
HUMAN-COMPUTER INTERACTION, 1990, Volume 5, pp. 221-265
Copyright @ 1990, Lawrence Erlbaum Associates, Inc.

The Growth of Cognitive Modeling
in Human-Computer Interaction

Since GOMS

Judith Reitman Olson and Gary
The University of Michigan

M. Olson

ABSTRACT

The purpose of this article is to review where we stand with regard to
modeling the kind of cognition involved in human-computer interaction.
Card, Moran, and Newell's pioneering work on cognitive engineering models
and explicit analyses of the knowledge people need to perform a procedure
was a significant advance from the kind of modeling cognitive psychology
offered at the time. Since then, coordinated bodies of research have both
confirmed the basic set of parameters and advanced the number of parame-
ters that account for the time of certain component activities. Formal
modeling in grammars and production systems has provided an account for
error production in some cases, as well as a basis for calculating how long a
system will take to learn and how much savings there is from previous
learning. Recently, we were given a new tool for modeling nonsequential
component processes, adapting the "critical path analysis" from engineering to
the specification of interacting processes and their consequent durations.

Though these advances have helped, there are still significant gaps in our
understanding of the whole process of interacting with computers. The
cumulative nature of this empirical body and its associated modeling frarne-
work has further highlighted important issues central to research in cognitive

Authors'presmt address: Judith Reitman Olson and Gary M. Olson, Cognitive Science
and Machine Intelligence Laboratory, The University of Michigan, 701 Tappan, Ann
Arbor, MI 48109-1234.

222 OLSON AND OLSON

CONTENTS

1. GOMS AS COGNITIVE MODELING
1.1. Limitations of the GOMS Approach
1.2. h of T h Article

2. ADVANCES IN MOlDELIWG SPECIFIC SERIAL COMPONENTS
2.1. Motor Movements

Keying
Moving a Mouse
An Example of the Application of GOMS and MHP to Design Genera-
tion
Hand Movements

2.2. Perception
2.3. Memory and Cognitive Processes

Memory Retrieval
Executing Steps in a Tank
Choosing Among Methods

2.4. Predicting Composite Performance From These Parameters
3. EXTEMSfONS OF TBE B W C FI1AMEWOWC

3.1. Learning and Transfer
Time to Learn
Transfer of Training From One Syrtem to the Other

3.2. The Analysis of Errors: Forgetting From Working Memory
3.3. Parallel Processes
3.4. Critical Path Adysis: An + r o d to PoraW P&g

4. THE PLACE OF COGNITIVE MOBELING IN HUMAN-COMPUTER
INTERACTION

4.1. Additional Plausible and Useful Extensions
Nonskilled or Casual Users
Learning
Errors and Mental Workload
Cognitive Processes
Parallel Processes
Individual Differences

4.2. Cognitive Modeling in Human-Computer Interaction

psychology: how people move smoothly between skilled performance and
problem solving, how people learn, how to design for consistent user
interfaces, how people produce and manage errors, how we interpret visual
displays for meaning, and what processes run concurrently and which depend
on the completion of prior processes.

In the bigger picture, cognitive modeling is a method that is useful in both
initial design (it can narrow the design space and provide early analyses of
design alternatives), evaluation, and training. But it does not extend to
broader aspects of the context in which people use computers, partly because

GROWTH OF COGNITIVE MODELING IN HCI

there are significant gaps in contemporary cognitive theory to inform the
modeling and partly because it is the wrong form of model for certain kinds
of more global questions in human-computer interaction. Notably, it fails to
capture the user's fatigue, individual differences, or mental workload. And it
is not the type of model that will aid the designer in designating the set of
functions the software ought to contain, to assess the user's judgment of the
acceptability of the software, or the change that could be expected in work life
and the organization in which this work and person fits. Clearly, these kinds
of considerations require modeling and tools of a different granularity and
form.

1. GOMS AS COGNITIVE MODELING

The ability to predict how users will interact with proposed designs is a
useful tool for the system designer. Being able to make such predictions is one
of the principal goals of a class of cognitive models that has emerged following
on the work of Card, Moran, and Newel1 (1980a, 1980b, 1983). In this
article, we examine the strengths and weaknesses of such models, focusing in
particular on confirmations and extensions that have emerged since the
original proposals. New work has addressed some of the well-known weak-
nesses of the original approach, but it is still important to understand exactly
the limits of these kinds of models.

In very few design fields does the process of design proceed from first
principles. Rather, new designs most often arise from old designs, from
analogies, or from other sources of creative thought. First principles are then
used to screen these candidate designs. This is exactly the role for which
cognitive models are best suited (Newell & Card, 1985, 1986). To be concrete,
cognitive models are useful in:

1. Initially constraining the design space, so that one does not build an
interface, for example, that requires more items to be kept in memory
than will fit in working memory (WM).

2. Answering specific design decisions, so that one can decide, for
example, between a dialogue that requires few keystrokes but difficult
retrieval from memory or one that involves more keystrokes but is easier
to remember.

3. Estimating the total time for task performance with sufficient accuracy
to make decisions about how many people are needed to staff the
performance of a repetitive operational task on a computer.

4. Providing the base from which both to calculate training time and to
guide training documentation to help the user determine in which
situations which method is most efficient.

224 OLSON AND OLSON

5. Knowing which stages of activity take the longest time or produce the
most errors, in directing research toward the aspects of human-
computer interaction that will have strong future performance implica-
tions.

Card et al. (1980a, 1980b, 1983) proposed a framework for building such
analytic models of human performance with computers. This framework
represented a significant advance from modeling in cognitive psychology in
that many of the processes contributing to the full cycle of perception to action
were modeled together and the knowledge that is considered necessary to
perform a task was described in enough detail to generate predictions about
human behavior in real, naturalistic tasks.

The framework has two key components. The first is a general character-
ization of the human information-processing system, in terms of both a
system architecture and quantitative parameters of component performance.
This they called the Model Human Processor (MHP), and it summarized a large
body of research from cognitive psychology. The second key component is a
way of describing what the user needs to know in order to perform
computer-based tasks, a model called GOMS'. The GOMS model-actually a
family of models - describes the knowledge necessary and the four cognitive
components of skilled performance in tasks: goals, operators, methods, and
selection rules.

The GOMS framework provided Card et al. with the basis for predicting
the methods and operators users would follow in carrying out a particular
well-known task (the goal) and, given a method, how long that task would
take. Figure 1 shows the steps a user proceeds through in using a piece of
software (adapted from Norman, 1986). The user perceives activity on the
screen, evaluates whether it is what is expected given the goals the user is
trying to accomplish, sets up an intention of the next step, retrieves the way
to enact this intent on this system, and executes the appropriate motor
movements. This produces new activity on the screen, and the user cycles
through the process again. The original GOMS framework focused on
explaining the selection from memory of methods appropriate to the situation
(the goal and intention phases of Figure 1) and the time to specify and to
execute the action.

The strength of this approach is its ability to predict the time it takes a
skilled user to execute a task based on the composite of actions of retrieving
plans from long-term memory, choosing among alternative available methods
depending on features of the task at hand, keeping track of what has been
done and what needs to be done, and executing the motor movements
necessary for the keyboard and mouse. To make useful predictions, GOMS
assumes that routine cognitive skills can be described as a serial sequence of
cognitive operations and motor activities. Each of these actions has a time
parameter that is independent of the particular context within a task and is

GROWTH OF COGNITIVE MODELING IN HCI 225

Figure 1. The seven steps of user activities involved in the performance of a
computer-based task (based on Norman, 1986).

Mental Activity
.., ..

Physical Activity

constant across tasks. Card et al. (1983) proposed such a theory, more
constrained than general cognitive theories, in order to make engineering
calculations.

Time parameters for external actions (and one internal action, that of
retrieving the next unit of a plan) were estimated from empirical data derived
from people using text editors, graphics systems, and some functions from the
operating system of a variety of software. These numbers were generally
obtained from a regression model, in which each unit task was assumed to
consist of a set of keystrokes, hand movements, mental retrievals, and the
like. Over a wide set of unit tasks from a variety of systems, values were
obtained for these component processes. In later work, times for new
parameters were derived in a similar manner except by Olson and Nilsen
(1988). In their work, they recorded the time for every external act in a
"keystroke capture" program, not just the total time for a task. Their
regression analyses, therefore, included many more data points, each of
smaller size, with each data point being a composite of a set of parameters
relevant to that individual moment, not a sum over many different acts.

226 OLSON AND OLSON

Card et al. (1983) found parameters that were very consistent across tasks.
Of note were:

1. A keystroke, called k, for a midsmed typist is 280 meec.
2. A single mental operator, called M, ofken interpreted as the time to

retrieve the next chunk of information from long-term memory into
WM is 1.35 s.

3. Pointing, called P, to a target on a small display with a mouse takes on
average 1.1 sec (though the time is variable according to Fitts's law).

4. Moving the hands, called H, from the keyboard to the mouse takes 400
msec.

An analyst or designer using these parameters to predict how long a
particular task would take was given heuristics about where in the task
retrieval of the next unit theoretically took place (where to put the Ms) and
when to insert the amount of time the system takes to respond. For example,
retrieval (M) occurs at each unit boundary (a word, a single symbol or
function key, a string of movements with a step key). Accordingly, if a subject
were going to enter a formula in a spreadsheet by pointing with cursor-step
keys to the cells that contain the desired values, a formula for adding the
contents of cells from B22 to B29 would include:

@ ,* (A A A A A A A A A A A A ' A A A A A A)<ret>
M K M k k k Mk M k k k k k k k k k k k k M k M k k k k k k M k M k

which adds up to:

8 Ms and 26 ks
8(1.35) + 26(.280) = 18.08 s.

Using the small set of parameters with associated times derived from a large
set of tasks, they were able to account for 90% of the variance in predicting
unit task times such as the foregoing (Card et al., 1983, p. 294).

1.1. Limitations of the GOMS Approach

From the outset, it was clear that the GOMS approach to user modeling
had well-defined strengths and weaknesses. Various GOMS models, partic-
ularly the keystroke-level model, provided good quantitative fits to the
performance times of skilled users during errorless performance. Indeed, the
parameters were stable enough so that performance in appropriate new
situations could be predicted without the need to estimate parameters from

GROWTH OF COGNITIVE MODELING IN HCI

the data. This ability to derive parameter-free estimates is part of what makes
the GOMS approach useful in design, because it allows comparisons of
different design alternatives. This is the key feature of the engineering
approach that the GOMS models reflect.

One potential limitation of the GOMS model is that the initial work
reported by Card et al. was carried out in a limited range of domains. There
is always the question of whether the framework holds up when it is taken into
new domains.

