3

ERRORS, FAILURES, AND RiISks

8.1 Failures and Errors in Computer Systems
8.2 Case Study: The Therac-25

8.3 Increasing Reliability and Safety

8.4 Dependence, Risk, and Progress

Exercises

362

Chapter 8 Errors, Failures, and Risks

8.1 Failures and Errors in Computer Systems

8.1.1 AN OVERVIEW

“Navigation System Directs Car Into River”

“Data Entry Typo Mutes Millions of U.S. Pagers”

“Flaws Found in Software That Tracks Nuclear Materials”

“Software Glitch Makes Scooter Wheels Suddenly Reverse Direction”
“IRS Computer Sends Bill for $68 Billion in Penalties”

“Robot Kills Worker”

“California Junks $100 Million Child Support System”

“Man Arrested Five Times Due to Faulty FBI Computer Data”

These headlines describe real incidents. Most computer applications, from consumer
software to systems that control communications networks, are so complex that it is
virtually impossible to produce programs with no errors. In the next few sections, we
describe a variety of mistakes, problems, and failures—and some factors responsible for
them. Some errors are minor. For example, aword processor might incorrectly hyphenate a
word that does not fit at the end of a line. Some incidents are funny. Some are tragic. Some
cost billions of dollars. Studying these failures and risks contributes to understanding their
causes and helps prevent future failures.

Are computer systems too unreliable and too unsafe to use? Or, like many news
stories, do the headlines and horror stories emphasize the bad news—the dramatic but
unusual events? We hear reports of car crashes, but we do not hear that drivers completed
200,000 car trips safely in our city today. Although most car trips are safe, there is a
good purpose for reporting crashes: It teaches us what the risks are (e.g., driving in heavy
fog) and it reminds us to be responsible and careful drivers. Just as many factors cause
car crashes (faulty design, sloppy manufacturing or servicing, bad road conditions, a
careless or poorly trained driver, confusing road signs, and so on), computer glitches and
system failures also have myriad causes, including faulty design, sloppy implementation,
careless or insufficiently trained users, and poor user interfaces. Often, there is more
than one factor. Because of the complexity of computer systems, it is essential to follow
good procedures and professional practices for their development and use. Sometimes,
no one does anything clearly wrong, but an accident occurs anyway. Occasionally, the
irresponsibility of software developers and managers is comparable to driving while very
drunk.

If the inherent complexity of computer systems means they will not be perfect, how
can we distinguish between errors we should accept as trade-offs for the benefits of the
system and errors that are due to inexcusable carelessness, incompetence, or dishonesty?

8.1 Failures and Errors in Computer Systems 363

How good is good enough? When should we, or the government, or a business decide that
a computer system or application is too risky to use? Why do multimillion-dollar systems
fail so miserably that the firms and agencies that pay for them abandon them before
completion? We cannot answer these questions completely, but this chapter provides
some background and discussion that can help us in forming conclusions. It should help
us understand the problems from the perspective of several of the roles we play:

* A computer user. Whether we use our own tablet computer or a sophisticated,
specialized system at work, we should understand the limitations of computer
systems and the need for proper training and responsible use.

* A computer professional. If you are planning a career as computer professional (sys-
tem designer, programmer, or quality assurance manager, for example), studying
computer system failures should help you become a better professional. Under-
standing the source and consequences of failures is also valuable if you will be
responsible for buying, developing, or managing a complex system for a hospital,
airport, or business. The discussions of the examples in this chapter include many
implicit and explicit lessons about how you can avoid similar problems.

* An educated member of society. There are many personal decisions and social, legal,
and political decisions that depend on our understanding of the risks of computer
system failures. We could be on a jury. We could be an active member of an
organization lobbying for legislation. We could be deciding whether or not to
have surgery performed by a robot. Also, we can apply some of the problem-solving
approaches and principles in this chapter to professional areas other than computer
systems.

We can categorize computer errors and failures in several ways—for example, by the
cause, by the seriousness of the effects, or by the application area. In any scheme to organize
the discussion, there will be overlap in some categories and mixing of diverse examples in
others. I use three categories: problems for individuals, usually in their roles as consumers;
system failures that affect large numbers of people and/or cost large amounts of money;
and problems in safety-critical applications that may injure or kill people. We will look at
one safety-critical case in depth (in Section 8.2): the Therac-25. This computer-controlled
radiation treatment machine had a large number of flaws that resulted in the deaths of
several patients. In Sections 8.3 and 8.4, we try to make some sense of the jumble of
examples. Section 8.3 looks at underlying causes in more depth and describes professional
practices and other approaches to preventing failures and handling them properly when
they occur. Section 8.4 puts the risks in perspective in various ways.

The incidents described here are a sampling of the many that occur. Robert Charette,
an expert on software risk management, emphasizes that computer system errors and
failures occur in all countries, in systems developed for businesses, governments, and
nonprofit organizations (large and small) “without regard to status or reputation.”! In

364

Chapter 8 Errors, Failures, and Risks

most cases, by mentioning specific companies or products, I do not mean to single those
out as unusual offenders. One can find many similar stories in news reports, software
engineering journals, and in The Risks-Forum Digest organized by Peter Neumann.?
Neumann collects thousands of reports describing a wide range of computer-related
problems.

8.1.2 PROBLEMS FOR INDIVIDUALS

Billing errors

The first few errors we look at are relatively simple ones whose negative consequences
were undone with relative ease.

* A woman received a $6.3 million bill for electricity. The correct amount was $63.
The cause was an input error made by someone using a new computer system.

* The IRS is a constant source of major bloopers. When it modified its programs to
avoid billing victims of a Midwest flood, the computer generated erroneous bills
for almost 5000 people. One Illinois couple received a bill for a few thousand
dollars in taxes—and $68 billion in penalties. In one year the IRS sent 3000

people bills for slightly more than $300 million. One woman received a tax bill
for $40,000,001,541.13.

* The auto insurance rate of a 101-year-old man suddenly tripled. Rates depend on
age, but the program handled ages only up to 100. It mistakenly classified the man
as a teenager.

* Hundreds of Chicago cat owners received bills from the city for failure to register
dachshunds, which they did not own. The city used two databases to try to find
unlicensed pets. One database used DHC as the code for domestic house cat, and
the other used the same code for dachshund.

Programmers and users could have avoided some of these errors. For example, pro-
grammers can include tests to determine whether a billing amount is outside some reason-
able range or changed significantly from previous bills. In other words, because programs
can contain errors, good systems have provisions for checking their results. If you have
some programming experience, you know how easy it would be to include such tests and
generate a list of cases for a person to review. These errors are perhaps more humorous
than serious. Big mistakes are obvious. They usually get fixed quickly. They are worth
studying, because the same kinds of design and programming errors can have more seri-
ous consequences in different applications. In the Therac-25 case (Section 8.2), we will
see that including tests for inconsistent or inappropriate input could have saved lives.

How close to perfection should we expect billing systems to be? A water-utility
company sent a customer an incorrect bill for $22,000. A spokesman for the company
pointed out that one incorrect bill out of 275,000 monthly bills is pretty good. It is better

&

\

8.1 Failures and Errors in Computer Systems 365

than a 99.999% accuracy rate. Is that reasonable? At some point, the expense of improving
a system is not worth the gain, especially for applications where the impact of the error
is small and errors can be detected (once they occur) and corrected at much lower cost
than it would take to try to prevent them.

Inaccurate and misinterpreted data in databases

Credit bureau records incorrectly listed thousands of New England residents as not having
paid their local property taxes. An input error appeared to be the cause of the problem.
People were denied loans before someone identified the scope of the problem and the
credit bureau corrected it. Like $40 billion tax bills, a systematic error affecting thousands
of people is likely to get noticed. The relevant company or agency is likely to fix it quickly.
More serious, perhaps, are all the errors in individual people’s records. In one case, a county
agency used the wrong middle name in a report to a credit bureau about a father who did
not make his child-support payments. Another man in the same county had the exact
name reported. He could not get credit to buy a car or a house. A man applied for jobs
at several retail stores. They all turned him down. Eventually he learned that the stores
used a database to screen applicants, and it listed him as a shoplifter. A real shoplifter had
given the police the innocent man’s identification from a lost wallet.

It is difficult to get accurate and meaningful error rates for major databases with in-
formation about millions of people. Also, we need to distinguish between a spelling error

in someone’s address and an incorrect report that someone bounced
Errors affecting job

applicants: Section 6,31 Several checks. The results of numerous surveys and studies vary con-

siderably, but they indicate that a high percentage of credit records have
serious errors.

Federal law requires states to maintain databases of people convicted of sex crimes
against children and to release information about them to the public. A family was
harassed, threatened, and physically attacked after their state posted an online list of
addresses where sex offenders live. The state did not know the offender had moved away
before the family moved in. A man murdered two men in Washington state after getting
their addresses from the state’s sex offender database, and another man killed two men
listed in Maine’s online registry. One of them was in the database because, as a teenager, he
had sex with his girlfriend who was a few weeks below the age of consent. While technically
not an error in the database, this case illustrates the need for careful thought about what
a database includes and how it is presented to the public, especially if it involves a highly
charged subject.

A high school excluded a 14-year-old boy from football and some classes without
explanation. He eventually learned that school officials thought he had been using drugs
while in junior high school. The two schools used different disciplinary codes in their
computerized records. The boy had been guilty of chewing gum and being late. This case
is very similar to the case of the dachshund/cat confusion described earlier—except that
the consequences were more significant. Both cases illustrate the problems of relying on

366

Chapter 8 Errors, Failures, and Risks

computer systems without taking the responsibility of learning enough about them to use
them properly.

