

MODUL SITEM INFORMASI MANAGEMEN (MAN 611)

UNIVERSITAS ESA UNGGUL 2019

IS, ORGANIZATION AND STRATEGY

1. Kemampuan Akhir Yang Diharapkan

After reading this session, you will be able to answer the following questions:

- 1. Which features of organizations do managers need to know about to build and use information systems successfully? What is the impact of information systems on organiza- tions?
- 2. How does Porter's competitive forces model help companies develop competitive strategies using information systems?
- 3. How do the value chain and value web models help businesses identify opportunities for strategic information system applications?
- 4. How do information systems help businesses use synergies, core competencies, and network-based strategies to achieve competitive advantage?
- 5. What are the challenges posed by strategic information systems and how should they be addressed?

2. Uraian dan Contoh

1. ORGANIZATIONS AND INFORMATION SYSTEMS

Information systems and organizations influence one another. Information systems are built by managers to serve the interests of the business firm. At the same time, the organization must be aware of and open to the influences of information systems to benefit from new technologies.

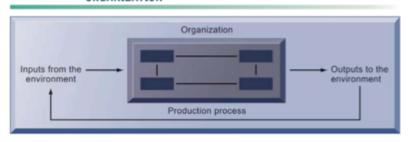

The interaction between information technology and organizations is complex and is influenced by many mediating factors, including the organiza- tion's structure, business processes, politics, culture, surrounding environment, and management decisions (see Figure 3.1). You will need to understand how information systems can change social and work life in your firm. You will not be able to design new systems successfully or understand existing systems without understanding your own business organization.

FIGURE 3.1 THE TWO-WAY RELATIONSHIP BETWEEN ORGANIZATIONS AND INFORMATION TECHNOLOGY

This complex two-way relationship is mediated by many factors, not the least of which are the decisions made—or not made—by managers. Other factors mediating the relationship include the organizational culture, structure, politics, business processes, and environment.

FIGURE 3.2 THE TECHNICAL MICROECONOMIC DEFINITION OF THE ORGANIZATION

In the microeconomic definition of organizations, capital and labor (the primary production factors provided by the environment) are transformed by the firm through the production process into products and services (outputs to the environment). The products and services are consumed by the environment, which supplies additional capital and labor as inputs in the feedback loop.

In the microeconomic definition of organizations, capital and labor (the primary production factors provided by the environment) are transformed by the firm through the production process into products and services (outputs to the environment). The products and services are consumed by the environment, which supplies additional capital and labor as inputs in the feedback loop.

As a manager, you will be the one to decide which systems will be built, what they will do, and how they will be implemented. You may not be able to anticipate all of the consequences of these decisions. Some of the changes that occur in business firms because of new information technology (IT) invest- ments cannot be foreseen and have results that may or may not meet your expectations. Who would have imagined fifteen years ago, for instance, that e-mail and instant messaging would become a dominant form of business communication and that many managers would be inundated with more than 200 e-mail messages each day?

WHAT IS AN ORGANIZATION?

An **organization** is a stable, formal social structure that takes resources from the environment and processes them to produce outputs. This techni- cal definition focuses on three elements of an organization. Capital and labor are primary production factors provided by the environment. The organization (the firm)

transforms these inputs into products and services in a production function. The products and services are consumed by environments in return for supply inputs (see Figure 3.2).

An organization is more stable than an informal group (such as a group of friends that meets every Friday for lunch) in terms of longevity and routine- ness. Organizations are formal legal entities with internal rules and proce- dures that must abide by laws. Organizations are also social structures because they are a collection of social elements, much as a machine has a structure—a particular arrangement of valves, cams, shafts, and other parts.

This definition of organizations is powerful and simple, but it is not very descriptive or even predictive of real-world organizations. A more realistic behavioral definition of an organization is a collection of rights, privileges, obli- gations, and responsibilities delicately balanced over a period of time through conflict and conflict resolution (see Figure 3.3).

