

Sumber :
https://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_397_SDP_activities_and_steps.pdf

REQUIREMENTS ANALYSIS

REQUIREMENTS ANALYSIS

 Requirements analysis is the first stage in the systems engineering process and software

development process. Requirements analysis in systems engineering and software

engineering, encompasses those tasks that go into determining the needs or conditions to

meet for a new or altered product, taking account of the possibly conflicting requirements

of the various stakeholders, such as beneficiaries or users. Requirements analysis is critical

to the success of a development project. Requirements must be actionable, measurable,

testable, related to identified business needs or opportunities, and defined to a level of

detail sufficient for system design. Requirements can be functional and non-functional.

Overview Conceptually, requirements analysis includes three types of activity: Eliciting

requirements: the task of communicating with customers and users to determine what their

requirements are. This is sometimes also called requirements gathering. Analyzing

requirements: determining whether the stated requirements are unclear, incomplete,

ambiguous, or contradictory, and then resolving these issues. Recording requirements:

Requirements might be documented in various forms, such as natural-language documents,

use cases, user stories, or process specifications. Requirements analysis can be a long and

arduous process during which many delicate psychological skills are involved. New systems

change the environment and relationships between people, so it is important to identify all

https://www.uacg.bg/filebank/acadstaff/userfiles/publ_bg_397_SDP_activities_and_steps.pdf

the stakeholders, take into account all their needs and ensure they understand the

implications of the new systems. Analysts can employ several techniques to elicit the

requirements from the customer. Historically, this has included such things as holding

interviews, or holding focus groups (more aptly named in this context as requirements

workshops) and creating requirements lists. More modern techniques Software

Development Process – activities and steps Sofia 2010 Page 2 of 42 include prototyping, and

use cases. Where necessary, the analyst will employ a combination of these methods to

establish the exact requirements of the stakeholders, so that a system that meets the

business needs is produced. Requirements engineering Systematic requirements analysis is

also known as requirements engineering. It is sometimes referred to loosely by names such

as requirements gathering, requirements capture, or requirements specification. The term

requirements analysis can also be applied specifically to the analysis proper, as opposed to

elicitation or documentation of the requirements, for instance. Requirement engineering

according to Laplante (2007) is "a subdiscipline of systems engineering and software

engineering that is concerned with determining the goals, functions, and constraints of

hardware and software systems." In some life cycle models, the requirement engineering

process begins with a feasibility study activity, which leads to a feasibility report. If the

feasibility study suggest that the product should be developed, then requirement analysis

can begin. If requirement analysis precedes feasibility studies, which may foster outside the

box thinking, then feasibility should be determined before requirements are finalized.

Requirements analysis topics Stakeholder identification See Stakeholder analysis for a

discussion of business uses. Stakeholders (SH) are persons or organizations (legal entities

such as companies, standards bodies) which have a valid interest in the system. They may

be affected by it either directly or indirectly. A major new emphasis in the 1990s was a focus

on the identification of stakeholders. It is increasingly recognized that stakeholders are not

limited to the organization employing the analyst. Other stakeholders will include: anyone

who operates the system (normal and maintenance operators) anyone who benefits from

the system (functional, political, financial and social beneficiaries) anyone involved in

purchasing or procuring the system. In a mass-market product organization, product

management, marketing and sometimes sales act as surrogate consumers (mass-market

customers) to guide development of the product organizations which regulate aspects of

the system (financial, safety, and other regulators) people or organizations opposed to the

system (negative stakeholders; see also Misuse case) organizations responsible for

systems which interface with the system under design those organizations who integrate

horizontally with the organization for whom the analyst is designing the system Software

Development Process – activities and steps Sofia 2010 Page 3 of 42 Stakeholder interviews

Stakeholder interviews are a common technique used in requirement analysis. These

interviews may reveal requirements not previously envisaged as being within the scope of

the project, and requirements may be contradictory. However, each stakeholder will have

an idea of their expectation or will have visualized their requirements. Contract-style

requirement lists One traditional way of documenting requirements has been contract style

requirement lists. In a complex system such requirements lists can run to hundreds of

pages. An appropriate metaphor would be an extremely long shopping list. Such lists are

very much out of favour in modern analysis; as they have proved spectacularly unsuccessful

at achieving their aims; but they are still seen to this day. Strengths Provides a checklist of

requirements. Provide a contract between the project sponsor(s) and developers. For a

large system can provide a high level description. Weaknesses Such lists can run to

hundreds of pages. It is virtually impossible to read such documents as a whole and have a

coherent understanding of the system. Such requirements lists abstract all the

requirements and so there is little context This abstraction makes it impossible to see how

the requirements fit together. This abstraction makes it difficult to identify which are the

most important requirements. This abstraction means that the more people who read

such requirements the more different visions of the system you get. This abstraction

means that it's extremely difficult to be sure that you have the majority of the

requirements. Necessarily, these documents speak in generality; but the devil as they say is

in the details. These lists create a false sense of mutual understanding between the

stakeholders and developers. These contract style lists give the stakeholders a false sense

of security that the developers must achieve certain things. However, due to the nature of

these lists, they inevitably miss out crucial requirements which are identified later in the

process. Developers can use these discovered requirements to renegotiate the terms and

conditions in their favour. Software Development Process – activities and steps Sofia 2010

Page 4 of 42 These requirements lists are no help in system design, since they do not lend

themselves to application. Measurable goals Best practices take the composed list of

requirements merely as clues and repeatedly ask "why?" until the actual business purposes

are discovered. Stakeholders and developers can then devise tests to measure what level of

each goal has been achieved thus far. Such goals change more slowly than the long list of

specific but unmeasured requirements. Once a small set of critical, measured goals has been

established, rapid prototyping and short iterative development phases may proceed to

deliver actual stakeholder value long before the project is half over. Prototypes In the mid-

1980s, prototyping was seen as the solution to the requirements analysis problem.

Prototypes are Mockups of an application. Mockups allow users to visualize an application

that hasn't yet been constructed. Prototypes help users get an idea of what the system will

look like, and make it easier for users to make design decisions without waiting for the

system to be built. Major improvements in communication between users and developers

were often seen with the introduction of prototypes. Early views of applications led to fewer

changes later and hence reduced overall costs considerably. However, over the next decade,

while proving a useful technique, prototyping did not solve the requirements problem:

Managers, once they see a prototype, may have a hard time understanding that the finished

design will not be produced for some time. Designers often feel compelled to use patched

together prototype code in the real system, because they are afraid to 'waste time' starting

again. Prototypes principally help with design decisions and user interface design.

However, they can not tell you what the requirements originally were. Designers and end

users can focus too much on user interface design and too little on producing a system that

serves the business process. Prototypes work well for user interfaces, screen layout and

screen flow but are not so useful for batch or asynchronous processes which may involve

complex database updates and/or calculations. Prototypes can be flat diagrams (often

referred to as Wireframes) or working applications using synthesized functionality.

Wireframes are made in a variety of graphic design documents, and often remove all color

from the design (i.e. use a greyscale color palette) in instances where the final software is

expected to have graphic design applied to it. This helps to prevent confusion over the final

visual look and feel of the application. Use cases A use case is a technique for documenting

the potential requirements of a new system or software change. Each use case provides one

or more scenarios that convey how the system Software Development Process – activities

and steps Sofia 2010 Page 5 of 42 should interact with the end user or another system to

achieve a specific business goal. Use cases typically avoid technical jargon, preferring

instead the language of the end user or domain expert. Use cases are often co-authored by

requirements engineers and stakeholders. Use cases are deceptively simple tools for

describing the behavior of software or systems. A use case contains a textual description of

all of the ways which the intended users could work with the software or system. Use cases

do not describe any internal workings of the system, nor do they explain how that system

will be implemented. They simply show the steps that a user follows to perform a task. All

the ways that users interact with a system can be described in this manner. Software

requirements specification A software requirements specification (SRS) is a complete

description of the behavior of the system to be developed. It includes a set of use cases that

describe all of the interactions that the users will have with the software. Use cases are also

known as functional requirements. In addition to use cases, the SRS also contains

nonfunctional (or supplementary) requirements. Non-functional requirements are

requirements which impose constraints on the design or implementation (such as

performance requirements, quality standards, or design constraints). Recommended

approaches for the specification of software requirements are described by IEEE 830-1998.

