

http://esaunggul.ac.id 0 / 16

MODUL SITEM INFORMASI MANAGEMEN
(MAN 611)

MODUL PERTEMUAN 13
Software Process

DISUSUN OLEH
Dr. Fransiskus Adikara, S.Kom, MMSI

UNIVERSITAS ESA UNGGUL
2019

http://esaunggul.ac.id 1 / 16

E-COMMERCE: DIGITAL MARKETS, DIGITAL GOODS

1. Kemampuan Akhir Yang Diharapkan

The objective of this chapter is to introduce you to the idea of a software process—a
coherent set of activities for software production. When you have read this chapter you
will:

1. I understand the concepts of software processes and software process models;
2. I have been introduced to three generic software process models and when they

might be used;
3. I know about the fundamental process activities of software requirements

engineering, software development, testing, and evolution;
4. I understand why processes should be organized to cope with changes in the

software requirements and design;
5. I understand how the Rational Unified Process integrates good software

engineering practice to create adaptable software processes.

2. Uraian dan Contoh

A software process is a set of related activities that leads to the production of a soft-
ware product. These activities may involve the development of software from scratch
in a standard programming language like Java or C. However, business applications
are not necessarily developed in this way. New business software is now often devel-
oped by extending and modifying existing systems or by configuring and integrating
off-the-shelf software or system components.

There are many different software processes but all must include four activities that
are fundamental to software engineering:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software design and implementation The software to meet the specification
must be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer needs.

In some form, these activities are part of all software processes. In practice, of

course, they are complex activities in themselves and include sub-activities such as
requirements validation, architectural design, unit testing, etc. There are also support-
ing process activities such as documentation and software configuration management.

When we describe and discuss processes, we usually talk about the activities in these
processes such as specifying a data model, designing a user interface, etc., and the

http://esaunggul.ac.id 2 / 16

ordering of these activities. However, as well as activities, process descriptions may
also include:

1. Products, which are the outcomes of a process activity. For example, the out-
come of the activity of architectural design may be a model of the software
architecture.

2. Roles, which reflect the responsibilities of the people involved in the process.
Examples of roles are project manager, configuration manager, programmer, etc.

3. Pre- and post-conditions, which are statements that are true before and after
a process activity has been enacted or a product produced. For example, before
architectural design begins, a pre-condition may be that all requirements have
been approved by the customer; after this activity is finished, a post-condition
might be that the UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes, rely
on people making decisions and judgments. There is no ideal process and most
organizations have developed their own software development processes. Processes
have evolved to take advantage of the capabilities of the people in an organization and
the specific characteristics of the systems that are being developed. For some
systems, such as critical systems, a very structured development process is required.
For business systems, with rapidly changing requirements, a less formal, flexible
process is likely to be more effective.

Sometimes, software processes are categorized as either plan-driven or agile
processes. Plan-driven processes are processes where all of the process activities are
planned in advance and progress is measured against this plan. In agile processes,
which I discuss in Chapter 3, planning is incremental and it is easier to change the
process to reflect changing customer requirements. As Boehm and Turner (2003)
discuss, each approach is suitable for different types of software. Generally, you need
to find a balance between plan-driven and agile processes.

Although there is no ‘ideal’ software process, there is scope for improving the software
process in many organizations. Processes may include outdated techniques or may
not take advantage of the best practice in industrial software engineering. Indeed,
many organizations still do not take advantage of software engineering methods in
their software development.

Software processes can be improved by process standardization where the diver- sity
in software processes across an organization is reduced. This leads to improved
communication and a reduction in training time, and makes automated process sup-
port more economical. Standardization is also an important first step in introducing new
software engineering methods and techniques and good software engineering
practice. I discuss software process improvement in more detail in Chapter 14.

2.1. Software process models

http://esaunggul.ac.id 3 / 16

As I explained in Chapter 1, a software process model is a simplified representation of
a software process. Each process model represents a process from a particular per-
spective, and thus provides only partial information about that process. For example,
a process activity model shows the activities and their sequence but may not show the
roles of the people involved in these activities. In this section, I introduce a num- ber
of very general process models (sometimes called ‘process paradigms’) and present
these from an architectural perspective. That is, we see the framework of the process
but not the details of specific activities.