In this behavioral view of the firm, people who work in organizations develop customary ways of working; they gain attachments to existing relationships; and they make arrangements with subordinates and superiors about how work will be done, the amount of work that will be done, and under what conditions work will be done. Most of these arrangements and feelings are not discussed in any formal rulebook.

How do these definitions of organizations relate to information systems technology? A technical view of organizations encourages us to focus on how inputs are combined to create outputs when technology changes are introduced into the company. The firm is seen as infinitely malleable, with capital and labor substituting for each other quite easily. But the more real- istic behavioral definition of an organization suggests that building new information systems, or rebuilding old ones, involves much more than a technical rearrangement of machines or workers—that some information systems change the organizational balance of rights, privileges, obligations, responsibilities, and feelings that have been established over a long period of time.

Changing these elements can take a long time, be very disruptive, and requires more resources to support training and learning. For instance, the length of time required to implement a new information system effectively is much longer than usually anticipated simply because there is a lag between implementing a technical system and teaching employees and managers how to use the system.

Technological change requires changes in who owns and controls information, who has the right to access and update that information, and who makes decisions about whom, when, and how. This more complex view forces us to look at the way work is designed and the procedures used to achieve outputs.

The technical and behavioral definitions of organizations are not con-tradictory. Indeed, they complement each other: The technical definition tells us how thousands of firms in competitive markets combine capital, labor, and information technology, whereas the behavioral model takes us inside the individual firm to see how that technology affects the organiza-tion's inner workings. Section 3.2 describes how

each of these definitions of organizations can help explain the relationships between information systems and organizations.

FEATURES OF ORGANIZATIONS

All modern organizations share certain characteristics. They are bureaucra- cies with clear-cut divisions of labor and specialization. Organizations arrange specialists in a hierarchy of authority in which everyone is accountable to someone and authority is limited to specific actions governed by abstract rules or procedures. These rules create a system of impartial and universal decision making. Organizations try to hire and promote employees on the basis of technical qualifications and professionalism (not personal connections). The organization is devoted to the principle of efficiency: maximizing output using limited inputs. Other features of organizations include their business processes, organizational culture, organizational politics, surrounding environments, structure, goals, constituencies, and leadership styles. All of these features affect the kinds of information systems used by organizations.

Routines and Business Processes

All organizations, including business firms, become very efficient over time because individuals in the firm develop **routines** for producing goods and ser-vices. Routines—sometimes called *standard operating procedures*—are precise rules, procedures, and practices that have been developed to cope with virtually all expected situations. As employees learn these routines, they become highly productive and efficient, and the firm is able to reduce its costs over time as efficiency increases. For instance, when you visit a doctor's office, receptionists have a well-developed set of routines for gathering basic information from you; nurses have a different set of routines for preparing you for an interview with a doctor; and the doctor has a well-developed set of routines for diagnosing you. *Business processes*, which we introduced in Chapters 1 and 2, are collections of such routines. A business firm, in turn, is a collection of business processes (Figure 3.4).

Organizational Holitics ersitas

People in organizations occupy different positions with different specialties, concerns, and perspectives. As a result, they naturally have divergent viewpoints about how resources, rewards, and punishments should be distributed. These differences matter to both managers and employees, and they result in political struggle for resources, competition, and conflict within every organization. Political resistance is one of the great difficulties of bringing about organizational change—especially the development of new information systems. Virtually all large information systems investments by a firm that bring about significant changes in strategy, business objectives, business processes, and procedures become politically charged events. Managers who know how to work with the politics of an organization will be more successful than less-skilled managers in implementing new information systems. Throughout this book, you will find many examples where internal politics defeated the best-laid plans for an infor- mation system.

Organizational Culture

All organizations have bedrock, unassailable, unquestioned (by the mem-bers) assumptions that define their goals and products. Organizational cul- ture encompasses this set of assumptions about what products the organi- zation should produce, how it should produce them, where, and for whom. Generally, these cultural assumptions are taken totally for granted and are rarely publicly announced or discussed. Business processes—the actual way business firms produce value—are usually ensconced in the organization's culture.