But there are more serious questions about the value of GOMS. Although
there are many critiques of GOMS (e.g., Carroll & Campbell, 1986; Karat,
1988; Wilson, Barnard, Green, & MacLean, 1988), the most explicitly
detailed list came from Card et al. (1980) themselves in their original framing
of the model. A compilation of these shortcomings includes:

1. The model applied to skilled users, not to beginners or intermediates.
Such nonskilled urers spend considerable time engaged in problem-
solving activities, rather than simply retrieving and executing plans,
and move smoothly between problem solving and skilled behavior.

2. The model gave an account of skilled performance at asymptote but no
account of either learning of the system or its recall after a period of
disuse, nor how to design an easily learned consistent interface.

3. The model focused on errorless performance and, thus, gave no
account of the mors that frequently occur even in skilled performance.

4. The model was most explicit about elementary perceptual and motor
components of skilled behavior but tended to treat the cognitive processes
in skilled behavior in a less differentiated fashion.

5. The model was developed exclusively for tasks in which the principal
components that were being modeled could reasonably be assumed to
be serial in nature. However, tasks have a substantial number of
component processes that, at some level, must occur. in parallel.

6. The model does not address mental workload-how much must be held
in mind while using the system.

7. The model addresses only the usability of a task on a system and does
not address functionality, that is, what tasks should be performed by the
computer.

8. The model does not address the amount and kind of fatigue users
experience using a system.

9. The model does not account for individual dtflmences among users.
10. The model does not provide guidance in predicting whether users will

judge the system to be either useful or satisfying, or whether the system
will be globally acceptable.

11. The model stops short of addressing any aspects of how computer-
supported work fits or misfits office or organizational life.

OLSON AND OLSON

It is useful to ask which of these objectives have been addressed in
subsequent work, which remain possible but unexplored, and which seem
entirely beyond the scope of even an extended GOMS model.

1.2. Plan of This Article

The purpose of this article is to review these advances in cognitive modeling
and to outline the significant problems that remain for both the designer in
search of guidance and the cognitive psychologist interested in how cognitive
processes interact to produce behavior of the sort exhibited in human-
computer interaction. We do this by addressing the three main points.

First, we review the extent to which the quantitative estimates of task
components described by Card et al. (1983) have held up in further research.
Subsequent studies of skilled performance in several different domains have
provided strong confirmation for the original work.

Second, a number of investigators have taken the Card et al. (1983)
framework in new directions. We examine three in particular: the study of
learning and transfer, the study of errors, and the analysis of parallel
processes. In each case, the basic Card et al. framework is preserved, but
additional value is added.

Third, a number of limitations remain, either because cognitive science
currently provides no guidance to this aspect of human-computer interaction
or because the questions require a wholly different modeling approach. We
close with an examination of the place of cognitive modeling in the broader
context of research on human-computer interaction.

2. ADVANCES IN MODELING SPECIFIC SERIAL
COMPONENTS

A number of researchers have followed the spirit of GOMS and the MHP
in empirical explorations. These investigations are direct tests of both the
assumption of serial processing and the assumption that time parameters are
constant across a wide range of tasks.

We have gathered the different parameters that various researchers have
found; displayed them in Figures 3, 5, and 6; and summarized them in Figure
7. Each figure displays parameters as found in Card et al.'s (1983) empirical
work and in their review of the relevant cognitive psychology literature as
summarized in the MHP. Added to these parameters are values found in
studies with a similar spirit: studies of entering editor commands with
keystroke codes, entering formulas in spreadsheets, and so on. The new
parameters are listed in italics in these three figures.

GROWTH OF COGNITIVE MODELING IN HCI 229

F i p n 2. The seven steps of user activities involved in the performance of a
computer-based task, annotated with known cognitive processes.

\ Execute a mental 1
Choose among

methods

Mental Activity

\ \ Physical Activity

MOTOR

Keystroke
Point
Moue hands

The parameters cluster into three general classes: motor movement,
perception, and memory and cognition. These general classes of behavior
map onto the seven steps of user activity as shown in Figure 2.

2.1. Motor Movements

Figure 3 summarizes the values found in various studies relevant to
keyboard entry, using a mouse, and moving hands back and forth from
keyboard to pointing devices.

Keying

A set of parameters accounts for the time to enter a keystroke in a normal
typing task, the actual value depending on the skill level of the typist, the

Figun 3. Parameters describing component procescres in motor movement.

-a-
Average non-secty typist 280 msec CMN

Best typist (120 wpm) 80 msec CMN
Good typist 120 msec CMN
Average skilled typist (60 wpm) ZOO msec CMN
Typing random letters 500 msec CMN
Typing complex codes 750 msec CMN
Worst typist 1200 msec CMN

Entering spreadsheet formulas
Lotus 330 msec O&N
Multiplan 220 msec o&N

Entering column l width commands
Lotus 280 msec O&N
Mul$iplan 230 msec o&N

Enter command abbreuiations 230 msec J&N
Expert typing cross-hand digraphs

170 msec J&N
Expert typing same-hand digraphs

220 msec J&N

Point with a mouse
Average value, small screen, menu shaped target

1100 msec CMN

Varies with distance and size of target
1.0 + .10 log2(D/SI..5)sec CMN

Average value, small distance, menu target
1900 msec WSN

Varies with distance and size of target
.80 + .23 log2(D I S+.5)sec WSN

Move haa&e from keyboard to pointing device or back
To mouse 360 msec CMN
To joystick 260 msec CMN
To cursodarrow) keys 210 msec CMN
To function keys 320 msec CMN

O&N = Olson and Nilsen, 1988
J&N = John and Neweli, 1989

GROWTH OF COGNITIVE MODELING IN HCI 23 1

frequency with which the particular key is used, and the predictability and
continuity of the text to be typed. That is, regular transcription typing is
faster than entering formulas, for example, because numerals are less
frequently typed and often the placement of the number and symbol keys
requires perceptual search in addition to simple hand motor movements.
Card et al. (1983) reported parameters ranging from 80 msec per keystroke
for a typist of 135 words per minute (wpm) to 1200 msec per key for a user
unfamiliar with the keyboard. An average typist is reported to take 280 msec
per keystroke.

Two other researchers confirmed the basic keystroke parameters. Olson
and Nilsen (1988) found two separate keystroke times from their examination
of the moment by moment activity in entering and changing spreadsheets.
They found a keystroke time of 330 and 220 msec for entering formulas in
Lotus and Multiplan, respectively, and 280 and 230 msec for entering
keystrokes in a task that changes the widths of columns in Lotus and
Multiplan, respectively.

In their investigations of users entering command abbreviations, John and
her colleagues (John & Newell, 1987, 1989, in press; John, Rosenbloom, &
Newell, 1985) found keystrokes to be 230 msec in one, and 269 rnsec in the
other. A more recent investigation (John & Newell, 1989) found that in tasks
involving transcription typing, each keystroke was heavily dependent on skill
level and task, with values ranging from 70 msec to 220 msec per key. These
times correspond to the 200 msec for an average typist (60 wpm) from Card
et al. (1983) if we assume a 50-50 distribution of crosshand, same-hand pairs:

(170 + 220)/2 = 195 msec.

All these values are very close to the middle of the range of values
designated by Card et al. (1983) and slightly smaller than the value designated
in their work to represent typing random letters. These tasks, however, are
much more predictable than typing random letters and are often performed
by more skilled users.

Moving a Mouse

Pointing with a mouse at objects whose distances and target sizes covered
a variety of screens requires an average 1100 msec per selection, according to
Card et al. (1983). Although this value is appropriate for standard interfaces,
such as choosing a %-in. sized menu item on an 8%-in. diagonal screen (as in
a Macintosh SE), it is known to vary with the distance of the movement and
the size of the target, following Fitts's law (Fitts & Peterson, 1964). Because
screens now regularly exceed the standard 8% in., and the user more often
needs to point to scroll bars, window sizers, graphic-object "handles," and

OLSON AND OLSON

icons that are both small and widely scattered on big screens, more detail is
needed to assess this movement time accurately.

Card et al. (1983) explored the relationship between target size and distance
travelled in mouse movements, empirically determining the constants in
Fitts's law:

The form of this relationship is interesting. There is a large constant time
of 1 s to begin moving, no matter what the distance. Adjustments to this base
time are in increments of 100 msec each time the distance traveled is 1 '/2 times
as long as the size of the target. That is, this formula suggests that it takes
about 300 msec to reach the top of the screen from the middle' and 100 msec
to travel about j /2 in. (to the second menu item) on the Macintosh to hit the
%-in. menu item, about 1400 msec total.

Walker, Smelcer, and Nilsen (1989) explored the variations in this
relationship to predict the time to choose items from nested menus, menus
that present a second array of choices after the user chooses from a first
menu, usually in side-by-side strips. Their empirical evaluation determined
that the time to move to a target on the menu did indeed follow Fitts's law:

Although the initial movement time of 810 msec is close to the 1030 msec of
Card et al. (1983), the increment of 230 msec per unit distance and target size
is twice that found earlier. This difference is likely accounted for by the fact
the distance in the nested menus they used included a composite of the user
selecting the first item with a single downward motion, a turn to the right in
the item's slot, and a move to the edge, where the second set of items is
displayed. Thus, the distances used in the Walker et al. (1989) study include
the turns, as well as horizontal and vertical distance segments. The time is
slower because it includes other, more subtle component processes.

An Example of the Application of GOMS and MHP to Design
Generation

Walker et al. (1989) went a step further, using these facts to drive a design
process, by demonstrating how GOMS can constrain a designer's search in
such a way as to lead to large improvements in performance.

With the goal of shortening this total menu-selection time, Walker et al.
made three adjustments to the design of menus. One redesign shortened the
total distance the user had to travel to select an item by making the menu "pop

' But see the discussion of borders, later in this section.

GROWTH OF COGNITIVE MODELING IN HCI 233

Figure 4. Fittsized menus: Menus whose target areas grow with the distance the
user has to travel to get to them. In these particular menus, the cursor begins in
the middle-left of the menu. On the right panel is the menu with "borders" on the
top, right, and bottom edge, boundaries beyond which the cursor cannot move.

up" to the right of the cursor instead of below it. Though the average travel
distance in this design would be halved, there was question whether the user
might experience additional delays due to the uncertainty about which
direction the movement had to be launched. The results showed that the time
to select an item was far shorter when the menu popped up to the right of the
cursor than when the menu appeared below it. The time to travel to the target
was a much larger determinant of the total time than the small increment of
time to decide whether to begin to move up or down.