These generic models are not definitive descriptions of software processes. Rather,
they are abstractions of the process that can be used to explain different approaches
to software development. You can think of them as process frameworks that may be
extended and adapted to create more specific software engineering processes.

The process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design,
implemen- tation, testing, and so on.

2. Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of
versions (increments), with each version adding functionality to the previous
version.

3. Reuse-oriented software engineering This approach is based on the existence
of a significant number of reusable components. The system development
process focuses on integrating these components into a system rather than
developing them from scratch.

These models are not mutually exclusive and are often used together,
especially for large systems development. For large systems, it makes sense to
combine some of the best features of the waterfall and the incremental
development models. You need to have information about the essential system
requirements to design a soft- ware architecture to support these requirements.
You cannot develop this incremen- tally. Sub-systems within a larger system
may be developed using different approaches. Parts of the system that are well
understood can be specified and devel- oped using a waterfall-based process.
Parts of the system which are difficult to specify in advance, such as the user
interface, should always be developed using an incremental approach.

2.1.1 The waterfall model

The first published model of the software development process was derived from more
general system engineering processes (Royce, 1970). This model is illustrated in
Figure 2.1. Because of the cascade from one phase to another, this model is known
as the ‘waterfall model’ or software life cycle. The waterfall model is an example of a
plan-driven process—in principle, you must plan and schedule all of the process
activities before starting work on them.

The principal stages of the waterfall model directly reflect the fundamental
development activities:

http://esaunggul.ac.id 4 / 16

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems by establishing an overall system
architecture. Software design involves identifying and describing the fundamen-
tal software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered to
the customer.

5. Operation and maintenance Normally (although not necessarily), this is the
longest life cycle phase. The system is installed and put into practical use.
Maintenance involves correcting errors which were not discovered in earlier
stages of the life cycle, improving the implementation of system units and
enhancing the system’s services as new requirements are discovered.

In principle, the result of each phase is one or more documents that are approved
(‘signed off’). The following phase should not start until the previous phase has fin-
ished. In practice, these stages overlap and feed information to each other. During
design, problems with requirements are identified. During coding, design problems are
found and so on. The software process is not a simple linear model but involves
feedback from one phase to another. Documents produced in each phase may then
have to be modified to reflect the changes made.

Because of the costs of producing and approving documents, iterations can be costly
and involve significant rework. Therefore, after a small number of iterations, it is normal
to freeze parts of the development, such as the specification, and to con- tinue with the
later development stages. Problems are left for later resolution, ignored, or
programmed around. This premature freezing of requirements may mean that the
system won’t do what the user wants. It may also lead to badly structured systems as
design problems are circumvented by implementation tricks.

http://esaunggul.ac.id 5 / 16

During the final life cycle phase (operation and maintenance) the software is put into
use. Errors and omissions in the original software requirements are discovered.
Program and design errors emerge and the need for new functionality is identified. The
system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.

The waterfall model is consistent with other engineering process models and docu-
mentation is produced at each phase. This makes the process visible so managers
can monitor progress against the development plan. Its major problem is the inflexible
par- titioning of the project into distinct stages. Commitments must be made at an early
stage in the process, which makes it difficult to respond to changing customer
requirements.

In principle, the waterfall model should only be used when the requirements are well
understood and unlikely to change radically during system development. However, the
waterfall model reflects the type of process used in other engineering projects. As is
easier to use a common management model for the whole project, software processes
based on the waterfall model are still commonly used.

An important variant of the waterfall model is formal system development, where a
mathematical model of a system specification is created. This model is then refined,
using mathematical transformations that preserve its consistency, into exe- cutable
code. Based on the assumption that your mathematical transformations are correct,
you can therefore make a strong argument that a program generated in this way is
consistent with its specification.

Formal development processes, such as that based on the B method (Schneider,
2001; Wordsworth, 1996) are particularly suited to the development of systems that
have stringent safety, reliability, or security requirements. The formal approach sim-
plifies the production of a safety or security case. This demonstrates to customers or
regulators that the system actually meets its safety or security requirements.