You can see organizational culture at work by looking around your univer- sity or college. Some bedrock assumptions of university life are that profes- sors know more than students, the reason students attend college is to learn, and classes follow a regular schedule. Organizational culture is a powerful unifying force that restrains political conflict and promotes common under- standing, agreement on procedures, and common practices. If we all share the same basic cultural assumptions, agreement on other matters is more likely.

At the same time, organizational culture is a powerful restraint on change, especially technological change. Most organizations will do almost anything to avoid making changes in basic assumptions. Any technological change that threatens commonly held cultural assumptions usually meets a great deal of resistance. However, there are times when the only sensible way for a firm to move forward is to employ a new technology that directly opposes an existing organizational culture. When this occurs, the technology is often stalled while the culture slowly adjusts.

Organizational Environments

Organizations reside in environments from which they draw resources and to which they supply goods and services. Organizations and environments have a reciprocal relationship. On the one hand, organizations are open to, and dependent on, the social and physical environment that surrounds them. Without financial and human resources—people willing to work reliably and consistently for a set wage or revenue from customers—organizations could not exist. Organizations must respond to legislative and other require- ments imposed by government, as well as the actions of customers and com- petitors. On the other hand, organizations can influence their environments. For example, business firms form alliances with other businesses to influence the political process; they advertise to influence customer acceptance of their products.

Figure 3.5 illustrates the role of information systems in helping organizations perceive changes in their environments and also in helping organizations act on their environments. Information systems are key instruments for *environ-mental scanning*, helping managers identify external changes that might require an organizational response.

Environments generally change much faster than organizations. New tech- nologies, new products, and changing public tastes and values (many of which result in new government regulations) put strains on any organization's cul- ture, politics, and people. Most organizations are unable to adapt to a rapidly changing environment. Inertia built into an organization's standard operating procedures, the political conflict raised by changes to the existing order, and the threat to closely held cultural values inhibit organizations from making signifi- cant changes. Young firms typically lack

resources to sustain even short periods of troubled times. It is not surprising that only 10 percent of the Fortune 500 companies in 1919 still exist today.

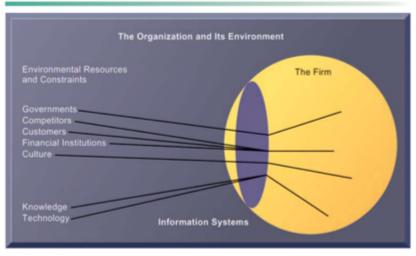


FIGURE 3.5 ENVIRONMENTS AND ORGANIZATIONS HAVE A RECIPROCAL RELATIONSHIP

Environments shape what organizations can do, but organizations can influence their environments and decide to change environments altogether. Information technology plays a critical role in helping organizations perceive environmental change and in helping organizations act on their environment.

Disruptive Technologies: Riding the Wave. Sometimes a technology and resulting business innovation comes along to radically change the business landscape and environment. These innovations are loosely called "disruptive." (Christensen, 2003). What makes a technology disruptive? In some cases, disruptive technologies are substitute products that perform as well as or bet- ter (often much better) than anything currently produced. The car substituted for the horse-drawn carriage; the word processor for typewriters; the Apple iPod for portable CD players; digital photography for process film photography.

In these cases, entire industries were put out of business. In other cases, disruptive technologies simply extend the market, usually with less function- ality and much less cost, than existing products. Eventually they turn into low-cost competitors for whatever was sold before. Disk drives are an example: Small hard disk drives used in PCs extended the market for disk drives by offering cheap digital storage for small files. Eventually, small PC hard disk drives became the largest segment of the disk drive marketplace.

Some firms are able to create these technologies and ride the wave to profits; others learn quickly and adapt their business; still others are obliterated because their products, services, and business models become obsolete. They may be very efficient at doing what no longer needs to be done! There are also cases where no firms benefit, and all the gains go to consumers (firms fail to capture any profits). Table 3.1 describes just a few disruptive technologies from the past.