Two new menu types followed, both intended to reduce the selection time
by making the target bigger. Menus can be constructed so that the target size
grows as the distance from the cursor's starting position increases. These are
called "Fittsized menus" displayed on the left of Figure 4. In this menu, the
further the user has to travel, the bigger the target. The mean reduction in
this study, however, was only 80 msec, a small effect. Fitts's law, however,
tells us to expect this small effect. It is a complicated arrangement, because as
the targets grow, so does the overall distance to be traveled. But, in general,
we would have to increase the size of the furthest target by a factor of nearly
3 to reduce the travel time over 100 msec, for example, making the fourth
target item 1 in. tall if the first target item is the standard Macintosh 3/8 in.

In the third design on the quest for shorter selection times, Walker et al.
(1989) made the target size effectively much bigger by putting a virtual border
on the top, right, and bottom edges of the pop-up menu, a border beyond
which the cursor could not move even though the mouse moved. This is
similar to the border that the Macintosh interface has at the top of the screen.

234 OLSON AND OLSON

The cursor will not move off the screen, even though the user has moved the
mouse to a place that would translate beyond the screen edge if it were
unconstrained. In this situation, shown on the right-hand side of Figure 4, the
target size is effectively very large and much easier to hit. This kind of menu
reduced the selection time by a large amount. The average selection time over
all menu positions in the original design was 1.9 s. Adding the borders
reduced the average time by 450 msec, a reduction of nearly 25 % .

Hand Movements

Hand movement time is the time needed to move from the space bar of the
keyboard until the pointing control begins to move the cursor. This is a
large-muscle movement also well characterized by Fitts's law; the time to
reach a target (in this case, the mouse or joystick) is a function of the distance
to the target and its size. This time was calculated from behavioral data to be
approximately 360 msec, a relatively small, fixed amount of time because the
mouse is typically in about the same position each time, and the target itself
is large (see Card et al., 1983, Figure 7.4). This is a much smaller time than
pointing with the mouse to a specific intercharacter location on the screen
because of the large effect of size of the target on the overall time.

Card et al. (1983) found empirical variation among parameters for
different pointing devices, presumably because they were at various distances
from the home position on the keyboard and because the targets are of
different sizes. The user took 360 msec to find a mouse and start to move, 260
msec to find the joystick (because it is bigger), 210 msec to find the cursor or
arrow keys (both nearer and smaller), and 320 msec to find the function keys
(presumably because they are a few inches away but relatively small).

2.2. Perception

Summary values for the known aspects of seeing items on the screen are
summarized in Figure 5. These values are primarily from the summary of the
literature included in Card et al.'s (1983) MHP, although John and Newell
(1989, in press) add some recent empirical support for these values.

Clearly, by recognizing features of the current task and assessing some of
the parameters necessary to do a task (e.g., the letters to be edited or
components of the formula to be entered), perception and scanning are
involved. The perceptual processor is clocked at la) msec in the summary of
the MHP in Card et al. (1983, Figure 2.1) and a saccade (the time to move
and take in information in each jump) at 230 msec. Although neither
perception nor scanning parameters are included in the empirical work of
Card et al. (1983), John and Newel1 (in press) used the 100 msec for the
perception of lights and simple symbols in a stimulus-response compatibility

GROWTH OF COGNITIVE MODELING IN HCI

Figure 5. Parameters describing component processes in perception.

Time to respond to brief light 100 msec

I t varies with intensity, brighter is faster
50 -- 2d0 msec

Recognize a 6-letter word 340 msec
314 msec

Make a saccade

Time for the eye to jump to next location
230 msec

MHP

MHP

J&N
J&N

MHP

Card, Moran, and Newell, 1983
J&N = John and Newell, in press and

task. When they combined it with a cognitive operator (discussed later) and
standard information theory to calculate how many bits of information had to
be processed by the cognitive processor, they obtained very good predictions.
This is not a direct derivation of the perceptual parameter, but indirect
support for its value.

Similar in style, John and Newell (1989, in press) determined that
perceiving a six-letter word took 314 msec in a stimulus-response compati-
bility task that involved entering abbreviations for command names. Because
perception of words includes recognition, some verbal encoding, or retrieval
of meaning in addition to simple perception, it is not surprising to find this
value a bit higher than the others.

Let us consider an example of application of the theory. A related
"scanning" parameter was identified in the Olson and Nilsen (1988) study of
experts using spreadsheet software. The Olson and Nilsen scanning param-
eter was identified in situations in which the user was scanning a screen for
additional information, the row and column coordinates on the spreadsheet
border, in known locations. This scanning took an additional 2300 msec. Why
is this so much longer than the perception values discussed earlier? Obviously,
from the discrepancy in not just the value but the order of magnitude of these
parameters, something more than simple perception is likely to be operating.

In the Olson and Nilsen task, the user must look for the cell addresses by

236 OLSON AND OLSON

following the row or column guide lines to the border where the row or cell
indicators are displayed (e.g., B, on the column indicator and 22 on the row
indicator) and then retrieve them for execution as keystrokes. The total time
for this composite of scanning, storing, and retrieving was measurred at 2300
msec. If we use the available parameters for a saccade and memory retrieval
(in Figure 3), then we can calculate a reasonable storage time (one for the B,
one for the 22) to be 130 msec, close to the parametric value to perceive
something. In more detail, if the 2300 msec is a composite of:

A saccade to the row line 230 msec
A storage of the row label 130 msec
A saccade to the column head 230 msec
A storage of the column label 130 msec
A saccade to the cell in which typing is to start 230 msec
Retrieval of the row and column labels 1350 msec

Total 2300 msec

where the 130 msec for storing a row label in working memory is the dnived
value from this calculation.

These parameter estimates, of course, warrant further empirical verifica-
tion. But it is intriguing that this task can so nicely be decomposed into - -

reasonable processes with time parameters from cognitive engineering.
This example illustrates the use of GOMS and MHP in understanding a

design issue. The parameter Olson and Nilsen (1988) found was an order of
magnitude too large; GOMS identifies this as an issue of grain size of task.
It encourages closer examination of a linear sequence of more microscopic
operations identified in previous research. Here, the result was that the 2.3 s
time was not simple perception, but rather a series including search, storage,
and recall, the last of which is known to have an associated long time. This
might lead the designer from a solution that makes scanning per se shorter to
one that eliminates the need for users to store and recall coordinate values.

2.3. Memory and Cognitive Processes

Figure 6 summarizes the values found in various studies relevant to
memory retrieval, executing steps in a mental procedure, and choosing
among methods.

Memory Retrieval

At the heart of the Card et al. (1983) model is M, called "mental," often
interpreted as the time to retrieve the next unit of information. It is assumed
from the listed heuristics about when this special operation occurs that this is

Figure 6. Parameters describing component processes in memory and cognition.

Retrieve a unit from LTM to WM

Retrieve a command name or delimiter
1350 msec CMN

Retreive a random command abbreviation
1200 msec J&N
1209 msec J&N
1200 msec J&N

Retrieve the next part of a formula
Multiplan (cursor method) 1100 msec O&N
Lotus (cursor method) 990 msec O&N
Lotus (typing method) 1350msec O&N

Retrieve command part in column width task
Multiplan 1160 msec O&N
Lotus 1080 msec O W

Repeated retrieval of same command
Lotus 660 msec O W

Execute a mental step

Cognitive Processor (the contents of WM
initiate associatively-linked actions in LTM)

70 msec MHP

Execute next rule in a formal model of skilled performance
100 msec BKP

Execute next step in decoding abbreviations
66 msec J&N

60 msec J&N
50 msec J&N

Choose among methods

"Mental" operator, choose, retrieve 620 msec CMN

Choose whether to type or point to cells
in entering a spreadsheet formula 1760 msec O&N

Card, Moran, and Newell, 1983
CMN = Card, Moran, and Newell, 1983
BKP = Bovair, Kieras and Polson, 1985
J&N = John and Newell, 1985,1989,1989, in
press.
O&N = Olson and Nilsen, 1988

238 OLSON AND OLSON

retrieval of well-known units from long-term memory (LTM) for placement
in WM, ready then to be either executed by a motor processor or further
decomposed by subsequent retrieval from LTM. This value is empirically
determined to be 1350 msec.

John and Newell (1987, 1989, in press) and John et al. (1985) empirically
determined a parameter for retrieval from LTM to be 1200 msec. This is
described as being retrieval of a completely arbitrary association between a
stimulus word and its required letter-combination response. Olson and
Nilsen (1988), in their study of spreadsheet software use, found a parametric
value for retrieval of syntax parts in entering a formula as 1100 msec in
Multiplan and 1350 msec in Lotus 1-2-3. Retrieving the command parts
(e.g., the keyboard equivalent for a command from a menu) in a column-
width task was 1160 msec in Multiplan and 1080 msec in Lotus.

Olson and Nilsen found another interesting result in their study of Lotus
1-2-3. In their study, the user entered the column width command four times
in a row. Lotus 1-2-3 has no feature that dlows you to set the column width
for a range of columns. One can set either the whole spreadsheet's default
column width or one column at a time. Thus, the only way to set a range
(which we asked them to do) is to repeat the same action once for each of the
columns desired. Again the times for memory retrieval were calculated. The
first time the user set the column width, the retrieval time was 1100 msec. On
the second, third, and fourth trials (repeated rapidly in succession), the
retrieval times dropped and remained flat, calculated to be 660 msec, half
that of the first retrieval. This is not a simple practice effect; the repeated act
speeded up only the memory access, not the keying times. The times for the
keystrokes were calculated individually for each trial and found to be constant
at 280 msec.

Executing Steps in a Task

GOMS provides an explicit representation of the mental steps involved in
executing a task. It catalogues the retrieval of a goal and its subgoals, the
decision to select a method to fit the particulars of the current situation, the
retrieval of the motor movements necessary to execute the command, and the
execution of each of those command components. Card et al. (1983)
estimated from the psychological literature that the execution of each
procedural step should take about 70 msec.

Kieras and Polson (Kieras, 1988; Kieras & Bovair, 1986; Kieras & Polson,
1985; Polson & Kieras, 1985; Polson, Muncher, & Engelbeck, 1986) made the
GOMS representation much more explicit by programming the procedures in
production system formalism, discussed in more detail later in this article.
This formalism allowed a number of predictions of behavior far wider than
those covered in Card et al. (1983), many of which are mentioned in later
sections. Of note here is that from empirical studies of people carrying out a

GROWTH OF COGNITIVE MODELING IN HCI 239

wide variety of procedures, they estimate that each production requires about
100 msec to execute.