Processes based on formal transformations are generally only used in the devel-
opment of safety-critical or security-critical systems. They require specialized
expertise. For the majority of systems this process does not offer significant cost-
benefits over other approaches to system development.

2.1.2 Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, exposing this to user comment and evolving it through several versions until an
adequate system has been developed (Figure 2.2). Specification, development, and
validation activities are interleaved rather than separate, with rapid feedback across
activities.

Incremental software development, which is a fundamental part of agile approaches,
is better than a waterfall approach for most business, e-commerce, and personal
systems. Incremental development reflects the way that we solve prob- lems. We
rarely work out a complete problem solution in advance but move toward a solution in
a series of steps, backtracking when we realize that we have made a mistake. By

http://esaunggul.ac.id 6 / 16

developing the software incrementally, it is cheaper and easier to make changes in the
software as it is being developed.

Each increment or version of the system incorporates some of the functionality that is
needed by the customer. Generally, the early increments of the system include the
most important or most urgently required functionality. This means that the customer
can evaluate the system at a relatively early stage in the development to see if it
delivers what is required. If not, then only the current increment has to be changed
and, possibly, new functionality defined for later increments.

Incremental development has three important benefits, compared to the waterfall
model:

1. The cost of accommodating changing customer requirements is reduced. The
amount of analysis and documentation that has to be redone is much less than
is required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how
much has been implemented. Customers find it difficult to judge progress from
software design documents.

3. More rapid delivery and deployment of useful software to the customer is possi-
ble, even if all of the functionality has not been included. Customers are able to
use and gain value from the software earlier than is possible with a waterfall
process.

Incremental development in some form is now the most common approach for the
development of application systems. This approach can be either plan-driven, agile,
or, more usually, a mixture of these approaches. In a plan-driven approach, the system
increments are identified in advance; if an agile approach is adopted, the early incre-
ments are identified but the development of later increments depends on progress and
customer priorities.

From a management perspective, the incremental approach has two problems:

http://esaunggul.ac.id 7 / 16

1. The process is not visible. Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

2. System structure tends to degrade as new increments are added. Unless time
and money is spent on refactoring to improve the software, regular change
tends to corrupt its structure. Incorporating further software changes becomes
increas- ingly difficult and costly.

The problems of incremental development become particularly acute for large,

complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture and the responsibili-
ties of the different teams working on parts of the system need to be clearly defined
with respect to that architecture. This has to be planned in advance rather than devel-
oped incrementally.

You can develop a system incrementally and expose it to customers for comment,
without actually delivering it and deploying it in the customer’s environment.
Incremental delivery and deployment means that the software is used in real, opera-
tional processes. This is not always possible as experimenting with new software can
disrupt normal business processes. I discuss the advantages and disadvantages of
incre- mental delivery in Section 2.3.2.

2.1.3 Reuse-oriented software engineering

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of designs or code that are similar
to what is required. They look for these, modify them as needed, and incor- porate
them into their system.

This informal reuse takes place irrespective of the development process that is used.
However, in the 21st century, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
large base of reusable software components and an integrating framework for the
composition of these components. Sometimes, these components are systems in their
own right (COTS or commercial off-the-shelf systems) that may provide spe- cific
functionality such as word processing or a spreadsheet.

A general process model for reuse-based development is shown in Figure 2.3.
Although the initial requirements specification stage and the validation stage are
comparable with other software processes, the intermediate stages in a reuse-
oriented process are different. These stages are:

http://esaunggul.ac.id 8 / 16

1. Component analysis Given the requirements specification, a search is made for
components to implement that specification. Usually, there is no exact match
and the components that may be used only provide some of the functionality
required.

2. Requirements modification During this stage, the requirements are analyzed
using information about the components that have been discovered. They are
then mod- ified to reflect the available components. Where modifications are
impossible, the component analysis activity may be re-entered to search for
alternative solutions.

3. System design with reuse During this phase, the framework of the system is
designed or an existing framework is reused. The designers take into account
the components that are reused and organize the framework to cater for this.
Some new software may have to be designed if reusable components are not
available.

4. Development and integration Software that cannot be externally procured is
developed, and the components and COTS systems are integrated to create
the new system. System integration, in this model, may be part of the
development process rather than a separate activity.

