that have emerged since the 
original proposals. New work has addressed some of the well-known weak- 
nesses of the original approach, but it is still important to understand exactly 
the limits of these kinds of models. 

In very few design fields does the process of design proceed from first 
principles. Rather, new designs most often arise from old designs, from 
analogies, or from other sources of creative thought. First principles are then 
used to screen these candidate designs. This is exactly the role for which 
cognitive models are best suited (Newell & Card, 1985, 1986). To be concrete, 
cognitive models are useful in: 

1. Initially constraining the design space, so that one does not build an 
interface, for example, that requires more items to be kept in memory 
than will fit in working memory (WM). 

2. Answering specific design decisions, so that one can decide, for 
example, between a dialogue that requires few keystrokes but difficult 
retrieval from memory or one that involves more keystrokes but is easier 
to remember. 

3. Estimating the total time for task performance with sufficient accuracy 
to make decisions about how many people are needed to staff the 
performance of a repetitive operational task on a computer. 

4. Providing the base from which both to calculate training time and to 
guide training documentation to help the user determine in which 
situations which method is most efficient. 
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5. Knowing which stages of activity take the longest time or produce the 
most errors, in directing research toward the aspects of human- 
computer interaction that will have strong future performance implica- 
tions. 

Card et al. (1980a, 1980b, 1983) proposed a framework for building such 
analytic models of human performance with computers. This framework 
represented a significant advance from modeling in cognitive psychology in 
that many of the processes contributing to the full cycle of perception to action 
were modeled together and the knowledge that is considered necessary to 
perform a task was described in enough detail to generate predictions about 
human behavior in real, naturalistic tasks. 

The framework has two key components. The first is a general character- 
ization of the human information-processing system, in terms of both a 
system architecture and quantitative parameters of component performance. 
This they called the Model Human Processor (MHP), and it summarized a large 
body of research from cognitive psychology. The second key component is a 
way of describing what the user needs to know in order to perform 
computer-based tasks, a model called GOMS'. The GOMS model-actually a 
family of models - describes the knowledge necessary and the four cognitive 
components of skilled performance in tasks: goals, operators, methods, and 
selection rules. 

The GOMS framework provided Card et al. with the basis for predicting 
the methods and operators users would follow in carrying out a particular 
well-known task (the goal) and, given a method, how long that task would 
take. Figure 1 shows the steps a user proceeds through in using a piece of 
software (adapted from Norman, 1986). The user perceives activity on the 
screen, evaluates whether it is what is expected given the goals the user is 
trying to accomplish, sets up an intention of the next step, retrieves the way 
to enact this intent on this system, and executes the appropriate motor 
movements. This produces new activity on the screen, and the user cycles 
through the process again. The original GOMS framework focused on 
explaining the selection from memory of methods appropriate to the situation 
(the goal and intention phases of Figure 1) and the time to specify and to 
execute the action. 

The strength of this approach is its ability to predict the time it takes a 
skilled user to execute a task based on the composite of actions of retrieving 
plans from long-term memory, choosing among alternative available methods 
depending on features of the task at hand, keeping track of what has been 
done and what needs to be done, and executing the motor movements 
necessary for the keyboard and mouse. To make useful predictions, GOMS 
assumes that routine cognitive skills can be described as a serial sequence of 
cognitive operations and motor activities. Each of these actions has a time 
parameter that is independent of the particular context within a task and is 
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Figure 1. The seven steps of user activities involved in the performance of a 
computer-based task (based on Norman, 1986). 

Mental Activity 
.. . ..... .. .. ........, .. 

Physical Activity 

constant across tasks. Card et al. (1983) proposed such a theory, more 
constrained than general cognitive theories, in order to make engineering 
calculations. 

Time parameters for external actions (and one internal action, that of 
retrieving the next unit of a plan) were estimated from empirical data derived 
from people using text editors, graphics systems, and some functions from the 
operating system of a variety of software. These numbers were generally 
obtained from a regression model, in which each unit task was assumed to 
consist of a set of keystrokes, hand movements, mental retrievals, and the 
like. Over a wide set of unit tasks from a variety of systems, values were 
obtained for these component processes. In later work, times for new 
parameters were derived in a similar manner except by Olson and Nilsen 
(1988). In their work, they recorded the time for every external act in a 
"keystroke capture" program, not just the total time for a task. Their 
regression analyses, therefore, included many more data points, each of 
smaller size, with each data point being a composite of a set of parameters 
relevant to that individual moment, not a sum over many different acts. 
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Card et al. (1983) found parameters that were very consistent across tasks. 
Of note were: 

1. A keystroke, called k, for a midsmed typist is 280 meec. 
2. A single mental operator, called M, ofken interpreted as the time to 

retrieve the next chunk of information from long-term memory into 
WM is 1.35 s. 

3. Pointing, called P, to a target on a small display with a mouse takes on 
average 1.1 sec (though the time is variable according to Fitts's law). 

4. Moving the hands, called H, from the keyboard to the mouse takes 400 
msec. 

An analyst or designer using these parameters to predict how long a 
particular task would take was given heuristics about where in the task 
retrieval of the next unit theoretically took place (where to put the Ms) and 
when to insert the amount of time the system takes to respond. For example, 
retrieval (M) occurs at each unit boundary (a word, a single symbol or 
function key, a string of movements with a step key). Accordingly, if a subject 
were going to enter a formula in a spreadsheet by pointing with cursor-step 
keys to the cells that contain the desired values, a formula for adding the 
contents of cells from B22 to B29 would include: 

@ ,* ( A A A A A A A A A A A A  ' A A A A A A  )<ret> 
M K M k k k  Mk M k k k k k k k k k k k k M k M k k k k k k M k M k  

which adds up to: 

8 Ms and 26 ks 
8(1.35) + 26(.280) = 18.08 s. 

Using the small set of parameters with associated times derived from a large 
set of tasks, they were able to account for 90% of the variance in predicting 
unit task times such as the foregoing (Card et al., 1983, p. 294). 

1.1. Limitations of the GOMS Approach 

From the outset, it was clear that the GOMS approach to user modeling 
had well-defined strengths and weaknesses. Various GOMS models, partic- 
ularly the keystroke-level model, provided good quantitative fits to the 
performance times of skilled users during errorless performance. Indeed, the 
parameters were stable enough so that performance in appropriate new 
situations could be predicted without the need to estimate parameters from 
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the data. This ability to derive parameter-free estimates is part of what makes 
the GOMS approach useful in design, because it allows comparisons of 
different design alternatives. This is the key feature of the engineering 
approach that the GOMS models reflect. 

One potential limitation of the GOMS model is that the initial work 
reported by Card et al. was carried out in a limited range of domains. There 
is always the question of whether the framework holds up when it is taken into 
new domains. 

But there are more serious questions about the value of GOMS. Although 
there are many critiques of GOMS (e.g., Carroll & Campbell, 1986; Karat, 
1988; Wilson, Barnard, Green, & MacLean, 1988), the most explicitly 
detailed list came from Card et al. (1980) themselves in their original framing 
of the model. A compilation of these shortcomings includes: 

1. The model applied to skilled users, not to beginners or intermediates. 
Such nonskilled urers spend considerable time engaged in problem- 
solving activities, rather than simply retrieving and executing plans, 
and move smoothly between problem solving and skilled behavior. 

2. The model gave an account of skilled performance at asymptote but no 
account of either learning of the system or its recall after a period of 
disuse, nor how to design an easily learned consistent interface. 

3. The model focused on errorless performance and, thus, gave no 
account of the mors that frequently occur even in skilled performance. 

4. The model was most explicit about elementary perceptual and motor 
components of skilled behavior but tended to treat the cognitive processes 
in skilled behavior in a less differentiated fashion. 

5. The model was developed exclusively for tasks in which the principal 
components that were being modeled could reasonably be assumed to 
be serial in nature. However, tasks have a substantial number of 
component processes that, at some level, must occur. in parallel. 

6. The model does not address mental workload-how much must be held 
in mind while using the system. 

7. The model addresses only the usability of a task on a system and does 
not address functionality, that is, what tasks should be performed by the 
computer. 

8. The model does not address the amount and kind of fatigue users 
experience using a system. 

9. The model does not account for individual dtflmences among users. 
10. The model does not provide guidance in predicting whether users will 

judge the system to be either useful or satisfying, or whether the system 
will be globally acceptable. 

11. The model stops short of addressing any aspects of how computer- 
supported work fits or misfits office or organizational life. 
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It is useful to ask which of these objectives have been addressed in 
subsequent work, which remain possible but unexplored, and which seem 
entirely beyond the scope of even an extended GOMS model. 

1.2. Plan of This Article 

The purpose of this article is to review these advances in cognitive modeling 
and to outline the significant problems that remain for both the designer in 
search of guidance and the cognitive psychologist interested in how cognitive 
processes interact to produce behavior of the sort exhibited in human- 
computer interaction. We do this by addressing the three main points. 