When errors occur in databases used by law enforcement agencies, the consequences
can include arrests at gunpoint, strip searches, and time in jail with violent criminals.
For example, two adults went to jail and a child to a juvenile home for 24 hours while
police determined that they really had rented the rental car they were driving. The car
rental company had listed the car as stolen. An adoption agency ran a routine check on
an applicant and found a conviction for grand larceny. In fact, the applicant had taken
part in a college prank—stealing a restaurant sign—years before. He had apologized and
paid for the damage, and the charges had been dropped. The error could have caused
the agency to deny the adoption. Police arrested a Michigan man for several crimes,
including murders, committed in Los Angeles. Another man had assumed his identity.
It is understandable that the FBI’s National Crime Information Center (NCIC) database
showed the innocent man as wanted—someone using his name was committing crimes.
However, the innocent man was arrested five times; the database was not corrected. The
military imprisoned a man for five months because NCIC mistakenly reported that he was
AWOL* A college professor returning from London spent two days in jail after a routine
check with NCIC at Customs showed that he was a wanted fugitive. NCIC was wrong—
for the third time—about this particular man. Police stopped and frisked an innocent
driver because his license plate number incorrectly appeared as the license number of a
man who had killed a state trooper. The computer record did not include a description of
the car. (NCIC now includes digitized photographs and fingerprints to help reduce the
number of incidents in which police detain an innocent person.)?

After the terrorist attacks in 2001, the FBI gave a “watch list” to police departments
and businesses such as car rental agencies, banks, casinos, and trucking and chemical firms.
Recipients emailed the list to others, and eventually thousands of police departments and
thousands of companies had copies. Many incorporated the list into their databases and
systems that screened customers or job applicants. Although the list included people who
were not suspects but whom the FBI wanted to question, some companies labeled the
list “Suspected terrorists.” Many entries did not include date-of-birth, address, or other
identifying information, making mistaken identifications likely. Some companies received
the list by fax and typed misspelled names from blurred copies into their databases. The
FBI stopped updating the list but did not tell the recipients; thus, many entries became
obsolete.* Even if someone corrects an error in the original database, problems may not
be over for the affected person. Copies of incorrect or mislabeled data remain in other
systems.

Several factors contribute to the frequency and severity of the problems people suffer
because of errors in databases and misinterpretation of their contents:

* AWOL means “absent without official leave.”

8.1 Failures and Errors in Computer Systems 367

 Alarge population (Many people have identical or similar names, and most of our
interactions are with strangers.)

* Automated processing without human common sense or the power to recognize
special cases

e Overconfidence in the accuracy of data stored on computers
* Errors (some due to carelessness) in data entry
* Failure to update information and correct errors

* Lack of accountability for errors

The first factor is unlikely to change. It is the context in which we live. The second is
partly a side effect of the speed and processing ability of computer technology, but we can
reduce its negative impacts with better system specifications and training of users. The
remaining factors in the list above are all within our control as individuals, professionals,
and policy makers. We discuss them throughout this chapter.

It is repugnant to the principles of a free society that a person should ever
be taken into police custody because of a computer error precipitated by
government carelessness. As automation increasingly invades modern
life, the potential for Orwellian mischief grows.

—Arizona Supreme Court’

8.1.3 SysTEM FAILURES

Modern communications, power, medical, financial, retail, and transportation systems
depend heavily on computer systems. They do not always function as planned. We give
examples of failures, with some indications of the causes. For computer science students
and others who might contract for or manage custom software, one aim is to see the
serious impacts of the failures—and to see what you want to work hard to avoid. The
lessons of adequate planning and testing, of having backup plans in case of failures, and
of honesty in dealing with errors apply to large projects in other professions as well.
Millions of BlackBerry users did not get their email for nine hours after the company
installed a faulty software update. Customers of AT&T lost telephone service for voice
and data for hours because of a software error in a four-million-line program. A three-line
change in a two-million-line telecommunications switching program caused a failure of
telephone networks in several major cities. Although the program underwent 13 weeks
of testing, it was not retested after the change—which contained a typo. American
Express Company’s credit card verification system failed during the Christmas shopping
season. Merchants had to call in for verification, overwhelming the call center. Log-ins
overloaded Skype’s peer-to-peer network system when a huge number of people rebooted

368

Chapter 8 Errors, Failures, and Risks

BlackBerry thumb and RSI

Millions of children play games on small electronic
devices, and millions of adults answer email on
portable electronic gadgets with mini keypads. In
many professions, people type on a keyboard for
hours each day. Most of the risks we describe in
this chapter result from errors in software, poor
system design, or inaccurate and misinterpreted in-
formation. Here, we look at physical phenomena
known as BlackBerry thumb, gamer’s thumb, Nin-
tendonitis, repetitive strain injury (RSI), and by a
variety of other terms. Repetitive strain injury, the
more formal term, covers a variety of injuries or pain
in thumbs, fingers, wrists, and arms (and sometimes
neck and shoulders). You may have seen computer
programmers, prolific bloggers, or secretaries wear-
ing wrist braces, called splints—a common sign of
RSI. These injuries can make ordinary activities
painful or impossible and can prevent people from
working.

RSI is not a new disease. There are references
to similar problems in the 18th and 19th centuries
afflicting clerks and scribes (we used to call this
“writer’s cramp”), women who milked cows, and
others whose work required repetitive hand motions.
RSI problems occur among gymnasts, sign language
interpreters for the deaf, “pushup enthusiasts,” auto
workers, seamstresses, musicians, carpenters, meat
processors, and workers in bakery factories. (An
article in the Journal of the American Medical As-
sociation listed 29 occupations with common RSI
problems.)® Computer game players and smart-
phone and keyboard users are among the newest
significant group of RSI sufferers.

Thousands of people suffering from RSI sued
keyboard makers and employers in the 1990s. They
charged that the companies were at fault and should
pay for medical costs and damages to the victims.
Many of the suits resulted in dismissals or decisions
for the defendants. The uncertainty of causation
(defects in the devices or improper use) made it
difficult to win such suits. Some judges and others
compare the complaints to ordinary aches and pains
from overexercising or overusing a normally safe tool

or device. What would we think of an RSI lawsuit
against the maker of a tennis racket or a violin?

Attention to proper ergonomic design of key-
boards and workstations reduced RSI problems for
keyboard users. We can now buy split, twisted, and
otherwise nontraditionally shaped keyboards—each
one implementing some manufacturer’s idea of what
will be more comfortable and reduce strain. But
modifying equipment alone does not solve the prob-
lem. RSI experts stress the importance of training
in proper technique (including the importance of
rest breaks, posture, and exercises). One can install
free software that interrupts the user at regular in-
tervals for rest breaks and software-guided exercises.
Speech input devices might also reduce RSI caused
by keyboard use. (But we might discover an increase
in strain of the vocal cords.) Partly because of grow-
ing recognition of the RSI problem, and partly as
protection against lawsuits, computer companies
now provide information about proper use and ar-
rangement of keyboards. Some game device makers
package their product with reminders for users to
take rest breaks.

Adult users of any tool or toy should learn proper
techniques for its use. Young children need parental
supervision or rules for electronic devices, as they
might, for example, about wearing a helmet when
riding a bicycle. Employers have a responsibility to
provide training in proper and safe use of tools.
Being aware of the potential for RSI might or might
not encourage game players and tweeters to take
breaks and rest their hands and fingers. Mothers
and doctors tell us repeatedly that we should sit up
straight, exercise often, and eat our vegetables. Many
people do not follow this advice—but, once we have
the information, we can choose what to do with it.

Balance is very important for hand comfort.
You'll be surprised at how quick your wrist will
ache if the knife is not balanced properly.
—George McNeill, Executive Chef, Royal
York Hotel, Toronto (on an advertisement
for fine cutlery)

8.1 Failures and Errors in Computer Systems 369

their computers after installing routine Windows updates. A majority of Skype’s Internet
phone users could not log in for two days.

When a Galaxy IV satellite computer failed, many systems we take for granted stopped
working. Pager service stopped for an estimated 85% of users in the United States,
including hospitals and police departments. Airlines that got their weather information
from the satellite had to delay flights. The gas stations of a major chain could not verify
credit cards. Some services were quickly switched to other satellites or backup systems. It
took days to restore others.”

Every few years, the computer system of one of the world’s large stock exchanges or
brokerages fails. An error in a software upgrade shut down trading on the Tokyo Stock
Exchange. A glitch in an upgrade in the computer system at Charles Schwab Corporation
crashed the system for more than two hours and caused intermittent problems for several
days. Customers could not access their accounts or trade online. A computer malfunction
froze the London Stock Exchange for almost eight hours—on the last day of the tax year,
affecting many people’s tax bills.®

A failure of Amtrak’s reservation and ticketing system during Thanksgiving weekend
caused delays because agents had no printed schedules or fare lists. Virgin America airline
switched to a new reservation system a month before Thanksgiving. Its website and check-
in kiosks did not work properly for weeks.”

The $125 million Mars Climate Orbiter disappeared when it should have gone into
orbit around Mars. One team working on the navigation software used English-measure
units while another team used metric units. The investigation of the loss emphasized that
while the error itself was the immediate cause, the fundamental problem was the lack of
procedures that would have detected the error.'®

An inventory management system caused severe losses for businesses that used it. The
system had been developed and written for one computer and operating system, then
modified and sold to run on another. The modified system sometimes did not accept
purchase orders, causing an expensive backlog in orders. Printing invoices took minutes
instead of seconds. The system gave incorrect information about inventory and prices.
Several users claimed that although the company that sold the system received complaints
of serious problems from many customers, the company told customers the problems they
were having were unique. Eventually, the company agreed it “did not service customers
well” and the program should have undergone more extensive testing. The sources of the
problems included technical difficulties (converting software to a different system), poor
management decisions (inadequate testing of the modified system on the new platform),
and, according to the customers, dishonesty in promoting the system and responding to
the problems.!!