Similarly, John et al. (1985), John (1988), and John and Newell (1987,
1989, in press) determined from their studies of people entering command
abbreviations that each mental step that translates the command word into an
abbreviation takes between 50 and 70 msec. Even though these mental steps
include a variety of processing acts, for example, storing notes in WM,
calculating, and deciding, as well as very different specification languages
that defined the cognitive steps, the finding across studies is remarkably
consistent.

Choosing Among Methods

In the MHP, Card et al. (1983) assumed that the more choices for a
response, the longer the expected response time. This is based on the work of
Hick (1952) on choice reaction time tasks. Card et al. (1983) estimated that
mental operators for choosing among appropriate methods is 620 msec. Very
little additional empirical validation followed this initial determination.

Olson and Nilsen (1988) found a much higher value for a similarly
described process. When a system presents the user with a choice of methods,
the user requires additional time to make the choice. In Lotus 1-2-3, the user
has choices for indicating the elements of a formula- by typing in the cell
coordinates (e.g., B22) or by pointing to the appropriate cell with the cursor,
moved by step keys. In Multiplan, the contrasted piece of software in the
study, there is only one way -pointing to the appropriate cell with the cursor
using the step keys. Although the time to enter the formulas with the same
method took exactly the same amount of time across the two packages, users
of Lotus took an additional 1760 msec before entering to decide which
method to use. The time to start the formula in Lotus (which offered two
methods) was 4.63 s, whereas in Multiplan (which offered only one method)
it took only 2.87 s. In contrast, in another task, setting column widths, in
which both Lotus and Multiplan offered only one method, the start times
were identical.

Although the overall direction of this choice relationship and Hick's law
are the same, the effects are a different order of magnitude. Hick's law
predicts a set of simple, noncognitive reaction times in the range of 200 msec,
similar in size to the MHP cognitive step. The time to choose among methods
in Card et al. (1983) is 600 msec; in the study of spreadsheets, the time is on
the order of 2 s. This difference suggests that a choice between methods in
human-computer interaction is a more complex cognitive task, requiring
several to many cognitive steps to be executed. These steps would differ from
task to task. Also, some of the conditions on which methods are chosen
require an estimate (e.g., of how far away certain values are), some

240 OLSON AND OLSON

Figwe 7. Summary of cognitive enghening parameters derived as the median
of values obtained in Figures 3, 5, and 6.

Enter a keystroke
Point with a mouse
Move hands to mouse
Perceive
Make a saccade
Retrieve from memory
Execute a mental step
Choose among methods

230 msec
1500 msec
360 msec
100 msec
230 msec

1200 msec
70 msec

1250 msec

perception of values on the screen, or a quick examination of how immedi-
ately memorable some parameters are, all of which would add complex
component times to this overall effect.

2.4. Predicting Composite Performance From These Parameters

The data from Figures 3, 5, and 6 are summarized in brief engineering
form in Figure 7. For each of the components, we have taken as the single
value the median of the values obtained in similar circumstances. For
example, for the time to retrieve from memory, we take the median of the
nine values in the top of Figure 6, resulting in a value of 1200 msec. The one
exception to this is the value for moving hands is listed for the movement to
a mouse, the most common motion in the applications we have analyzed.

Let us consider an example of using these parameters in a wholly new task.
We use these times to analyze a very different task studied in a different
laboratory to illustrate the generality of the parameters and the component
processes involved in GOMS and MHP.

Young and MacLean (1988) measured the times of people entering a block
of values in a spreadsheet two different ways. The user could either enter each
value separately, pointing to the next cell with the mouse (called the Mouse
method), or set up a procedure by which each Enter key would advance the
cursor automatically into the cell to the right of the last one. In this second
method (called the Mmu method), the user then had to use the mouse only
when the next line was started. They found that the Mouse method took
4.19 s for each cell to be entered; the Menu method took 2.8 1 s to start each
line and 2.46 to type each cell's two-digit number with the Enter key
advancing the location to the right.

Using parameters from Figure 7, we calculate that the Mouse method
consists of:

GROWTH OF COGNITIVE MODELING IN HCI 24 1

Moving the hand to the mouse
Clicking the mouse

(same as a keystroke)
Moving the hand to the keyboard
Retrieving two digits
Typing two digits a 2 3 0 each
Retrieving the end action
Typing the < ret > key

Total

360 msec

230 msec
360 msec

1200 msec
460 msec

1200 msec
230 msec

4040 msec

This result compares well with the 4.19 s obtained in the study, a 3 % error.
We further assume that task of starting each new line in the Menu method

involves:

Moving hand to mouse
Pointing to a new line with mouse
Clicking the mouse
Moving hand to keyboard

Total

360 msec
1500 msec
230 msec
360 msec

2450 msec

This result compares with the 2.81 s found, with a 13% error.
And the task of typing each number into the cell in the Menu method

involves:

Retrieving (or looking for) two digits
Typing two digits @230 msec each
Retrieving the end action
Typing the < ret >

Total

1200 msec
460 msec

1200 msec
230 msec

3090 msec

This result compares with 2.46 s found in the empirical study, a 26% error.
These calculations could be challenged in a number of ways, each challenge

focusing on the inclusion or exclusion of an operation, especially the
unobservable mental ones. These challenges would be important if we were
interested in the details of skilled performance in these specific tasks, and the
challenges should be pursued when we are doing research on the discovery of
new parameters. What is more important for cognitive engineering and its use
in design, however, is that these calculated values are within an average of
14% error of the observed values, accurate enough at this level of analysis to
be useful in the calculation of overall task times. They are certainly in the
right order of magnitude, even within the 20% error criterion often
acceptable in early design stages. These numbers are accurate enough, for
example, for us to determine in a large task how many task units could be

242 OLSON AND OLSON

performed each day by a dedicated clerk and, thus, how many clerks would
have to be on staff to perform a work load of a target size.

In summary, although there are potential problems with the basic assump-
tions of GOMS and the MHP that the component processes are serial
(discussed later in the Parallel Processes section) and that performance times
in any one task are independent of context, these assumptions have served
well in a variety of basic computer-based tasks. These tasks include remem-
bering and entering different kinds of keyboard commands, using a text
editor, manipulating files in an operating system, using graphics programs,
and entering formulas and changing column widths in spreadsheet programs.
All in all, within the limits imposed by the initial formulation, the model has
done quite well in subsequent evaluations.

3. EXTENSIONS OF THE BASIC FRAMEWORK

Many critics have argued that the original ground rules set up for such
models are overly restrictive and, thus, limit the usefulness of this approach
for human-computer interaction applications. In this spirit, a number of
investigators have tried to take this cognitive engineering approach beyond
the scope of the original GOMS formulation. We now turn to these
extensions, focusing on three areas: the analysis of learning and transfer, the
analysis of errors, and the treatment of parallel processes.

The first two classes of extensions have been made possible by the explicit
modeling of the user's knowledge of grammatical rules and of both knowledge
and performance in terms of production systems.

Grammars. Reisner (1981, 1984) and Payne and Green (1986) used
grammars to make explicit the knowledge a user must have in order to
translate from goals to actions in a particular system. Grammatical rules are
similar in spirit (though not form) to the goal decomposition and methods in
GOMS. They are more a model of knowledge content (competence) than of
a full system that can "runn to produce user performance (Green, Schiele, &
Payne, 1988). In the spirit of cognitive engineering, however, these repre-
sentations do provide a countable entity: the number of d e s . And, in Payne
and Green's (1986) Task-Action Grammar (TAG), there is an explicit aspect
of the content that predicts learning: the relationship between the features
encoded in the rules and the natural world associations of the user.

To illustrate what the elements of a grammar look like, we use the TAG
notation for a small segment of a full grammar. TAG consists of commands,
features of the goal (e.g., the direction of movement in which you want to
move a cursor in text, like forward or backward), a "dictionary of tasks"
(which shows the full set of actions covered and helps analysts count the
coverage of each rule), and rules that translate goals into actions. Figure 8

GROWTH OF COGNITIVE MODELING IN HCI 243

Figun 8. A portion of a task-action grammar for EMACS, for moving a cursor
around text (adapted from Green, Schiele, & Payne, 1988).

Commands:
God

Move cursor one character forward
Move cursor one character backward
Move cursor one word forward
Move cursor one word backward

Action
cntl-C
meta-C
cntl-W
meta-W

Features, possible values:
Direction forward, backward
Unit character, word

R u b
Task[Direction,Unit]
Symbol[forward]
Symbol[backward]
Letter[word]
Letter(character1

illustrates the commands, the features, and the rules that map a small set of
goals of moving a cursor around text to the word processor EMACS. The small
set of rules here says that if the task is to move in a direction a particular unit
of jump, you should type a symbol for direction, where forward is <cntl >
and backward is <meta>, and follow it with a typed letter for the unit,
where a unit the size of a word is Wand the size of a character is C. This
illustrates the form of the rules, their size, and an example of a good
real-world mapping in that the letter used for units the size of a character and
word are their own first letters.

Production System. Kieras and Polson (Bovair, Kieras, & Polson, 1990;
Kieras, 1988; Kieras & Bovair, 1986; Kieras & Polson, 1985; Polson &
Kieras, 1985; Polson et al., 1986) have used production systems to represent
the GOMS structure of task knowledge and significant aspects of the MHP
(significantly, the goal stack and a WM for storing parameters). This
substantially improves the original GOMS theory, because it, like the
grammars, makes the underlying knowledge much more explicit. Further,
although the production system may be difficult to write (Kieras, 1988), once
it is specified, one can run the program to check it for completeness and
accuracy. And, once programmed, one can quantify a number of features of
the knowledge and processing to predict both errors and learning time
behavior.

To illustrate what a production system formalism of GOMS looks like,
Figure 9 presents a section of the production system for writing a database

244 OLSON AND OLSON

Figure 9. Five rules written in prwhtion system formidism. These rules help
guide the behavior of a user in deciding to write a crucial join statement in a
database query in the popular language, SQL.