First, we review the extent to which the quantitative estimates of task 
components described by Card et al. (1983) have held up in further research. 
Subsequent studies of skilled performance in several different domains have 
provided strong confirmation for the original work. 

Second, a number of investigators have taken the Card et al. (1983) 
framework in new directions. We examine three in particular: the study of 
learning and transfer, the study of errors, and the analysis of parallel 
processes. In each case, the basic Card et al. framework is preserved, but 
additional value is added. 

Third, a number of limitations remain, either because cognitive science 
currently provides no guidance to this aspect of human-computer interaction 
or because the questions require a wholly different modeling approach. We 
close with an examination of the place of cognitive modeling in the broader 
context of research on human-computer interaction. 

2. ADVANCES IN MODELING SPECIFIC SERIAL 
COMPONENTS 

A number of researchers have followed the spirit of GOMS and the MHP 
in empirical explorations. These investigations are direct tests of both the 
assumption of serial processing and the assumption that time parameters are 
constant across a wide range of tasks. 

We have gathered the different parameters that various researchers have 
found; displayed them in Figures 3, 5, and 6; and summarized them in Figure 
7. Each figure displays parameters as found in Card et al.'s (1983) empirical 
work and in their review of the relevant cognitive psychology literature as 
summarized in the MHP. Added to these parameters are values found in 
studies with a similar spirit: studies of entering editor commands with 
keystroke codes, entering formulas in spreadsheets, and so on. The new 
parameters are listed in italics in these three figures. 
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F i p n  2. The seven steps of user activities involved in the performance of a 
computer-based task, annotated with known cognitive processes. 

\ Execute a mental 1 
Choose among 

methods 

Mental Activity 

\ \ Physical Activity 

MOTOR 

Keystroke 
Point 
Moue hands 

The parameters cluster into three general classes: motor movement, 
perception, and memory and cognition. These general classes of behavior 
map onto the seven steps of user activity as shown in Figure 2. 

2.1. Motor Movements 

Figure 3 summarizes the values found in various studies relevant to 
keyboard entry, using a mouse, and moving hands back and forth from 
keyboard to pointing devices. 

Keying 

A set of parameters accounts for the time to enter a keystroke in a normal 
typing task, the actual value depending on the skill level of the typist, the 



Figun 3. Parameters describing component procescres in motor movement. 

-a- 
Average non-secty typist 280 msec CMN 

Best typist (120 wpm) 80 msec CMN 
Good typist 120 msec CMN 
Average skilled typist (60 wpm) ZOO msec CMN 
Typing random letters 500 msec CMN 
Typing complex codes 750 msec CMN 
Worst typist 1200 msec CMN 

Entering spreadsheet formulas 
Lotus 330 msec O&N 
Multiplan 220 msec o&N 

Entering column l width commands 
Lotus 280 msec O&N 
Mul$iplan 230 msec o&N 

Enter command abbreuiations 230 msec J&N 
Expert typing cross-hand digraphs 

170 msec J&N 
Expert typing same-hand digraphs 

220 msec J&N 

Point with a mouse 
Average value, small screen, menu shaped target 

1100 msec CMN 

Varies with distance and size of target 
1.0 + .10 log2(D/SI..5)sec CMN 

Average value, small distance, menu target 
1900 msec WSN 

Varies with distance and size of target 
.80 + .23 log2(D I S+.5)sec WSN 

Move haa&e from keyboard to pointing device or back 
To mouse 360 msec CMN 
To joystick 260 msec CMN 
To cursodarrow) keys 210 msec CMN 
To function keys 320 msec CMN 

O&N = Olson and Nilsen, 1988 
J&N = John and Neweli, 1989 
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frequency with which the particular key is used, and the predictability and 
continuity of the text to be typed. That is, regular transcription typing is 
faster than entering formulas, for example, because numerals are less 
frequently typed and often the placement of the number and symbol keys 
requires perceptual search in addition to simple hand motor movements. 
Card et al. (1983) reported parameters ranging from 80 msec per keystroke 
for a typist of 135 words per minute (wpm) to 1200 msec per key for a user 
unfamiliar with the keyboard. An average typist is reported to take 280 msec 
per keystroke. 

Two other researchers confirmed the basic keystroke parameters. Olson 
and Nilsen (1988) found two separate keystroke times from their examination 
of the moment by moment activity in entering and changing spreadsheets. 
They found a keystroke time of 330 and 220 msec for entering formulas in 
Lotus and Multiplan, respectively, and 280 and 230 msec for entering 
keystrokes in a task that changes the widths of columns in Lotus and 
Multiplan, respectively. 

In their investigations of users entering command abbreviations, John and 
her colleagues (John & Newell, 1987, 1989, in press; John, Rosenbloom, & 
Newell, 1985) found keystrokes to be 230 msec in one, and 269 rnsec in the 
other. A more recent investigation (John & Newell, 1989) found that in tasks 
involving transcription typing, each keystroke was heavily dependent on skill 
level and task, with values ranging from 70 msec to 220 msec per key. These 
times correspond to the 200 msec for an average typist (60 wpm) from Card 
et al. (1983) if we assume a 50-50 distribution of crosshand, same-hand pairs: 

(170 + 220)/2 = 195 msec. 

All these values are very close to the middle of the range of values 
designated by Card et al. (1983) and slightly smaller than the value designated 
in their work to represent typing random letters. These tasks, however, are 
much more predictable than typing random letters and are often performed 
by more skilled users. 

Moving a Mouse 

Pointing with a mouse at objects whose distances and target sizes covered 
a variety of screens requires an average 1100 msec per selection, according to 
Card et al. (1983). Although this value is appropriate for standard interfaces, 
such as choosing a %-in. sized menu item on an 8%-in. diagonal screen (as in 
a Macintosh SE), it is known to vary with the distance of the movement and 
the size of the target, following Fitts's law (Fitts & Peterson, 1964). Because 
screens now regularly exceed the standard 8% in., and the user more often 
needs to point to scroll bars, window sizers, graphic-object "handles," and 
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icons that are both small and widely scattered on big screens, more detail is 
needed to assess this movement time accurately. 

Card et al. (1983) explored the relationship between target size and distance 
travelled in mouse movements, empirically determining the constants in 
Fitts's law: 

The form of this relationship is interesting. There is a large constant time 
of 1 s to begin moving, no matter what the distance. Adjustments to this base 
time are in increments of 100 msec each time the distance traveled is 1 '/2 times 
as long as the size of the target. That is, this formula suggests that it takes 
about 300 msec to reach the top of the screen from the middle' and 100 msec 
to travel about j /2  in. (to the second menu item) on the Macintosh to hit the 
%-in. menu item, about 1400 msec total. 

Walker, Smelcer, and Nilsen (1989) explored the variations in this 
relationship to predict the time to choose items from nested menus, menus 
that present a second array of choices after the user chooses from a first 
menu, usually in side-by-side strips. Their empirical evaluation determined 
that the time to move to a target on the menu did indeed follow Fitts's law: 

Although the initial movement time of 810 msec is close to the 1030 msec of 
Card et al. (1983), the increment of 230 msec per unit distance and target size 
is twice that found earlier. This difference is likely accounted for by the fact 
the distance in the nested menus they used included a composite of the user 
selecting the first item with a single downward motion, a turn to the right in 
the item's slot, and a move to the edge, where the second set of items is 
displayed. Thus, the distances used in the Walker et al. (1989) study include 
the turns, as well as horizontal and vertical distance segments. The time is 
slower because it includes other, more subtle component processes. 

An Example of the Application of GOMS and MHP to Design 
Generation 

Walker et al. (1989) went a step further, using these facts to drive a design 
process, by demonstrating how GOMS can constrain a designer's search in 
such a way as to lead to large improvements in performance. 

With the goal of shortening this total menu-selection time, Walker et al. 
made three adjustments to the design of menus. One redesign shortened the 
total distance the user had to travel to select an item by making the menu "pop 

' But see the discussion of borders, later in this section. 
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Figure 4. Fittsized menus: Menus whose target areas grow with the distance the 
user has to travel to get to them. In these particular menus, the cursor begins in 
the middle-left of the menu. On the right panel is the menu with "borders" on the 
top, right, and bottom edge, boundaries beyond which the cursor cannot move. 

up" to the right of the cursor instead of below it. Though the average travel 
distance in this design would be halved, there was question whether the user 
might experience additional delays due to the uncertainty about which 
direction the movement had to be launched. The results showed that the time 
to select an item was far shorter when the menu popped up to the right of the 
cursor than when the menu appeared below it. The time to travel to the target 
was a much larger determinant of the total time than the small increment of 
time to decide whether to begin to move up or down. 