Voting systems

The U.S. presidential election of 2000 demonstrated some of the problems of old-
fashioned election machines and paper or punch-card ballots. Vote counters found these

370

Chapter 8 Errors, Failures, and Risks

Destroying careers and summer vacations'?

CTB/McGraw-Hill develops and scores stan-
dardized tests for schools. Millions of stu-
dents take its tests each year. An error in
CTB’s software caused it to report test results
incorrectly—substantially lower than the cor-
rect scores—in several states. In New York City,
school principals and superintendents lost their
jobs because their schools appeared to be do-
ing a poor job of teaching students to read.
Educators endured personal and professional
disgrace. One man said he applied for 30 other
superintendent jobs in the state but did not
get one. Parents were upset. Nearly 9000 stu-
dents had to attend summer school because of
the incorrect scores. Eventually, CTB corrected
the error. New York City’s reading scores had
actually risen five percentage points.

Why was the problem not detected sooner,
soon enough to avoid firings and summer
school? School testing officials in several states
were skeptical of the scores showing sudden,
unexpected drops. They questioned CTB, but
CTB told them nothing was wrong. They said
CTB did not tell them that other states expe-
rienced similar problems and also complained.
When CTB discovered the software error, the
company did not inform the schools for many

weeks, even though the president of CTB met
with school officials about the problem during
those weeks.

What lessons can we learn from this case?
Software errors happen, of course. People usu-
ally notice significant mistakes, and they did
here. But the company did not take seriously
enough the questions about the accuracy of
the results and was reluctant to admit the
possibility—and later the certainty—of errors.
It is this behavior that must change. The dam-
age from an error can be small if the error is
found and corrected quickly.

CTB recommended that school districts not
use scores on its standardized tests as the sole
factor in deciding which students should attend
summer school. But New York City did so. In a
case with a similar lesson, Florida state officials
relied on computer-generated lists of possible
felons to prevent some people from voting,
even though the database company supplying
the lists said the state should do additional
verification.! Relying solely on one factor or
on data from one database is temptingly easy.
It is a temptation that people responsible for
critical decisions in many situations should
resist.

ballots sometimes difficult to read or ambiguous. Recounting was a slow tedious process.
Many people saw electronic systems as the solution. In 2002, Congtress passed the Help
America Vote Act and authorized $3.8 billion to improve voting systems. By the 2006
elections, only a very small percentage of Americans voted with paper ballots. The rush to

electronic voting machines demonstrated that they too could have numerous faults. Here
are some of the problems that occurred: Some electronic voting systems just crashed—
voters were unable to vote. Machines in North Carolina failed to count more than 400
votes because of a technical problem. One county lost more than 4000 votes because the

machine’s memory was full. A programming error generated 100,000 extra votes in one
Texas county. A programming error caused some candidates to receive votes actually cast

for other candidates.

8.1 Failures and Errors in Computer Systems 371

Security against vote fraud and sabotage is a significant issue in elections. Programmers
or hackers can intentionally rig software to give inaccurate results. Depending on the
structure of the system, independent recounting may be difhicult. Security researchers
strongly criticized electronic voting machines. They said the machines had insecure
encryption techniques (or none at all), insufficient security for installation of upgrades to
software, and poor physical protection of the memory card on which the system stores
votes. One research group demonstrated a system’s vulnerability to a virus that essentially
took over the machine and manipulated the vote results. They found that voting system
developers lacked sufficient security training. Programmers omitted basic procedures such
as input validation and boundary checks. Researchers opened the access panel on a voting
machine with a standard key that is easily available and used in office furniture, electronic
equipment, and hotel minibars. There were certification standards for voting systems, but
some flawed systems were certified; the standards were inadequate.14 In some counties,
election officials gave voting machines to high school students and other volunteers to
store at home and deliver to polling places on election day.

Many of the failures that occurred result from causes we will see over and over: lack of
sufficient planning and thought about security issues, insufficient testing, and insufficient
training. (In this application, the task of training users is complex. Thousands of ordinary
people volunteer as poll workers and manage and operate the machines on election day.)
An underlying cause is haste. In projects like these, the desire of states to obtain federal
grants encourages haste. The grants have short limits on how soon the states must spend
the money,

Long before we voted on computers, Chicago and parts of Texas were infamous for
vote fraud. In some cities, election officials found boxes full of uncounted paper ballots
after an election was over. Reasonable accuracy and authenticity of vote counts are essential
in a healthy democracy. Electronic systems have the potential for reducing some kinds of
fraud and accidental loss of ballots, but they introduce a host of other problems that must
be addressed. The first step is to recognize that developing them requires a high degree
of professionalism and a high degree of security. In the near future, we will probably
vote online. Sadly, it is likely that, at least at first, online voting systems will be highly
vulnerable to fraud.

Those who cast the votes decide nothing. Those who count the votes
decide everything.

—Attributed to Joseph Stalin (Premier of the Soviet Union) "

Stalled airports: Denver, Hong Kong, and Malaysia

Ten months after the $3.2 billion Denver International Airport airport was supposed to
have opened, I flew over the huge airport. It covers 53 square miles, roughly twice the size
of Manhattan. It was an eerie sight—nothing moved. There were no airplanes or people
at the airport and no cars on the miles of wide highway leading to it. The opening was

372

Chapter 8 Errors, Failures, and Risks

rescheduled at least four times. The delay cost more than $30 million per month in bond
interest and operating costs. The computer-controlled baggage-handling system, which
cost $193 million, caused most of the delay.lG

The plan for the baggage system was quite ambitious. Outbound luggage checked
at ticket counters or curbside counters was to travel to any part of the airport in less
than 10 minutes via an automated system of carts traveling at up to 19 miles per hour
on 22 miles of underground tracks. Similarly, inbound luggage would go to terminals
or transfer directly to connecting flights anywhere in the airport. Carts, bar-coded for
their destinations, carried the bags. Laser scanners throughout the system tracked the
4000 carts and sent information about their locations to computers. The computers used
a database of flights, gates, and routing information to control motors and switches to
route the carts to their destinations.

The system did not work as planned. During tests over several months, carts crashed
into each other at track intersections. The system misrouted, dumped, and flung luggage.
Carts needed to move luggage went by mistake to waiting pens. Both the specific problems
and the general underlying causes are instructive. Some of the specific problems:

* Real-world problems. Some scanners got dirty or knocked out of alignment and
could not detect carts going by. Faulty latches on the carts caused luggage to fall
onto the tracks between stops.

* Problems in other systems. The airport’s electrical system could not handle the power
surges associated with the baggage system. The first full-scale test blew so many
circuits that the test had to be halted.

» Software errors. A software error caused the routing of carts to waiting pens when
they were actually needed.

No one expects software and hardware of this complexity to work perfectly when first
tested. In real-time systems,* especially, there are numerous interactions and conditions
that designers might not anticipate. Mangling a suitcase is not embarrassing if it occurs
during an early test and if the problem is fixed. It is embarrassing if it occurs after the
system is in operation or if it takes a year to fix. What led to the extraordinary delay in
the Denver baggage system? There seem to have been two main causes:

o The time allowed for development and testing of the system was insufficient. The only
other baggage system of comparable size was at Frankfurt Airport in Germany.
The company that built that system spent six years on development and two
years testing and debugging. BAE Automated Systems, the company that built
the Denver system, was asked to do it in two years. Some reports indicate that

* Real-time systems are systems that must detect and respond to or control activities of objects or people in the real
world within time constraints.

8.1 Failures and Errors in Computer Systems 373

because of the electrical problems at the airport, there were only six weeks for
testing.

Denver made significant changes in specifications after the project began. Originally,
the automated system was to serve United Airlines, but Denver officials decided
to expand it to include the entire airport, making the system 14 times as large
as the automated baggage system BAE had installed for United at San Francisco
International Airport.

Asa PC Week reporter said, “The bottom-line lesson is that system designers must build in
plenty of test and debugging time when scaling up proven technology into a much more
complicated environment.”!” Some observers criticized BAE for taking on the job when
the company should have known that there was not enough time to complete it. Others
blamed the city government for poor management, politically motivated decisions, and
proceeding with a grandiose but unrealistic plan.

Opening day at the new airports in Hong Kong and Kuala Lumpur were disasters. The
ambitious and complex computer systems at these airports were to manage everything:
moving 20,000 pieces of luggage per hour and coordinating and scheduling crews, gate
assignments for flights, and so on. Both systems failed spectacularly. At Hong Kong’s Chek
Lap Kok airport, cleaning crews and fuel trucks, baggage, passengers, and cargo went to
the wrong gates, sometimes far from where their airplanes were. Airplanes scheduled to
take off were empty. At Kuala Lumpur, airport employees had to write boarding passes by
hand and carry luggage. Flights, of course, were delayed; food cargo rotted in the tropical
heat.