This standard describes possible structures, desirable contents, and qualities of a software

requirements specification. Types of Requirements Requirements are categorized in several

ways. The following are common categorizations of requirements that relate to technical

management: Customer Requirements Statements of fact and assumptions that define the

expectations of the system in terms of mission objectives, environment, constraints, and

measures of effectiveness and suitability (MOE/MOS). The customers are those that

perform the eight primary functions of systems engineering, with special emphasis on the

operator as the key customer. Operational requirements will define the basic need and, at a

minimum, answer the questions posed in the following listing: Operational distribution or

deployment: Where will the system be used? Mission profile or scenario: How will the

system accomplish its mission objective? Performance and related parameters: What are

the critical system parameters to accomplish the mission? Utilization environments: How

are the various system components to be used? Effectiveness requirements: How effective

or efficient must the system be in performing its mission? Software Development Process –

activities and steps Sofia 2010 Page 6 of 42 Operational life cycle: How long will the system

be in use by the user? Environment: What environments will the system be expected to

operate in an effective manner? Functional Requirements Functional requirements explain

what has to be done by identifying the necessary task, action or activity that must be

accomplished. Functional requirements analysis will be used as the toplevel functions for

functional analysis. Non-functional Requirements Non-functional requirements are

requirements that specify criteria that can be used to judge the operation of a system,

rather than specific behaviors. Performance Requirements The extent to which a mission or

function must be executed; generally measured in terms of quantity, quality, coverage,

timeliness or readiness. During requirements analysis, performance (how well does it have

to be done) requirements will be interactively developed across all identified functions

based on system life cycle factors; and characterized in terms of the degree of certainty in

their estimate, the degree of criticality to system success, and their relationship to other

requirements. Design Requirements The ―build to,‖ ―code to,‖ and ―buy to‖

requirements for products and ―how to execute‖ requirements for processes expressed in

technical data packages and technical manuals. Derived Requirements Requirements that

are implied or transformed from higher-level requirement. For example, a requirement for

long range or high speed may result in a design requirement for low weight. Allocated

Requirements A requirement that is established by dividing or otherwise allocating a high-

level requirement into multiple lower-level requirements. Example: A 100-pound item that

consists of two subsystems might result in weight requirements of 70 pounds and 30

pounds for the two lower-level items. Well-known requirements categorization models

include FURPS and FURPS+, developed at Hewlett-Packard. Requirements analysis issues

Stakeholder issues Steve McConnell, in his book Rapid Development, details a number of

ways users can inhibit requirements gathering: Software Development Process – activities

and steps Sofia 2010 Page 7 of 42 Users do not understand what they want or users don't

have a clear idea of their requirements Users will not commit to a set of written

requirements Users insist on new requirements after the cost and schedule have been

fixed Communication with users is slow Users often do not participate in reviews or are

incapable of doing so Users are technically unsophisticated Users do not understand the

development process Users do not know about present technology This may lead to the

situation where user requirements keep changing even when system or product

development has been started. Engineer/developer issues Possible problems caused by

engineers and developers during requirements analysis are: Technical personnel and end

users may have different vocabularies. Consequently, they may wrongly believe they are in

perfect agreement until the finished product is supplied. Engineers and developers may try

to make the requirements fit an existing system or model, rather than develop a system

specific to the needs of the client. Analysis may often be carried out by engineers or

programmers, rather than personnel with the people skills and the domain knowledge to

understand a client's needs properly. Attempted solutions One attempted solution to

communications problems has been to employ specialists in business or system analysis.

Techniques introduced in the 1990s like prototyping, Unified Modeling Language (UML), use

cases, and Agile software development are also intended as solutions to problems

encountered with previous methods. Also, a new class of application simulation or

application definition tools have entered the market. These tools are designed to bridge the

communication gap between business users and the IT organization — and also to allow

applications to be 'test marketed' before any code is produced. The best of these tools

offer: electronic whiteboards to sketch application flows and test alternatives ability to

capture business logic and data needs ability to generate high fidelity prototypes that

closely imitate the final application Software Development Process – activities and steps

Sofia 2010 Page 8 of 42 interactivity capability to add contextual requirements and other

comments ability for remote and distributed users to run and interact with the simulation

References 1. Systems Engineering Fundamentals. Defense Acquisition University Press,

2001 2. Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert

Dupuis, ed (March 2005). "Chapter 2: Software Requirements". Guide to the software

engineering body of knowledge (2004 ed.). Los Alamitos, CA: IEEE Computer Society Press.

ISBN 0-7695-2330-7. http://www.swebok.org/ch2.html. Retrieved 2007-02-08. "It is widely

acknowledged within the software industry that software engineering projects are critically

vulnerable when these activities are performed poorly." 3. Wiegers, Karl E. (2003). Software

Requirements (2nd ed.). Redmond, WA: Microsoft Press. ISBN 0-7356- 1879-8.

http://www.processimpact.com. 4. Phillip A. Laplante (2007) What Every Engineer Should

Know about Software Engineering. Page 44. Further reading Laplante, Phil (2009).

Requirements Engineering for Software and Systems (1st ed.). Redmond, WA: CRC Press.

ISBN 1-42006-467-3. http://beta.crcpress.com/product/isbn/9781420064674. McConnell,

Steve (1996). Rapid Development: Taming Wild Software Schedules (1st ed.). Redmond, WA:

Microsoft Press. ISBN 1-55615-900-5. http://www.stevemcconnell.com/. Wiegers, Karl E.

(2003). Software Requirements (2nd ed.). Redmond, WA: Microsoft Press. ISBN 0-7356-

1879-8. http://www.processimpact.com. Andrew Stellman and Jennifer Greene (2005).

Applied Software Project Management. Cambridge, MA: O'Reilly Media. ISBN 0-596-00948-

8. http://www.stellman-greene.com. Brian Berenbach, Daniel Paulish, Juergen Katzmeier,

Arnold Rudorfer (2009). Software & Systems Requirements Engineering: In Practice. New

York: McGraw-Hill Professional. ISBN 0-07-1605479. http://www.mhprofessional.com.

Walter Sobkiw (2008). Sustainable Development Possible with Creative System Engineering.

New Jersey: CassBeth. ISBN 0615216307. http://books.google.com/books?id=7WJppXs-

LzEC. Software Development Process – activities and steps Sofia 2010 Page 9 of 42

FUNCTIONAL SPECIFICATION Systems engineering model of Specification and Levels of

Development. During system development a series of specifications are generated to

describe the system at different levels of detail. These program unique specifications form

the core of the configuration baselines. As shown here, in addition to referring to different

levels within the system hierarchy, these baselines are defined at different phases of the

design process. A functional specification (also, functional spec, specs, functional

specifications document (FSD), or Program specification) in systems engineering and

software development is the documentation that describes the requested behavior of an

engineering system. The documentation typically describes what is needed by the system

user as well as requested properties of inputs and outputs (e.g. of the software system).

Overview In systems engineering a specification is a document that clearly and accurately

describes the essential technical requirements for items, materials, or services including the

procedures by which it can be determined that the requirements have been met.

Specifications help avoid duplication and inconsistencies, allow for accurate estimates of

necessary work and resources, act as a negotiation and reference document for engineering

changes, provide documentation of configuration, and allow for consistent communication

among those responsible for the eight primary functions of Systems Engineering. They

provide a precise idea of the problem to be solved so that they can efficiently design the

system and estimate the cost of design alternatives. They provide guidance to testers for

verification (qualification) of each technical requirement. A functional specification does not

define the inner workings of the proposed system; it does not include the specification how

the system function will be implemented. Instead, it focuses on what various outside agents

(people using the program, computer peripherals, or other computers, for example) might

"observe" when interacting with the system. A typical functional specification might state

the following: When the user clicks the OK button, the dialog is closed and the focus is

returned to the main window in the state it was in before this dialog was displayed.

Software Development Process – activities and steps Sofia 2010 Page 10 of 42 Such a

requirement describes an interaction between an external agent (the user) and the software

system. When the user provides input to the system by clicking the OK button, the program

responds (or should respond) by closing the dialog window containing the OK button. It can

be informal, in which case it can be considered as a blueprint or user manual from a

developer point of view, or formal, in which case it has a definite meaning defined in

mathematical or programmatic terms. In practice, most successful specifications are written

to understand and fine-tune applications that were already well-developed, although

safetycritical software systems are often carefully specified prior to application

development. Specifications are most important for external interfaces that must remain

stable. Functional specification topics Purpose There are many purposes for functional

specifications. One of the primary purposes on team projects is to achieve some form of

team consensus on what the program is to achieve before making the more time-consuming

effort of writing source code and test cases, followed by a period of debugging. Typically,

such consensus is reached after one or more reviews by the stakeholders on the project at

hand after having negotiated a cost-effective way to achieve the requirements the software

needs to fulfill. Process In the ordered industrial software engineering life-cycle (waterfall

model), functional specification describes what has to be implemented. The next system

specification document describes how the functions will be realized using a chosen software

environment. In not industrial, prototypical systems development, functional specifications

are typically written after or as part of requirements analysis. When the team agrees that

functional specification consensus is reached, the functional spec is typically declared

"complete" or "signed off". After this, typically the software development and testing team

write source code and test cases using the functional specification as the reference. While

testing is performed the behavior of the program is compared against the expected

behavior as defined in the functional specification Types of software development

specifications Advanced Microcontroller Bus Architecture Bit specification Design

specification Diagnostic design specification Multiboot Specification Product design

specification Real-time specification for Java Software Development Process – activities

and steps Sofia 2010 Page 11 of 42 Software Requirements Specification See also

Benchmarking Benchmark specification Extensible Firmware Interface Software

development process Specification (technical standard) Verification and Validation