Two new menu types followed, both intended to reduce the selection time 
by making the target bigger. Menus can be constructed so that the target size 
grows as the distance from the cursor's starting position increases. These are 
called "Fittsized menus" displayed on the left of Figure 4. In this menu, the 
further the user has to travel, the bigger the target. The mean reduction in 
this study, however, was only 80 msec, a small effect. Fitts's law, however, 
tells us to expect this small effect. It is a complicated arrangement, because as 
the targets grow, so does the overall distance to be traveled. But, in general, 
we would have to increase the size of the furthest target by a factor of nearly 
3 to reduce the travel time over 100 msec, for example, making the fourth 
target item 1 in. tall if the first target item is the standard Macintosh 3/8 in. 

In the third design on the quest for shorter selection times, Walker et al. 
(1989) made the target size effectively much bigger by putting a virtual border 
on the top, right, and bottom edges of the pop-up menu, a border beyond 
which the cursor could not move even though the mouse moved. This is 
similar to the border that the Macintosh interface has at the top of the screen. 
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The cursor will not move off the screen, even though the user has moved the 
mouse to a place that would translate beyond the screen edge if it were 
unconstrained. In this situation, shown on the right-hand side of Figure 4, the 
target size is effectively very large and much easier to hit. This kind of menu 
reduced the selection time by a large amount. The average selection time over 
all menu positions in the original design was 1.9 s. Adding the borders 
reduced the average time by 450 msec, a reduction of nearly 25 % . 

Hand Movements 

Hand movement time is the time needed to move from the space bar of the 
keyboard until the pointing control begins to move the cursor. This is a 
large-muscle movement also well characterized by Fitts's law; the time to 
reach a target (in this case, the mouse or joystick) is a function of the distance 
to the target and its size. This time was calculated from behavioral data to be 
approximately 360 msec, a relatively small, fixed amount of time because the 
mouse is typically in about the same position each time, and the target itself 
is large (see Card et al., 1983, Figure 7.4). This is a much smaller time than 
pointing with the mouse to a specific intercharacter location on the screen 
because of the large effect of size of the target on the overall time. 

Card et al. (1983) found empirical variation among parameters for 
different pointing devices, presumably because they were at various distances 
from the home position on the keyboard and because the targets are of 
different sizes. The user took 360 msec to find a mouse and start to move, 260 
msec to find the joystick (because it is bigger), 210 msec to find the cursor or 
arrow keys (both nearer and smaller), and 320 msec to find the function keys 
(presumably because they are a few inches away but relatively small). 

2.2. Perception 

Summary values for the known aspects of seeing items on the screen are 
summarized in Figure 5. These values are primarily from the summary of the 
literature included in Card et al.'s (1983) MHP, although John and Newell 
(1989, in press) add some recent empirical support for these values. 

Clearly, by recognizing features of the current task and assessing some of 
the parameters necessary to do a task (e.g., the letters to be edited or 
components of the formula to be entered), perception and scanning are 
involved. The perceptual processor is clocked at la) msec in the summary of 
the MHP in Card et al. (1983, Figure 2.1) and a saccade (the time to move 
and take in information in each jump) at 230 msec. Although neither 
perception nor scanning parameters are included in the empirical work of 
Card et al. (1983), John and Newel1 (in press) used the 100 msec for the 
perception of lights and simple symbols in a stimulus-response compatibility 
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Figure 5. Parameters describing component processes in perception. 

Time to respond to brief light 100 msec 

I t  varies with intensity, brighter is faster 
50 -- 2d0 msec 

Recognize a 6-letter word 340 msec 
314 msec 

Make a saccade 

Time for the eye to jump to next location 
230 msec 

MHP 

MHP 

J&N 
J&N 

MHP 

Card, Moran, and Newell, 1983 
J&N = John and Newell, in press and 

task. When they combined it with a cognitive operator (discussed later) and 
standard information theory to calculate how many bits of information had to 
be processed by the cognitive processor, they obtained very good predictions. 
This is not a direct derivation of the perceptual parameter, but indirect 
support for its value. 

Similar in style, John and Newell (1989, in press) determined that 
perceiving a six-letter word took 314 msec in a stimulus-response compati- 
bility task that involved entering abbreviations for command names. Because 
perception of words includes recognition, some verbal encoding, or retrieval 
of meaning in addition to simple perception, it is not surprising to find this 
value a bit higher than the others. 

Let us consider an example of application of the theory. A related 
"scanning" parameter was identified in the Olson and Nilsen (1988) study of 
experts using spreadsheet software. The Olson and Nilsen scanning param- 
eter was identified in situations in which the user was scanning a screen for 
additional information, the row and column coordinates on the spreadsheet 
border, in known locations. This scanning took an additional 2300 msec. Why 
is this so much longer than the perception values discussed earlier? Obviously, 
from the discrepancy in not just the value but the order of magnitude of these 
parameters, something more than simple perception is likely to be operating. 

In the Olson and Nilsen task, the user must look for the cell addresses by 
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following the row or column guide lines to the border where the row or cell 
indicators are displayed (e.g., B, on the column indicator and 22 on the row 
indicator) and then retrieve them for execution as keystrokes. The total time 
for this composite of scanning, storing, and retrieving was measurred at 2300 
msec. If we use the available parameters for a saccade and memory retrieval 
(in Figure 3), then we can calculate a reasonable storage time (one for the B, 
one for the 22) to be 130 msec, close to the parametric value to perceive 
something. In more detail, if the 2300 msec is a composite of: 

A saccade to the row line 230 msec 
A storage of the row label 130 msec 
A saccade to the column head 230 msec 
A storage of the column label 130 msec 
A saccade to the cell in which typing is to start 230 msec 
Retrieval of the row and column labels 1350 msec 

Total 2300 msec 

where the 130 msec for storing a row label in working memory is the dnived 
value from this calculation. 

These parameter estimates, of course, warrant further empirical verifica- 
tion. But it is intriguing that this task can so nicely be decomposed into - - 

reasonable processes with time parameters from cognitive engineering. 
This example illustrates the use of GOMS and MHP in understanding a 

design issue. The parameter Olson and Nilsen (1988) found was an order of 
magnitude too large; GOMS identifies this as an issue of grain size of task. 
It encourages closer examination of a linear sequence of more microscopic 
operations identified in previous research. Here, the result was that the 2.3 s 
time was not simple perception, but rather a series including search, storage, 
and recall, the last of which is known to have an associated long time. This 
might lead the designer from a solution that makes scanning per se shorter to 
one that eliminates the need for users to store and recall coordinate values. 

2.3. Memory and Cognitive Processes 

Figure 6 summarizes the values found in various studies relevant to 
memory retrieval, executing steps in a mental procedure, and choosing 
among methods. 

Memory Retrieval 

At the heart of the Card et al. (1983) model is M, called "mental," often 
interpreted as the time to retrieve the next unit of information. It is assumed 
from the listed heuristics about when this special operation occurs that this is 



Figure 6. Parameters describing component processes in memory and cognition. 

Retrieve a unit from LTM to WM 

Retrieve a command name or delimiter 
1350 msec CMN 

Retreive a random command abbreviation 
1200 msec J&N 
1209 msec J&N 
1200 msec J&N 

Retrieve the next part of a formula 
Multiplan (cursor method) 1100 msec O&N 
Lotus (cursor method) 990 msec O&N 
Lotus (typing method) 1350msec O&N 

Retrieve command part in column width task 
Multiplan 1160 msec O&N 
Lotus 1080 msec O W  

Repeated retrieval of same command 
Lotus 660 msec O W  

Execute a mental step 

Cognitive Processor (the contents of WM 
initiate associatively-linked actions in LTM) 

70 msec MHP 

Execute next rule in a formal model of skilled performance 
100 msec BKP 

Execute next step in decoding abbreviations 
66 msec J&N 

60 msec J&N 
50 msec J&N 

Choose among methods 

"Mental" operator, choose, retrieve 620 msec CMN 

Choose whether to type or point to cells 
in entering a spreadsheet formula 1760 msec O&N 

Card, Moran, and Newell, 1983 
CMN = Card, Moran, and Newell, 1983 
BKP = Bovair, Kieras and Polson, 1985 
J&N = John and Newell, 1985,1989,1989, in 
press. 
O&N = Olson and Nilsen, 1988 
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retrieval of well-known units from long-term memory (LTM) for placement 
in WM, ready then to be either executed by a motor processor or further 
decomposed by subsequent retrieval from LTM. This value is empirically 
determined to be 1350 msec. 

John and Newell (1987, 1989, in press) and John et al. (1985) empirically 
determined a parameter for retrieval from LTM to be 1200 msec. This is 
described as being retrieval of a completely arbitrary association between a 
stimulus word and its required letter-combination response. Olson and 
Nilsen (1988), in their study of spreadsheet software use, found a parametric 
value for retrieval of syntax parts in entering a formula as 1100 msec in 
Multiplan and 1350 msec in Lotus 1-2-3. Retrieving the command parts 
(e.g., the keyboard equivalent for a command from a menu) in a column- 
width task was 1160 msec in Multiplan and 1080 msec in Lotus. 