There are three types of software component that may be used in a reuse-oriented
process:

1. Web services that are developed according to service standards and which are
available for remote invocation.

2. Collections of objects that are developed as a package to be integrated with a
component framework such as .NET or J2EE.

3. Stand-alone software systems that are configured for use in a particular
environment.

Reuse-oriented software engineering has the obvious advantage of reducing
the

amount of software to be developed and so reducing cost and risks. It usually also
leads to faster delivery of the software. However, requirements compromises are
inevitable and this may lead to a system that does not meet the real needs of users.
Furthermore, some control over the system evolution is lost as new versions of the
reusable components are not under the control of the organization using them.

2.2 Process activities

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing, and
testing a software system. Software developers use a variety of different software tools
in their work. Tools are particularly useful for supporting the editing of different types
of document and for managing the immense volume of detailed information that is
generated in a large software project.

The four basic process activities of specification, development, validation, and evo-
lution are organized differently in different development processes. In the waterfall
model, they are organized in sequence, whereas in incremental development they are
interleaved. How these activities are carried out depends on the type of software,

http://esaunggul.ac.id 9 / 16

people, and organizational structures involved. In extreme programming, for example,
specifications are written on cards. Tests are executable and developed before the
program itself. Evolution may involve substantial system restructuring or refactoring.

2.2.1 Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a

particularly critical stage of the software process as errors at this stage inevitably lead
to later problems in the system design and implementation.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.

There are four main activities in the requirements engineering process:

1. Feasibility study An estimate is made of whether the identified user needs may
be satisfied using current software and hardware technologies. The study
considers whether the proposed system will be cost-effective from a business
point of view and if it can be developed within existing budgetary constraints. A
feasibility study should be relatively cheap and quick. The result should inform
the decision of whether or not to go ahead with a more detailed analysis.

2. Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

3. Requirements specification Requirements specification is the activity of trans-
lating the information gathered during the analysis activity into a document that
defines a set of requirements. Two types of requirements may be included in
this document. User requirements are abstract statements of the system

http://esaunggul.ac.id 10 / 16

require- ments for the customer and end-user of the system; system
requirements are a more detailed description of the functionality to be provided.

4. Requirements validation This activity checks the requirements for realism,
consis- tency, and completeness. During this process, errors in the
requirements document are inevitably discovered. It must then be modified to
correct these problems.

Of course, the activities in the requirements process are not simply carried out in a
strict sequence. Requirements analysis continues during definition and specification
and new requirements come to light throughout the process. Therefore, the activities
of analysis, definition, and specification are interleaved. In agile methods, such as
extreme programming, requirements are developed incrementally according to user
priorities and the elicitation of requirements comes from users who are part of the
development team.

2.2.2 Software design and implementation

The implementation stage of software development is the process of converting a
system specification into an executable system. It always involves processes of soft-
ware design and programming but, if an incremental approach to development is used,
may also involve refinement of the software specification.

A software design is a description of the structure of the software to be implemented,
the data models and structures used by the system, the interfaces between system
com- ponents and, sometimes, the algorithms used. Designers do not arrive at a
finished design immediately but develop the design iteratively. They add formality and
detail as they develop their design with constant backtracking to correct earlier
designs.

Figure 2.5 is an abstract model of this process showing the inputs to the design
process, process activities, and the documents produced as outputs from this process.

http://esaunggul.ac.id 11 / 16

The diagram suggests that the stages of the design process are sequential. In fact,
design process activities are interleaved. Feedback from one stage to another and
consequent design rework is inevitable in all design processes.

Most software interfaces with other software systems. These include the operating
system, database, middleware, and other application systems. These make up the
‘soft- ware platform’, the environment in which the software will execute. Information
about this platform is an essential input to the design process, as designers must
decide how best to integrate it with the software’s environment. The requirements
specification is a description of the functionality the software must provide and its
performance and dependability requirements. If the system is to process existing data,
then the description of that data may be included in the platform specification;
otherwise, the data description must be an input to the design process so that the
system data organization to be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require timing design but may not include
a database so there is no database design involved. Figure 2.5 shows four activities
that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called sub-systems or modules), their rela-
tionships, and how they are distributed.

2. Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component can be used without other components having to know how it is
implemented. Once interface specifications are agreed, the components can be
designed and developed concurrently.

3. Component design, where you take each system component and design how it
will operate. This may be a simple statement of the expected functionality to be
implemented, with the specific design left to the programmer. Alternatively, it
may be a list of changes to be made to a reusable component or a detailed
design model. The design model may be used to automatically generate an
implementation.

4. Database design, where you design the system data structures and how these
are to be represented in a database. Again, the work here depends on whether
an existing database is to be reused or a new database is to be created.

These activities lead to a set of design outputs, which are also shown in Figure
2.5.

The detail and representation of these vary considerably. For critical systems, detailed
design documents setting out precise and accurate descriptions of the system must be
produced. If a model-driven approach is used, these outputs may mostly be diagrams.
Where agile methods of development are used, the outputs of the design process may
not be separate specification documents but may be represented in the code of the
program.

Structured methods for design were developed in the 1970s and 1980s and were the
precursor to the UML and object-oriented design (Budgen, 2003). They rely on

http://esaunggul.ac.id 12 / 16

producing graphical models of the system and, in many cases, automatically generat-
ing code from these models. Model-driven development (MDD) or model-driven
engineering (Schmidt, 2006), where models of the software are created at different
levels of abstraction, is an evolution of structured methods. In MDD, there is greater
emphasis on architectural models with a separation between abstract implementation-
independent models and implementation-specific models. The models are developed
in sufficient detail so that the executable system can be generated from them. I discuss
this approach to development in Chapter 5.

The development of a program to implement the system follows naturally from the
system design processes. Although some classes of program, such as safety-critical
systems, are usually designed in detail before any implementation begins, it is more
common for the later stages of design and program development to be interleaved.
Software development tools may be used to generate a skeleton program from a
design. This includes code to define and implement interfaces, and, in many cases,
the developer need only add details of the operation of each program component.

Programming is a personal activity and there is no general process that is usually
followed. Some programmers start with components that they understand, develop
these, and then move on to less-understood components. Others take the opposite

approach, leaving familiar components till last because they know how to develop
them. Some developers like to define data early in the process then use this to drive
the program development; others leave data unspecified for as long as possible.

Normally, programmers carry out some testing of the code they have developed. This
often reveals program defects that must be removed from the program. This is called
debugging. Defect testing and debugging are different processes. Testing establishes
the existence of defects. Debugging is concerned with locating and correcting these
defects.

When you are debugging, you have to generate hypotheses about the observable
behavior of the program then test these hypotheses in the hope of finding the fault that
caused the output anomaly. Testing the hypotheses may involve tracing the program
code manually. It may require new test cases to localize the problem. Interactive
debugging tools, which show the intermediate values of program variables and a trace
of the statements executed, may be used to support the debugging process.

2.2.3 Software validation

Software validation or, more generally, verification and validation (V&V) is intended to
show that a system both conforms to its specification and that it meets the expectations
of the system customer. Program testing, where the system is exe- cuted using

http://esaunggul.ac.id 13 / 16

simulated test data, is the principal validation technique. Validation may also involve
checking processes, such as inspections and reviews, at each stage of the software
process from user requirements definition to program development. Because of the
predominance of testing, the majority of validation costs are incurred during and after
implementation.

Except for small programs, systems should not be tested as a single, monolithic unit.
Figure 2.6 shows a three-stage testing process in which system components are tested
then the integrated system is tested and, finally, the system is tested with the
customer’s data. Ideally, component defects are discovered early in the process, and
interface problems are found when the system is integrated. However, as defects are
discovered, the program must be debugged and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to light
during system testing. The process is therefore an iterative one with information being
fed back from later stages to earlier parts of the process.

The stages in the testing process are:

1. Development testing The components making up the system are tested by the
people developing the system. Each component is tested independently,
without other system components. Components may be simple entities such as
functions or object classes, or may be coherent groupings of these entities. Test
automa- tion tools, such as JUnit (Massol and Husted, 2003), that can re-run
component tests when new versions of the component are created, are
commonly used.