Rule 1:
IF

THEN

Rule 2:
IF

THEN

Rule 3:
IF

THEN

Rule 4:
IF

THEN

Rule 5:
IF

THEN

(Startup. SeeIfJoinNeeded
((GOAL SeeIfJoinNeeded)
(NOT(N0TE SeeingIfJoinNeeded TRUE))
((Add NOTE SeeingIfJoinNeeded TRUE)
(Add STEP CountTables)))
(CountTables
((GOAL SeeIfJoinNeeded)
(STEP CountTables))
((DoTask Count NumbeiQfTables *NumberOfTables)
(Add NOTE Number Offables 'NumberOffables)
(Delete STEP CountTables)
(Add STEP AddJoinNote)))
(IfNumberOfT ables = 2ThenAddNOTEJoinAndCleanup
((GOAL SeeIfJoinNeeded)
(STEP AddJoinNote)
(NOTE Numberoff able8 2))
((Add NOTE JoinNeeded TRUE)
(Delete STEP AddJoinNote)
(Delete NOTE NumberOfTables ?NumberOfTables)
(Add STEP Cleanup)))
(IfNumberOffablesNot = 2, Thencleanup
((GOAL SeeIfJoinNeeded)
(STEP AddJoinNote)
(NOTE NwnberOff ables 1))
((Delete STEP AddJoinNote)
(Delete NOTE NumberOfI'ables ?NumberOfTables)
(Add STEP Cleanup)))
(Cleanup. SeeIfJoinNeeded
((GOAL SeeIfJoinNeeded)
(STEP Cleanup))
((Delete NOTE SeeingIfJoinNeeded TRUE)
(Delete STEP Cleanup)
(Add NOTE SawEfJoinNeeded TRUE)))

query in SQL, a popular language that has become the de facto standard in
the industry (Smelter, 1989). In this illustration are five IF-THEN rules that
guide a user in deciding if in an SQL query a closing special statement (called
a "join statement") is needed. It is needed if the user has asked for data that
reside in two or more tables. The join statement tells the system how to link
the data elements in the two tables. In Figure 9, the first rule sets up the goal,
leaving a NOTE and a STEP in WM. The second rule performs the act of
counting the number of tables used, stores that value in WM, deletes the goal
of counting tables, and adds the STEP to add a note to the WM about
needing the join statement. Each IF part of each rule checks for a match to the

GROWTH OF COGNITIVE MODELING IN HCI

current goal (e. g., "GOAL SeeIfJoinNeeded" in the first rule) and the current
notes in WM (e. g., "NOTE Numberoff ables 2" in the third rule). If there is
a match, it executes other processes and adds and deletes notes and steps. This
example illustrates the form and size of the productions and the putting and
taking things off WM, both used in the discussions of learning and errors.

3.1. Learning and Transfer

Time to Learn

A significant shortcoming of the original GOMS framework was its
restriction to skilled performance. A significant advance on this front is the
work of Kieras and Polson focusing on both the time to learn new procedures
and the transfer of training between procedures having various relationships
to each other. For them, the explicit modeling of GOMS through production
systems is the key. Kieras and Polson developed an extension of GOMS they
called Cognitive Complexity Theory (see Polson, 1987, 1988). This theory
provides a basis for making quantitative predictions about the time to learn
each new piece of a task and the amount of transfer that could be expected in
learning one new system or task after another.

Kieras and Polson first determined the number of steps in a procedure by
counting the steps as encoded in a specialized language called NGOMSL. NGOMSL

is the higher level programming language developed by Kieras (1988) to make
the job of programming production system representations much easier.
They then assessed the time it takes a person to learn the procedures. They
studied learning under highly restrictive and controlled conditions, necessary
in order to make the variance in learning times of a magnitude where one had
some confidence in the quantitative estimates. They found that the time to
learn each step took 30 s, assuming a start-up or learning context time of 30
to 60 min.

This is much longer than the time estimated by Newell and Simon (1972),
who calculated that learning each "chunk" of information took 5 to 10 s. The
learning they referred to, however, is equivalent to learning a nonsense
syllable, whereas for Kieras and Polson the learning was of steps in
procedural knowledge, both the conditions under which it is appropriate and
the actions associated with it. Ziegler, Vossen, and Hoppe (1986) report a
17 s per production system step when the learning situation has some
explanation associated with each piece to be learned. And Card (personal
communication, January, 1989) reported 20 s per production learning time.

These estimates vary. The authors themselves, however, claim that the
variation has to do with the conditions under which the user is learning-for
example, whether there is explanation associated with the steps being learned
or whether opportunities for transfer are pointed out. And, of course,

OLSON AND OLSON

learners do not acquire knowledge about new systems under the carefully
controlled, artificial circumstances of Kieras and Polson's research. Thus, it is
much harder to know how to quantify learning times in more naturalistic
situations.

What we find more promising, however, is that the values are the same
order of magnitude over widely different situations and laboratories. Though
nuances of training time per production will be interesting and research on
this topic is to be encouraged, for our purposes here, the current "best guess"
parameter is about 25 s per production.

TAG (Payne & Green, 1986), because they also represent concrete aspects
of the knowledge users must have to perform a task, similarly provides a basis
from which to predict learning. Early rationales for using grammar repre-
sentations were based on the argument that the number of rules determined
the ease of learning, in that the more often a rule can be used, the more
consistent a system is. Payne and Green (1989) argued that the number of
rules is less critical than whether the features of those rules follow real-world
features encoded in the user's memory already. Their empirical work
demonstrated just this. A system described by 28 rules that had features
described by well-known categories, one feature into one action, was learned
nearly three times faster than one with 12 rules, but with complicated
descriptions of the features of the situation to be attended. Although Payne
and Green could have quantified learning time per rule, they did not because
their argument made the content of the rules, not their number, the critical
determinant of learning.

Transfer of Training From One System to the Other

Another, perhaps more generalizable aspect of Kieras and Polson's research
has been the analysis of transfer between systems or components of systems.
Their production system models make explicit exactly what it is that a person
has to learn in acquiring knowledge of a new system. If productions are the
units of learning, then a reasonable hypothesis is that the number of
productions the two systems share provides a good metric for predictions of
the amount of transfer. In other words, this analysis allows one to specify the
exact effects of design consistency across systems.

In a series of studies, Kieras and Polson (Bovair et al., 1990; Kieras, 1988;
Kieras & Bovair, 1986; Kieras & Polson, 1985; Polson & Kieras, 1985; Polson
et al., 1986) have shown the predictive power of this approach. In a typical
study, subjects learned to do various specific procedures on a computer
system, and the time to master a new procedure was predicted to be a function
of the number of new productions that would need to be learned. Because the
procedures shared varying numbers of productions, there ought to be varying
amounts of transfer or savings in learning as subjects learned a series of
procedures. Figure 10 shows the results from a typical study. Here, subjects

GROWTH OF COGNITIVE MODELING IN HCI 247

Figure 10. The fit of predictions of learning time to the number of new rules that
have to be learned (from Polson, 1988).

.

learned simple utility procedures for a floppy-disk-based microcomputer
system, such as duplicating a diskette or printing a document stored on a
diskette. Predicted values were based on the number of new productions to be
learned, and observed values were based on learning the procedure to a
criterion of learning under strict control.

These results are typical of a wide range of studies that have reviewed the
learning of simple procedures. For example, Singley and Anderson (1988)
found strong support for what is called the "identical elements model of
transfer based on a production system representation of cognitive skilln (p.
223) in their study of transfer of text editors, both similar and dissimilar. This
body of data shows the predictive power of the production system implemen-
tation of the GOMS model for characterizing transfer between procedures. In
particular, it makes explicit and quantifiable the advantages of consistency in
design.

Although these transfer results were obtained under the same kind of
learning conditions as in the studies of learning time, there is less concern for
their artificiality here. First, because there was a great deal of transfer, people
were performing well; they did not often experience the somewhat harsh
error-correction method. Second, in using these methods for doing compar-

OLSON AND OLSON

ative analyses of different systems, what one most cares about is the relative
transfer among system components. Because production system models can
be built for systems still under design, it is possible to assess the relative costs
of differing degrees of consistency among procedures.

Like production systems, TAG has the potential of aiding the design
process by assessing the amount of transfer expected from one system to
another, aiding, for example, the consistency in a "family of products."
Although the metric of counting the number of rules the two systems have in
common is possible (and mentioned in Green et al., 1988), there has been no
empirical verification to date.

3.2. The Analysis of Errors: Forgetting From Working Memory

Card et al. (1983) recognized that one of the causes of errors could be
overload of WM or the goal stack. They tracked (see Card et al., 1983, Figure
1 1.12) the contents of WM during the performance of a task. As mentioned
earlier, Kieras and Polson's formalism allows one to keep track explicitly of
both the contents and the resident duration of each piece of information in
WM. They stated that they expect errors to increase as soon as more than five
items are held in WM (Kieras, 1988). However, neither they nor Card et al.
empirically tested the prediction that the more items in WM, the greater the
likelihood of errors.

Two researchers, however, recently tested these predictions in laboratory
studies. The first of these, Lerch (Lerch, 1988; Lerch, Mantei, & Olson,
1989), developed a GOMS representation of skilled users writing out
formulas in Lotus 1-2-3 (e.g., D23-D38), and in Interactive Financial
Planning System (IFPS; e. g., PROFIT = REVENUES - COSTS). These two pieces
of software differ in whether the user has to find and remember the
coordinates of the cells in the formula (e.g., D23) or can refer to them by
name, with adjectives such as preuious to indicate relative location.

These two systems require various levels of WM load for different types of
standard formulas commonly entered on the job. For example, any formula
that requires temporary storage of values from different rows and columns
puts a much greater load on WM in the Lotus representation than it does on
IFPS representation. Figure 11 shows the WM load for the two systems in
successive units of time, determined from the GOMS notation.

The results show that WM load for the two different interface styles and
different kinds of formulas (those that are simple, single-column formulas
and those that require cells from different columns and different rows) predict
the occurrence of errors well. The higher the WM load, the more errors. For
example, for formulas with cells in different rows and columns (the most

Figure 11. Working memory load during the specification of various formulas that refer to cells in the same row or column
or different rows and columns in two different languages: a language that requires the user to specify cells by coordinate
values (e.g., B22) and one that refers to cells by name, with location specified relative to the current cell (e.g., Previous
Sales).

Pomllonal Naming1e.g. 822)

Formula with cells In the same column

Time -->

Formula with cells in a dtfferent row and column

Keyword Naming (e.g. Prenous Sales)

..................................... r

Formula with cells in the same column

I

Operalor

Pomwr

Formula with cells in a different row and column

Time -.>

I >

Var Name

Ponntcr

Opralor

Pointer

..............

Time -->

..............

-
Pomtlr

wm
L.~ .,

V.r Name

Pomler Pomter

..

.

V s r N a m c

Var Name

Pointer

Vmr Name

PomYr

Time .->

Col Name

Var Name

Pomlcr

Var Name

Pomtlr

....................................

Vnr Name

Pomrar

b p o r d

lag-,

Var Name

Pomkr

uoW N~

Var Name

Pmntrr

War Name

Pomter

...............

R o r N o

...........................

.

O p r m r

Poinler

Keyword

V m Name

Powtor

................

Polnter

.

.

.....................