Disruptive technologies are tricky. Firms that invent disruptive technologies as "first movers" do not always benefit if they lack the resources to exploit the technology or fail to see the opportunity. The MITS Altair 8800 is widely regarded as the first PC, but its inventors did not take advantage of their first mover status. Second movers,

so-called "fast followers" such as IBM and Microsoft, reaped the rewards. Citibank's ATMs revolutionized retail banking, but they were copied by other banks. Now all banks use ATMs, with the benefits going mostly to the consumers.

TABLE 3.1 DISRUPTIVE TECHNOLOGIES: WINNERS AND LOSERS

DESCRIPTION	WINNERS AND LOSERS
Thousands and eventually millions of transistors on a silicon chip	Microprocessor firms win (Intel, Texas Instruments) while transistor firms (GE) decline.
Small, inexpensive, but fully functional desktop computers	PC manufacturers (HP, Apple, IBM), and chip manufacturers prosper (Intel), while mainframe (IBM) and minicomputer (DEC) firms lose.
Using CCD (charge-coupled device) image sensor chips to record images	CCD manufacturers and traditional camera companies win, manufacturers of film products lose.
A global database of digital files and "pages" instantly available	Owners of online content, news benefit while traditional publishers (newspapers, magazines, and broadcast television) lose.
Repositories of downloadable music, video, TV broadcasts on the Web	Owners of Internet platforms, telecommunications providers owning Internet backbone (ATT, Verizon), local Internet service providers win, while content owners and physical retailers lose (Tower Records, Blockbuster).
A method for ranking Web pages in terms of their popularity to supplement Web search by key terms	Google is the winner (they own the patent), while traditional key word search engines (Alta Vista) lose.
Using the Internet to provide remote access to online software	Online software services companies (Salesforce.com) win, while traditional "boxed" software companies (Microsoft, SAP, Oracle) lose.
	Thousands and eventually millions of transistors on a silicon chip Small, inexpensive, but fully functional desktop computers Using CCD (charge-coupled device) image sensor chips to record images A global database of digital files and "pages" instantly available Repositories of downloadable music, video, TV broadcasts on the Web A method for ranking Web pages in terms of their popularity to supplement Web search by key terms Using the Internet to provide remote access

Organizational Structure

All organizations have a structure or shape. Mintzberg's classification, described in Table 3.2, identifies five basic kinds of organizational structure (Mintzberg, 1979).

The kind of information systems you find in a business firm—and the nature of problems with these systems—often reflects the type of organizational structure. For instance, in a professional bureaucracy such as a hospital, it is not unusual to find parallel patient record systems operated by the administration, another by doctors, and another by other professional staff such as nurses and social workers. In small entrepreneurial firms, you will often find poorly designed systems developed in a rush that often quickly outgrow their useful- ness. In huge multidivisional firms operating in hundreds of locations, you will often find there is not a single integrating information system, but instead each locale or each division has its set of information systems.

Other Organizational Features

Organizations have goals and use different means to achieve them. Some organizations have coercive goals (e.g., prisons); others have utilitarian goals (e.g., businesses). Still others have normative goals (universities, religious groups). Organizations also serve different groups or have different constitu- encies, some primarily benefiting their members, others benefiting clients, stockholders, or the public. The nature of leadership differs greatly from one organization to another—some organizations may be more democratic or authoritarian than others. Another

way organizations differ is by the tasks they perform and the technology they use. Some organizations perform primarily routine tasks that can be reduced to formal rules that require little judgment (such as manufacturing auto parts), whereas others (such as consulting firms) work primarily with nonroutine tasks.