(software) References 1. Systems Engineering Fundamentals. Defense Acquisition University

Press, 2001 External links Writing functional specifications Tutorial Software Development

Process – activities and steps Sofia 2010 Page 12 of 42 SOFTWARE ARCHITECTURE The

software architecture of a program or computing system is the structure or structures of the

system, which comprise software components, the externally visible properties of those

components, and the relationships between them. The term also refers to documentation

of a system's software architecture. Documenting software architecture facilitates

communication between stakeholders, documents early decisions about high-level design,

and allows reuse of design components and patterns between projects. Overview The field

of computer science has come across problems associated with complexity since its

formation. Earlier problems of complexity were solved by developers by choosing the right

data structures, developing algorithms, and by applying the concept of separation of

concerns. Although the term ―software architecture‖ is relatively new to the industry, the

fundamental principles of the field have been applied sporadically by software engineering

pioneers since the mid 1980s. Early attempts to capture and explain software architecture

of a system were imprecise and disorganized, often characterized by a set of box-and-line

diagrams. During the 1990’s there was a concentrated effort to define and codify

fundamental aspects of the discipline. Initial sets of design patterns, styles, best practices,

description languages, and formal logic were developed during that time. The software

architecture discipline is centered on the idea of reducing complexity through abstraction

and separation of concerns. To date there is still no agreement on the precise definition of

the term ―software architecture‖. As a maturing discipline with no clear rules on the right

way to build a system, designing software architecture is still a mix of art and science. The

―art‖ aspect of software architecture is because a commercial software system supports

some aspect of a business or a mission. How a system supports key business drivers is

described via scenarios as nonfunctional requirements of a system, also known as quality

attributes, determine how a system will behave. Every system is unique due to the nature of

the business drivers it supports, as such the degree of quality attributes exhibited by a

system such as faulttolerance, backward compatibility, extensibility, reliability,

maintainability, availability, security, usability, and such other –ilities will vary with each

implementation. to bring a software architecture user's perspective into the software

architecture, it can be said that software architecture gives the direction to take steps and

do the tasks involved in each such user's speciality area and interest e.g. the stakeholders of

software systems, the software developer, the software system operational support group,

the software maintenance specialists, the deployer, the tester and also the business end

user. In this sense software architecture is really the amalgamation of the multiple

perspectives a system always embodies. The fact that those several different perspectives

can be put together into a software architecture stands as the vindication of the need and

justification of creation of software architecture before the software development in a

project attains maturity. History The origin of software architecture as a concept was first

identified in the research work of Edsgerhttp://en.wikipedia.org/wiki/Edsger_Dijkstra

Dijkstra in 1968 and David Parnas in the early 1970s. Software Development Process –

activities and steps Sofia 2010 Page 13 of 42 These scientists emphasized that the structure

of a software system matters and getting the structure right is critical. The study of the field

increased in popularity since the early 1990s with research work concentrating on

architectural styles (patterns), architecture description languages, architecture

documentation, and formal methods. Research institutions have played a prominent role in

furthering software architecture as a discipline. Mary Shaw and David Garlan of Carnegie

Mellon wrote a book titled Software Architecture: Perspectives on an Emerging Discipline in

1996, which brought forward the concepts in Software Architecture, such as components,

connectors, styles and so on. The University of California, Irvine's Institute for Software

Research's efforts in software architecture research is directed primarily in architectural

styles, architecture description languages, and dynamic architectures. The IEEE 1471:

ANSI/IEEE 1471-2000: Recommended Practice for Architecture Description of Software-

Intensive Systems is the first formal standard in the area of software architecture, and was

adopted in 2007 by ISO as ISO/IEC 42010:2007. Software architecture topics Architecture

description languages Architecture description languages (ADLs) are used to describe a

Software Architecture. Several different ADLs have been developed by different

organizations, including AADL (SAE standard), Wright (developed by Carnegie Mellon), Acme

(developed by Carnegie Mellon), xADL (developed by UCI), Darwin (developed by Imperial

College London), DAOP-ADL (developed by University of Málaga), ByADL (Build Your ADL)

developed by University of L'Aquila. Common elements of an ADL are component,

connector and configuration. Views Software architecture is commonly organized in views,

which are analogous to the different types of blueprints made in building architecture.

Within the ontology established by ANSI/IEEE 1471-2000, views are instances of viewpoints,

where a viewpoint exists to describe the architecture in question from the perspective of a

given set of stakeholders and their concerns. Some possible views (actually, viewpoints in

the 1471 ontology) are: Functional/logic view Code/module view

Development/structural view Concurrency/process/thread view Physical/deployment

view User action/feedback view Data view Software Development Process – activities

and steps Sofia 2010 Page 14 of 42 Several languages for describing software architectures

have been devised, but no consensus has yet been reached on which symbol-set and view-

system should be adopted. The UML was established as a standard "to model systems (and

not just software)," and thus applies to views about software architecture. Architecture

frameworks Frameworks related to the domain of software architecture are: 4+1 RM-

ODP (Reference Model of Open Distributed Processing) Service-Oriented Modeling

Framework (SOMF) Other architectures such as the Zachman Framework, DODAF, and

TOGAF relate to the field of Enterprise architecture. The distinction from detailed design

Software architecture, also described as strategic design, is an activity concerned with global

design constraints, such as programming paradigms, architectural styles, component-based

software engineering standards, design principles, and law-governed regularities. Detailed

design, also described as tactical design, is an activity concerned with local design

constraints, such as design patterns, architectural patterns, programming idioms, and

refactorings. According to the Intension/Locality Hypothesis[8], the distinction between

architectural and detailed design is defined by the Locality Criterion[8], according to which a

statement about software design is non-local (architectural) if and only if a program that

satisfies it can be expanded into a program which does not. For example, the Client-Server

style is architectural (strategic) because a program that is built by this principle can be

expanded into a program which is not client server; for example, by adding peer-to-peer

nodes. Architecture is design but not all design is architectural. In practice, the architect is

the one who draws the line between software architecture (architectural design) and

detailed design (non-architectural design). There aren't rules or guidelines that fit all cases.

Examples of Architectural Styles / Patterns There are many common ways of designing

computer software modules and their communications, among them: Blackboard Client-

server (2-tier, n-tier, peer-to-peer, Cloud Computing all use this model) Database-centric

architecture (broad division can be made for programs which have database at its center

and applications which don't have to rely on databases, E.g. desktop application programs,

utility programs etc.) Distributed computing Event Driven Architecture Software

Development Process – activities and steps Sofia 2010 Page 15 of 42 Front-end and back-

end Implicit invocation Monolithic application Peer-to-peer Pipes and filters Plugin

 Representational State Transfer Rule evaluation Search-oriented architecture (A pure

SOA implements a service for every data access point) Service-oriented architecture

Shared nothing architecture Software componentry (strictly module-based, usually object-

oriented programming within modules, slightly less monolithic) Space based architecture

Structured (module-based but usually monolithic within modules) Three-tier model (An

architecture with Presentation, Business Logic and Database tiers) See also Anti-pattern

Architecture Centric Design Method Architecture Tradeoff Analysis Method (ATAM)

Common layers in an information system logical architecture Computer architecture

Dependency Structure Matrix Enterprise architecture Process architecture Software

architect Software Architectural Model Software design Software Development Process

– activities and steps Sofia 2010 Page 16 of 42 Software design pattern Software

framework Software system Standard data model Systems architect Systems

architecture Systems design Technical architecture Software Architecture Analysis

Method References 1. Bass, Len; Paul Clements, Rick Kazman (2003). Software Architecture

In Practice, Second Edition. Boston: Addison-Wesley. pp. 21–24. ISBN 0-321-15495-9. 2.

University of Waterloo (2006). "A Very Brief History of Computer Science".

http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html. Retrieved 2006-09-23. 3.

IEEE Transactions on Software Engineering (2006). "Introduction to the Special Issue on

Software Architecture".

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/t

rans/ts/199 5/04/e4toc.xml&DOI=10.1109/TSE.1995.10003. Retrieved 2006-09-23. 4. SEI

(2006). "How do you define Software Architecture?".

http://www.sei.cmu.edu/architecture/start/definitions.cfm. Retrieved 2006-09-23. 5.

SoftwareArchitectures.com (2006). "Intro to Software Quality Attributes".

http://www.softwarearchitectures.com/one/Designing+Architecture/78.aspx. Retrieved

2006-09-23. 6. Clements, Paul; Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed

Little, Robert Nord, Judith Stafford (2003). Documenting Software Architectures: Views and

Beyond. Boston: Addison-Wesley. pp. 13–15. ISBN 0-201-70372-6. 7. Amnon H. Eden, Rick

Kazman (2003). "Architecture Design Implementation".

http://www.edenstudy.org/articles/2003/icse03.pdf. Further reading Len Bass, Paul

Clements, Rick Kazman: Software Architecture in Practice, Second Edition. Addison Wesley,

Reading 5/9/2003 ISBN 0-321-15495-9 (This book, now in second edition, eloquently covers

the fundamental concepts of the discipline. The theme is centered around achieving quality

attributes of a system.) Amnon H. Eden, Rick Kazman. Architecture, Design,

Implementation. On the distinction between architectural design and detailed design.