VPI Name

OLSON AND OLSON

complicated), the number of items that passed through WM for Lotus was 19'
and for IFPS was 14. People writing in Lotus made errors on 14% of the
formulas of this type, whereas people writing in IFPS made errors on only 6%
of the formulas. Extrapolation of this relation suggests that when there are
fewer than eight items in WM, errors would be eliminated.

Similarly, Smelcer (1989) examined the errors that users make while
querying databases using SQL. In making queries, many people forget to put
in an additional, necessary statement when information from two or more
separate tables is used. This omission turns out to be a serious error, because
unlike syntax errors that are caught by the system and corrected by the user,
these "join errors" are syntactically correct and often return information that
may be misleading. The difficult aspect of writing such a query is that the join
statement is to be written last. The user has to remember to write it. Often
there are steps in between that also require use of WM, making the likelihood
of forgetting the crucial last step higher.

Smelcer calculated the WM load for different kinds of queries, those that
have several steps in the middle of the query and those that have none. For
example, a query that asks only for the names of all the employees of a
company and their departments uses information from two tables and
requires a join statement, but has no intervening "restriction" statements. On
the other hand, a query that asks for the names of the employees who live in
New Jersey and make over $40,000 a year has two statements between the
initial part of the query and the final join statement.

Smelcer found a direct relationship between the number of intervening
restriction statements (each of which requires many items to be stored in WM
if calculated from the production system modeI) and the likelihood of people
forgetting the last, crucial join statement. With no restrictions, people made
1.7 % errors (20 out of 1200 opportunities); with two restrictions intervening
before the join statement, they made 4.2% errors (50 out of 1200). The
greater the WM load, the greater the number of omission errors.

In neither of these analyses do we know if the critical variable is the peak
load in WM (in which we assume things are "bumped out") or the length of
stay of each of the items (where we assume that information decays with
time). Calculating exactly how heavy the load in WM has to be before items
are forgotten is difficult to assess. It is likely that people adopt strategies in
which they do not attempt to hold too much in WM, using clues from the
external environment to remind them of things needed in the task instead.

There are, of course, many causes of errors other than WM overload. The
analyses just described only open the door on the treatment of errors within

This value is derived from the number of items in WM (notes and steps, not goals), summed
over the number of time steps that items were held in WM.

GROWTH OF COGNITIVE MODELING IN HCI

the GOMS framework, but the work described offers a significant beginning
toward addressing one of the major shortcomings of the GOMS models.

3.3. Parallel Processes

Although the MHP assumes that processes can go on in parallel, for
simplicity in engineering calculations, most work carried out in the GOMS
framework assumes that the elementary processes captured in the models are
serial. This simplifies the quantitative modeling, because total task time is
assumed to be the sum of the times of a number of subcomponents. Further,
it is consistent with a long tradition of cognitive modeling that assumes that
much cognitive activity, at any rate, is fundamentally serial in nature (e.g.,
Newel1 & Simon, 1972). However, even Card et al. (1983) acknowledged that
there are important cases where key components of performance may operate
in parallel. Certainly tasks where perceptual or motor activities dominate,
such as expert transcription typing, are likely to be best characterized by
processes operating in parallel. The expert typist is reading input, translating
it into motor output, and executing actions that type characters, all at a speed
that demands an account in terms of parallel cognitive activities.

Card et al. (1983, Figure 5.10) illustrated the family character of GOMS by
presenting a number of specific models of text editing that vary in grain of
analysis. At the coarsest level, the model characterizes performance in terms
of unit tasks; at their finest, the model accounts for individual keystrokes as
a user interacts with the system via the keyboard. Such factors as the specific
task, the level of expertise of the user, and the details of system operation
could introduce parallelism at any level in such a hierarchy of models. The
analyst might adopt the strategy of choosing the largest grain size at which
there is no parallelism, if it were deemed important to keep the analytic
advantages of working with serial models. Alternatively, methods such as
those we are about to describe could be used to model performance at a grain
size that includes substantial parallelism. Whether the behavior should be
modeled by a serial or by a parallel model, however, is in large part
determined by the grain size of the behavior selected by the analyst.

An analysis of a typical situation involving a user and a computer reveals
numerous opportunities for parallel or cascading processes.

1. The user is bombarded with a set of external signals that sometimes
occur in parallel. For example, keypresses are "echoed" on the screen
while beeps alert the user of inappropriate action.

2. Mental events perhaps occur in parallel, sending cascaded information
from one to the next. For example, plans of action might be retrieved

252 OLSON AND OLSON

for the next task while instructions about the immediately preceding task
are executed.

3. External actions are elicited in parallel. For example, keys are pressed
while eyes seek confirmation or new information to guide the next
actions.

Rapid typing dearly requires a parallel model. For instance, those key-
strokes that occur after one on the opposite hand are faster than if the same
finger hits the key twice. This is probably because motions cascade; that is,
one can be executing while another is begun. It is clear that the models have
to incorporate notions of parallel processes.

This phenomenon appears in more than just use of a keyboard. Practical
experience tells us that, at certain levels of analysis, skilled human-computer
interaction is made up primarily of cascading internal processes. For exam-
ple, in certain routine computer-supported tasks, such as imprinting bank
checks with the amount (which is handwritten on the check) so that the whole
check can be machine processed, the derk is simply reading the handwritten
amount from the check and keying in that same amount. How fast can the
clerk key?

The keystroke model seriously overestimates the times:

A saccade takes 230 msec; recognition takes 314 msec.

Each numeral keystroke takes a minimum of 80 msec (for key entry
times approaching 135 wpm), and typically there are four to five of
them, plus an Enter key, which advances the display to the next check
to be read, at an estimate of 1.35 s for retrieval (or less) and a 280 msec
for entry.

This adds up to over 2 s per item. Real clerks are reported to complete them
at less than .5 s each (J. 0. Kerns, personal communication, February, 1989).
Clearly, some of the processes are overlapping. Interestingly, the keying
system just described allows the clerk to set a value that automatically displays
the next item after a f ~ e d number of keystrokes of the current item have been
entered. Some of the best clerks are so fast that they set the system to display
the next item while they are keying in the third numeral (out of five or six) of
the previous item. They finish the keying of the last two numerals while they
are looking at the next handwritten amount on the screen.

Furthermore, in this same situation, clerks accurately recognize that they
have made a keying error after entering the whole next item. That is, the
process that recognizes the miskeying finishes after the whole next item has
been entered. Clerks have been known to correct check entries two checks

GROWTH OF COGNITIVE MODELING IN HCI 253

back, never reaccessing the one just entered. Clearly, cascading of processes
is occurring.

In our own experience, we recognize this same phenomenon when trying to
apply the cognitive engineering model to menu design. Our observations
show that when people know the menu item's name and location, visual search
(for confirmation and guidance) and motor movement take place simulta-
neously. When users know the word they are looking for in a menu but not
its location, the search is slower, and the motor movement seems to glide
along with the visual scan. When the user knows neither the precise name nor
the location, the time to find the item is fully dependent on reading time. The
movement traces the eyes' reading time; as soon as the item is recognized, the
cursor is at the right location.

For the expert user, then, the limiting or predicting time is fully dependent
on the motor movement speed; for the novice, it is dependent on the reading
speed. Predicting the actual performance time requires knowledge about what
processes are occurring in parallel (or cascading or altered as they work in
concert), which processes depend on each other (which must complete their
processing before the next can begin), and which of them has a speed that is
the limiting factor in the task at hand.

3.4. Critical Path Analysis: An Approach to Parallel Processing

Schweikert (1978, 1980) first proposed an analysis of nonserial processes in
timed cognitive tasks using critical path analysis. He offered a very general set
of procedures for constructing the graph of task components from the
patterns of reaction times across experimental conditions. Recently, John
(1988) also used concepts from critical path analysis to analyze tasks in the
domain of human-computer interaction. Critical path analysis is a tool from
operations engineering that provides a useful framework for the modeling of
cascading mental and external processes.

John (1988) focused on the task of continuous typing. She wrote:

The parallel operation and sequential dependencies of the three proces-
sors make the processes of typing difficult to analyze and talk about.
Fortunately, there is an analysis technique, borrowed from engineering
project management that allows easy analysis of parallel resources (the
three processors [perceptual, cognitive and motor]) working with se-
quential dependencies (outlined by the typing-specific assumptions).
The technique is called critical path analysis. (italics added, p. 49)

Critical path analysis allows analysts to specify the component processes,
their duration, and the dependencies among them. A program for this

254 OLSON AND OLSON

analysis will calculate the path through this network that determines how long
the total process can take. The program recognizes that some processes that
occur simultaneously with others and take less time never enter into the
calculation of the total duration of the task.

John's example analyses show how typing times can be calculated across
situations in which the typist types words or random letters, with various
numbers of letters displayed on the screen. Figure 12 depicts two examples of
the processes involved. The top row of activity represents the perceptual
processor (which is looking ahead at letters to type), the middle row is of the
cognitive process (which is retrieving the individual letters of words read), and
the bottom row is of the motor processor (which is enacting keypresses from
either the same or different hands). The lines that connect the individual acts
show the processes that theoretically must be completed before the next can
start. For example, the motor processar cannot type a letter until it is
retrieved, and keys on the same hand cannot be initiated until the cognitive
processor intervenes.

In Figure 12, we compare the critical path for world-class and regular
typists (who have motor times of 30 msec and 200 msec, respectively) in the
top and bottom halves of the picture. After specifying the parameters for
perceptual and cognitive processing (which are the same for both levels of
skill) and calculating the critical path through the network, we find that the
world-class typist is limited by the speed of the cognitive processor, whereas
the regular typist is limited by the motor speed.

Critical path analysis is the kind of modeling tool that will help us in
predicting times that seem to have parallel components. For example, it could
help us predict the total time it takes a user to select an item from a menu if
the user variously does or does not know the name of the item or where it is
located. Figure 13 shows what this analysis looks like with the expert at the
top, the person who knows the name but not the location in the middle, and
the person who knows neither name nor location on the bottom. Simple serial
GOMS modeling will not do. For these fast, simple tasks, some representa-
tion of the explicit dependencies of parallel processes as well as their
component times is necessary.

In the past, we have been able to verify from observation the moment-
by-moment fit of the components and their associated times. With critical
path analysis, it is much harder to identify which aspects of one's assumptions
about times and dependencies are right and which are wrong. Although
Schweikert (1978, 1980) made some of the problem of discovery of processes
and their interaction tractable, the modeling and confirmation process is still
difficult. We will have to be very clever in our comparisons of performance
across task demands or users' knowledge to make the inferences necessary to
confirm or disconfirm the model and its parameters. However, doing the
engineering predictions (of total time for the task) may have sufficient

Figure 12. Critical path analysis for two typists. The top one represents the typing speed of a world-class
mseclkeystroke); the bottom one represents that of an average skilled typist (170 rnseclkeystroke).

typist (30

256 OLSON AND OLSON

Figun 13. Critical path analysis for people who know the name and/or the
location of items on the menu.