Olson and Nilsen found another interesting result in their study of Lotus 
1-2-3. In their study, the user entered the column width command four times 
in a row. Lotus 1-2-3 has no feature that dlows you to set the column width 
for a range of columns. One can set either the whole spreadsheet's default 
column width or one column at a time. Thus, the only way to set a range 
(which we asked them to do) is to repeat the same action once for each of the 
columns desired. Again the times for memory retrieval were calculated. The 
first time the user set the column width, the retrieval time was 1100 msec. On 
the second, third, and fourth trials (repeated rapidly in succession), the 
retrieval times dropped and remained flat, calculated to be 660 msec, half 
that of the first retrieval. This is not a simple practice effect; the repeated act 
speeded up only the memory access, not the keying times. The times for the 
keystrokes were calculated individually for each trial and found to be constant 
at 280 msec. 

Executing Steps in a Task 

GOMS provides an explicit representation of the mental steps involved in 
executing a task. It catalogues the retrieval of a goal and its subgoals, the 
decision to select a method to fit the particulars of the current situation, the 
retrieval of the motor movements necessary to execute the command, and the 
execution of each of those command components. Card et al. (1983) 
estimated from the psychological literature that the execution of each 
procedural step should take about 70 msec. 

Kieras and Polson (Kieras, 1988; Kieras & Bovair, 1986; Kieras & Polson, 
1985; Polson & Kieras, 1985; Polson, Muncher, & Engelbeck, 1986) made the 
GOMS representation much more explicit by programming the procedures in 
production system formalism, discussed in more detail later in this article. 
This formalism allowed a number of predictions of behavior far wider than 
those covered in Card et al. (1983), many of which are mentioned in later 
sections. Of note here is that from empirical studies of people carrying out a 
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wide variety of procedures, they estimate that each production requires about 
100 msec to execute. 

Similarly, John et al. (1985), John (1988), and John and Newell (1987, 
1989, in press) determined from their studies of people entering command 
abbreviations that each mental step that translates the command word into an 
abbreviation takes between 50 and 70 msec. Even though these mental steps 
include a variety of processing acts, for example, storing notes in WM, 
calculating, and deciding, as well as very different specification languages 
that defined the cognitive steps, the finding across studies is remarkably 
consistent. 

Choosing Among Methods 

In the MHP, Card et al. (1983) assumed that the more choices for a 
response, the longer the expected response time. This is based on the work of 
Hick (1952) on choice reaction time tasks. Card et al. (1983) estimated that 
mental operators for choosing among appropriate methods is 620 msec. Very 
little additional empirical validation followed this initial determination. 

Olson and Nilsen (1988) found a much higher value for a similarly 
described process. When a system presents the user with a choice of methods, 
the user requires additional time to make the choice. In Lotus 1-2-3, the user 
has choices for indicating the elements of a formula- by typing in the cell 
coordinates (e.g., B22) or by pointing to the appropriate cell with the cursor, 
moved by step keys. In Multiplan, the contrasted piece of software in the 
study, there is only one way -pointing to the appropriate cell with the cursor 
using the step keys. Although the time to enter the formulas with the same 
method took exactly the same amount of time across the two packages, users 
of Lotus took an additional 1760 msec before entering to decide which 
method to use. The time to start the formula in Lotus (which offered two 
methods) was 4.63 s, whereas in Multiplan (which offered only one method) 
it took only 2.87 s. In contrast, in another task, setting column widths, in 
which both Lotus and Multiplan offered only one method, the start times 
were identical. 

Although the overall direction of this choice relationship and Hick's law 
are the same, the effects are a different order of magnitude. Hick's law 
predicts a set of simple, noncognitive reaction times in the range of 200 msec, 
similar in size to the MHP cognitive step. The time to choose among methods 
in Card et al. (1983) is 600 msec; in the study of spreadsheets, the time is on 
the order of 2 s. This difference suggests that a choice between methods in 
human-computer interaction is a more complex cognitive task, requiring 
several to many cognitive steps to be executed. These steps would differ from 
task to task. Also, some of the conditions on which methods are chosen 
require an estimate (e.g., of how far away certain values are), some 
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Figwe 7. Summary of cognitive enghening parameters derived as the median 
of values obtained in Figures 3, 5, and 6. 

Enter a keystroke 
Point with a mouse 
Move hands to mouse 
Perceive 
Make a saccade 
Retrieve from memory 
Execute a mental step 
Choose among methods 

230 msec 
1500 msec 
360 msec 
100 msec 
230 msec 

1200 msec 
70 msec 

1250 msec 

perception of values on the screen, or a quick examination of how immedi- 
ately memorable some parameters are, all of which would add complex 
component times to this overall effect. 

2.4. Predicting Composite Performance From These Parameters 

The data from Figures 3, 5, and 6 are summarized in brief engineering 
form in Figure 7.  For each of the components, we have taken as the single 
value the median of the values obtained in similar circumstances. For 
example, for the time to retrieve from memory, we take the median of the 
nine values in the top of Figure 6, resulting in a value of 1200 msec. The one 
exception to this is the value for moving hands is listed for the movement to 
a mouse, the most common motion in the applications we have analyzed. 

Let us consider an example of using these parameters in a wholly new task. 
We use these times to analyze a very different task studied in a different 
laboratory to illustrate the generality of the parameters and the component 
processes involved in GOMS and MHP. 

Young and MacLean (1988) measured the times of people entering a block 
of values in a spreadsheet two different ways. The user could either enter each 
value separately, pointing to the next cell with the mouse (called the Mouse 
method), or set up a procedure by which each Enter key would advance the 
cursor automatically into the cell to the right of the last one. In this second 
method (called the Mmu method), the user then had to use the mouse only 
when the next line was started. They found that the Mouse method took 
4.19 s for each cell to be entered; the Menu method took 2.8 1 s to start each 
line and 2.46 to type each cell's two-digit number with the Enter key 
advancing the location to the right. 

Using parameters from Figure 7, we calculate that the Mouse method 
consists of: 
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Moving the hand to the mouse 
Clicking the mouse 

(same as a keystroke) 
Moving the hand to the keyboard 
Retrieving two digits 
Typing two digits a 2 3 0  each 
Retrieving the end action 
Typing the < ret > key 

Total 

360 msec 

230 msec 
360 msec 

1200 msec 
460 msec 

1200 msec 
230 msec 

4040 msec 

This result compares well with the 4.19 s obtained in the study, a 3 % error. 
We further assume that task of starting each new line in the Menu method 

involves: 

Moving hand to mouse 
Pointing to a new line with mouse 
Clicking the mouse 
Moving hand to keyboard 

Total 

360 msec 
1500 msec 
230 msec 
360 msec 

2450 msec 

This result compares with the 2.81 s found, with a 13% error. 
And the task of typing each number into the cell in the Menu method 

involves: 

Retrieving (or looking for) two digits 
Typing two digits @230 msec each 
Retrieving the end action 
Typing the < ret > 

Total 

1200 msec 
460 msec 

1200 msec 
230 msec 

3090 msec 

This result compares with 2.46 s found in the empirical study, a 26% error. 
These calculations could be challenged in a number of ways, each challenge 

focusing on the inclusion or exclusion of an operation, especially the 
unobservable mental ones. These challenges would be important if we were 
interested in the details of skilled performance in these specific tasks, and the 
challenges should be pursued when we are doing research on the discovery of 
new parameters. What is more important for cognitive engineering and its use 
in design, however, is that these calculated values are within an average of 
14% error of the observed values, accurate enough at this level of analysis to 
be useful in the calculation of overall task times. They are certainly in the 
right order of magnitude, even within the 20% error criterion often 
acceptable in early design stages. These numbers are accurate enough, for 
example, for us to determine in a large task how many task units could be 
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performed each day by a dedicated clerk and, thus, how many clerks would 
have to be on staff to perform a work load of a target size. 

In summary, although there are potential problems with the basic assump- 
tions of GOMS and the MHP that the component processes are serial 
(discussed later in the Parallel Processes section) and that performance times 
in any one task are independent of context, these assumptions have served 
well in a variety of basic computer-based tasks. These tasks include remem- 
bering and entering different kinds of keyboard commands, using a text 
editor, manipulating files in an operating system, using graphics programs, 
and entering formulas and changing column widths in spreadsheet programs. 
All in all, within the limits imposed by the initial formulation, the model has 
done quite well in subsequent evaluations. 

3. EXTENSIONS OF THE BASIC FRAMEWORK 

Many critics have argued that the original ground rules set up for such 
models are overly restrictive and, thus, limit the usefulness of this approach 
for human-computer interaction applications. In this spirit, a number of 
investigators have tried to take this cognitive engineering approach beyond 
the scope of the original GOMS formulation. We now turn to these 
extensions, focusing on three areas: the analysis of learning and transfer, the 
analysis of errors, and the treatment of parallel processes. 

The first two classes of extensions have been made possible by the explicit 
modeling of the user's knowledge of grammatical rules and of both knowledge 
and performance in terms of production systems. 