Garzás, Javier, and Piattini, Mario. An ontology for micro-architectural design knowledge,

IEEE Software Magazine, Volume: 22, Issue: 2, March-April 2005. pp. 28 – 33. Software

Development Process – activities and steps Sofia 2010 Page 17 of 42 Tony Shan and

Winnie Hua (2006). Solution Architecting Mechanism. Proceedings of the 10th IEEE

International EDOC Enterprise Computing Conference (EDOC 2006), October 2006, p23-32

SOMF: Bell, Michael (2008). "Service-Oriented Modeling: Service Analysis, Design, and

Architecture". Wiley. http://www.amazon.com/Service-Oriented-Modeling-ServiceAnalysis-

Architecture/dp/0470141115/ref=pd_bbs_2. External links Software architecture vs.

software design: The Intension/Locality Hypothesis Worldwide Institute of Software

Architects (WWISA) International Association of Software Architects (IASA)

SoftwareArchitecturePortal.org — website of IFIP Working Group 2.10 on Software

Architecture Software Architecture — practical resources for Software Architects

SoftwareArchitectures.com — independent resource of information on the discipline

Architectural Patterns Software Architecture, chapter 1 of Roy Fielding's REST dissertation

 DiaSpec, an approach and tool to generate a distributed framework from a software

architecture When Good Architecture Goes Bad Software Architecture and Related

Concerns, What is Software Architecture? And What Software Architecture Is Not

Handbook of Software Architecture The Spiral Architecture Driven Development - the

SDLC based on Spiral model is to reduce a risks of non effective architecture Software

Development Process – activities and steps Sofia 2010 Page 18 of 42 SOFTWARE DESIGN

Software design is a process of problem-solving and planning for a software solution. After

the purpose and specifications of software are determined, software developers will design

or employ designers to develop a plan for a solution. It includes low-level component and

algorithm implementation issues as well as the architectural view. Overview The software

requirements analysis (SRA) step of a software development process yields specifications

that are used in software engineering. If the software is "semiautomated" or user centered,

software design may involve user experience design yielding a story board to help

determine those specifications. If the software is completely automated (meaning no user

or user interface), a software design may be as simple as a flow chart or text describing a

planned sequence of events. There are also semi-standard methods like Unified Modeling

Language and Fundamental modeling concepts. In either case some documentation of the

plan is usually the product of the design. A software design may be platform-independent or

platform-specific, depending on the availability of the technology called for by the design

Software design topics Design concepts The design concepts provide the software designer

with a foundation from which more sophisticated methods can be applied. A set of

fundamental design concepts has evolved. They are: 1.Abstraction - Abstraction is the

process or result of generalization by reducing the information content of a concept or an

observable phenomenon, typically in order to retain only information which is relevant for a

particular purpose. 2.Refinement - It is the process of elaboration. A hierarchy is

developed by decomposing a macroscopic statement of function in a stepwise fashion until

programming language statements are reached. In each step, one or several instructions of

a given program are decomposed into more detailed instructions. Abstraction and

Refinement are complementary concepts. 3.Modularity - Software architecture is divided

into components called modules. 4.Software Architecture - It refers to the overall

structure of the software and the ways in which that structure provides conceptual integrity

for a system. A software architecture is the development work product that gives the

highest return on investment with respect to quality, schedule and cost. 5.Control

Hierarchy - A program structure that represent the organization of a program components

and implies a hierarchy of control. 6.Structural Partitioning - The program structure can be

divided both horizontally and vertically. Horizontal partitions define separate branches of

modular hierarchy for each Software Development Process – activities and steps Sofia 2010

Page 19 of 42 major program function. Vertical partitioning suggests that control and work

should be distributed top down in the program structure. 7.Data Structure - It is a

representation of the logical relationship among individual elements of data. 8.Software

Procedure - It focuses on the processing of each modules individually 9.Information Hiding

- Modules should be specified and designed so that information contained within a module

is inaccessible to other modules that have no need for such information. Design

considerations There are many aspects to consider in the design of a piece of software. The

importance of each should reflect the goals the software is trying to achieve. Some of these

aspects are: Compatibility - The software is able to operate with other products that are

designed for interoperability with another product. For example, a piece of software may be

backward-compatible with an older version of itself. Extensibility - New capabilities can be

added to the software without major changes to the underlying architecture. Fault-

tolerance - The software is resistant to and able to recover from component failure.

Maintainability - The software can be restored to a specified condition within a specified

period of time. For example, antivirus software may include the ability to periodically

receive virus definition updates in order to maintain the software's effectiveness.

Modularity - the resulting software comprises well defined, independent components. That

leads to better maintainability. The components could be then implemented and tested in

isolation before being integrated to form a desired software system. This allows division of

work in a software development project. Packaging - Printed material such as the box and

manuals should match the style designated for the target market and should enhance

usability. All compatibility information should be visible on the outside of the package. All

components required for use should be included in the package or specified as a

requirement on the outside of the package. Reliability - The software is able to perform a

required function under stated conditions for a specified period of time. Reusability - the

modular components designed should capture the essence of the functionality expected out

of them and no more or less. This single-minded purpose renders the components reusable

wherever there are similar needs in other designs. Software Development Process –

activities and steps Sofia 2010 Page 20 of 42 Robustness - The software is able to operate

under stress or tolerate unpredictable or invalid input. For example, it can be designed with

a resilience to low memory conditions. Security - The software is able to withstand hostile

acts and influences. Usability - The software user interface must be usable for its target

user/audience. Default values for the parameters must be chosen so that they are a good

choice for the majority of the users. In many cases, online help should be included and also

carefully designed. Modeling language A modeling language is any artificial language that

can be used to express information or knowledge or systems in a structure that is defined by

a consistent set of rules. The rules are used for interpretation of the meaning of

components in the structure. A modeling language can be graphical or textual. Examples of

graphical modelling languages for software design are: Business Process Modeling

Notation (BPMN) is an example of a Process Modeling language. EXPRESS and EXPRESS-G

(ISO 10303-11) is an international standard general-purpose data modeling language.

Extended Enterprise Modeling Language (EEML) is commonly used for business process

modeling across a number of layers. Flowchart is a schematic representation of an

algorithm or a stepwise process, Fundamental Modeling Concepts (FMC) modeling

language for software-intensive systems. IDEF is a family of modeling languages, the most

notable of which include IDEF0 for functional modeling, IDEF1X for information modeling,

and IDEF5 for modeling ontologies. Jackson Structured Programming (JSP) is a method for

structured programming based on correspondences between data stream structure and

program structure LePUS3 is an object-oriented visual Design Description Language and a

formal specification language that is suitable primarily for modelling large object-oriented

(Java, C++, C#) programs and design patterns. Unified Modeling Language (UML) is a

general modeling language to describe software both structurally and behaviorally. It has a

graphical notation and allow for extension with a Profile (UML). Alloy (specification

language) is a general purpose specification language for expressing complex structural

constraints and behavior in a software system. It provides a concise language based on first-

order relational logic. Software Development Process – activities and steps Sofia 2010 Page

21 of 42 Systems Modeling Language (SysML) is a new general-purpose modeling language

for systems engineering. Design patterns A software designer or architect may identify a

design problem which has been solved by others before. A template or pattern describing a

solution to a common problem is known as a design pattern. The reuse of such patterns can

speed up the software development process, having been tested and proved in the past.

Usage Software design documentation may be reviewed or presented to allow constraints,

specifications and even requirements to be adjusted prior to programming. Redesign may

occur after review of a programmed simulation or prototype. It is possible to design

software in the process of programming, without a plan or requirement analysis, but for

more complex projects this would not be considered a professional approach. A separate

design prior to programming allows for multidisciplinary designers and Subject Matter

Experts (SMEs) to collaborate with highly-skilled programmers for software that is both

useful and technically sound. preparing Functional Design documents, Technical design

documents, Technical and System Architecture documents Technical requirements and

Specification documents. Stages and Phases of Design Deriving a solution which satisfies

software requirements. software design stages to be followed problem understanding

identify one or more problem,describe solutions abstraction,repeat process for each

identifier abstraction. when design stages complete,phases design will take over which

include architectural design,abstract specification,interface design,component design,data

structure design and algorithm design.The design process may be modeled as a directed

graph made up of entities with attributes which participate in relationship. Design takes

place in overlapping stages,it is artificial to separate it into distinct phases but some

separation is usually necessary Software testing Software testing is an investigation

conducted to provide stakeholders with information about the quality of the product or

service under test. Software testing also provides an objective, independent view of the

software to allow the business to appreciate and understand the risks at implementation of

the software. Test techniques include, but are not limited to, the process of executing a

program or application with the intent of finding software bugs. Software testing can also be

stated as the process of validating and verifying that a software

program/application/product: 1. meets the business and technical requirements that guided

its design and development; 2. works as expected; and Software Development Process –

activities and steps Sofia 2010 Page 22 of 42 3. can be implemented with the same

characteristics. Software testing, depending on the testing method employed, can be

implemented at any time in the development process. However, most of the test effort

occurs after the requirements have been defined and the coding process has been

completed. As such, the methodology of the test is governed by the software development

methodology adopted. Different software development models will focus the test effort at

different points in the development process. Newer development models, such as Agile,

often employ test driven development and place an increased portion of the testing in the

hands of the developer, before it reaches a formal team of testers. In a more traditional

model, most of the test execution occurs after the requirements have been defined and the

coding process has been completed. Overview Testing can never completely identify all the

defects within software. Instead, it furnishes a criticism or comparison that compares the

state and behavior of the product against oracles— principles or mechanisms by which

someone might recognize a problem. These oracles may include (but are not limited to)

specifications, contracts, comparable products, past versions of the same product,

inferences about intended or expected purpose, user or customer expectations, relevant

standards, applicable laws, or other criteria. Every software product has a target audience.