At both airports, the failures were blamed on people typing in incorrect information.
In Hong Kong, it was perhaps a wrong gate or arrival time that was dutifully sent
throughout the system. In Kuala Lumpur, mistakes by check-in agents unfamiliar with
the system paralyzed it. “There’s nothing wrong with the system,” said a spokeman at
the airport in Malaysia. A spokesman at Hong Kong made a similar statement. They
are deeply mistaken. One incorrect gate number would not have caused the problems
experienced at Hong Kong. Any system that has a large number of users and a lot of user
input must be designed and tested to handle input mistakes. The “system” includes more
than software and hardware. It includes the people who operate it. As in the case of the
Denver airport, there were questions about whether political considerations, rather than

the needs of the project, determined the scheduled time for the opening of the airports.'8

Abandoned systems

The flaws in some systems are so extreme that the systems end up in the trash after wasting
millions, or even billions, of dollars. A large British food retailer spent more than $500
million on an automated supply management system; it did not work. The Ford Motor
Company abandoned a $400 million purchasing system. The California and Washington
state motor vehicle departments each spent more than $40 million on computer systems

374

Chapter 8 Errors, Failures, and Risks

* Lack of clear, well-thought-out goals and specifications

* DPoor management and poor communication among customers, designers, programmers,
and so on

* Institutional or political pressures that encourage unrealistically low bids, unrealistically
low budget requests, and underestimates of time requirements

* Use of very new technology, with unknown reliability and problems, perhaps for which
software developers have insufficient experience and expertise

* Refusal to recognize or admit that a project is in trouble

Figure 8.1 Why abandonned systems failed.

before abandoning them because they never worked properly. A consortium of hotels and
a rental car business spent $125 million on a comprehensive travel-industry reservation
system, then canceled the project because it did not work. The state of California spent
more than $100 million to develop one of the largest and most expensive state computer
systems in the country: a system for tracking parents who owe child support payments.
After five years, the state abandoned the system. After spending $4 billion, the IRS
abandoned a tax-system modernization plan; a Government Accountability Office report
blamed mismanagement. The FBI spent $170 million to develop a database called the
Virtual Case File system to manage evidence in investigations, then scrapped it because
of many problems. A Department of Justice report blamed poorly defined and changing
design requirements, lack of technical expertise, and poor management. (The FBI's next
major attempt at a paperless case-management system was scheduled for completion in
2009 but delayed at least until 2012.)* There are many more such examples.

Software expert Robert Charette estimates that from 5% to 15% of information tech-
nology projects are abandoned before or soon after delivery as “hopelessly inadequate.”
Figure 8.1 includes some reasons he cites.?’ Such large losses demand attention from
computer professionals, information technology managers, business executives, and pub-
lic officials who set budgets and schedules for large projects.

Legacy systems

After US Airways and America West merged, they combined their reservations systems.
The self-service check-in kiosks failed. Long lines at ticket counters delayed thousands
of passengers and flights. Merging different computer systems is extremely tricky, and
problems are common. But this incident illustrates another factor. According to a vice
president of US Airways, most airline systems date from the 1960s and 1970s. Designed
for the mainframe computers of that era, they, in some cases, replaced reservations on
3 x 5 paper cards. These old systems “are very reliable, but very inflexible,” the airline
executive said.?! These are examples of “legacy systems”—out-of-date systems (hardware,

8.1 Failures and Errors in Computer Systems 375

software, or peripheral equipment) still in use, often with special interfaces, conversion
software, and other adaptations to make them interact with more modern systems.

The problems of legacy systems are numerous. Old hardware fails and replacement
parts are hard to find. Old software often runs on newer hardware, but it is still old
software. Programmers no longer learn the old programming languages. Old programs
often had little or no documentation, and the programmers who wrote the software
or operated the systems have left the company, retired, or died. If there were good
design documents and manuals, they probably no longer exist or cannot be found.
Limited computer memory led to obscure and terse programming practices. A variable a
programmer might now call “flight_number” would then have been simply “t.”

The major users of computers in the early days included banks, airlines, government
agencies, and providers of infrastructure services such as power companies. The systems
grew gradually. A complete redesign and development of a fully new, modern system
would, of course, be expensive. It would require a major retraining project. The conversion
to the new system, possibly requiring some downtime, could also be very disruptive. Thus,
legacy systems persist.

We will continue to invent new programming languages, paradigms, and protocols—
and we will later add on to the systems we develop as they age. Among the lessons legacy
systems provide for computer professionals is the recognition that someone might be
using your software 30 or 40 years from now. It is important to document, document,
document your work. It is important to design for flexibility, expansion, and upgrades.

8.1.4 WuAT GOES WRONG?

Computer systems fail for two general reasons: the job they are doing is inherently
difficult, and sometimes the job is done poorly. Several factors combine to make the
task difficult. Computer systems interact with the real world (including both machinery
and unpredictable humans), include complex communications networks, have numerous
features and interconnected subsystems, and are extremely large. Automobiles, passenger
airplanes, and jet fighters contain millions of lines of computer code.?* A smartphone
has several millions of lines of code. Computer software is “nonlinear” in the sense
that, whereas a small error in a mechanical system might cause a small degradation in
performance, a single typo in a computer program can cause a dramatic difference in
behavior.

The job can be done poorly at any of many stages, from system design and imple-
mentation to system management and use. (This characteristic is not unique to computer
systems, of course. We can say the same about building a bridge, a house, a car, or any com-
plex system.) Figure 8.1 (in Section 8.1.3) summarized high-level, management-related
causes of system failures. Figure 8.2 lists more factors in computer errors and system
failures. The examples we described illustrate most of them. We comment on a few.

376

Chapter 8 Errors, Failures, and Risks

* Design and development:
Inadequate attention to potential safety risks
Interaction with physical devices that do not work as expected
Incompatibility of software and hardware, or of application software and the operating
system
Not planning and designing for unexpected inputs or circumstances
Confusing user interfaces
Insufficient testing
Reuse of software from another system without adequate checking
Overconfidence in software
Carelessness

* Management and use:
Data-entry errors
Inadequate training of users
Errors in interpreting results or output
Failure to keep information in databases up to date
Overconfidence in software by users
Insufficient planning for failures; no backup systems or procedures

* Misrepresentation, hiding problems; inadequate response to reported problems

* Insufficient market or legal incentives to do a better job

Figure 8.2 Some factors in computer system errors and failures.

Overconfidence

Overconfidence, or an unrealistic or inadequate understanding of the risks in a complex
system, is a core issue. When system developers and users appreciate the risks, they have
more motivation to use the techniques that are available to build more reliable and safer
systems and to be responsible users. How many people do not back up their files or contact
lists until after their computers crash or they lose their phones?

Some safety-critical systems that failed had supposedly “fail-safe” computer controls.
In some cases the logic of the program was fine, but the failure resulted from not
considering how the system interacts with real users or real-world problems (such as loose
wires, fallen leaves on train tracks, a cup of coffee spilled in an airplane cockpit, and so
on).

Unrealistic estimates of reliability or safety can come from genuine lack of under-
standing, from carelessness, or from intentional misrepresentation. People without a high
regard for honesty, or who work in an organization that lacks a culture of honesty and
focus on safety, sometimes give in to business or political pressure to exaggerate safety,
to hide flaws, to avoid unfavorable publicity, or to avoid the expense of corrections or
lawsuits.

8.2 Case Study: The Therac-25 377

Reuse of software: the Ariane 5 rocket and “No Fly” lists

Less than 40 seconds after the first launch of France’s Ariane 5 rocket, the rocket veered
off course and was destroyed as a safety precaution. The rocket and the satellites it was
carrying cost approximately $500 million. A software error caused the failure.?? The
Ariane 5 used some software designed for the earlier, successful Ariane 4. The software
included a module that ran for about a minute after initiation of a launch on the Ariane
4. It did not have to run after takeoff of the Ariane 5, but a decision was made to avoid
introducing new errors by making changes in a module that operated well in Ariane 4.
This module did calculations related to velocity. The Ariane 5 travels faster than the Ariane
4 after takeoft. The calculations produced numbers bigger than the program could handle
(an “overflow” in technical jargon), causing the system to halt.

A woman named Jan Adams, and many other people with first initial] and last name
Adams, were flagged as possible terrorists when they tried to board an airplane. The name
“Joseph Adams” is on a “No Fly” list of suspected terrorists (and other people considered
safety threats) that the Transportaton Security Agency had given to the airlines. To
compare passenger names with those on the “No Fly” list, some airlines used old software
and strategies designed to help ticket agents quickly locate a passenger’s reservation record
(e.g., if the passenger calls in with a question or to make a change). The software searches
quickly and “casts a wide net.” That is, it finds any possible match, which a sales agent
can then verify. In the intended applications for the software, there is no inconvenience to
anyone if the program presents the agent with a few potential matches of similar names.
In the context of tagging people as possible terrorists, a person mistakenly “matched” will
likely undergo questioning and extra luggage and body searches by security agents.

Do these examples tell us that we should not reuse software? One of the goals of
programming paradigms such as object-oriented code is to make software elements that
can be widely used, thus saving time and effort. Reuse of working software should also
increase safety and reliability. After all, it has undergone field testing in a real, operational
environment; we know it works. At least, we think it works. The critical point is that it
works in a different environment. It is essential to reexamine the specifications and design
of the software, consider implications and risks for the new environment, and retest the
software for the new use.

8.2 Case Study: The Therac-25

8.2.1 TuEerAc-25 Rabp1aTiOoON OVERDOSES

The benefits of computing technology to health care are numerous and very impressive.
They include improved diagnosis, monitoring of health conditions, development of new
drugs, information systems that speed treatment and reduce errors, devices that save lives,

378

Chapter 8 Errors, Failures, and Risks

and devices that increase the safety of surgeries. Yet one of the classic case studies of a deadly
software failure is a medical device: a radiation treatment machine.

The Therac-25 was a software-controlled radiation-therapy machine used to treat
people with cancer. Between 1985 and 1987, Therac-25 machines at four medical centers
gave massive overdoses of radiation to six patients. In some cases, the operator repeated
an overdose because the machine’s display indicated that it had given no dose. Medical
personnel later estimated that some patients received more than 100 times the intended
dose. These incidents caused severe and painful injuries and the deaths of three patients.
Why is it important to study a case as old as this? To avoid repeating the errors. Medical
physicists operating a different radiation-treatment machine in Panama in 2000 tried
to circumvent a limitation in the software in an attempt to provide more shielding for
patients. Their actions caused dosage miscalculations. Twenty-eight patients received
overdoses of radiation, and several died.?* It seems that dramatic lessons need repetition
with each new generation.

What went wrong with the Therac-25?