TABLE	320	RGANIZATIO	INAL STR	UCTURES

ORGANIZATIONAL TYPE	DESCRIPTION	EXAMPLES
Entrepreneurial structure	Young, small firm in a fast-changing environment. It has a simple structure and is managed by an entrepreneur serving as its single chief executive officer.	Small start-up business
Machine bureaucracy	Large bureaucracy existing in a slowly changing environment, producing standard products. It is dominated by a centralized management team and centralized decision making.	Midsize manufacturing firm
Divisionalized bureaucracy	Combination of multiple machine bureaucracies, each producing a different product or service, all topped by one central headquarters.	Fortune 500 firms, such as General Motors
Professional bureaucracy	Knowledge-based organization where goods and services depend on the expertise and knowledge of professionals. Dominated by department heads with weak centralized authority.	Law firms, school systems, hospitals
Adhocracy	Task force organization that must respond to rapidly changing environments. Consists of large groups of specialists organized into short-lived multidisciplinary teams and has weak central management.	Consulting firms, such as the Rand Corporation

2. HOW INFORMATION SYSTEMS IMPACT ORGANIZATIONS AND BUSINESS FIRMS

Information systems have become integral, online, interactive tools deeply involved in the minute-to-minute operations and decision making of large organizations. Over the last decade, information systems have fundamentally altered the economics of organizations and greatly increased the possibilities for organizing work. Theories and concepts from economics and sociology help us understand the changes brought about by IT.

ECONOMIC IMPACTS

From the point of view of economics, IT changes both the relative costs of capital and the costs of information. Information systems technology can be viewed as a factor of production that can be substituted for traditional capital and labor. As the cost of information technology decreases, it is substituted for labor, which historically has been a rising cost. Hence, information technology should result in a decline in the number of middle managers and clerical work- ers as information technology substitutes for their labor.

As the cost of information technology decreases, it also substitutes for other forms of capital such as buildings and machinery, which remain relatively expensive. Hence, over time we should expect managers to increase their invest- ments in IT because of its declining cost relative to other capital investments.

IT also affects the cost and quality of information and changes the econom- ics of information. Information technology helps firms contract in size because it can reduce

transaction costs—the costs incurred when a firm buys on the marketplace what it cannot make itself. According to **transaction cost theory**, firms and individuals seek to economize on transaction costs, much as they do on production costs. Using markets is expensive because of costs such as locat- ing and communicating with distant suppliers, monitoring contract compli- ance, buying insurance, obtaining information on products, and so forth (Coase, 1937; Williamson, 1985). Traditionally, firms have tried to reduce transaction costs through vertical integration, by getting bigger, hiring more employees, and buying their own suppliers and distributors, as both General Motors and Ford used to do.

Information technology, especially the use of networks, can help firms lower the cost of market participation (transaction costs), making it worthwhile for firms to contract with external suppliers instead of using internal sources. As a result, firms can shrink in size (numbers of employees) because it is far less expensive to outsource work to a competitive marketplace rather than hire employees.

For instance, by using computer links to external suppliers, the Chrysler Corporation can achieve economies by obtaining more than 70 percent of its parts from the outside. Information systems make it possible for companies such as Cisco Systems and Dell Inc. to outsource their production to contract manufacturers such as Flextronics instead of making their products themselves.

As transaction costs decrease, firm size (the number of employees) should shrink because it becomes easier and cheaper for the firm to contract for the purchase of goods and services in the marketplace rather than to make the product or offer the service itself. Firm size can stay constant or contract even as the company increases its revenues. For example, when Eastman Chemical Company split off from Kodak in 1994, it had \$3.3 billion in revenue and 24,000 full-time employees. In 2011, it generated over \$7.2 billion in revenue with only 10,000 employees.

Information technology also can reduce internal management costs. According to agency theory, the firm is viewed as a "nexus of contracts" among self-interested individuals rather than as a unified, profit-maximizing entity (Jensen and Meckling, 1976). A principal (owner) employs "agents" (employees) to perform work on his or her behalf. However, agents need con-stant supervision and management; otherwise, they will tend to pursue their own interests rather than those of the owners. As firms grow in size and scope, agency costs or coordination costs rise because owners must expend more and more effort supervising and managing employees.