For example, the audience for video game software is completely different from banking

software. Therefore, when an organization develops or otherwise invests in a software

product, it can assess whether the software product will be acceptable to its end users, its

target audience, its purchasers, and other stakeholders. Software testing is the process of

attempting to make this assessment. A study conducted by NIST in 2002 reports that

software bugs cost the U.S. economy $59.5 billion annually. More than a third of this cost

could be avoided if better software testing was performed. History The separation of

debugging from testing was initially introduced by Glenford J. Myers in 1979. Although his

attention was on breakage testing ("a successful test is one that finds a bug") it illustrated

the desire of the software engineering community to separate fundamental development

activities, such as debugging, from that of verification. Dave Gelperin and William C. Hetzel

classified in 1988 the phases and goals in software testing in the following stages: Until

1956 - Debugging oriented 1957–1978 - Demonstration oriented 1979–1982 -

Destruction oriented 1983–1987 - Evaluation oriented 1988–2000 - Prevention oriented

Software Development Process – activities and steps Sofia 2010 Page 23 of 42 Software

testing topics Scope A primary purpose for testing is to detect software failures so that

defects may be uncovered and corrected. This is a non-trivial pursuit. Testing cannot

establish that a product functions properly under all conditions but can only establish that it

does not function properly under specific conditions. The scope of software testing often

includes examination of code as well as execution of that code in various environments and

conditions as well as examining the aspects of code: does it do what it is supposed to do and

do what it needs to do. In the current culture of software development, a testing

organization may be separate from the development team. There are various roles for

testing team members. Information derived from software testing may be used to correct

the process by which software is developed. Functional vs non-functional testing Functional

testing refers to tests that verify a specific action or function of the code. These are usually

found in the code requirements documentation, although some development

methodologies work from use cases or user stories. Functional tests tend to answer the

question of "can the user do this" or "does this particular feature work". Non-functional

testing refers to aspects of the software that may not be related to a specific function or

user action, such as scalability or security. Non-functional testing tends to answer such

questions as "how many people can log in at once", or "how easy is it to hack this software".

Defects and failures Not all software defects are caused by coding errors. One common

source of expensive defects is caused by requirement gaps, e.g., unrecognized

requirements, that result in errors of omission by the program designer. A common source

of requirements gaps is non-functional requirements such as testability, scalability,

maintainability, usability, performance, and security. Software faults occur through the

following processes. A programmer makes an error (mistake), which results in a defect

(fault, bug) in the software source code. If this defect is executed, in certain situations the

system will produce wrong results, causing a failure. Not all defects will necessarily result in

failures. For example, defects in dead code will never result in failures. A defect can turn

into a failure when the environment is changed. Examples of these changes in environment

include the software being run on a new hardware platform, alterations in source data or

interacting with different software. A single defect may result in a wide range of failure

symptoms. Finding faults early It is commonly believed that the earlier a defect is found the

cheaper it is to fix it. The following table shows the cost of fixing the defect depending on

the stage it was found. For example, if a problem in the requirements is found only post-

release, then it would cost 10– 100 times more to fix than if it had already been found by

the requirements review. Software Development Process – activities and steps Sofia 2010

Page 24 of 42 Time detected Requirements Architecture Construction System test

Postrelease Time introduced Requirements 1× 3× 5–10× 10× 10–100× Architecture - 1× 10×

15× 25–100× Construction - - 1× 10× 10–25× Compatibility A common cause of software

failure (real or perceived) is a lack of compatibility with other application software,

operating systems (or operating system versions, old or new), or target environments that

differ greatly from the original (such as a terminal or GUI application intended to be run on

the desktop now being required to become a web application, which must render in a web

browser). For example, in the case of a lack of backward compatibility, this can occur

because the programmers develop and test software only on the latest version of the target

environment, which not all users may be running. This results in the unintended

consequence that the latest work may not function on earlier versions of the target

environment, or on older hardware that earlier versions of the target environment was

capable of using. Sometimes such issues can be fixed by proactively abstracting operating

system functionality into a separate program module or library. Input combinations and

preconditions A very fundamental problem with software testing is that testing under all

combinations of inputs and preconditions (initial state) is not feasible, even with a simple

product. This means that the number of defects in a software product can be very large and

defects that occur infrequently are difficult to find in testing. More significantly, non-

functional dimensions of quality (how it is supposed to be versus what it is supposed to

do)—usability, scalability, performance, compatibility, reliability—can be highly subjective;

something that constitutes sufficient value to one person may be intolerable to another.

Static vs. dynamic testing There are many approaches to software testing. Reviews,

walkthroughs, or inspections are considered as static testing, whereas actually executing

programmed code with a given set of test cases is referred to as dynamic testing. Static

testing can be (and unfortunately in practice often is) omitted. Dynamic testing takes place

when the program itself is used for the first time (which is generally considered the

beginning of the testing stage). Dynamic testing may begin before the program is 100%

complete in order to test particular sections of code (modules or discrete functions). Typical

techniques for this are either using stubs/drivers or execution from a debugger

environment. For example, spreadsheet programs are, by their very nature, tested to a large

extent interactively ("on the fly"), with results displayed immediately after each calculation

or text manipulation. Software verification and validation Software Development Process –

activities and steps Sofia 2010 Page 25 of 42 Software testing is used in association with

verification and validation: Verification: Have we built the software right? (i.e., does it

match the specification). Validation: Have we built the right software? (i.e., is this what the

customer wants). The terms verification and validation are commonly used interchangeably

in the industry; it is also common to see these two terms incorrectly defined. According to

the IEEE Standard Glossary of Software Engineering Terminology: Verification is the process

of evaluating a system or component to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase. Validation is

the process of evaluating a system or component during or at the end of the development

process to determine whether it satisfies specified requirements. The software testing team

Software testing can be done by software testers. Until the 1980s the term "software

tester" was used generally, but later it was also seen as a separate profession. Regarding the

periods and the different goals in software testing, different roles have been established:

manager, test lead, test designer, tester, automation developer, and test administrator.

Software quality assurance (SQA) Though controversial, software testing may be viewed as

an important part of the software quality assurance (SQA) process. In SQA, software process

specialists and auditors take a broader view on software and its development. They examine

and change the software engineering process itself to reduce the amount of faults that end

up in the delivered software: the so-called defect rate. What constitutes an "acceptable

defect rate" depends on the nature of the software. For example, an arcade video game

designed to simulate flying an airplane would presumably have a much higher tolerance for

defects than mission critical software such as that used to control the functions of an

airliner that really is flying! Although there are close links with SQA, testing departments

often exist independently, and there may be no SQA function in some companies. Software

testing is a task intended to detect defects in software by contrasting a computer program's

expected results with its actual results for a given set of inputs. By contrast, QA (quality

assurance) is the implementation of policies and procedures intended to prevent defects

from occurring in the first place. Testing methods The box approach Software testing

methods are traditionally divided into and white- and black-box testing. These two

approaches are used to describe the point of view that a test engineer takes when designing

test cases. Software Development Process – activities and steps Sofia 2010 Page 26 of 42

White box testing White box testing is when the tester has access to the internal data

structures and algorithms including the code that implement these. Types of white box

testing The following types of white box testing exist: API testing (application

programming interface) - testing of the application using public and private APIs Code

coverage - creating tests to satisfy some criteria of code coverage (e.g., the test designer can

create tests to cause all statements in the program to be executed at least once) Fault

injection methods - improving the coverage of a test by introducing faults to test code paths

 Mutation testing methods Static testing - White box testing includes all static testing Test

coverage White box testing methods can also be used to evaluate the completeness of a

test suite that was created with black box testing methods. This allows the software team to

examine parts of a system that are rarely tested and ensures that the most important

function points have been tested. Two common forms of code coverage are: Function

coverage, which reports on functions executed Statement coverage, which reports on the

number of lines executed to complete the test They both return a code coverage metric,

measured as a percentage. Black box testing Black box testing treats the software as a

"black box"—without any knowledge of internal implementation. Black box testing methods

include: equivalence partitioning, boundary value analysis, all-pairs testing, fuzz testing,

model-based testing, traceability matrix, exploratory testing and specification-based testing.