2. System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multi-stage process where components are integrated to form
sub- systems that are individually tested before these sub-systems are
themselves integrated to form the final system.

3. Acceptance testing This is the final stage in the testing process before the
system is accepted for operational use. The system is tested with data supplied
by the system customer rather than with simulated test data. Acceptance testing
may reveal errors and omissions in the system requirements definition, because
the real data exercise the system in different ways from the test data.
Acceptance testing may also reveal requirements problems where the system’s
facilities do not really meet the user’s needs or the system performance is
unacceptable.

Normally, component development and testing processes are interleaved.
Programmers make up their own test data and incrementally test the code as it is
developed. This is an economically sensible approach, as the programmer knows the
component and is therefore the best person to generate test cases.

If an incremental approach to development is used, each increment should be tested
as it is developed, with these tests based on the requirements for that incre- ment. In
extreme programming, tests are developed along with the requirements before

http://esaunggul.ac.id 14 / 16

development starts. This helps the testers and developers to understand the
requirements and ensures that there are no delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop- ment),
testing is driven by a set of test plans. An independent team of testers works from
these pre-formulated test plans, which have been developed from the system
specification and design. Figure 2.7 illustrates how test plans are the link between
testing and development activities. This is sometimes called the V-model of develop-
ment (turn it on its side to see the V).

Acceptance testing is sometimes called ‘alpha testing’. Custom systems are developed
for a single client. The alpha testing process continues until the system developer and
the client agree that the delivered system is an acceptable implemen- tation of the
requirements.

When a system is to be marketed as a software product, a testing process called ‘beta
testing’ is often used. Beta testing involves delivering a system to a number of potential
customers who agree to use that system. They report problems to the sys- tem
developers. This exposes the product to real use and detects errors that may not have
been anticipated by the system builders. After this feedback, the system is mod- ified
and released either for further beta testing or for general sale.

The flexibility of software systems is one of the main reasons why more and more
software is being incorporated in large, complex systems. Once a decision has been
made to manufacture hardware, it is very expensive to make changes to the hardware
design. However, changes can be made to software at any time during or after the
system development. Even extensive changes are still much cheaper than correspon-
ding changes to system hardware.

Historically, there has always been a split between the process of software devel-
opment and the process of software evolution (software maintenance). People think of
software development as a creative activity in which a software system is devel- oped
from an initial concept through to a working system. However, they sometimes think of
software maintenance as dull and uninteresting. Although the costs of main- tenance
are often several times the initial development costs, maintenance processes are
sometimes considered to be less challenging than original software development.

http://esaunggul.ac.id 15 / 16

This distinction between development and maintenance is increasingly irrelevant.
Hardly any software systems are completely new systems and it makes much more
sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in response
to changing requirements and customer needs.

3. Latihan dan Jawaban

1. Software processes are the activities involved in producing a software system.
Software process models are abstract representations of these processes.

2. General process models describe the organization of software processes.
Examples of these general models include the waterfall model, incremental
development, and reuse-oriented development.

3. Requirements engineering is the process of developing a software specification.
Specifications are intended to communicate the system needs of the customer
to the system developers.

4. Design and implementation processes are concerned with transforming a
requirements specification into an executable software system. Systematic
design methods may be used as part of this transformation.

5. Software validation is the process of checking that the system conforms to its
specification and that it meets the real needs of the users of the system.

6. Software evolution takes place when you change existing software systems to
meet new requirements. Changes are continuous and the software must evolve
to remain useful.

7. Processes should include activities to cope with change. This may involve a
prototyping phase that helps avoid poor decisions on requirements and design.
Processes may be structured for iterative development and delivery so that
changes may be made without disrupting the system as a whole.

8. The Rational Unified Process is a modern generic process model that is
organized into phases (inception, elaboration, construction, and transition) but
separates activities (requirements, analysis, and design, etc.) from these
phases.

9. Daftar Pustaka

1. Management Information Systems, Managing Digital Firm, 11th Ed, Kenneth C.
Laudon, Jane. P. Laudon. (L&L)

2. Management Information Systems With Misource 2007, 8th Ed James A.
O'brien, And George Marakas

3. Managing Information Technology 5th Edition Martin, Brown, Dehayes