Grammars. Reisner (1981, 1984) and Payne and Green (1986) used 
grammars to make explicit the knowledge a user must have in order to 
translate from goals to actions in a particular system. Grammatical rules are 
similar in spirit (though not form) to the goal decomposition and methods in 
GOMS. They are more a model of knowledge content (competence) than of 
a full system that can "runn to produce user performance (Green, Schiele, & 
Payne, 1988). In the spirit of cognitive engineering, however, these repre- 
sentations do provide a countable entity: the number of d e s .  And, in Payne 
and Green's (1986) Task-Action Grammar (TAG), there is an explicit aspect 
of the content that predicts learning: the relationship between the features 
encoded in the rules and the natural world associations of the user. 

To illustrate what the elements of a grammar look like, we use the TAG 
notation for a small segment of a full grammar. TAG consists of commands, 
features of the goal (e.g., the direction of movement in which you want to 
move a cursor in text, like forward or backward), a "dictionary of tasks" 
(which shows the full set of actions covered and helps analysts count the 
coverage of each rule), and rules that translate goals into actions. Figure 8 
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Figun 8. A portion of a task-action grammar for EMACS, for moving a cursor 
around text (adapted from Green, Schiele, & Payne, 1988). 

Commands: 
God 

Move cursor one character forward 
Move cursor one character backward 
Move cursor one word forward 
Move cursor one word backward 

Action 
cntl-C 
meta-C 
cntl-W 
meta-W 

Features, possible values: 
Direction forward, backward 
Unit character, word 

R u b  
Task[Direction,Unit] 
Symbol[forward] 
Symbol[backward] 
Letter[word] 
Letter(character1 

illustrates the commands, the features, and the rules that map a small set of 
goals of moving a cursor around text to the word processor EMACS. The small 
set of rules here says that if the task is to move in a direction a particular unit 
of jump, you should type a symbol for direction, where forward is <cntl > 
and backward is <meta>, and follow it with a typed letter for the unit, 
where a unit the size of a word is Wand the size of a character is C. This 
illustrates the form of the rules, their size, and an example of a good 
real-world mapping in that the letter used for units the size of a character and 
word are their own first letters. 

Production System. Kieras and Polson (Bovair, Kieras, & Polson, 1990; 
Kieras, 1988; Kieras & Bovair, 1986; Kieras & Polson, 1985; Polson & 
Kieras, 1985; Polson et al., 1986) have used production systems to represent 
the GOMS structure of task knowledge and significant aspects of the MHP 
(significantly, the goal stack and a WM for storing parameters). This 
substantially improves the original GOMS theory, because it, like the 
grammars, makes the underlying knowledge much more explicit. Further, 
although the production system may be difficult to write (Kieras, 1988), once 
it is specified, one can run the program to check it for completeness and 
accuracy. And, once programmed, one can quantify a number of features of 
the knowledge and processing to predict both errors and learning time 
behavior. 

To illustrate what a production system formalism of GOMS looks like, 
Figure 9 presents a section of the production system for writing a database 
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Figure 9. Five rules written in prwhtion system formidism. These rules help 
guide the behavior of a user in deciding to write a crucial join statement in a 
database query in the popular language, SQL. 

Rule 1: 
IF 

THEN 

Rule 2: 
IF 

THEN 

Rule 3: 
IF 

THEN 

Rule 4: 
IF 

THEN 

Rule 5: 
IF 

THEN 

(Startup. SeeIfJoinNeeded 
((GOAL SeeIfJoinNeeded) 
(NOT(N0TE SeeingIfJoinNeeded TRUE)) 
((Add NOTE SeeingIfJoinNeeded TRUE) 
(Add STEP CountTables))) 
(CountTables 
((GOAL SeeIfJoinNeeded) 
(STEP CountTables)) 
((DoTask Count NumbeiQfTables *NumberOfTables) 
(Add NOTE Number Offables 'NumberOffables) 
(Delete STEP CountTables) 
(Add STEP AddJoinNote))) 
(IfNumberOfT ables = 2ThenAddNOTEJoinAndCleanup 
((GOAL SeeIfJoinNeeded) 
(STEP AddJoinNote) 
(NOTE Numberoff able8 2)) 
((Add NOTE JoinNeeded TRUE) 
(Delete STEP AddJoinNote) 
(Delete NOTE NumberOfTables ?NumberOfTables) 
(Add STEP Cleanup))) 
(IfNumberOffablesNot = 2, Thencleanup 
((GOAL SeeIfJoinNeeded) 
(STEP AddJoinNote) 
(NOTE NwnberOff ables 1)) 
((Delete STEP AddJoinNote) 
(Delete NOTE NumberOfI'ables ?NumberOfTables) 
(Add STEP Cleanup))) 
(Cleanup. SeeIfJoinNeeded 
((GOAL SeeIfJoinNeeded) 
(STEP Cleanup)) 
((Delete NOTE SeeingIfJoinNeeded TRUE) 
(Delete STEP Cleanup) 
(Add NOTE SawEfJoinNeeded TRUE))) 

query in SQL, a popular language that has become the de facto standard in 
the industry (Smelter, 1989). In this illustration are five IF-THEN rules that 
guide a user in deciding if in an SQL query a closing special statement (called 
a "join statement") is needed. It is needed if the user has asked for data that 
reside in two or more tables. The join statement tells the system how to link 
the data elements in the two tables. In Figure 9, the first rule sets up the goal, 
leaving a NOTE and a STEP in WM. The second rule performs the act of 
counting the number of tables used, stores that value in WM, deletes the goal 
of counting tables, and adds the STEP to add a note to the WM about 
needing the join statement. Each IF part of each rule checks for a match to the 
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current goal (e. g., "GOAL SeeIfJoinNeeded" in the first rule) and the current 
notes in WM (e. g., "NOTE Numberoff ables 2" in the third rule). If there is 
a match, it executes other processes and adds and deletes notes and steps. This 
example illustrates the form and size of the productions and the putting and 
taking things off WM, both used in the discussions of learning and errors. 

3.1. Learning and Transfer 

Time to Learn 

A significant shortcoming of the original GOMS framework was its 
restriction to skilled performance. A significant advance on this front is the 
work of Kieras and Polson focusing on both the time to learn new procedures 
and the transfer of training between procedures having various relationships 
to each other. For them, the explicit modeling of GOMS through production 
systems is the key. Kieras and Polson developed an extension of GOMS they 
called Cognitive Complexity Theory (see Polson, 1987, 1988). This theory 
provides a basis for making quantitative predictions about the time to learn 
each new piece of a task and the amount of transfer that could be expected in 
learning one new system or task after another. 

Kieras and Polson first determined the number of steps in a procedure by 
counting the steps as encoded in a specialized language called NGOMSL. NGOMSL 

is the higher level programming language developed by Kieras (1988) to make 
the job of programming production system representations much easier. 
They then assessed the time it takes a person to learn the procedures. They 
studied learning under highly restrictive and controlled conditions, necessary 
in order to make the variance in learning times of a magnitude where one had 
some confidence in the quantitative estimates. They found that the time to 
learn each step took 30 s, assuming a start-up or learning context time of 30 
to 60 min. 

This is much longer than the time estimated by Newell and Simon (1972), 
who calculated that learning each "chunk" of information took 5 to 10 s. The 
learning they referred to, however, is equivalent to learning a nonsense 
syllable, whereas for Kieras and Polson the learning was of steps in 
procedural knowledge, both the conditions under which it is appropriate and 
the actions associated with it. Ziegler, Vossen, and Hoppe (1986) report a 
17 s per production system step when the learning situation has some 
explanation associated with each piece to be learned. And Card (personal 
communication, January, 1989) reported 20 s per production learning time. 

These estimates vary. The authors themselves, however, claim that the 
variation has to do with the conditions under which the user is learning-for 
example, whether there is explanation associated with the steps being learned 
or whether opportunities for transfer are pointed out. And, of course, 
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learners do not acquire knowledge about new systems under the carefully 
controlled, artificial circumstances of Kieras and Polson's research. Thus, it is 
much harder to know how to quantify learning times in more naturalistic 
situations. 

What we find more promising, however, is that the values are the same 
order of magnitude over widely different situations and laboratories. Though 
nuances of training time per production will be interesting and research on 
this topic is to be encouraged, for our purposes here, the current "best guess" 
parameter is about 25 s per production. 

TAG (Payne & Green, 1986), because they also represent concrete aspects 
of the knowledge users must have to perform a task, similarly provides a basis 
from which to predict learning. Early rationales for using grammar repre- 
sentations were based on the argument that the number of rules determined 
the ease of learning, in that the more often a rule can be used, the more 
consistent a system is. Payne and Green (1989) argued that the number of 
rules is less critical than whether the features of those rules follow real-world 
features encoded in the user's memory already. Their empirical work 
demonstrated just this. A system described by 28 rules that had features 
described by well-known categories, one feature into one action, was learned 
nearly three times faster than one with 12 rules, but with complicated 
descriptions of the features of the situation to be attended. Although Payne 
and Green could have quantified learning time per rule, they did not because 
their argument made the content of the rules, not their number, the critical 
determinant of learning. 