Information technology, by reducing the costs of acquiring and analyzing information, permits organizations to reduce agency costs because it becomes easier for managers to oversee a greater number of employees. By reducing overall management costs, information technology enables firms to increase revenues while shrinking the number of middle managers and clerical workers. We have seen examples in earlier chapters where information technology expanded the power and scope of small organizations by enabling them to perform coordinating activities such as processing orders or keeping track of inventory with very few clerks and managers.

Because IT reduces both agency and transaction costs for firms, we should expect firm size to shrink over time as more capital is invested in IT. Firms should have fewer managers, and we expect to see revenue per employee increase over time.

ORGANIZATIONAL AND BEHAVIORAL IMPACTS

Theories based in the sociology of complex organizations also provide some understanding about how and why firms change with the implementation of new IT applications.

IT Flattens Organizations

Large, bureaucratic organizations, which primarily developed before the computer age, are often inefficient, slow to change, and less competitive than newly created organizations. Some of these large organizations have downsized, reducing the number of employees and the number of levels in their organizational hierarchies.

Behavioral researchers have theorized that information technology facili- tates flattening of hierarchies by broadening the distribution of information to empower lower-level employees and increase management efficiency (see Figure 3.6). IT pushes decision-making rights lower in the organization because lower-level employees receive the information they need to make decisions without supervision. (This empowerment is also possible because of higher educational levels among the workforce, which give employees the capabilities to make intelligent decisions.) Because managers now receive so much more accurate information on time, they become much faster at making decisions, so fewer managers are required. Management costs decline as a percentage of revenues, and the hierarchy becomes much more efficient.

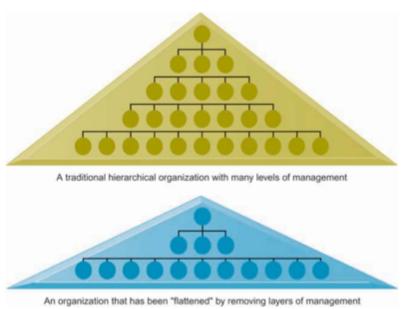
These changes mean that the management span of control has also been broadened, enabling high-level managers to manage and control more workers spread over greater distances. Many companies have eliminated thousands of middle managers as a result of these changes.

Postindustrial Organizations

Postindustrial theories based more on history and sociology than economics also support the notion that IT should flatten hierarchies. In postindustrial societies, authority increasingly relies on knowledge and competence, and not merely on formal positions. Hence, the shape of organizations flattens because professional workers tend to be self-managing, and decision making should become more decentralized as knowledge and information become more widespread throughout the firm (Drucker, 1988).

Information technology may encourage task force-networked organizations in which groups of professionals come together—face to face or electronically— for short periods of time to accomplish a specific task (e.g., designing a new automobile); once the task is accomplished, the individuals join other task forces. The global consulting service Accenture is an example. Many of its 246,000 employees move from location to location to work on projects at client locations in more than 120 different countries.

Who makes sure that self-managed teams do not head off in the wrong direction? Who decides which person works on which team and for how long? How can managers evaluate the performance of someone who is constantly rotating from team to team? How do people know where their careers are headed? New approaches for evaluating, organizing, and


122 Part One Organizations, Management, and the Networked Enterprise informing workers are required, and not all companies can make virtual

work effective.

Understanding Organizational Resistance to Change

Information systems inevitably become bound up in organizational politics because they influence access to a key resource—namely, information. Information systems can affect who does what to whom, when, where, and how in an organization. Many new information systems require changes in personal, individual routines that can be painful for those involved and require retraining and additional effort that may or may not be compensated. Because information systems potentially change an organization's structure, culture, business processes, and strategy, there is often considerable resistance to them when they are introduced.

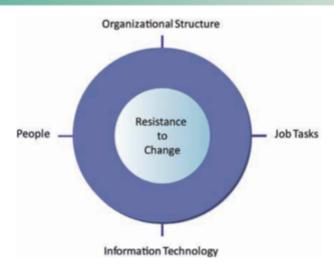
FIGURE 3.6 FLATTENING ORGANIZATIONS

Information systems can reduce the number of levels in an organization by providing managers with information to supervise larger numbers of workers and by giving lower-level employees more decision-making authority.