340 msec

Cagmtrve Pmcess~ng
(synonym match)

Motor movement
Move

.
Perceptual Read menu item 6 1 Read menu item 62
340 msec.

(synonym match) match match

Motor movement

Perceptual
tracking only

Cognitive Processing
(synonym match)

Motor movement I Move

accuracy for design questions; what is difficult is the test of the underlying
psychological model.

4. THE PLACE OF COGNITIVE MODELING IN
HUMAN-COMPUTER INTEMCTXON

We have looked at examples of how cognitive modeling has been extended
to cover learning and transfer, errors, and parallelism. In this section, we
examine two issues: (a) the other kinds of useful extensions that could be
made to give the framework even more scope; and (b) where, in the larger
scheme of things pertaining to the study of human-computer interaction,
even an extended and confirmed cognitive modeling framework would stand.
These comments separate into those areas in which the framework might
stand, but the kinds of information we need from cognitive theory does not
yet exist to inform this extension. And there are questions about human-
computer interaction that appear to require a wholly different kind of
modeling. These assessments are categorized in Figure 14 and discussed next.

4.1. Additional Plausible and Useful Extensions

In this section, we follow the list of shortcomings reviewed in Section 1 of
this article. The first category includes the areas that we feel could be

Figure 14. Summary of those issues addressed by new work on W M S , those addressed by extensions to models in the GOMS
tradition, and those judged not easily accommodated in GOMS because either there is not enough known in cognitive theory
to inform the effort, or the level of analysis represented in GOMS is inappropriate for such questions.

Some Work Straightforward Cognitive Requires
Has Addressed Extension Seems Science Does Not Another Kind

This Topic Possible Inform Us of Modeling

Nonskilled users
Learning
Errors
Cognitive processes
Parallel processes
Mental workload
Functionality
Fatigue
Individual differences
Acceptance
Fit to organizational life

258 OLSON AND OLSON

addressed within the original framework and its extensions but that have not
yet been fully explored.

Nonskilled or Casual Users

Engineering models apply best to those situations that have skilled users of
a particular system. Many such situations exist in industry, where clerks enter
and change entries all day long. And not all of this work is simple data entry;
with more advanced capabilities of systems at a price that makes them more
widely available, people who do routine problem solving (e.g,, debugging or
error rectification) need systems with easy to use interfaces for rapid
processing.

But many others of us are not skilled users of any particular system; we
use a variety of systems to do our work, and we know some parts of each
system better than others. Thus, some of the time in our interactions we are
not simply retrieving and acting out plans. We retrieve the command
appropriate to another system or inferred from its style; we often make errors
of commission and figure out what must be done next given where we are
now. We move smoothly from cognitive s k i to problem solving and back.
How people do this is of immense theoretical interest to cognitive psycholo-
gists. The article by Polson and Lewis (1990) is a step in this direction.

A second active research program that is relevant to this topic of casual user
performance is the SOAR project (Laird, Newell, & Rosenbloom, 1987).
SOAR is a running, growing model of the architecture of cognition. In style
similar to that of cognitive engineering, SOAR could provide the detail
necessary to answer the questions about how long it takes to recognize an
impasse in skill, how long it takes to set up a new goal, how quickly similar
productions are retrieved and analyzed, and how many steps are executed
before a solution is found. All these parameters could likely be predicted in
the SOAR framework (provided with a good task analysis) for situations in
which a user is faced with learning a new system after knowing one that shares
some relevant features.

Learning

One of the biggest, longest lasting issues in psychology is learning. People
generate explanations of how a system works by watching the system respond
to their inputs. We learn by asking and learn by watching. We need to know
how that works; how productions grow and are integrated into methods; and
what the psychological realities of methods, as opposed to chunked sequences,
are.

Although we know that consistency in a system may make that system
easier to learn (fewer productions to learn) and easier to operate (well-known
productions can be used over and over again), we do not know much more
than that. We know from the work of Kieras and Polson that a system that

GROWTH OF COGNITIVE MODELING IN HCI 259

shares productions with a system already known will be easier, but we do not
know exactly how to design to that prescription. We do not know which
system to base a new one on. Suppose the first system is internally
inconsistent. We do not know if we would benefit more from reusing the old,
inconsistent, confusable productions or from spending the time and effort to
learn the new, consistent productions. Some phenomena from verbal learning
literature seem applicable here, but as several researchers have found, not all
phenomena from paired-associate learning apply (e.g., Singley & Anderson,
1988).

Errors and Mental Workload

Even in skilled performance with computers, we still make errors. As
discussed earlier, some of these errors arise from an interface design that
requires too much to be held in a limited-capacity WM. Users come to learn
that such errors can be caught. They monitor their performance more closely
by both checking concurrently for errors and breaking at the end of a task to
assess whether errors have been committed. They also change their methods
to include such things as writing down the address of a critical cell in a
spreadsheet or printing out a document so that it can be scanned quickly for
a target word in the area in which they want to work next. Understanding how
people monitor their own behavior for errors and how they adapt their
methods is critical to the full understanding of performance on the kinds of
tasks for which analytic modeling was designed. And, as we have seen,
analytic models can provide an explicit account of aspects of mental workload
during tasks in terms of activity through the WM. Additional aspects of
workload having to do with the use of the cognitive processor and the work
involved in retrieval of procedures and facts could follow.

Cognitive Processes

Of those aspects of skilled performance in human-computer interaction
that are underspecified in the models to date, interpretation of visual displays
may be the most important. We know that Gestalt principles will drive some
of the user's interpretation of what is on the screen, but we do not know much
about how meaning is imparted on the whole display. We need to know this
not only to determine how to display information for the slow, deliberate
problem-solving processes involved in high-level decision making, but also for
the fast, repetitive operational tasks such as those in keying handwritten
characters in checks. Recent work by Tullis (1983, 1988) and Mackinlay
(1986) made significant inroads in this area, but more work is called for, both
in the application of what we know and in the discovery of basic facts about
how people interpret what they see.

OLSON AND OLSON

Parallel Processes

Concurrent or cascading processes seem to occur in rapid, skilled perfor-
mance. We noted that clerks imprinting checks with machine-readable
numerals could detect that they had made an error two checks past. This
phenomenon indicates not only the existence of concurrent perception and
motor movement but also that there may be some process that actively checks
the accuracy of the behavior soon after that behavior has occurred. This is a
natural case of simultaneous tasks. We need to know how this works and how
many processes such as this background monitoring exist.

John's (1988) adoption of the critical path method of modeling concurrent,
dependent processes requires us to characterize in great detail our assump-
tions of processes involved and their dependencies in these kinds of tasks. The
literature in cognitive psychology provides even less guidance on these
dependencies than it does in finding appropriate parameters. To illustrate the
detail needed, John's modeling of the continuous typing task makes strong
assumptions about which kinds of processes depend on the completion of
other processes. For example, she stated that:

The perceptual processor cannot perceive the next piece of information
unless there is room in working memory for that information. . . . A
character on the same hand cannot be initiated with a cognitive operator
until the motor processor execution of the previous character is
complete. (p. 47)

Though such simplifying assumptions may achieve success in some do-
mains and at some levels of analysis, it is important to recognize that the
existing psychological literature does not support such strong assumptions.
Finding the kinds of links that do exist among processes is critical to this kind
of modeling success.

Individual Differences

Card et al.'s (1983) original clocking of different motor operators of people
with different skill levels and John's (1988) work on various levels of ski in
typing exemplify how we might explore the implications of individual
differences in human-computer interaction. Though these differences in
motor operators clearly have an effect on predicting the total time that a task
will take, there are likely large differences in perceptual and cognitive
operations that similarly have large effects. People clearly differ in rate of
learning, speed of retrieval, and reasoning or strategy formation. Egan (1988)
reviewed a variety of ways in which individuals differ in their use of
computers. This work and the more detailed parametric work in Gomez,
Egan, Wheeler, Sharma, and Gruchacz (1983) and Gornez, Egan, and

GROWTH OF COGNITIVE MODELING IN HCI

Bowers (1986) could guide the further exploration of the effect of differences
in the rate and form of cognitive processing on predictions of time and errors
in the spirit of GOMS modeling.

4.2. Cognitive Modeling in Human-Computer Interaction

In the broader picture of providing tools for designers of human-computer
interfaces, several important aspects of human-computer interaction do not
seem to lend themselves to the approach described here. First, this approach
does not capture the impact of fatigue on the times and errors associated with
performance. Our models never tire; people do. Some extensions from
research on the effect of time and mental workload may be relevant here, but
the interplay of stress from the task itself from the physical environment (e.g.,
chairs and lighting) and the higher level aspects of one's job (e.g., work
supervision, control over pacing, incentive and rewards, etc.) are beyond the
scope of cognitive engineering as we see it. Some of this arises because of the
little we know about the causes of fatigue on mental processing, and some
arises from the possibility that when we do know, the GOMS-like modeling
framework includes the wrong set of constructs.

Second, we do not see a possible extension of these models that would
include assessment of people's perception of the acceptability of an interface.
People's judgments of ease of use are not always in concordance with their
actual productivity (e.g., Davis, Bagozzi, & Warshaw, 1989). Perceptions of
whether the software's functionality is actually what the user needs and the
ease with which the system can be learned all contribute to the acceptance of
a piece of software and its eventual regular use. These do not appear to fit the
style of analytic modeling, because they refer to an entirely different level of
granularity of behavior and a different set of relevant features.

Perhaps the most important step in building a successful piece of software
may be the analysis of the functions it will perform, in what order it will allow
the user to do them, and how they fit into the larger picture of work and
organizational roles. This point is made strongly under the rubric of "situated
cognition," the understanding of work, its task and setting, and the eventual
design of computers to support it (see Suchman, 1987). The topic of
discovering useful functions has been explored in the management literature
(e.g., Sasso, Olson, & Merten, 1987) and in the literature on traditional
human factors (e.g., Sheridan, 1988), based on a broad analysis of what
people do best and what computers do best. These approaches, however, do
not yet converge at a level specific enough to be useful to a system designer.
And the assessment of how computers change work and organizational life is
as yet still at the descriptive, not theoretical, level (e.g., Markus, 1984). A
kind of modeling different from that provided by the analytic models

262 OLSON AND OLSON

described in this article appears to be required to answer these kinds of
important questions.