Transfer of Training From One System to the Other 

Another, perhaps more generalizable aspect of Kieras and Polson's research 
has been the analysis of transfer between systems or components of systems. 
Their production system models make explicit exactly what it is that a person 
has to learn in acquiring knowledge of a new system. If productions are the 
units of learning, then a reasonable hypothesis is that the number of 
productions the two systems share provides a good metric for predictions of 
the amount of transfer. In other words, this analysis allows one to specify the 
exact effects of design consistency across systems. 

In a series of studies, Kieras and Polson (Bovair et al., 1990; Kieras, 1988; 
Kieras & Bovair, 1986; Kieras & Polson, 1985; Polson & Kieras, 1985; Polson 
et al., 1986) have shown the predictive power of this approach. In a typical 
study, subjects learned to do various specific procedures on a computer 
system, and the time to master a new procedure was predicted to be a function 
of the number of new productions that would need to be learned. Because the 
procedures shared varying numbers of productions, there ought to be varying 
amounts of transfer or savings in learning as subjects learned a series of 
procedures. Figure 10 shows the results from a typical study. Here, subjects 
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Figure 10. The fit of predictions of learning time to the number of new rules that 
have to be learned (from Polson, 1988). 

. 

learned simple utility procedures for a floppy-disk-based microcomputer 
system, such as duplicating a diskette or printing a document stored on a 
diskette. Predicted values were based on the number of new productions to be 
learned, and observed values were based on learning the procedure to a 
criterion of learning under strict control. 

These results are typical of a wide range of studies that have reviewed the 
learning of simple procedures. For example, Singley and Anderson (1988) 
found strong support for what is called the "identical elements model of 
transfer based on a production system representation of cognitive skilln (p. 
223) in their study of transfer of text editors, both similar and dissimilar. This 
body of data shows the predictive power of the production system implemen- 
tation of the GOMS model for characterizing transfer between procedures. In 
particular, it makes explicit and quantifiable the advantages of consistency in 
design. 

Although these transfer results were obtained under the same kind of 
learning conditions as in the studies of learning time, there is less concern for 
their artificiality here. First, because there was a great deal of transfer, people 
were performing well; they did not often experience the somewhat harsh 
error-correction method. Second, in using these methods for doing compar- 
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ative analyses of different systems, what one most cares about is the relative 
transfer among system components. Because production system models can 
be built for systems still under design, it is possible to assess the relative costs 
of differing degrees of consistency among procedures. 

Like production systems, TAG has the potential of aiding the design 
process by assessing the amount of transfer expected from one system to 
another, aiding, for example, the consistency in a "family of products." 
Although the metric of counting the number of rules the two systems have in 
common is possible (and mentioned in Green et al., 1988), there has been no 
empirical verification to date. 

3.2. The Analysis of Errors: Forgetting From Working Memory 

Card et al. (1983) recognized that one of the causes of errors could be 
overload of WM or the goal stack. They tracked (see Card et al., 1983, Figure 
1 1.12) the contents of WM during the performance of a task. As mentioned 
earlier, Kieras and Polson's formalism allows one to keep track explicitly of 
both the contents and the resident duration of each piece of information in 
WM. They stated that they expect errors to increase as soon as more than five 
items are held in WM (Kieras, 1988). However, neither they nor Card et al. 
empirically tested the prediction that the more items in WM, the greater the 
likelihood of errors. 

Two researchers, however, recently tested these predictions in laboratory 
studies. The first of these, Lerch (Lerch, 1988; Lerch, Mantei, & Olson, 
1989), developed a GOMS representation of skilled users writing out 
formulas in Lotus 1-2-3 (e.g., D23-D38), and in Interactive Financial 
Planning System (IFPS; e. g., PROFIT = REVENUES - COSTS). These two pieces 
of software differ in whether the user has to find and remember the 
coordinates of the cells in the formula (e.g., D23) or can refer to them by 
name, with adjectives such as preuious to indicate relative location. 

These two systems require various levels of WM load for different types of 
standard formulas commonly entered on the job. For example, any formula 
that requires temporary storage of values from different rows and columns 
puts a much greater load on WM in the Lotus representation than it does on 
IFPS representation. Figure 11 shows the WM load for the two systems in 
successive units of time, determined from the GOMS notation. 

The results show that WM load for the two different interface styles and 
different kinds of formulas (those that are simple, single-column formulas 
and those that require cells from different columns and different rows) predict 
the occurrence of errors well. The higher the WM load, the more errors. For 
example, for formulas with cells in different rows and columns (the most 



Figure 11. Working memory load during the specification of various formulas that refer to cells in the same row or column 
or different rows and columns in two different languages: a language that requires the user to specify cells by coordinate 
values (e.g., B22) and one that refers to cells by name, with location specified relative to the current cell (e.g., Previous 
Sales). 
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complicated), the number of items that passed through WM for Lotus was 19' 
and for IFPS was 14. People writing in Lotus made errors on 14% of the 
formulas of this type, whereas people writing in IFPS made errors on only 6% 
of the formulas. Extrapolation of this relation suggests that when there are 
fewer than eight items in WM, errors would be eliminated. 

Similarly, Smelcer (1989) examined the errors that users make while 
querying databases using SQL. In making queries, many people forget to put 
in an additional, necessary statement when information from two or more 
separate tables is used. This omission turns out to be a serious error, because 
unlike syntax errors that are caught by the system and corrected by the user, 
these "join errors" are syntactically correct and often return information that 
may be misleading. The difficult aspect of writing such a query is that the join 
statement is to be written last. The user has to remember to write it. Often 
there are steps in between that also require use of WM, making the likelihood 
of forgetting the crucial last step higher. 

Smelcer calculated the WM load for different kinds of queries, those that 
have several steps in the middle of the query and those that have none. For 
example, a query that asks only for the names of all the employees of a 
company and their departments uses information from two tables and 
requires a join statement, but has no intervening "restriction" statements. On 
the other hand, a query that asks for the names of the employees who live in 
New Jersey and make over $40,000 a year has two statements between the 
initial part of the query and the final join statement. 

Smelcer found a direct relationship between the number of intervening 
restriction statements (each of which requires many items to be stored in WM 
if calculated from the production system modeI) and the likelihood of people 
forgetting the last, crucial join statement. With no restrictions, people made 
1.7 % errors (20 out of 1200 opportunities); with two restrictions intervening 
before the join statement, they made 4.2% errors (50 out of 1200). The 
greater the WM load, the greater the number of omission errors. 

In neither of these analyses do we know if the critical variable is the peak 
load in WM (in which we assume things are "bumped out") or the length of 
stay of each of the items (where we assume that information decays with 
time). Calculating exactly how heavy the load in WM has to be before items 
are forgotten is difficult to assess. It is likely that people adopt strategies in 
which they do not attempt to hold too much in WM, using clues from the 
external environment to remind them of things needed in the task instead. 

There are, of course, many causes of errors other than WM overload. The 
analyses just described only open the door on the treatment of errors within 

This value is derived from the number of items in WM (notes and steps, not goals), summed 
over the number of time steps that items were held in WM. 
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the GOMS framework, but the work described offers a significant beginning 
toward addressing one of the major shortcomings of the GOMS models. 

3.3. Parallel Processes 

Although the MHP assumes that processes can go on in parallel, for 
simplicity in engineering calculations, most work carried out in the GOMS 
framework assumes that the elementary processes captured in the models are 
serial. This simplifies the quantitative modeling, because total task time is 
assumed to be the sum of the times of a number of subcomponents. Further, 
it is consistent with a long tradition of cognitive modeling that assumes that 
much cognitive activity, at any rate, is fundamentally serial in nature (e.g., 
Newel1 & Simon, 1972). However, even Card et al. (1983) acknowledged that 
there are important cases where key components of performance may operate 
in parallel. Certainly tasks where perceptual or motor activities dominate, 
such as expert transcription typing, are likely to be best characterized by 
processes operating in parallel. The expert typist is reading input, translating 
it into motor output, and executing actions that type characters, all at a speed 
that demands an account in terms of parallel cognitive activities. 

Card et al. (1983, Figure 5.10) illustrated the family character of GOMS by 
presenting a number of specific models of text editing that vary in grain of 
analysis. At the coarsest level, the model characterizes performance in terms 
of unit tasks; at their finest, the model accounts for individual keystrokes as 
a user interacts with the system via the keyboard. Such factors as the specific 
task, the level of expertise of the user, and the details of system operation 
could introduce parallelism at any level in such a hierarchy of models. The 
analyst might adopt the strategy of choosing the largest grain size at which 
there is no parallelism, if it were deemed important to keep the analytic 
advantages of working with serial models. Alternatively, methods such as 
those we are about to describe could be used to model performance at a grain 
size that includes substantial parallelism. Whether the behavior should be 
modeled by a serial or by a parallel model, however, is in large part 
determined by the grain size of the behavior selected by the analyst. 