Studies of the Therac-25 incidents showed that many factors contributed to the
injuries and deaths. The factors include lapses in good safety design, insufficient testing,
bugs in the software that controlled the machines, and an inadequate system of reporting
and investigating the accidents. (Articles by computer scientists Nancy Leveson and Clark
Turner and by Jonathan Jacky are the main sources for this discussion.?”)

To understand the discussion of the problems, it will help to know a little about the
machine. The Therac-25 is a dual-mode machine. That is, it can generate an electron
beam or an x-ray photon beam. The type of beam needed depends on the tumor being
treated. The machine’s linear accelerator produces a high-energy electron beam (25
million electron volts) that is dangerous. Patients must not be exposed to the raw beam. A
computer monitors and controls movement of a turntable that holds three sets of devices.
Depending on the intended treatment, the machine rotates a different set of devices in
front of the beam to spread it and make it safe. It is essential that the proper protective
device be in place when the electron beam is on. A third position of the turntable uses a
light beam instead of the electron beam to help the operator position the beam precisely
in the correct place on the patient’s body.

8.2.2 SOFTWARE AND DESIGN PROBLEMS

Design flaws

The Therac-25 followed earlier machines called the Therac-6 and Therac-20. It differed
from them in that it was fully computer controlled. The older machines had hardware
safety interlock mechanisms, independent of the computer, that prevented the beam
from firing in unsafe conditions. The design of the Therac-25 eliminated many of these
hardware safety features. The Therac-25 reused some software from the Therac-20 and
Therac-6. The developers apparently assumed the software functioned correctly. This

8.2 Case Study: The Therac-25 379

assumption was wrong. When new operators used the Therac-20, there were frequent
shutdowns and blown fuses, but no overdoses. The Therac-20 software had bugs, but the
hardware safety mechanisms were doing their job. Either the manufacturers did not know
of the problems with the Therac-20, or they completely missed the serious implications.

The Therac-25 malfunctioned frequently. One facility said there were sometimes 40
dose-rate malfunctions in a day, generally underdoses. Thus, operators became used to
error messages appearing often, with no indication that there might be safety hazards.

There were a number of weaknesses in the design of the operator interface. The error
messages that appeared on the display were simply error numbers or obscure messages
(“Malfunction 54” or “H-tilt”). This was not unusual for early computer programs when
computers had much less memory and mass storage than they have now. One had to
look up each error number in a manual for more explanation. The operator’s manual
for the Therac-25, however, did not include an explanation of the error messages. The
maintenance manual did not explain them either. The machine distinguished between
errors by the amount of effort needed to continue operation. For certain error conditions,
the machine paused, and the operator could proceed (turn on the electron beam) by
pressing one key. For other kinds of errors, the machine suspended operation and had to be
completely reset. One would presume that the machine would allow one-key resumption
only after minor, non-safety-related errors. Yet one-key resumption occurred in some of
the accidents in which patients received multiple overdoses.

Atomic Energy of Canada, Ltd. (AECL), a Canadian government corporation, man-
ufactured the Therac-25. Investigators studying the accidents found that AECL produced
very little documentation concerning the software specifications or the testing plan dur-
ing development of the program. Although AECL claimed that they tested the machine
extensively, it appeared that the test plan was inadequate.

Bugs

Investigators were able to trace some of the overdoses to two specific software errors.
Because many readers of this book are computer science students, I will describe the bugs.
These descriptions illustrate the importance of using good programming techniques.
Because some readers have little or no programming knowledge, I will simplify the
descriptions.

After the operator entered treatment parameters at a control console, a software
procedure called Set-Up Test performed a variety of checks to be sure the machine was
in the correct position, and so on. If anything was not ready, this procedure scheduled
itself to rerun the checks. (The system might simply have to wait for the turntable to
move into place.) The Set-Up Test procedure can run several hundred times while setting
up for one treatment. A flag variable indicated whether a specific device on the machine
was in the correct position. A zero value meant the device was ready; a nonzero value
meant it must be checked. To ensure that the device was checked, each time the Set-Up
Test procedure ran, it incremented the variable to make it nonzero. The problem was

380

Chapter 8 Errors, Failures, and Risks

that the flag variable was stored in one byte. After the 256th call to the routine, the flag
overflowed and showed a value of zero. (If you are not familiar with programming, think
of this as an automobile’s odometer rolling over to zero after reaching the highest number
it can show.) If everything else happened to be ready at that point, the program did not
check the device position, and the treatment could proceed. Investigators believe that in
some of the accidents, this bug allowed the electron beam to be on when the turntable
was positioned for use of the light beam, and there was no protective device in place to
attenuate the beam.

Part of the tragedy in this case is that the error was such a simple one, with a simple
correction. No good student programmer should have made this error. The solution is to
set the flag variable to a fixed value, say 1, rather than incrementing it, to indicate that
the device needs checking.

Other bugs caused the machine to ignore changes or corrections made by the operator
at the console. When the operator typed in all the necessary information for a treatment,
the program began moving various devices into place. This process could take several
seconds. The software checked for editing of the input by the operator during this time
and restarted the set-up if it detected editing. However, because of bugs in this section of
the program, some parts of the program learned of the edited information while others did
not. This led to machine settings that were incorrect and inconsistent with safe treatment.
According to the later investigation by the Food and Drug Administration (FDA), there
appeared to be no consistency checks in the program. The error was most likely to occur
with an experienced operator who was quick at editing input.

In a real-time, multitasking system that controls physical machinery while an operator
enters—and might modify—input, there are many complex factors that can contribute
to subtle, intermittent, and hard-to-detect bugs. Programmers working on such systems
must learn to be aware of the potential problems and to use good programming practices
to avoid them.

8.2.3 Wuy So MaNy INCIDENTS?

There were six known Therac-25 overdoses. You may wonder why hospitals and clinics
continued to use the machine after the first one.

The Therac-25 had been in service for up to two years at some clinics. Medical facilities
did not immediately pull it from service after the first few accidents because they did not
know immediately that it caused the injuries. Medical staff members considered various
other explanations. The staff at the site of the first incident said that one reason they
were not certain of the source of the patient’s injuries was that they had never seen such a
massive radiation overdose before. They questioned the manufacturer about the possibility
of overdoses, but the company responded (after the first, third, and fourth accidents) that
the machine could not have caused the patient injuries. According to the Leveson and

8.2 Case Study: The Therac-25 381

Turner investigative report, they also told the facilities that there had been no similar cases
of injuries.

After the second accident, AECL investigated and found several problems related
to the turntable (not including any of the ones we described). They made some changes
in the system and recommended operational changes. They declared that they had
improved the safety of the machine by five orders of magnitude, although they told the
FDA that they were not certain of the exact cause of the accident. That is, they did not
know whether they had found the problem that caused the accident or just other problems.
In making decisions about continued use of the machines, the hospitals and clinics had
to consider the costs of removing the expensive machine from service (in lost income and
loss of treatment for patients who needed it), the uncertainty about whether the machine
was the cause of the injuries, and, later, when that was clear, the manufacturer’s assurances
that they had solved the problem.

A Canadian government agency and some hospitals using the Therac-25 made recom-
mendations for many more changes to enhance safety; they were not implemented. After
the fifth accident, the FDA declared the machine defective and ordered AECL to inform
users of the problems. The FDA and AECL spent about a year (during which the sixth
accident occurred) negotiating about changes in the machine. The final plan included
more than two dozen changes. They eventually installed the critical hardware safety in-
terlocks, and most of the machines remained in use after that with no new incidents of
overdoses.?°

Overconfidence

In the first overdose incident, when the patient told the machine operator that the
machine had “burned” her, the operator told her that was impossible. This was one of
many indications that the makers and some users of the Therac-25 were overconfident
about the safety of the system. The most obvious and critical indication of overconfidence
in the software was the decision to eliminate the hardware safety mechanisms. A safety
analysis of the machine done by AECL years before the accidents suggests that they did
not expect significant problems from software errors. In one case where a clinic added
its own hardware safety features to the machine, AECL told them it was not necessary.
(None of the accidents occurred at that facility.)

The hospitals using the machine assumed that it worked safely, an understandable
assumption. Some of their actions, though, suggest overconfidence, or at least practices
that they should have avoided. For example, operators ignored error messages because the
machine produced so many of them. A camera in the treatment room and an intercom
system enabled the operator to monitor the treatment and communicate with the patient.
(The operator uses a console outside the shielded treatment room.) On the day of an
accident at one facility, neither the video monitor nor the intercom was functioning. The
operator did not see or hear the patient try to get up after an overdose. He received a second

382 Chapter 8 Errors, Failures, and Risks

overdose before he reached the door and pounded on it. This facility had successfully
treated more than 500 patients with the machine before this incident.

8.2.4 OBSERVATIONS AND PERSPECTIVE

From design decisions all the way to responding to the overdose accidents, the manufac-
turer of the Therac-25 did a poor job. The number and pattern of problems in this case,
and the way they were handled, suggest serious irresponsibility. This case illustrates many
of the things that a responsible, ethical software developer should not do. It illustrates the
importance of following good procedures in software development. It is a stark reminder
of the consequences of carelessness, cutting corners, unprofessional work, and attempts
to avoid responsibility. It reminds us that a complex system can work correctly hundreds
of times with a bug that shows up only in unusual circumstances—hence the importance
of always following good safety procedures in operation of potentially dangerous equip-
ment. This case also illustrates the importance of individual initiative and responsibility.
Recall that some facilities installed hardware safety devices on their Therac-25 machines.
They recognized the risks and took action to reduce them. The hospital physicist at one
of the facilities where the Therac-25 overdosed patients spent many hours working with
the machine to try to reproduce the conditions under which the overdoses occurred. With
little support or information from the manufacturer, he was able to figure out the cause
of some of the malfunctions.

