

#### Smart, Creative and Entrepreneurial



## **Digital Network**

www.esaunggul.ac.id

Pertemuan-14 Dosen :Kundang K Juman Prodi Teknik Informatika , Fakultas Imu Komputer



#### Integrated Services Digital Network

- Public networks are used for a variety of services
  - Public Switched Telephone Network
  - Private Lines (leased)
  - Packet Switched Data Networks
  - Circuit Switched Data networks

- Users have a variety of equipment to connect to public networks
  - Telephones
  - Private Branch Exchanges
  - Computer Terminals or PCs
  - Mainframe Computers
- A variety of physical interfaces and access procedures are required for connection

- The telephone network has evolved into a digital one with digital exchanges and links
  The signalling system has become a digital message-oriented common channel signalling system (SS#7)
- The term 'Integrated Digital Network' is used to describe these developments

- The Public Switched Telephone network is still analogue from the subscriber to the local exchange
- The need has arisen to extend the digital network out to subscribers and to provide a single standardised interface to all different users of public networks
- ISDN fulfils that need

## Integrated Services Digital Network



In Practice there are multiple networks providing the service nationally
The user however, sees a single network

#### **Benefits to Subscribers**

- Single access line for all services
- Ability to tailor service purchased to suit needs
- Competition among equipment vendors due to standards
- Availability of competitive service providers

#### Architecture



#### **ISDN Standards**

- Contained in the I-series recommendations
- Issued by CCITT (now ITU-T)
- Six main groupings I.100 to I.600 series
- ◆ I.100 series General Concepts
- ♦ I.200 series Service Capabilities
- ♦ I.300 series Network Aspects
- I.400 series User-Network Interfaces
- I.500 series Internetwork Interfaces
- ♦ I.600 series Maintenance Principles

#### **ISDN** Channels

- The Digital pipe is made up of channels one of three types
- B channel, D channel or H channel
- Channels are grouped and offered as a package to users

#### **B** Channel

- B channel-64 kbps
- B is basic user channel
  - can carry digital data or PCM-encoded voice
  - or mixture of lower rate traffic.

### **B** Channel

• Four kinds of connection possible

- Circuit-switched
- Packet-switched X.25
- Frame mode frame relay (LAPF)
- Semipermanent equivalent to a leased line

### D Channel

#### D Channel - 16 or 64 kbps

- Carries signalling information to control circuit-switched calls on B channels
- Can also be used for packet switching or low-speed telemetry

#### H Channel

- Carry user information at higher bit rates
   384kbps or 1536kbps or 1920kbps
- Can be used as a high-speed trunk
- Can also be subdivided as per user's own TDM scheme
- Uses include high speed data, fast facsimile, video, high-quality audio

# ISDN Channels and their Applications

| B Channel<br>(64 kbps)                                           | D Channel<br>(16/64 kbps)                                   | H Channel<br>(384/1536 kbps)    |
|------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|
| Digital voice                                                    | Signalling<br>(using SS#7)                                  | High-speed trunk                |
| High-speed data<br>(e.g. packet and<br>circuit switched<br>data) | Low- speed<br>data, (e.g.<br>packet, terminal,<br>videotex) | Very high speed<br>data         |
| Other (e.g. fax, slow video)                                     | Other (e.g.<br>telemetry)                                   | Other (e.g. fast<br>fax. Video) |

## **ISDN Channel Groupings**

- Basic Access -
- $\rightarrow$  two 64 kbps B channels
- $\rightarrow$  plus one 16kbps D channel
- B channels can be used for voice and data
- simultaneous calls to separate destinations supported
- D channel used for signalling and also for data using X.25

#### **ISDN Basic Access**

- Intended for small business and residential use
- A single physical interface is provided
- Data rate is 144kbps plus 48kbps overhead bits totalling 192 kbps
- Most existing subscriber loops can support basic access

## **ISDN Primary Access**

- Intended for users with greater capacity requirements
- Example would be a digital PBX
- Two standards exist
  - 1.544 Mbps American
  - 2.048 Mbps European

## **ISDN Primary Access**

- Typically it is structured as 30 B channels plus one 64kbps D channel (Europe)
- Can also be structured as H channels
  - 5H0 +D for a 2.048 Mbps interface
  - or 1H12 +D

#### **ISDN Frame Structure Basic Rate Access**



- F= Framing bit L = dc balancing bit
- E = D-echo channel bit
- A = Activation bit

- Fa = Auxiliary Framing bit N = opposite of Fa
- M = multiframing bit
- B1 = B channel bits

B2 = B channel bits D = D channel bits S = Spare bits

#### **ISDN** Contention Resolution

- Several TE's can share a single line
- How is contention resolved?
- B-channel Traffic
  - No contention as each channel dedicated to particular TE
- D Channel used for data and control so requires a contention resolution mechanism

- Incoming Traffic
  - LAPD protocol resolves contention
- Outgoing Traffic
  - Multiple devices share D channel
  - Contention resolution algorithm required

- Idle TEs sends binary 1s on D channel
- This means no signal (pseudoternery)
- NT echos received binary value back as echo bit
- When NT wishes to send on D channel, it listens to echo bits
- If it hears a string of 1's equal in length to a threshold value Xi, it may transmit
- Otherwise it must wait