Despite these limitations, large classes of applications can be characterized
in just the way that GOMS and its successors require. Every day thousands
of people carry out computer-based interactions that are highly repetitive and
stylized. Airline reservations, telephone directory assistance, troubleshooting
of discrepancies in forms such as bank deposits all are examples of tasks in
which cognitive modeling can play an important role in the design of
learnable and usable systems. In these kinds of tasks, the approach is very
powerful. Because we now have reasonably useful quantitative estimates of a
number of task components, predictions about performance can be made for
designs without our having to build prototype systems and run extensive,
time-consuming user tests. User tests can, of course, reveal other things such
as errors, problem solving, and initial learning and representation difficulties;
however, cognitive models can screen out certain classes of poor designs for
these kinds of tasks.

AcknowWgmmts. This article benefited greatly from very careful readings and
thoughtful suggestions from Peter Polson, John Karat, Clayton Lewis, Thomas
Green, Richard Young, and Bonnie John. We remain responsible for any faults in the
clarity, accuracy, and opinions of the result but are grateful for the help these people
gave us.

S u w . This work was partially funded by the Army Research Institute,
MDA903-89-K-0025.

REFERENCES

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance
of text-editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5,
1-48.

Card, S. K., Moran, T. P., & Newell, A. (1980a). Computer text-editing: An
information-processing analysis of a routine cognitive skill. Cognitive Psychology, 12,
32-74.

Card, S. K., Moran, T. P., & Newell, A. (1980b). The keystroke-level model for user
performance time with interactive systems. Communications o J t h ACM, 23, 396-410.

Card, S. K., Moran, T. P., & Neweli, A. (1983). The psychology of human-computer
intermtion. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Carroll, J. M., & Campbell, R. L. (1986). Softening up hard science: Reply to Newel1
and Card. Human-Computer Inkaction, 2, 227-250.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer
technology: A comparison of two theoretical models. Managnnent Science, 35,
982-1003.

Egan, D. E. (1988). Individual differences in human-computer interaction. In M.
Helander (Ed.), Handbook of human-compufer interaction (pp. 543-568). Amsterdam
North-Holland.

GROWTH OF COGNITIVE MODELING IN HCI 263

Fitts, P. M., & Peterson, J . R. (1964). Information capacity of discrete motor
responses. Journal of Experimental Psychology, 67 , 103-1 12.

Gomez, L. M., Egan, D. E., &Bowers, C. (1986). Leaning to use a text editor: Some
learner characteristics that predict success. Human-Computer Interaction, 2, 1-23.

Gomez, L. M., Egan, D. E., Wheeler, E. A., Sharma, D. K., & Gruchacz, A. M.
(1983). How interface design determines who has difficulty learning to use a text
editor. f'roceedings of the C H I '83 Conference on Human Factors in Computing Systems,
176-181. New York: ACM.

Green, T. R. G., Schiele, F., & Payne, S. J. (1988). Formalisable models of user
knowledge in human-computer interaction. In G. C. Van der Veer, T. R. G.
Green, J.-M. Hoc, & D. M. Murray (Eds.), Working with computers: Theo7y us. outcome
(pp. 47-88). New York: Academic.

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental
Psychology, 4, 11-16.

John, B. E. (1988). Contributions to engineering models of human-computer interaction.
Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh.

John, B. E., & Newell, A. (1987). Predicting the time to recall computer command
abbreviations. Proceedings of the C H I '87 Confnence on Human Fadors in Computing
Systems, 33-40. New York: ACM.

John, B. E., & Newell, A. (1989). Cumulating the science of HCI: From S-R
compatibility to transcription typing. Proceedings of the C H I '89 Confeence on Human
Factors in Computing Systems, 109-1 14. New York: ACM.

John, B. E., & Newell, A. (in press). Toward an engineering model of
stimulus-response compatibility. In R. W. Gilmore & T. G. Reeve (Eds.),
Stimulus-response compatibility: An integrated approach. Amsterdam: North-Holland.

John, B. E., Rosenbloom, P. S., & Newell, A. (1985). A theory of stimulus-response
compatibility applied to human-computer interaction. Proceedings of the C H I '85
Confmnce on Human Factors in Computing Systems, 213-219. New York: ACM.

Karat, J. (1988). Software evaluation methodologies. In M. Helander (Ed.), Handbook
of human-computer interaction (pp. 891-904). Amsterdam: North-Holland.

Kieras, D. E. (1988). Towards a practical GOMS model methodology for user
interface design. In M. Helander (Ed.), The handbook of human-computer interaction.
(pp. 135-1 58). Amsterdam: North-Holland.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: A
production-system analysis of transfer of training. Journal of Memory and Language,
25, 507-524.

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user
complexity. Intmurtional Journal of Man-Machine Studies, 22, 365-394.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for
general intelligence. ArtifiGial Intelligence, 33, 1-64.

Lerch, F. J. (1 988). Computmiedjnancial planning: Discovering cognitive dz$culties in model
building. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.

Lerch, F. J., Mantei, M. M., & Olson, J. R. (1989). Translating ideas into action:
Cognitive analysis of errors in spreadsheet formulas. Proceedings of the C H I '89
Confnence on Human Factors in Computing Systems, 12 1 - 126. New York: ACM.

Mackinlay, J. D. (1986). Automatic design of graphical presentations. Unpublished doctoral
dissertation, Stanford University, Department of Computer Science, Stanford, CA.

OLSON AND OLSON

Markus, L. (1984). Systmrr in organizations: Bugs andfeatures. New York: Plenum.
Newell, A,, & Card, S. K. (1985). The prospects for psychological science in

human-computer interaction. Human-Computer Interaction, 1, 209-242.
Newell, A., & Card, S. K. (1986). Straightening out softening up: Response to Carroll

and Campbell. Humon-Co- Interaction, 2, 25 1-267.
Newell, A., & Simon, H. A. (1972). Human p r o b h solving. Englewood Cliffs, NJ:

Prentice-Hall.
Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper

(Eds.), User centered systems &sign: Ncw perspdciives on human-computer interaction (pp.
31-61). Hillsdale, NJ: Lawrence Edbaum Associates, Inc.

Olson, J. R., & Nilsen, E. (1988). Analysis of the cognition involved in spreadsheet
software interaction. Hwnan-Computer Interaction, 3, 309-350.

Payne, S. J., & Green, T. R. G. (1986). Task-action grammars: A model of the
mental representation of task languages. Human-Computer Interaction, 2, 93- 133.

Payne, S. J., & Green, T . R. G. (1989). The structure of command languages: An
experiment on task-action grammar. InfrmationalJournal ofMan-Machine Studics, 30,
213-234.

Polson, P. G. (1987). A quantitative theory of human-computer interaction. In J. M.
Carroll (Ed.), Interjiacing thought: Cognitive aspects of human-computer intcraction (pp.
184-235). Cambridge, MA: MIT Press.

Polson, P. G. (1988). The consequences of consistent and inconsistent interfaces. In
R. Guindon (Ed.), Cognitive scietue and its appla'catwns for humun-computer interaction (pp.
59-108). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Polson, P. G., & Kieras, D. E. (1985). A quantitative model of the learning and
performance of text editing knowledge. Procdngs ofthe CHI '85 Conference on Human
Factors in Computing Systems, 207-212. New York: ACM.

Polson, P. G., & Lewis, C. H. (1990). Theory-based design for easily learned
interfaces. Human- Computer Interaction, 5, 19 1-220.

Polson, P. G., Muncher, E., & Engelbeck, G. (1986). A test of a common elements
theory of transfer. F'rocccdings of the CHI '86 Conference on Human Factors in Computing
Systems, 78-83. New York: ACM.

Reisner, P. (1981). Formal grammar and human factors design of an interactive
graphics system. IEEE Transactions on Softwre Enginewing, SE- 7, 229-240.

Reisner, P. (1984). Formal grammar as a tool for analyzing ease of use: Some
fundamental concepts. In J. Thomas & M. Schneider (Eds.), Human factors in
compute7 systems. Norwood, NJ: Ablex.

Sasso, W. G., Olson, J. R., & Merten, A. (1987). The practice of office analysis:
Objectives, obstacles, and opportunities. Ofice Knowbdge Engineering, 2, 11-24.

Schweickert, R. (1978). A critical path generalization of the additive factor method:
Analysis of a Stroop task. Journal ofMathrmatica1 Psychology, 18, 105-139.

Schweickert, R. (1980). Critical path scheduling of mental processes in a dual task.
Science, 209, 704-706.

Sheridan, T. (1988). Task allocation and supervisory control. In M. Helander (Ed.),
Handbook of human-computer interaction (pp. 159- 174). Amsterdam: North-Holland.

Singley, M. K., & Anderson, J. R. (1988). A keystroke analysis of learning and
transfer in text editing. Human-Computer Interaction, 3, 223-274.

GROWTH OF COGNITIVE MODELING IN HCI

Smelcer, J. B. (1989). Undnstanding user mors in database query. Unpublished doctoral
dissertation, University of Michigan, Ann Arbor.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine
communication. Cambridge, England: Cambridge University Press.

Tullis, T . S. (1983). The formatting of alphanumeric displays: A review and analysis.
Human Factors, 25, 657-682.

Tullis, T. S. (1988). Screen design. In M. Helander (Ed.), Handbook of human-computn
interaction (pp. 377-41 1). Amsterdam: North-Holland.

Walker, J. N., Smelcer, J. B., & Nilsen, E. (1989). Fitts'Law and its &sign implications:
Attempting to optimize speed and accuracy of menu selection. Unpublished manuscript,
University of Michigan, Human Computer Interaction Laboratory, Ann Arbor.

Wilson, M. D., Barnard, P. J., Green, T. R. G., & MacLean, A. (1988).
Knowledge-based task analysis for human-computer systems. In G. C. Van der
Veer, T. R. G. Green, J.-M. Hoc, & D. M. Murray (Eds.), Working with computers:
Theory us. outcome (pp. 3-46). New York: Academic.

Young, R. M., & MacLean, A. (1988). Choosing between methods: Analysing the
user's decision space in terms of schemas and linear models. Proceedings of the CHI '88
Confeence on H u m n Factors in Computing Systems, 139-143. New York: ACM.

Ziegler, S. E., Vossen, P., & Hoppe, H. U. (1986). On wing Production systems for
cognitive task analysis and prediction of transfer of cognitive skill. Paper presented at the
Third European Conference on Cognitive Ergonomics, Paris.

HCI Editorial Record. First manuscript received April 13, 1989. Revision
received June 20, 1989. Final manuscript received October 4, 1989. Accepted by Peter
Polson. -Editor