Specification-based testing: Specification-based testing aims to test the functionality of

software according to the applicable requirements. Thus, the tester inputs data into, and

only sees the output from, the test object. This level of testing usually requires thorough

test cases to be provided to the tester, who then can simply verify that for a given input, the

output value (or behavior), either "is" or "is not" the same as the expected value specified in

the test case. Software Development Process – activities and steps Sofia 2010 Page 27 of 42

Specification-based testing is necessary, but it is insufficient to guard against certain risks.

Advantages and disadvantages: The black box tester has no "bonds" with the code, and a

tester's perception is very simple: a code must have bugs. Using the principle, "Ask and you

shall receive," black box testers find bugs where programmers do not. But, on the other

hand, black box testing has been said to be "like a walk in a dark labyrinth without a

flashlight," because the tester doesn't know how the software being tested was actually

constructed. As a result, there are situations when (1) a tester writes many test cases to

check something that could have been tested by only one test case, and/or (2) some parts

of the back-end are not tested at all. Therefore, black box testing has the advantage of "an

unaffiliated opinion," on the one hand, and the disadvantage of "blind exploring," on the

other. Grey box testing Grey box testing (American spelling: gray box testing) involves

having knowledge of internal data structures and algorithms for purposes of designing the

test cases, but testing at the user, or black-box level. Manipulating input data and

formatting output do not qualify as grey box, because the input and output are clearly

outside of the "black-box" that we are calling the system under test. This distinction is

particularly important when conducting integration testing between two modules of code

written by two different developers, where only the interfaces are exposed for test.

However, modifying a data repository does qualify as grey box, as the user would not

normally be able to change the data outside of the system under test. Grey box testing may

also include reverse engineering to determine, for instance, boundary values or error

messages. Testing levels Tests are frequently grouped by where they are added in the

software development process, or by the level of specificity of the test. Unit testing Unit

testing refers to tests that verify the functionality of a specific section of code, usually at the

function level. In an object-oriented environment, this is usually at the class level, and the

minimal unit tests include the constructors and destructors. These type of tests are usually

written by developers as they work on code (white-box style), to ensure that the specific

function is working as expected. One function might have multiple tests, to catch corner

cases or other branches in the code. Unit testing alone cannot verify the functionality of a

piece of software, but rather is used to assure that the building blocks the software uses

work independently of each other. Unit testing is also called component testing. Integration

testing Integration testing is any type of software testing that seeks to verify the interfaces

between components against a software design. Software components may be integrated in

an Software Development Process – activities and steps Sofia 2010 Page 28 of 42 iterative

way or all together ("big bang"). Normally the former is considered a better practice since it

allows interface issues to be localised more quickly and fixed. Integration testing works to

expose defects in the interfaces and interaction between integrated components (modules).

Progressively larger groups of tested software components corresponding to elements of

the architectural design are integrated and tested until the software works as a system.

System testing System testing tests a completely integrated system to verify that it meets its

requirements. System integration testing System integration testing verifies that a system is

integrated to any external or third party systems defined in the system requirements.

Regression testing Regression testing focuses on finding defects after a major code change

has occurred. Specifically, it seeks to uncover software regressions, or old bugs that have

come back. Such regressions occur whenever software functionality that was previously

working correctly stops working as intended. Typically, regressions occur as an unintended

consequence of program changes, when the newly developed part of the software collides

with the previously existing code. Common methods of regression testing include re-running

previously run tests and checking whether previously fixed faults have re-emerged. The

depth of testing depends on the phase in the release process and the risk of the added

features. They can either be complete, for changes added late in the release or deemed to

be risky, to very shallow, consisting of positive tests on each feature, if the changes are early

in the release or deemed to be of low risk. Acceptance testing Acceptance testing can mean

one of two things: 1. A smoke test is used as an acceptance test prior to introducing a new

build to the main testing process, i.e. before integration or regression. 2. Acceptance testing

performed by the customer, often in their lab environment on their own hardware, is

known as user acceptance testing (UAT). Acceptance testing may be performed as part of

the hand-off process between any two phases of development. Alpha testing Alpha testing

is simulated or actual operational testing by potential users/customers or an independent

test team at the developers' site. Alpha testing is often employed for off-theshelf software

as a form of internal acceptance testing, before the software goes to beta testing. Beta

testing Software Development Process – activities and steps Sofia 2010 Page 29 of 42 Beta

testing comes after alpha testing. Versions of the software, known as beta versions, are

released to a limited audience outside of the programming team. The software is released

to groups of people so that further testing can ensure the product has few faults or bugs.

Sometimes, beta versions are made available to the open public to increase the feedback

field to a maximal number of future users. Non-functional testing Special methods exist to

test non-functional aspects of software. In contrast to functional testing, which establishes

the correct operation of the software (correct in that it matches the expected behavior

defined in the design requirements), non-functional testing verifies that the software

functions properly even when it receives invalid or unexpected inputs. Software fault

injection, in the form of fuzzing, is an example of non-functional testing. Nonfunctional

testing, especially for software, is designed to establish whether the device under test can

tolerate invalid or unexpected inputs, thereby establishing the robustness of input

validation routines as well as error-handling routines. Various commercial non-functional

testing tools are linked from the software fault injection page; there are also numerous

opensource and free software tools available that perform non-functional testing. Software

performance testing and load testing Performance testing is executed to determine how

fast a system or sub-system performs under a particular workload. It can also serve to

validate and verify other quality attributes of the system, such as scalability, reliability and

resource usage. Load testing is primarily concerned with testing that can continue to

operate under a specific load, whether that be large quantities of data or a large number of

users. This is generally referred to as software scalability. The related load testing activity of

when performed as a non-functional activity is often referred to as endurance testing.

Volume testing is a way to test functionality. Stress testing is a way to test reliability. Load

testing is a way to test performance. There is little agreement on what the specific goals of

load testing are. The terms load testing, performance testing, reliability testing, and volume

testing, are often used interchangeably. Stability testing Stability testing checks to see if the

software can continuously function well in or above an acceptable period. This activity of

non-functional software testing is oftentimes referred to as load (or endurance) testing.

Usability testing Usability testing is needed to check if the user interface is easy to use and

understand. Security testing Security testing is essential for software that processes

confidential data to prevent system intrusion by hackers. Internationalization and

localization Software Development Process – activities and steps Sofia 2010 Page 30 of 42

Internationalization and localization is needed to test these aspects of software, for which a

pseudolocalization method can be used. It will verify that the application still works, even

after it has been translated into a new language or adapted for a new culture (such as

different currencies or time zones). Destructive testing Destructive testing attempts to

cause the software or a sub-system to fail, in order to test its robustness. The testing

process Traditional CMMI or waterfall development model A common practice of software

testing is that testing is performed by an independent group of testers after the

functionality is developed, before it is shipped to the customer. This practice often results in

the testing phase being used as a project buffer to compensate for project delays, thereby

compromising the time devoted to testing. Another practice is to start software testing at

the same moment the project starts and it is a continuous process until the project finishes.

Agile or Extreme development model In counterpoint, some emerging software disciplines

such as extreme programming and the agile software development movement, adhere to a

"test-driven software development" model. In this process, unit tests are written first, by

the software engineers (often with pair programming in the extreme programming

methodology). Of course these tests fail initially; as they are expected to. Then as code is

written it passes incrementally larger portions of the test suites. The test suites are

continuously updated as new failure conditions and corner cases are discovered, and they

are integrated with any regression tests that are developed. Unit tests are maintained along

with the rest of the software source code and generally integrated into the build process

(with inherently interactive tests being relegated to a partially manual build acceptance

process). The ultimate goal of this test process is to achieve continuous deployment where

software updates can be published to the public frequently. A sample testing cycle Although

variations exist between organizations, there is a typical cycle for testing. The sample below

is common among organizations employing the Waterfall development model.

Requirements analysis: Testing should begin in the requirements phase of the software

development life cycle. During the design phase, testers work with developers in

determining what aspects of a design are testable and with what parameters those tests

work. Test planning: Test strategy, test plan, testbed creation. Since many activities will be

carried out during testing, a plan is needed. Test development: Test procedures, test

scenarios, test cases, test datasets, test scripts to use in testing software. Software

Development Process – activities and steps Sofia 2010 Page 31 of 42 Test execution:

Testers execute the software based on the plans and test documents then report any errors

found to the development team. Test reporting: Once testing is completed, testers

generate metrics and make final reports on their test effort and whether or not the

software tested is ready for release. Test result analysis: Or Defect Analysis, is done by the

development team usually along with the client, in order to decide what defects should be

treated, fixed, rejected (i.e. found software working properly) or deferred to be dealt with

later. Defect Retesting: Once a defect has been dealt with by the development team, it is

retested by the testing team. AKA Resolution testing. Regression testing: It is common to

have a small test program built of a subset of tests, for each integration of new, modified, or

fixed software, in order to ensure that the latest delivery has not ruined anything, and that

the software product as a whole is still working correctly. Test Closure: Once the test

meets the exit criteria, the activities such as capturing the key outputs, lessons learned,

results, logs, documents related to the project are archived and used as a reference for

future projects. Automated testing Many programming groups are relying more and more

on automated testing, especially groups that use test-driven development. There are many

frameworks to write tests in, and continuous integration software will run tests

automatically every time code is checked into a version control system. While automation

cannot reproduce everything that a human can do (and all the strange ways they think of

doing it), it can be very useful for regression testing. However, it does require a well-

developed test suite of testing scripts in order to be truly useful. Testing tools Program

testing and fault detection can be aided significantly by testing tools and debuggers.