There are several ways to visualize organizational resistance. Research on organizational resistance to innovation suggests that four factors are paramount: the nature of the IT innovation, the organization's structure, the culture of peo- ple in the organization, and the tasks impacted by the innovation (see Figure 3.7). Here, changes in technology are absorbed, interpreted, deflected, and defeated by organizational task arrangements, structures, and people. In this model, the only way

to bring about change is to change the technology, tasks, structure, and people simultaneously. Other authors have spoken about the need to "unfreeze" organizations before introducing an innovation, quickly implementing it, and "refreezing" or institutionalizing the change (Kolb, 1970).

Because organizational resistance to change is so powerful, many information technology investments flounder and do not increase productivity. Indeed, research on project implementation failures demonstrates that the most common reason for failure of large projects to reach their objectives is not the failure of the technology, but organizational and political resistance to change. Chapter 14 treats this issue in detail. Therefore, as a manger involved in future IT investments, your ability to work with people and organizations is just as important as your technical awareness and knowledge.


THE INTERNET AND ORGANIZATIONS

The Internet, especially the World Wide Web, has an important impact on the relationships between many firms and external entities, and even on the organization of business processes inside a firm. The Internet increases the accessibility, storage, and distribution of information and knowledge for organizations. In essence, the Internet is capable of dramatically lowering the transaction and agency costs facing most organizations. For instance, brokerage firms and banks in New York can now deliver their internal operating procedures manuals to their employees at distant locations by posting them on the corporate Web site, saving millions of dollars in distribution costs. A global sales force can receive nearly instant product price information updates using the Web or instructions from management sent by e-mail. Vendors of some large retailers can access retailers' internal Web sites directly to find up-to-the-minute sales information and to initiate replenishment orders instantly.

Businesses are rapidly rebuilding some of their key business processes based on Internet technology and making this technology a key component of their IT infrastructures. If prior networking is any guide, one result will be simpler business processes, fewer employees, and much flatter organizations than in the past.

FIGURE 3.7 ORGANIZATIONAL RESISTANCE TO INFORMATION SYSTEM INNOVATIONS

Implementing information systems has consequences for task arrangements, structures, and people. According to this model, to implement change, all four components must be changed simultaneously.

IMPLICATIONS FOR THE DESIGN AND

UNDERSTANDING OF INFORMATION SYSTEMS

To deliver genuine benefits, information systems must be built with a clear understanding of the organization in which they will be used. In our experience, the central organizational factors to consider when planning a new system are the following:

- The environment in which the organization must function
- The structure of the organization: hierarchy, specialization, routines, and business processes
- The organization's culture and politics
- The type of organization and its style of leadership
- The principal interest groups affected by the system and the attitudes of workers who will be using the system
- The kinds of tasks, decisions, and business processes that the information system is designed to assist

3. USING INFORMATION SYSTEMS TO ACHIEVE COMPETITIVE ADVANTAGE

THE INTERNET'S IMPACT ON COMPETITIVE

ADVANTAGE

Because of the Internet, the traditional competitive forces are still at work, but competitive rivalry has become much more intense (Porter, 2001). Internet technology is based on universal standards that any company can use, making it easy for rivals to compete on price alone and for new competitors to enter the market. Because information is available to everyone, the Internet raises the bargaining power of customers, who can quickly find the lowest-cost provider on the Web. Profits have been dampened. Table 3.5 summarizes some of the potentially negative impacts of the Internet on business firms identified by Porter. The Internet has nearly destroyed some industries and has severely threatened more. For instance, the printed encyclopedia industry and the travel agency industry have been nearly decimated by the availability of substitutes over the Internet. Likewise, the Internet has had a significant impact on the retail, music, book, retail brokerage, software, telecommunications, and newspaper industries.