An analysis of a typical situation involving a user and a computer reveals 
numerous opportunities for parallel or cascading processes. 

1. The user is bombarded with a set of external signals that sometimes 
occur in parallel. For example, keypresses are "echoed" on the screen 
while beeps alert the user of inappropriate action. 

2. Mental events perhaps occur in parallel, sending cascaded information 
from one to the next. For example, plans of action might be retrieved 
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for the next task while instructions about the immediately preceding task 
are executed. 

3. External actions are elicited in parallel. For example, keys are pressed 
while eyes seek confirmation or new information to guide the next 
actions. 

Rapid typing dearly requires a parallel model. For instance, those key- 
strokes that occur after one on the opposite hand are faster than if the same 
finger hits the key twice. This is probably because motions cascade; that is, 
one can be executing while another is begun. It is clear that the models have 
to incorporate notions of parallel processes. 

This phenomenon appears in more than just use of a keyboard. Practical 
experience tells us that, at certain levels of analysis, skilled human-computer 
interaction is made up primarily of cascading internal processes. For exam- 
ple, in certain routine computer-supported tasks, such as imprinting bank 
checks with the amount (which is handwritten on the check) so that the whole 
check can be machine processed, the derk is simply reading the handwritten 
amount from the check and keying in that same amount. How fast can the 
clerk key? 

The keystroke model seriously overestimates the times: 

A saccade takes 230 msec; recognition takes 314 msec. 

Each numeral keystroke takes a minimum of 80 msec (for key entry 
times approaching 135 wpm), and typically there are four to five of 
them, plus an Enter key, which advances the display to the next check 
to be read, at an estimate of 1.35 s for retrieval (or less) and a 280 msec 
for entry. 

This adds up to over 2 s per item. Real clerks are reported to complete them 
at less than .5 s each (J. 0. Kerns, personal communication, February, 1989). 
Clearly, some of the processes are overlapping. Interestingly, the keying 
system just described allows the clerk to set a value that automatically displays 
the next item after a f ~ e d  number of keystrokes of the current item have been 
entered. Some of the best clerks are so fast that they set the system to display 
the next item while they are keying in the third numeral (out of five or six) of 
the previous item. They finish the keying of the last two numerals while they 
are looking at the next handwritten amount on the screen. 

Furthermore, in this same situation, clerks accurately recognize that they 
have made a keying error after entering the whole next item. That is, the 
process that recognizes the miskeying finishes after the whole next item has 
been entered. Clerks have been known to correct check entries two checks 
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back, never reaccessing the one just entered. Clearly, cascading of processes 
is occurring. 

In our own experience, we recognize this same phenomenon when trying to 
apply the cognitive engineering model to menu design. Our observations 
show that when people know the menu item's name and location, visual search 
(for confirmation and guidance) and motor movement take place simulta- 
neously. When users know the word they are looking for in a menu but not 
its location, the search is slower, and the motor movement seems to glide 
along with the visual scan. When the user knows neither the precise name nor 
the location, the time to find the item is fully dependent on reading time. The 
movement traces the eyes' reading time; as soon as the item is recognized, the 
cursor is at the right location. 

For the expert user, then, the limiting or predicting time is fully dependent 
on the motor movement speed; for the novice, it is dependent on the reading 
speed. Predicting the actual performance time requires knowledge about what 
processes are occurring in parallel (or cascading or altered as they work in 
concert), which processes depend on each other (which must complete their 
processing before the next can begin), and which of them has a speed that is 
the limiting factor in the task at hand. 

3.4. Critical Path Analysis: An Approach to Parallel Processing 

Schweikert (1978, 1980) first proposed an analysis of nonserial processes in 
timed cognitive tasks using critical path analysis. He offered a very general set 
of procedures for constructing the graph of task components from the 
patterns of reaction times across experimental conditions. Recently, John 
(1988) also used concepts from critical path analysis to analyze tasks in the 
domain of human-computer interaction. Critical path analysis is a tool from 
operations engineering that provides a useful framework for the modeling of 
cascading mental and external processes. 

John (1988) focused on the task of continuous typing. She wrote: 

The parallel operation and sequential dependencies of the three proces- 
sors make the processes of typing difficult to analyze and talk about. 
Fortunately, there is an analysis technique, borrowed from engineering 
project management that allows easy analysis of parallel resources (the 
three processors [perceptual, cognitive and motor]) working with se- 
quential dependencies (outlined by the typing-specific assumptions). 
The technique is called critical path analysis. (italics added, p. 49) 

Critical path analysis allows analysts to specify the component processes, 
their duration, and the dependencies among them. A program for this 
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analysis will calculate the path through this network that determines how long 
the total process can take. The program recognizes that some processes that 
occur simultaneously with others and take less time never enter into the 
calculation of the total duration of the task. 

John's example analyses show how typing times can be calculated across 
situations in which the typist types words or random letters, with various 
numbers of letters displayed on the screen. Figure 12 depicts two examples of 
the processes involved. The top row of activity represents the perceptual 
processor (which is looking ahead at letters to type), the middle row is of the 
cognitive process (which is retrieving the individual letters of words read), and 
the bottom row is of the motor processor (which is enacting keypresses from 
either the same or different hands). The lines that connect the individual acts 
show the processes that theoretically must be completed before the next can 
start. For example, the motor processar cannot type a letter until it is 
retrieved, and keys on the same hand cannot be initiated until the cognitive 
processor intervenes. 

In Figure 12, we compare the critical path for world-class and regular 
typists (who have motor times of 30 msec and 200 msec, respectively) in the 
top and bottom halves of the picture. After specifying the parameters for 
perceptual and cognitive processing (which are the same for both levels of 
skill) and calculating the critical path through the network, we find that the 
world-class typist is limited by the speed of the cognitive processor, whereas 
the regular typist is limited by the motor speed. 

Critical path analysis is the kind of modeling tool that will help us in 
predicting times that seem to have parallel components. For example, it could 
help us predict the total time it takes a user to select an item from a menu if 
the user variously does or does not know the name of the item or where it is 
located. Figure 13 shows what this analysis looks like with the expert at the 
top, the person who knows the name but not the location in the middle, and 
the person who knows neither name nor location on the bottom. Simple serial 
GOMS modeling will not do. For these fast, simple tasks, some representa- 
tion of the explicit dependencies of parallel processes as well as their 
component times is necessary. 

In the past, we have been able to verify from observation the moment- 
by-moment fit of the components and their associated times. With critical 
path analysis, it is much harder to identify which aspects of one's assumptions 
about times and dependencies are right and which are wrong. Although 
Schweikert (1978, 1980) made some of the problem of discovery of processes 
and their interaction tractable, the modeling and confirmation process is still 
difficult. We will have to be very clever in our comparisons of performance 
across task demands or users' knowledge to make the inferences necessary to 
confirm or disconfirm the model and its parameters. However, doing the 
engineering predictions (of total time for the task) may have sufficient 



Figure 12. Critical path analysis for two typists. The top one represents the typing speed of a world-class 
mseclkeystroke); the bottom one represents that of an average skilled typist (170 rnseclkeystroke). 
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Figun 13. Critical path analysis for people who know the name and/or the 
location of items on the menu. 
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accuracy for design questions; what is difficult is the test of the underlying 
psychological model. 

4. THE PLACE OF COGNITIVE MODELING IN 
HUMAN-COMPUTER INTEMCTXON 

We have looked at examples of how cognitive modeling has been extended 
to cover learning and transfer, errors, and parallelism. In this section, we 
examine two issues: (a) the other kinds of useful extensions that could be 
made to give the framework even more scope; and (b) where, in the larger 
scheme of things pertaining to the study of human-computer interaction, 
even an extended and confirmed cognitive modeling framework would stand. 
These comments separate into those areas in which the framework might 
stand, but the kinds of information we need from cognitive theory does not 
yet exist to inform this extension. And there are questions about human- 
computer interaction that appear to require a wholly different kind of 
modeling. These assessments are categorized in Figure 14 and discussed next. 

4.1. Additional Plausible and Useful Extensions 

In this section, we follow the list of shortcomings reviewed in Section 1 of 
this article. The first category includes the areas that we feel could be 



Figure 14. Summary of those issues addressed by new work on W M S ,  those addressed by extensions to models in the GOMS 
tradition, and those judged not easily accommodated in GOMS because either there is not enough known in cognitive theory 
to inform the effort, or the level of analysis represented in GOMS is inappropriate for such questions. 
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addressed within the original framework and its extensions but that have not 
yet been fully explored. 

Nonskilled or Casual Users 

Engineering models apply best to those situations that have skilled users of 
a particular system. Many such situations exist in industry, where clerks enter 
and change entries all day long. And not all of this work is simple data entry; 
with more advanced capabilities of systems at a price that makes them more 
widely available, people who do routine problem solving (e.g,, debugging or 
error rectification) need systems with easy to use interfaces for rapid 
processing. 