- If two TE's start transmitting simultaneously a collision occurs
- This is detected by each TE by monitoring E bits
- If E bits are identical to D bits sent then no collision
- If discrepency detected TE stops and listens

- Priority mechanisms based on threshold values
  - Control information has priority over user data
  - When TE has sent data its priority is lowered until other terminals transmit

### **D** Channel Priorities

- Control Information
  - Normal Priority X1 =8
  - Lower Priority X1 =9
- User Data
  - Normal Priority X2 =10
  - Lower Priority X2 = 11

## **ISDN Primary Interface**

- Multiple channels multiplexed on single medium
- Only point to point configuration is allowed
- Typically supports a digital PBX and provides a synchronous TDM facility

### **ISDN** Primary Access Frame Formats



#### User Access

#### Defined using two concepts

- Functional groupings of equipment
- Reference points to separate functional groupings

## Typical User Access Layout



### **ISDN Protocol Architecture**



## ISDN Data Link Layer

- Link Access Protocol for the D channel (LAPD) defined for ISDN
- Three applications are supported
  - Control Signalling
  - Packet Switching
  - Telemetry

## Network Layer Above LAPD

- Control Signalling
  - Call Control Protocol (I.451 / Q.931)
    - » Establishes, maintains and terminates connections on B channels
    - » Possibility of user user control signalling above this layer

#### **B-Channel**

#### ♦ Uses

- Circuit Switching
- Semi-permanent circuits
- Packet switching

#### **B-Channel**

#### Circuit Switching

- Circuit is set up on B-channel on demand
- D-channel call control protocol is used
- Transparent full-duplex digital data path established between users
- Layers 2 to 7 are not visible to ISDN or specified

#### **B-Channel**

- Semipermanent circuit can be set up by prior agreement between users and network operator
- Can be for indefinite time or at specified times during day or week
- As with circuit switched connection, full duplex digital data path is established
- Layers 2 to 7 are not visible to ISDN or specified

## **B-Channel Packet Switching**

- Circuit-switched connection is established between user and packet-switched node using D-channel call control protocol
- The packet switching node can be integrated into ISDN or be a separate network
- User then employs X.25 layers 2 and 3 to establish virtual circuit to other user

 Frame relay can also be used instead of X.25

38

## **D-Channel Packet Switching**

- Integrated X.25 service can be accessed by D-Channel in addition to B-Channel
- ISDN provides a semi-permanent connection to a packet switching node within ISDN
- The X.25 level 3 protocol is used for the packet layer
- LAPD is used for the link layer

#### ISDN Call Control Protocol

- Defined in recommendation I.451/Q.931
- Network layer protocol
- Uses services of LAPD link layer
- Specifies procedures for establishing, maintaining clearing connections on Bchannels sharing D-channel

### ISDN Call Control Protocol

- Message Types
  - Call establishment messages to set up a call
  - Call information messages during a call ( e.g. suspend a call and resume a call)
  - Call clearing messages to clear a call
  - Miscellaneous messages (congestion control, requesting supplementary services etc)

#### I.451 Formats



General message format

#### LAPD

- Provides two types of service
  - Unacknowledged information transfer
    - » No guarantee of delivery
    - » Frames with error are discarded
  - Acknowledged information transfer
    - » Similar to HDLC
    - » Flow and error control
    - » Logical connection established prior to data transfer
    - » Also called multiple-frame operation

#### LAPD Format



Length in octets

#### **ISDN** Physical Interface

- There are no separate control circuits
- Transmit and receive circuits carry data and control signals
- Pseudoternery coding scheme is used for basic access signals
  - Voltage level is + or 750 mV
  - Data rate is 192 kbps
- ◆ HDB3 code is used for 2.048 Mbps access
- ◆ B8ZS code is used for 1.544 Mbps acces<sub>45</sub>

#### **ISDN INTERFACE PLUG PINOUT**

| PIN | TERMINAL EQUIPMENT | NETWORK TERMINATING EQUIPMENT |  |
|-----|--------------------|-------------------------------|--|
|     |                    |                               |  |
| 1   | Power Source 3     | Power Sink 3                  |  |
| 2   | Power Source 3     | Power Sink 3                  |  |
| 3   | Transmit           | Receive                       |  |
| 4   | Receive            | Transmit                      |  |
| 5   | Receive            | Transmit                      |  |
| 6   | Transmit           | Receive                       |  |
| 7   | Power Sink 2       | Power Source 2                |  |
| 8   | Power Sink 2       | Power Source 2                |  |

#### **Broadband ISDN**

- Recommendations to support video services as well as normal ISDN services
- Provides user with additional data rates
  - 155.52 Mbps full-duplex
  - 155.52 Mbps / 622.08 Mbps
  - 622.08 Mbps full-duplex
- Exploits optical fibre transmission technology
- Very high performance switches

### **B-ISDN** Architecture



TE = Terminal equipment LFC = Local function capabilities



- ATM is specified for Information transfer across the user-network interface
- Fixed size 53 octet packet with a 5 octet header
- Implies that internal switching will be packet-based

#### **BISDN Protocol Structure**