However, the Internet has also created entirely new markets, formed the basis for thousands of new products, services, and business models, and provided new opportunities for building brands with very large and loyal customer bases. Amazon, eBay, iTunes, YouTube, Facebook, Travelocity, and Google are examples. In this sense, the Internet is "transforming" entire industries, forcing firms to change how they do business.

For most forms of media, the Internet has posed a threat to business models and profitability. Growth in book sales other than textbooks and professional publications has been sluggish, as new forms of entertainment continue to compete for consumers' time. Newspapers and magazines have been hit even harder, as their readerships diminish, their advertisers shrink, and more people get their news for free online. The television and film industries have been forced to deal with pirates who are robbing them of some of their profits. The chapter-ending case explores the impact of the Internet on retail bookstores and book publishers.

3. Latihan dan Jawaban

1) Which features of organizations do managers need to know about to build and use information systems successfully? What is the impact of information systems on organizations?

All modern organizations are hierarchical, specialized, and impartial, using explicit routines to maximize efficiency. All organizations have their own cultures and politics arising from differences in interest groups, and they are affected by their surrounding environment. Organizations differ in goals, groups served, social roles, leadership styles, incentives, types of tasks performed, and type of structure. These features help explain differences in organizations' use of information systems.

Information systems and the organizations in which they are used interact with and influence each other. The introduction of a new information system will affect organizational structure, goals, work design, values, competition between interest groups, decision making, and day-to-day behavior. At the same time, information systems must be designed to serve the needs of important organizational groups and will be shaped by the organization's structure, business processes, goals, culture, politics, and management.

Information technology can reduce transaction and agency costs, and such changes have been accentuated in organizations using the Internet. New systems disrupt established patterns of work and power relationships, so there is often considerable resistance to them when they are introduced.

2) How does Porter's competitive forces model help companies develop competitive strategies using information systems?

In Porter's competitive forces model, the strategic position of the firm, and its strategies, are determined by competition with its traditional direct competitors, but they are also greatly affected by new market entrants, substitute products and services, suppliers, and customers. Information systems help companies compete by maintaining low costs, differentiating products or services, focusing on market niche, strengthening ties with customers and suppliers, and increasing barriers to market entry with high levels of operational excellence.

3) How do the value chain and value web models help businesses identify opportunities for strategic information system applications?

The value chain model highlights specific activities in the business where competitive strategies and information systems will have the greatest impact. The model views the firm as a series of primary and support activities that add value to a firm's products or services. Primary activities are directly related to production and distribution, whereas support activities make the delivery of primary activities possible. A firm's value chain can be linked to the value chains of its suppliers, distributors, and customers. A value web consists of information systems that enhance competitiveness at the industry level by promoting the use of standards and industry-wide consortia, and by enabling businesses to work more efficiently with their value partners.

4) How do information systems help businesses use synergies, core competencies, and network-based strategies to achieve competitive advantage?

Because firms consist of multiple business units, information systems achieve additional efficiencies or enhance services by tying together the operations of disparate business units. Information systems help businesses leverage their core competencies by promoting the sharing of knowledge across business units. Information systems facilitate business models based on large networks of users or subscribers that take advantage of network economics. A virtual company strategy uses networks to link to other firms so that a company can use the capabilities of other companies to build, market, and distribute products and services. In business ecosystems, multiple industries work together to deliver value to the customer. Information systems support a dense network of interactions among the participating firms.

5) What are the challenges posed by strategic information systems and how should they be addressed?

Implementing strategic systems often requires extensive organizational change and a transition from one sociotechnical level to another. Such changes are called strategic transitions and are often difficult and painful to achieve. Moreover, not all strategic systems are profitable, and they can be expensive to build. Many strategic information systems are easily copied by other firms so that strategic advantage is not always sustainable.

1. Daftar Pustaka

- 1. Management Information Systems, Managing Digital Firm, 11th Ed, Kenneth C. Laudon, Jane. P. Laudon. (L&L)
- 2. Management Information Systems With Misource 2007, 8th Ed James A. O'brien, And George Marakas
- 3. Managing Information Technology 5th Edition Martin, Brown, Dehayes