To emphasize that safety requires more than bug-free code, we consider failures and
accidents involving other radiation treatment systems. Three patients received overdoses
in one day at a London hospital in 1966 when safety controls failed. Twenty-four patients
received overdoses from a malfunctioning machine at a Spanish hospital in 1991; three
patients died. Neither of these machines had computer controls.”” Two news reporters
reviewed more than 4000 cases of radiation overdoses reported to the U.S. government.
Here are a few of the overdose incidents they describe. A technician started a treatment,
then left the patient for 10-15 minutes to attend an office party. A technician failed
to carefully check the prescribed treatment time. A technician failed to measure the
radioactive drugs administered; she just used what looked like the right amount. In at least
two cases, technicians confused microcuries and millicuries.* The underlying problems
were carelessness, lack of appreciation for the risk involved, poor training, and lack of
sufficient penalty to encourage better practices. (In most cases, the medical facilities paid
small fines or none at all.)?

Most of the incidents we just described occurred in systems without computers. For
some, a good computer system might have prevented the problem. Many could have
occurred whether or not the treatment system was controlled by a computer. These

* A curie is a measure of radioactivity. A millicurie is one thousand times as much as a microcurie.

8.3 Increasing Reliability and Safety 383

examples remind us that individual and management responsibility, good training, and
accountability are important no matter what technology we use.

8.3 Increasing Reliability and Safety

Success actually requires avoiding many separate possible causes of

Jailure.

—Jared Diamond*’

8.3.1 PROFESSIONAL TECHNIQUES

The New York Stock Exchange installed a $2 billion system with hundreds of computers,
200 miles of fiber-optic cable, 8000 telephone circuits, and 300 data routers. The
exchange managers prepared for spikes in trading by testing the system on triple and
quadruple the normal trading volume. On one day, the exchange processed 76% more
trades than the previous record. The system handled the sales without errors or delays.°
We have been describing failures throughout this chapter. Many large, complex computer
systems work extremely well. We rely on them daily. How can we design, build, and
operate systems that are likely to function well?

To produce good systems, we must use good software engineering techniques at all
stages of development, including specifications, design, implementation, documentation,
and testing. There is a wide range between poor work and good work, as there is in vir-
tually any field. Professionals, both programmers and managers, have the responsibility
to study and use the professional techniques and tools that are available and to follow the
procedures and guidelines established in the various relevant codes of ethics and profes-
sional practices. (The Software Engineering Code of Ethics and Professional Practice and
the ACM Code of Ethics and Professional Conduct, in Appendix A, are two important
sets of general guidelines for the latter.)

Management and communications

Management experts use the term high reliability organization (HRO) for an organization
(business or government) that operates in difficult environments, often with complex
technology, where failures can have extreme consequences (for example, air traffic control,
nuclear power plants).?! Researchers have identified characteristics of HROs that perform
extremely well. These characteristics can improve software and computer systems in both
critical and less critical applications. One characteristic is “preoccupation with failure.”
That means always assuming something unexpected can go wrong—not just planning,
designing, and programming for all problems the team can foresee, but always being aware
that they might miss something. Preoccupation with failure includes being alert to cues
that might indicate an error. It includes fully analyzing near failures (rather than assuming

384

Chapter 8 Errors, Failures, and Risks

the system “worked” because it averted an actual failure) and looking for systemic reasons
for an error or failure rather than focusing narrowly on the detail that was wrong. (For
example, why did some programmers for the Mars Climate Orbitor assume measurements
were in English units while others assumed metric?)

Another feature of successful organizations is loose structure. It should be easy for
a designer or programmer to speak to people in other departments or higher up in
the company without going through rigid channels that discourage communication.
An atmosphere of open, honest communication within the organization and between
a company and client are essential for learning of problems early and reducing the effort
required to handle them.

There is much more to the field of organizational features that encourage success. It
is well worthwhile for project managers, founders of start-up companies, and anyone in
management to devote time to studying it.

Safety-critical applications

A subfield of computer science focuses on design and development of safety-critical
software. Safety specialists emphasize that developers must “design in” safety from the
start. There are techniques of hazard analysis that help system designers identify risks and
protect against them. Software engineers who work on safety-critical applications should
have special training. Software expert Nancy Leveson emphasizes that with good technical
practices and good management, you can develop large systems right: “One lesson is that
most accidents are not the result of unknown scientific principles but rather of a failure
to apply well-known, standard engineering practices.”>>

To illustrate two important principles in safety-critical applications, I will use as
examples accidents that destroyed two space shuttles, each killing the seven people
onboard. Computer systems and software were not the cause, but these tragedies make the
points well. Burning gases leaked from a rocket shortly after launch of the Challenger and
destroyed it. The night before the scheduled launch, the engineers argued for a delay. They
knew the cold weather posed a severe threat to the shuttle. We cannot prove absolutely
that a system is safe, nor can we usually prove absolutely that it will fail and kill someone.
An engineer reported that, in the case of the Challenger, “It was up to us to prove beyond
a shadow of a doubt that it was not safe to [launch].”?? For the ethical decision maker,
the policy should be to suspend or delay use of the system in the absence of a convincing
case for safety, rather than to proceed in the absence of a convincing case for disaster. In
the second accident, a large piece of insulating foam dislodged and struck the wing of the
Columbia space shuttle as it launched. NASA knew this happened, but pieces of foam had
dislodged and struck the shuttle on other flights without causing a major problem. Thus
NASA managers declined to pursue available options to observe and repair the damage.
Columbia broke up when reentering the earth’s atmosphere at the end of its mission.
This tragedy illustrates the danger of complacency. An organization focused on safety

8.3 Increasing Reliability and Safety 385

must explore ambiguous risks. Tragedies are less likely if the organization has established
policies and procedures to evaluate such risks.>*

Specifications

Companies that do well expend extensive effort to learn the needs of the client and to
understand how the client will use the system. Good software developers help clients
better understand their own goals and requirements, which the clients might not be good
at articulating. The long planning stage allows for discovering and modifying unrealistic
goals. One company that developed a successful financial system that processes one trillion
dollars in transactions per day spent several years developing specifications for the system,
then only six months programming, followed by carefully designed, extensive testing.

User interfaces and human factors

If you are editing a document and you try to quit without saving your changes, what
happens? Most programs will remind you that you have not saved your changes and
give you a chance to do so. The designers of the programs know that people forget or
sometimes click or type the wrong command. This is a simple and common example
of considering human factors in designing software—one that has avoided personal
calamities for millions of people.

Well-designed user interfaces can help avoid many problems. System designers and
programmers need to learn from psychologists and human-factors experts who know prin-
ciples and practices for doing a good job.* User interfaces should provide clear instructions
and error messages. They should be consistent. They should include appropriate check-
ing of input to reduce major system failures caused by typos or other errors a person will
likely make.

The crash of American Airlines Flight 965 near Cali, Colombia, illustrates the impor-
tance of consistency (and other aspects of good user interfaces). While approaching the
airport, the pilot intended to lock the autopilot onto the beacon, called Rozo, that would
lead the plane to the airport. The pilot typed “R,” and the computer system displayed six
beacons beginning with “R.” Normally, the closest beacon is at the top of the list. The
pilot selected it without checking carefully. The beacon at the top of the list was “Romeo”
and was more than 100 miles away, near Bogota. The plane turned more than 90 degrees
and headed for Romeo. In the dark, it crashed into a mountain, killing 159 people.®

In the lawsuits that followed, juries attributed blame mostly to pilot error. The pilot
chose the wrong beacon without checking and continued to descend at night after the
plane made a large, unexpected turn. One jury assigned some of the responsibility to the
companies that provided the computer system. While it is clear that the pilot could have

* See, for example, the books by Shneiderman, Tufte, Nielsen, and Norman in the list of references at the end of
the chapter.

386

Chapter 8 Errors, Failures, and Risks

and should have avoided the crash, itis also clear that the inconsistency in the display—not
putting the nearest beacon at the top of the list—created the dangerous situation.

Crashing into mountains was a major cause of air travel fatalities. The Cali crash
triggered the adoption of a ground proximity warning system (GPWS) to reduce such
crashes. Older radar-based systems sometimes gave warning only 10 seconds before a
potential impact. The GPWS contains a digital map of the world’s topography. It can give
a pilot up to a minute of warning if a plane is too close to a mountain and automatically
displays a map of nearby mountains. Dangerous peaks are shown in red. The GWPS is
likely responsible for preventing crashes in several incidents in which pilots incorrectly
set an altimeter, attempted to land with poor visibility, mistook building lights for airport
lights, and so on. No commercial U.S. airliner has crashed into a mountain since the
GPWS was implemented.?®

As an illustration of more principles that can help build better and safer systems, we
consider several aspects of automated flight systems. An expert in this area emphasizes the

following points:>’

o The user needs feedback to understand what the system is doing ar any time. This is
critical when a pilot must suddenly take over if the automation fails or if he or
she must turn it off for any reason. One example is having the throttle move as a
manually operated throttle would, even though movement is not necessary when
the automated system is operating.

o The system should behave as an experienced user expects. Pilots tend to reduce their
rate of climb as they get close to their desired altitude. On the McDonnell Douglas
MD-80, the automated system maintains a climb rate that is up to eight times as
fast as pilots typically choose. Pilots, concerned that the plane might overshoot
its target altitude, made adjustments, not realizing that their intervention turned
off the automated function that caused the plane to level out when it reached the
desired altitude. Thus, because the automation behaved in an unexpected way,
the airplane climbed too high—exactly what the pilot was trying to prevent. (The
incidence of the problem declined with more training.)

* A workload that is too low can be dangerous. Clearly, an overworked operator is more
likely to make mistakes. One of the goals of automation is to reduce the human
workload. However, a workload that is too low can lead to boredom, inattention,
or lack of awareness of the current status. That is a danger if the pilot must take
over in a hurry.