Testing/debug tools include features such as: Program monitors, permitting full or partial

monitoring of program code including: o Instruction set simulator, permitting complete

instruction level monitoring and trace facilities o Program animation, permitting step-by-

step execution and conditional breakpoint at source level or in machine code o Code

coverage reports Formatted dump or symbolic debugging, tools allowing inspection of

program variables on error or at chosen points Automated functional GUI testing tools are

used to repeat system-level tests through the GUI Software Development Process –

activities and steps Sofia 2010 Page 32 of 42 Benchmarks, allowing run-time performance

comparisons to be made Performance analysis (or profiling tools) that can help to highlight

hot spots and resource usage Some of these features may be incorporated into an

Integrated Development Environment (IDE). Measurement in software testing Usually,

quality is constrained to such topics as correctness, completeness, security, but can also

include more technical requirements as described under the ISO standard ISO/IEC 9126,

such as capability, reliability, efficiency, portability, maintainability, compatibility, and

usability. There are a number of frequently-used software measures, often called metrics,

which are used to assist in determining the state of the software or the adequacy of the

testing. Testing artifacts Software testing process can produce several artifacts. Test plan A

test specification is called a test plan. The developers are well aware what test plans will be

executed and this information is made available to management and the developers. The

idea is to make them more cautious when developing their code or making additional

changes. Some companies have a higher-level document called a test strategy. Traceability

matrix A traceability matrix is a table that correlates requirements or design documents to

test documents. It is used to change tests when the source documents are changed, or to

verify that the test results are correct. Test case A test case normally consists of a unique

identifier, requirement references from a design specification, preconditions, events, a

series of steps (also known as actions) to follow, input, output, expected result, and actual

result. Clinically defined a test case is an input and an expected result. This can be as

pragmatic as 'for condition x your derived result is y', whereas other test cases described in

more detail the input scenario and what results might be expected. It can occasionally be a

series of steps (but often steps are contained in a separate test procedure that can be

exercised against multiple test cases, as a matter of economy) but with one expected result

or expected outcome. The optional fields are a test case ID, test step, or order of execution

number, related requirement(s), depth, test category, author, and check boxes for whether

the test is automatable and has been automated. Larger test cases may also contain

prerequisite states or steps, and descriptions. A test case should also contain a place for the

actual result. These steps can be stored in a word processor document, spreadsheet,

database, or other common repository. In a database system, Software Development

Process – activities and steps Sofia 2010 Page 33 of 42 you may also be able to see past test

results, who generated the results, and what system configuration was used to generate

those results. These past results would usually be stored in a separate table. Test script The

test script is the combination of a test case, test procedure, and test data. Initially the term

was derived from the product of work created by automated regression test tools. Today,

test scripts can be manual, automated, or a combination of both. Test suite The most

common term for a collection of test cases is a test suite. The test suite often also contains

more detailed instructions or goals for each collection of test cases. It definitely contains a

section where the tester identifies the system configuration used during testing. A group of

test cases may also contain prerequisite states or steps, and descriptions of the following

tests. Test data In most cases, multiple sets of values or data are used to test the same

functionality of a particular feature. All the test values and changeable environmental

components are collected in separate files and stored as test data. It is also useful to provide

this data to the client and with the product or a project. Test harness The software, tools,

samples of data input and output, and configurations are all referred to collectively as a test

harness. Certifications Several certification programs exist to support the professional

aspirations of software testers and quality assurance specialists. No certification currently

offered actually requires the applicant to demonstrate the ability to test software. No

certification is based on a widely accepted body of knowledge. This has led some to declare

that the testing field is not ready for certification. Certification itself cannot measure an

individual's productivity, their skill, or practical knowledge, and cannot guarantee their

competence, or professionalism as a tester. Software testing certification types Exam-

based: Formalized exams, which need to be passed; can also be learned by self-study [e.g.,

for ISTQB or QAI] Education-based: Instructor-led sessions, where each course has to be

passed [e.g., International Institute for Software Testing (IIST)]. Testing certifications

Certified Associate in Software Testing (CAST) offered by the Quality Assurance Institute

(QAI) CATe offered by the International Institute for Software Testing Software

Development Process – activities and steps Sofia 2010 Page 34 of 42 Certified Manager in

Software Testing (CMST) offered by the Quality Assurance Institute (QAI) Certified

Software Tester (CSTE) offered by the Quality Assurance Institute (QAI) Certified Software

Test Professional (CSTP) offered by the International Institute for Software Testing CSTP

(TM) (Australian Version) offered by K. J. Ross & Associates ISEB offered by the

Information Systems Examinations Board ISTQB Certified Tester, Foundation Level (CTFL)

offered by the International Software Testing Qualification Board ISTQB Certified Tester,

Advanced Level (CTAL) offered by the International Software Testing Qualification Board

Quality assurance certifications CMSQ offered by the Quality Assurance Institute (QAI).

CSQA offered by the Quality Assurance Institute (QAI) CSQE offered by the American

Society for Quality (ASQ) CQIA offered by the American Society for Quality (ASQ)

Controversy Some of the major software testing controversies include: What constitutes

responsible software testing? Members of the "context-driven" school of testing believe

that there are no "best practices" of testing, but rather that testing is a set of skills that

allow the tester to select or invent testing practices to suit each unique situation. Agile vs.

traditional Should testers learn to work under conditions of uncertainty and constant

change or should they aim at process "maturity"? The agile testing movement has received

growing popularity since 2006 mainly in commercial circles, whereas government and

military software providers are slow to embrace this methodology in favour of traditional

test-last models (e.g. in the Waterfall model). Exploratory test vs. scripted Should tests be

designed at the same time as they are executed or should they be designed beforehand?

Manual testing vs. automated Software Development Process – activities and steps Sofia

2010 Page 35 of 42 Some writers believe that test automation is so expensive relative to its

value that it should be used sparingly. More in particular, test-driven development states

that developers should write unit-tests of the XUnit type before coding the functionality.

The tests then can be considered as a way to capture and implement the requirements.

Software design vs. software implementation Should testing be carried out only at the end

or throughout the whole process? Who watches the watchmen? The idea is that any form of

observation is also an interaction—the act of testing can also affect that which is being

tested. References 1. Exploratory Testing], Cem Kaner, Florida Institute of Technology,

Quality Assurance Institute Worldwide Annual Software Testing Conference, Orlando, FL,

November 2006 2. ^ Leitner, A., Ciupa, I., Oriol, M., Meyer, B., Fiva, A., "Contract Driven

Development = Test Driven Development - Writing Test Cases", Proceedings of ESEC/FSE'07:

European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering 2007, (Dubrovnik, Croatia), September 2007 3.

Software errors cost U.S. economy $59.5 billion annually, NIST report 4. Kolawa, Adam;

Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software

Management. Wiley-IEEE Computer Society Press. p. 41–43. ISBN 0470042125.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html. 5. Kolawa,

Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software

Management. Wiley-IEEE Computer Society Press. p. 86. ISBN 0470042125.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html. 6. Section 1.1.2,

Certified Tester Foundation Level Syllabus, International Software Testing Qualifications

Board 7. Kaner, Cem; James Bach, Bret Pettichord (2001). Lessons Learned in Software

Testing: A Context-Driven Approach. Wiley. p. 4. ISBN 0-471-08112-4. 8. McConnell, Steve

(2004). Code Complete (2nd ed.). Microsoft Press. pp. 960. ISBN 0-7356-1967-0. 9. Principle

2, Section 1.3, Certified Tester Foundation Level Syllabus, International Software Testing

Qualifications Board 10. Savenkov, Roman (2008). How to Become a Software Tester.

Roman Savenkov Consulting. p. 159. ISBN 978-0-615-23372-7. 11. Black, Rex (December

2008). Advanced Software Testing- Vol. 2: Guide to the ISTQB Advanced Certification as an

Advanced Test Manager. Santa Barbara: Rocky Nook Publisher. ISBN 1933952369. 12.