But many others of us are not skilled users of any particular system; we 
use a variety of systems to do our work, and we know some parts of each 
system better than others. Thus, some of the time in our interactions we are 
not simply retrieving and acting out plans. We retrieve the command 
appropriate to another system or inferred from its style; we often make errors 
of commission and figure out what must be done next given where we are 
now. We move smoothly from cognitive s k i  to problem solving and back. 
How people do this is of immense theoretical interest to cognitive psycholo- 
gists. The article by Polson and Lewis (1990) is a step in this direction. 

A second active research program that is relevant to this topic of casual user 
performance is the SOAR project (Laird, Newell, & Rosenbloom, 1987). 
SOAR is a running, growing model of the architecture of cognition. In style 
similar to that of cognitive engineering, SOAR could provide the detail 
necessary to answer the questions about how long it takes to recognize an 
impasse in skill, how long it takes to set up a new goal, how quickly similar 
productions are retrieved and analyzed, and how many steps are executed 
before a solution is found. All these parameters could likely be predicted in 
the SOAR framework (provided with a good task analysis) for situations in 
which a user is faced with learning a new system after knowing one that shares 
some relevant features. 

Learning 

One of the biggest, longest lasting issues in psychology is learning. People 
generate explanations of how a system works by watching the system respond 
to their inputs. We learn by asking and learn by watching. We need to know 
how that works; how productions grow and are integrated into methods; and 
what the psychological realities of methods, as opposed to chunked sequences, 
are. 

Although we know that consistency in a system may make that system 
easier to learn (fewer productions to learn) and easier to operate (well-known 
productions can be used over and over again), we do not know much more 
than that. We know from the work of Kieras and Polson that a system that 
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shares productions with a system already known will be easier, but we do not 
know exactly how to design to that prescription. We do not know which 
system to base a new one on. Suppose the first system is internally 
inconsistent. We do not know if we would benefit more from reusing the old, 
inconsistent, confusable productions or from spending the time and effort to 
learn the new, consistent productions. Some phenomena from verbal learning 
literature seem applicable here, but as several researchers have found, not all 
phenomena from paired-associate learning apply (e.g., Singley & Anderson, 
1988). 

Errors and Mental Workload 

Even in skilled performance with computers, we still make errors. As 
discussed earlier, some of these errors arise from an interface design that 
requires too much to be held in a limited-capacity WM. Users come to learn 
that such errors can be caught. They monitor their performance more closely 
by both checking concurrently for errors and breaking at the end of a task to 
assess whether errors have been committed. They also change their methods 
to include such things as writing down the address of a critical cell in a 
spreadsheet or printing out a document so that it can be scanned quickly for 
a target word in the area in which they want to work next. Understanding how 
people monitor their own behavior for errors and how they adapt their 
methods is critical to the full understanding of performance on the kinds of 
tasks for which analytic modeling was designed. And, as we have seen, 
analytic models can provide an explicit account of aspects of mental workload 
during tasks in terms of activity through the WM. Additional aspects of 
workload having to do with the use of the cognitive processor and the work 
involved in retrieval of procedures and facts could follow. 

Cognitive Processes 

Of those aspects of skilled performance in human-computer interaction 
that are underspecified in the models to date, interpretation of visual displays 
may be the most important. We know that Gestalt principles will drive some 
of the user's interpretation of what is on the screen, but we do not know much 
about how meaning is imparted on the whole display. We need to know this 
not only to determine how to display information for the slow, deliberate 
problem-solving processes involved in high-level decision making, but also for 
the fast, repetitive operational tasks such as those in keying handwritten 
characters in checks. Recent work by Tullis (1983, 1988) and Mackinlay 
(1986) made significant inroads in this area, but more work is called for, both 
in the application of what we know and in the discovery of basic facts about 
how people interpret what they see. 
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Parallel Processes 

Concurrent or cascading processes seem to occur in rapid, skilled perfor- 
mance. We noted that clerks imprinting checks with machine-readable 
numerals could detect that they had made an error two checks past. This 
phenomenon indicates not only the existence of concurrent perception and 
motor movement but also that there may be some process that actively checks 
the accuracy of the behavior soon after that behavior has occurred. This is a 
natural case of simultaneous tasks. We need to know how this works and how 
many processes such as this background monitoring exist. 

John's (1988) adoption of the critical path method of modeling concurrent, 
dependent processes requires us to characterize in great detail our assump- 
tions of processes involved and their dependencies in these kinds of tasks. The 
literature in cognitive psychology provides even less guidance on these 
dependencies than it does in finding appropriate parameters. To illustrate the 
detail needed, John's modeling of the continuous typing task makes strong 
assumptions about which kinds of processes depend on the completion of 
other processes. For example, she stated that: 

The perceptual processor cannot perceive the next piece of information 
unless there is room in working memory for that information. . . . A 
character on the same hand cannot be initiated with a cognitive operator 
until the motor processor execution of the previous character is 
complete. (p. 47) 

Though such simplifying assumptions may achieve success in some do- 
mains and at some levels of analysis, it is important to recognize that the 
existing psychological literature does not support such strong assumptions. 
Finding the kinds of links that do exist among processes is critical to this kind 
of modeling success. 

Individual Differences 

Card et al.'s (1983) original clocking of different motor operators of people 
with different skill levels and John's (1988) work on various levels of ski in 
typing exemplify how we might explore the implications of individual 
differences in human-computer interaction. Though these differences in 
motor operators clearly have an effect on predicting the total time that a task 
will take, there are likely large differences in perceptual and cognitive 
operations that similarly have large effects. People clearly differ in rate of 
learning, speed of retrieval, and reasoning or strategy formation. Egan (1988) 
reviewed a variety of ways in which individuals differ in their use of 
computers. This work and the more detailed parametric work in Gomez, 
Egan, Wheeler, Sharma, and Gruchacz (1983) and Gornez, Egan, and 
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Bowers (1986) could guide the further exploration of the effect of differences 
in the rate and form of cognitive processing on predictions of time and errors 
in the spirit of GOMS modeling. 

4.2. Cognitive Modeling in Human-Computer Interaction 

In the broader picture of providing tools for designers of human-computer 
interfaces, several important aspects of human-computer interaction do not 
seem to lend themselves to the approach described here. First, this approach 
does not capture the impact of fatigue on the times and errors associated with 
performance. Our models never tire; people do. Some extensions from 
research on the effect of time and mental workload may be relevant here, but 
the interplay of stress from the task itself from the physical environment (e.g., 
chairs and lighting) and the higher level aspects of one's job (e.g., work 
supervision, control over pacing, incentive and rewards, etc.) are beyond the 
scope of cognitive engineering as we see it. Some of this arises because of the 
little we know about the causes of fatigue on mental processing, and some 
arises from the possibility that when we do know, the GOMS-like modeling 
framework includes the wrong set of constructs. 

Second, we do not see a possible extension of these models that would 
include assessment of people's perception of the acceptability of an interface. 
People's judgments of ease of use are not always in concordance with their 
actual productivity (e.g., Davis, Bagozzi, & Warshaw, 1989). Perceptions of 
whether the software's functionality is actually what the user needs and the 
ease with which the system can be learned all contribute to the acceptance of 
a piece of software and its eventual regular use. These do not appear to fit the 
style of analytic modeling, because they refer to an entirely different level of 
granularity of behavior and a different set of relevant features. 

Perhaps the most important step in building a successful piece of software 
may be the analysis of the functions it will perform, in what order it will allow 
the user to do them, and how they fit into the larger picture of work and 
organizational roles. This point is made strongly under the rubric of "situated 
cognition," the understanding of work, its task and setting, and the eventual 
design of computers to support it (see Suchman, 1987). The topic of 
discovering useful functions has been explored in the management literature 
(e.g., Sasso, Olson, & Merten, 1987) and in the literature on traditional 
human factors (e.g., Sheridan, 1988), based on a broad analysis of what 
people do best and what computers do best. These approaches, however, do 
not yet converge at a level specific enough to be useful to a system designer. 
And the assessment of how computers change work and organizational life is 
as yet still at the descriptive, not theoretical, level (e.g., Markus, 1984). A 
kind of modeling different from that provided by the analytic models 
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described in this article appears to be required to answer these kinds of 
important questions. 

Despite these limitations, large classes of applications can be characterized 
in just the way that GOMS and its successors require. Every day thousands 
of people carry out computer-based interactions that are highly repetitive and 
stylized. Airline reservations, telephone directory assistance, troubleshooting 
of discrepancies in forms such as bank deposits all are examples of tasks in 
which cognitive modeling can play an important role in the design of 
learnable and usable systems. In these kinds of tasks, the approach is very 
powerful. Because we now have reasonably useful quantitative estimates of a 
number of task components, predictions about performance can be made for 
designs without our having to build prototype systems and run extensive, 
time-consuming user tests. User tests can, of course, reveal other things such 
as errors, problem solving, and initial learning and representation difficulties; 
however, cognitive models can screen out certain classes of poor designs for 
these kinds of tasks. 
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