Redundancy and self-checking

Redundancy and self-checking are two techniques important in systems on which lives
and fortunes depend. Redundancy takes several forms. On aircraft, several computers can
control an accuator on, say, a wing flap. If one computer fails, another can do the job.
Software modules can check their own results—either against a standard or by computing

8.3 Increasing Reliability and Safety 387

the same thing in two different ways and then comparing to see if the two results match. A
more complex form of redundancy, used, for example, in flight control systems in aircraft,
aims to protect against consistently faulty assumptions or methods of one programming
team. Three independent teams write modules for the same purpose, in three different
programming languages. The modules run on three separate computers. A fourth unit
examines the outputs of the three modules and chooses the result obtained by at least two
out of three. Safety experts say that even when programmers work separately, they tend
to make the same kinds of errors, especially if there is an error, ambiguity, or omission
in the program specifications.”® Thus, this type of “voting” redundancy, while valuable
in many safety-critical applications, might not overcome problems in other areas of the
software development process.

Testing

It is difficult to overemphasize the importance of adequate, well-designed testing of
software. Testing is not arbitrary. There are principles and techniques for doing a good job.
Many significant computer system failures in previously working systems occurred soon
after installation of an update or upgrade. Even small changes need thorough testing.
Unfortunately, many cost-conscious managers, programmers, and software developers
see testing as a dispensable luxury, a step you can skimp on to meet a deadline or to save
money. This is a common but foolish, risky, and often irresponsible attitude.

A practice called independent verification and validation (IV&YV) can be very useful
in finding errors in software systems. [IV&V means that an independent company (that
is, not the one that developed the program and not the customer) tests and validates the
software. Testing and verification by an independent organization is not practical for all
projects, but many software developers have their own testing teams that are independent
of the programmers who develop a system. The IV&V team acts as “adversaries” and tries
to find flaws. IV&V is helpful for two reasons. The people who designed and/or developed
a system think the system works. They think they thought about potential problems and
solved them. With the best of intentions, they tend to test for the problems they have
already considered. Also, consciously or subconsciously, the people who created the system
may be reluctant to find flaws in it. Their testing may be half-hearted. Independent testers
bring different perspectives, and for them, success in finding flaws is not emotionally or
professionally tied to responsibility for those flaws.

You might have used a beta version of a product or heard of beta testing. Beta testing
is a near-final stage of testing. A selected set of customers (or members of the public)
use a complete, presumably well-tested system in their “real-world” environment. Thus,
this is testing by regular users, not software experts. Beta testing can detect software
limitations and bugs that the designers, programmers, and testers missed. It can also
uncover confusing aspects of user interfaces, the need for more rugged hardware, problems
that occur when interfacing with other systems or when running a new program on older
computers, and many other sorts of problems.

388

Chapter 8 Errors, Failures, and Risks

We are what we repeatedly do. Excellence, therefore, is not an act, but
a habir.

—Will Durant, summarizing Aristotle’s view in his Vicomachean Ethics®®

8.3.2 Trust THE HUMAN OR THE COMPUTER SYSTEM?

How much control should computers have in a crisis? This question arises in many
application areas. We address it in the context of aircraft systems.

Like antilock braking systems in automobiles that control braking to avoid skidding
(and do a better job than human drivers), computer systems in airplanes control sudden
sharp climbs to avoid stalling. Some airplanes automatically descend if they detect cabin
depressurization and the pilot does not take action quickly.

The Traffic Collision Avoidance System (TCAS) detects a potential in-air collision of
two airplanes and directs the pilots to avoid each other. The first version of the system
had so many false alarms that it was unusable. In some incidents, the system directed
pilots to fly toward each other rather than away, potentially causing a collision instead
of avoiding one. TCAS was improved, however. It is a great advance in safety, according
to the head of the Airline Pilots Association’s safety committee.”” The TCAS systems
functioned correctly when a Russian airplane carrying many children and a German cargo
plane got too close to each other. The systems detected a potential collision and told the
Russian pilot to climb and the German pilot to descend. Unfortunately, the Russian pilot
followed an air traffic controller’s instruction to descend, and the planes collided. In this
example, the computer’s instructions were better than the human’s. A few months after
this tragedy, the pilot of a Lufthansa 747 ignored instructions from an air traffic controller
and followed instructions from the computer system instead, avoiding a midair collision.
U.S. and European pilots are now trained to follow TCAS instructions even if they conflict
with instructions from an air traffic controller.

Pilots are trained to immediately turn off autopilot systems when TCAS signals a
potential collision. They manually maneuver the plane to avoid the collision. That might
change. Pilots of the Airbus 380, the world’s largest passenger airplane, are trained to
allow its autopilot system to control the plane when a midair collision threatens. The
aircraft maker says that pilots sometimes overreact to collision warnings and make extreme
maneuvers that can injure passengers or cause a collision with other air traffic in the area.
The policy is controversial among pilots.*!

Computers in some airplanes prevent certain actions even if the pilot tries them (for
example, banking at a very steep angle). Some people object, arguing that the pilot should
have ultimate control in case unusual action is needed in an emergency. Based on accident
statistics, some airlines believe otherwise: that preventing pilots from doing something
“stupid” can save more lives than letting them do something bold and heroic, but outside
the program limitations, in the very rare cases where it might be necessary.

8.3 Increasing Reliability and Safety 389

8.3.3 LAw, REGULATION, AND MARKETS

Criminal and civil penalties

Legal remedies for faulty systems include suits against the company that developed or sold
the system and criminal charges when fraud or criminal negligence occurs. Families of
Therac-25 victims sued; they settled out of court. A bank won a large judgment against
a software company for a faulty financial system that caused problems a user described
as “catastrophic.” Several people have won large judgments against credit bureaus for
incorrect data in credit reports that caused havoc in their lives.

Many contracts for business computer systems limit the amount the customer can
recover to the actual amount spent on the computer system. Customers know when
they sign the contract that there is generally no coverage for losses incurred because the
system did not meet their needs for any reason. Courts uphold such contract limitations.
If people and businesses cannot count on the legal system upholding the terms of a
contract, contracts would be almost useless. Millions of business interactions that take
place daily would become more risky and therefore more expensive. Because fraud and
misrepresentation are not, of course, part of a contract, some companies that suffer large
losses allege fraud and misrepresentation by the seller in an attempt to recover some of
the losses, regardless of whether the allegations have firm grounding,.

Well-designed liability laws and criminal laws—not so extreme that they discourage
innovation, but clear and strong enough to provide incentives to produce good systems—
are important legal tools for increasing reliability and safety of computer systems and
accuracy of data in databases, as they are for protecting privacy and for protecting
customers in other industries. After-the-fact penalties do not undo the injuries that
occurred, but the prospect of paying for mistakes and sloppiness is incentive to be
responsible and careful. Payments compensate the victim and provide some justice.
An individual, business, or government that does not have to pay for its mistakes and
irresponsible actions will make more of them. (In many contexts, the government does
not permit lawsuits against it.)

Unfortunately, there are many flaws in liability law in the United States. People often
win multimillion-dollar suits when there is no scientific evidence or sensible reason to hold
the manufacturer or seller of a product responsible for accidents or other negative impacts.
Abuse of the liability lawsuit system almost shut down the small-airplane manufacturing
industry in the United States for years. The complexity of large computer systems make
designing liability standards difficult, but this is a necessary task.

Regulation and safety-critical applications

Is there legislation or regulation that can prevent life-threatening computer failures? A law
saying that a radiation machine should not overdose a patient would be silly. We know
that it should not do that. We could ban the use of computer control for applications

390

Chapter 8 Errors, Failures, and Risks

where an error could be fatal, but such a ban is ill advised. In many applications, the
benefits of using computers are well worth the risks.

A widely accepted option is regulation, possibly including specific testing require-
ments and requirement for approval by a government agency before a new product can
be sold. The FDA has regulated drugs and medical devices for decades. Companies must
do extensive testing, provide huge quantities of documentation, and get government ap-
proval before they sell new drugs and some medical devices. Arguments in favor of such
regulation, both for drugs and for safety-critical computer systems, include the following:
Most potential customers and people who would be at risk (e.g., patients) do not have
the expertise to judge the safety or reliability of a system. It is better to prevent use of a
bad product than to rely on after-the-calamity remedies. It is too difficult and expensive
for ordinary people to sue large companies successfully.

If the FDA had thoroughly examined the Therac-25 before it was put into operation,
it might have found the flaws before any patients were injured. However, we should note
some weaknesses and trade-offs in the regulatory approach.*? The approval process is
extremely expensive and time consuming. The multiyear delays in introducing a good
product cost many lives. Political concerns affect the approval process. Competitors
influence decisions. Also, there is an incentive for bureaucrats and regulators to be
overcautious. Damage caused by an approved product results in bad publicity and possible
firing for the regulator who approved it. Deaths or losses caused by the delay or failure to
approve a good new product are usually not obvious and get little publicity.