Quality Assurance Institute 13. International Institute for Software Testing 14. "ISTQB".

http://www.istqb.org/. 15. "ISTQB in the U.S.". http://www.astqb.org/. Software

Development Process – activities and steps Sofia 2010 Page 36 of 42 16. American Society

for Quality 17. context-driven-testing.com 18. Article on taking agile traits without the agile

method. 19. ―We’re all part of the story‖ by David Strom, July 1, 2009 20. IEEE article about

differences in adoption of agile trends between experienced managers vs. young students of

the Project Management Institute. See also Agile adoption study from 2007 21. Agile

software development practices slowly entering the military 22. IEEE article on Exploratory

vs. Non Exploratory testing Software Development Process – activities and steps Sofia 2010

Page 37 of 42 SOFTWARE DEPLOYMENT Software deployment is all of the activities that

make a software system available for use. The general deployment process consists of

several interrelated activities with possible transitions between them. These activities can

occur at the producer site or at the consumer site or both. Because every software system is

unique, the precise processes or procedures within each activity can hardly be defined.

Therefore, "deployment" should be interpreted as a general process that has to be

customized according to specific requirements or characteristics. A brief description of each

activity will be presented later. Deployment activities Release The release activity follows

from the completed development process. It includes all the operations to prepare a system

for assembly and transfer to the customer site. Therefore, it must determine the resources

required to operate at the customer site and collect information for carrying out subsequent

activities of deployment process. Install and activate Activation is the activity of starting up

the executable component of software. For simple system, it involves establishing some

form of command for execution. For complex systems, it should make all the supporting

systems ready to use. In larger software deployments, the working copy of the software

might be installed on a production server in a production environment. Other versions of

the deployed software may be installed in a test environment, development environment

and disaster recovery environment. Deactivate Deactivation is the inverse of activation, and

refers to shutting down any executing components of a system. Deactivation is often

required to perform other deployment activities, e.g., a software system may need to be

deactivated before an update can be performed. The practice of removing infrequently used

or obsolete systems from service is often referred to as application retirement or

application decommissioning. Adapt The adaptation activity is also a process to modify a

software system that has been previously installed. It differs from updating in that

adaptations are initiated by local events such as changing the environment of customer site,

while updating is mostly started from remote software producer. Update The update

process replaces an earlier version of all or part of a software system with a newer release.

Software Development Process – activities and steps Sofia 2010 Page 38 of 42 Built-In

Mechanisms for installing updates are built into some software systems. Automation of

these update processes ranges from fully automatic to user initiated and controlled. Norton

Internet Security is an example of a system with a semi-automatic method for retrieving and

installing updates to both the antivirus definitions and other components of the system.

Other software products provide query mechanisms for determining when updates are

available. Version tracking Version tracking systems help the user find and install updates to

software systems installed on PCs and local networks. Web based version tracking systems

notify the user when updates are available for software systems installed on a local system.

For example: VersionTracker Pro checks software versions on a user's computer and then

queries its database to see if any updates are available. Local version tracking system

notifies the user when updates are available for software systems installed on a local

system. For example: Software Catalog stores version and other information for each

software package installed on a local system. One click of a button launches a browser

window to the upgrade web page for the application, including auto-filling of the user name

and password for sites that require a login. Browser based version tracking systems notify

the user when updates are available for software packages installed on a local system. For

example: wfxVersions is a Firefox extension which helps the user find the current version

number of any program listed on the web. Uninstall Uninstallation is the inverse of

installation. It is a remove of a system that is no longer required. It also involves some

reconfiguration of other software systems in order to remove the uninstalled system’s files

and dependencies. This is not to be confused with the term "deinstall" which is not actually

a word. Retire Ultimately, a software system is marked as obsolete and support by the

producers is withdrawn. It is the end of the life cycle of a software product. Application

lifecycle management Product lifecycle management Systems management System

deployment Software release Software Development Process – activities and steps Sofia

2010 Page 39 of 42 External links Standardization efforts o Solution Installation Schema

Submission request to W3C o OASIS Solution Deployment Descriptor TC o OMG

Specification for Deployment and Configuration of Component-based Distributed

Applications (OMG D&C) o JSR 88: Java EE Application Deployment Software Development

Process – activities and steps Sofia 2010 Page 40 of 42 SOFTWARE MAINTENANCE Software

maintenance in software engineering is the modification of a software product after

delivery to correct faults, to improve performance or other attributes, or to adapt the

product to a modified environment. Overview ISO/IEC 14764:2006 describes the six

software maintenance processes as: 1. The implementation processes contains software

preparation and transition activities, such as the conception and creation of the

maintenance plan, the preparation for handling problems identified during development,

and the follow-up on product configuration management. 2. The problem and modification

analysis process, which is executed once the application has become the responsibility of

the maintenance group. The maintenance programmer must analyze each request, confirm

it (by reproducing the situation) and check its validity, investigate it and propose a solution,

document the request and the solution proposal, and, finally, obtain all the required

authorizations to apply the modifications. 3. The process considering the implementation of

the modification itself. 4. The process acceptance of the modification, by confirming the

modified work with the individual who submitted the request in order to make sure the

modification provided a solution. 5. The migration process (platform migration, for example)

is exceptional, and is not part of daily maintenance tasks. If the software must be ported to

another platform without any change in functionality, this process will be used and a

maintenance project team is likely to be assigned to this task. 6. Finally, the last

maintenance process, also an event which does not occur on a daily basis, is the retirement

of a piece of software. There are a number of processes, activities and practices that are

unique to maintainers, for example: Transition: a controlled and coordinated sequence of

activities during which a system is transferred progressively from the developer to the

maintainer; Service Level Agreements (SLAs) and specialized (domain-specific)

maintenance contracts negotiated by maintainers; Modification Request and Problem

Report Help Desk: a problem-handling process used by maintainers to prioritize, documents

and route the requests they receive; Modification Request acceptance/rejection:

modification request work over a certain size/effort/complexity may be rejected by

maintainers and rerouted to a developer. A common perception of maintenance is that it is

merely fixing bugs. However, studies and surveys over the years have indicated that the

majority, over 80%, of the maintenance effort is used for non-corrective actions (Pigosky

1997). This perception is perpetuated by users submitting problem reports that in reality are

functionality enhancements to the system. Software maintenance and evolution of systems

was first addressed by Meir M. Lehman in 1969. Over a period of twenty years, his research

led to the formulation of eight Laws of Evolution (Lehman 1997). Key findings of his research

include that maintenance is really evolutionary developments and that maintenance

decisions are aided by understanding what happens to systems (and software) over time.

Software Development Process – activities and steps Sofia 2010 Page 41 of 42 Lehman

demonstrated that systems continue to evolve over time. As they evolve, they grow more

complex unless some action such as code refactoring is taken to reduce the complexity. The

key software maintenance issues are both managerial and technical. Key management

issues are: alignment with customer priorities, staffing, which organization does

maintenance, estimating costs. Key technical issues are: limited understanding, impact

analysis, testing, maintainability measurement. Categories of maintenance in ISO/IEC 14764

E.B. Swanson initially identified three categories of maintenance: corrective, adaptive, and

perfective. These have since been updated and ISO/IEC 14764 presents: Corrective

maintenance: Reactive modification of a software product performed after delivery to

correct discovered problems. Adaptive maintenance: Modification of a software product

performed after delivery to keep a software product usable in a changed or changing

environment. Perfective maintenance: Modification of a software product after delivery to

improve performance or maintainability. Preventive maintenance: Modification of a

software product after delivery to detect and correct latent faults in the software product

before they become effective faults. There is also a notion of pre-delivery/pre-release

maintenance which is all the good things you do to lower the total cost of ownership of the

software. Things like compliance with coding standards that includes software

maintainability goals. The management of coupling and coheasion of the software. The

attainment of software supportability goals (SAE JA1004, JA1005 and JA1006 for example).

Note also that some academic institutions are carrying out research to quantify the cost to

ongoing software maintenance due to the lack of resources such as design documents and

system/software comprehension training and resources (multiply costs by approx. 1.5-2.0

where there is no design data available.). Note also that microsoft, the main culprits in the

"we don't need no skinking documentation" camp, are spending millions on research to

work out how NOT to put bugs into software - and it sounds like it's get requirements right,

design and document the code etc - ground breaking stuff (if only people would read the

IEEE/ISO standards). See also Software development Computer software Software

Engineering Software evolution References 1. ISO/IEC 14764:2006 Software Engineering —

Software Life Cycle Processes — Maintenance Further reading Software Development

Process – activities and steps Sofia 2010 Page 42 of 42 Gopalaswamy Ramesh; Ramesh

Bhattiprolu (2006). Software maintenance : effective practices for geographically distributed

environments. New Delhi: Tata McGraw-Hill. ISBN 9780070483453. Grubb, Penny; Takang,

Armstrong (2003). Software Maintenance. New Jersey: World Scientific Publishing. ISBN

9789812384256. Lehman, M.M.; Belady, L.A. (1985). Program evolution : processes of

software change. London: Academic Press Inc. ISBN 0-12-442441-4. Page-Jones, Meilir

(1980). The Practical Guide to Structured Systems Design. New York: Yourdon Press. ISBN 0-

917072-17-0.