Leveson and Turner, in their Therac-25 article, summarize some of these dilemmas:

The issues involved in regulation of risky technology are complex. Overly strict stan-
dards can inhibit progress, require techniques behind the state of the art, and transfer
responsibility from the manufacturer to the government. The fixing of responsibility
requires a delicate balance. Someone must represent the public’s needs, which may be
subsumed by a company’s desire for profits. On the other hand, standards can have the
undesirable effect of limiting the safety efforts and investment of companies that feel
their legal and moral responsibilities are fulfilled if they follow the standards. Some
of the most effective standards and efforts for safety come from users. Manufacturers

have more incentive to satisfy customers than to satisfy government agencies. 3

Professional licensing

Another controversial approach to improving software quality is mandatory licensing
of software development professionals. Laws require licenses for hundreds of trades and
professions. Licensing requirements typically include specific training, the passing of
competency exams, ethical requirements, and continuing education. The desired effect is
to protect the public from poor quality and unethical behavior. The history of mandatory
licensing in many fields shows that the actual goals and the effects were and are not
always very noble. In some trades (plumbing, for example), the licensing requirements

8.3 Increasing Reliability and Safety 391

were devised to keep black people out. Requirements for specific degrees and training
programs, as opposed to learning on one’s own or on the job, tend to keep poorer people
from qualifying for licenses. Economic analyses have shown that the effect of licensing is
to reduce the number of practitioners in the field and keep prices and income for licensees
S ~ higher than they would otherwise be—in many cases, without any
S lashesbetveen leensing 4 provement in quality.# Some see a requirement for a government-

laws and the Web: proveme quality. q g
Section 3.2.5 approved license as a fundamental violation of the freedom to work
(that is, of the negative right, or liberty, to work, in the terms of

Section 1.4.2).

There are voluntary approaches to measuring or certifying qualifications of software
personnel—for example, a diploma from a respected school and certification programs

by professional organizations—particularly for advanced training in specialized areas.

Taking responsibility

In some cases of computer errors, businesses pay customers for problems or damages
(without a lawsuit). For example, Intuit offered to pay interest and penalties that resulted
from errors in flawed income-tax programs. When United Airlines mistakenly posted
ticket prices on its website as low as about $25 for flights between the United States
and Europe, it honored tickets purchased before it corrected the error. United, at first,
charged the buyers the correct fare and probably had the legal right to do so, but the airline
concluded that having angry customers would cost more than the tickets. We noted that
business pressures can lead to cutting corners and releasing defective products. Business
pressure can also be a cause for insistence on quality and maintaining good customer
relations. Good business managers recognize the importance of customer satisfaction and
the reputation of the business. Also, some businesses have an ethical policy of behaving
responsibly and paying for mistakes, just as a person would pay for accidentally breaking
a neighbor’s window with a misdirected softball.

Other market mechanisms besides consumer backlash encourage a quality job and
provide ways to deal with the risk of failures. Insurance companies have an incentive
to evaluate the systems they insure and require that certain standards are met. Some
businesses pay a higher rate for “uninterrupted” satellite communications service. That
is, the service company would switch their communications quickly to other satellites
in case of a failure. Businesses that can withstand a few hours of interruption need not
pay for that extra protection. Organizations whose communications are critical to public
safety, such as police departments and hospitals, should take responsibility to ensure they
have appropriate backup service, possibly paying extra for the higher level of service.

How can customers protect themselves from faulty software? How can a business
avoid buying a seriously flawed program? For high-volume consumer and small-business
software, one can consult the many websites that review new programs, or consult one’s
social network. Specialized systems with a small market are more difficult to evaluate
before purchase. We can check the seller’s reputation with the Better Business Bureau. We

392

Chapter 8 Errors, Failures, and Risks

can consult previous customers and ask how well the seller did the job. Online user groups
for specific software products are excellent sources of information for prospective and
current customers. In the case of the Therac-25, the users eventually spread information
among themselves. If the Web had existed at the time of the accidents, it is likely that the
problems would have been identified sooner and that some of the accidents would not
have happened.

8.4 Dependence, Risk, and Progress

8.4.1 Are WE Too DePENDENT ON COMPUTERS?

Many people who write about the social impacts of computers lament our dependence on
computing technology. Because of their usefulness and flexibility, computers, cellphones,
and similar devices are now virtually everywhere. Is this good? Or bad? Or neutral?
The word “dependence” often has a negative connotation. “Dependence on computers”
suggests a criticism of our use of the technology and its gadgets. Is that appropriate?

In Holland, no one discovered the body of a reclusive, elderly man who died in his
apartment until six months after his death. Eventually someone noticed that he had a large
accumulation of mail. This incident was described as a “particularly disturbing example
of computer dependency.” Many of the man’s bills, including rent and utilities, were
paid automatically. His pension check went automatically to his bank account. Thus, “all
the relevant authorities assumed that he was still alive.”*> But who expects the local gas
company or other “relevant authorities” to discover a death? The problem here, clearly,
was the lack of concerned family, friends, and neighbors. I happened to be present in a
similar situation. An elderly, reclusive woman died in her home. Within two days, not six
months, the mailman noticed that she had not taken in her mail. He informed a neighbor,
and together they checked the house. It did not matter whether her utility bills were paid
automatically.

On the other hand, many people and businesses are not prepared to do without the
computer systems and electronic devices they use every day. Many drivers would be lost if
their navigation system failed. A BlackBerry email blackout disrupted the work of bankers,
technology workers, talent agents, and others who depend on constant communication—
some who receive more than 500 emails per day. A physician commented that modern
hospitals and clinics cannot function efficiently without medical information systems.
Modern crime fighting depends on computers. Some military jets cannot fly without the
assistance of computers. In several incidents, computer failures or other accidents knocked
out communications services. Drivers could not buy gasoline with their credit cards.
“Customers were really angry,” said a gas station manager. More than 1000 California
state lottery terminals were down; people could not buy tickets or collect winnings. A

8.4 Dependence, Risk, and Progress 393

supermarket manager reported, “Customers are yelling and screaming because they can't
get their money, and they can’t use the ATM to pay for groceries.”4¢

Is our “dependence” on electronic technology different from our dependence on elec-
tricity, which we use for lighting, entertainment, manufacturing, medical treatments—
just about everything? Is our “dependence” on computers different from a farmer’s de-
pendence on a plow? Modern surgery’s dependence on anesthesia?

Computers, smartphones, and plows are tools. We use tools because we are better off
with them than without them. They reduce the need for hard physical labor and tedious
routine mental labor. They help us be more productive, or safer, or more comfortable.
When we have a good tool, we can forget (or no longer even learn) the older method of
performing a task. If the tool breaks down, we are stuck. We cannot perform the task until
someone fixes it. That can mean that no telephone calls get through for several hours. It
might mean the loss of a large amount of money, and it can mean danger or death for
some people. But the negative effects of a breakdown do not condemn the tool. To the
contrary, for many applications (not all), the inconveniences or dangers of a breakdown
are a reminder of the convenience, productivity, or safety the tool provides when it is
working. The breakdown can remind us, for example, of the billions of communications,
carrying voice, text, photos, and data, that are possible or more convenient or cheaper
because of the technology.

Some misconceptions about dependence on computers come from a poor understand-
ing of the role of risk, confusion of “dependence” with “use,” and blaming computers for
failures where they were only innocent bystanders. On the other hand, abdication of re-
sponsibility that comes from overconfidence or ignorance is a serious problem. There
are valid technical criticisms of dependence when a system design allows a failure in one
component to cause a major breakdown. There are valid criticisms of dependence when
businesses, government agencies, and organizations do not make plans for dealing with
systems failures. The wise individual is grateful for ATMs and credit cards, but keeps a
little extra cash at home in case they do not work. The driver with a navigation system
might choose to keep a map in the car.

8.4.2 Risk AND PROGRESS

Electricity lets us heat our homes, cook our food, and enjoy security
and entertainment. It also can kill you if you're not careful.

—“Energy Notes” (Flyer sent with San Diego Gas & Electric utility bills)

We trust older technologies when we turn on a light or ride a bicycle. As the tools and
technologies we use become more complex and more interconnected, the amount of
damage that results from an individual disruption or failure increases, and we sometimes
pay the costs in dramatic and tragic events. If a person out for a walk bumps into

394

Chapter 8 Errors, Failures, and Risks

another person, neither is likely to be hurt. If both are driving cars at 60 miles per hour,
they could be killed. If two jets collide, or one loses an engine, several hundred people
could be killed. However, the death rate per mile traveled is lower for air travel than for
cars.

Most new technologies were not very safe when first developed. If the death rate from
commercial airline accidents in the United States were the same now as it was 50 years
ago, 8,000 people would die in plane crashes each year. In some early polio vaccines,
the virus was not totally inactivated. The vaccines caused polio in some children. We
discover and solve problems. Scientists and engineers study disasters and learn how to
prevent them and how to recover from them. A disastrous fire led to the development
of fire hydrants—a way to get water to the fire from the water pipes under the street.
Automobile engineers used to design the front of an automobile to be extremely rigid, to
protect passengers in a crash. But people died and suffered serious injuries because the car
frame transmitted the force of a crash to the people. The engineers learned it was better
to build cars with “crumple zones” to absorb the force of impact.*’ Software engineering
textbooks use the Cali crash, described in Section 8.3.1, as an example so that future
software specialists will not repeat the mistakes in the plane’s computer system. We learn.
Overall, computer systems and other technologies have made air travel safer. In the first
decade of this century, there was roughly one fatal accident per four million commercial
flights, down 60% from 10 years earlier.*?

The death rate from motor vehicle accidents in the United States declined almost
80% from 1965 to 2010 (from 5.30 per 100 million vehicle miles traveled to 1.13 per
100 million vehicle miles traveled).*’ Why? One significant factor is increased education
about responsible use (i.e., the campaign against drunk driving). Devices that protect
people when the system fails (seat belts and airbags) are another. Other systems help avoid
accidents: Rear-view cameras help drivers avoid hitting a child when backing up. “Night
vision” systems detect obstacles and project onto the windshield an image or diagram of
objects in the car’s path. Electronic stability systems have sensors that detect a likely roll-
over, before the driver is aware of the problem, and electronically slow the engine. As use of
technology, automation, and computer systems has increased in virtually all work places,
the risk of dying in an on-the-job accident dropped from 39 among 100,000 workers (in
1934) to 5 in 100,000 in 2008.”°

There are some important differences between computers and other technologies.
Computers make decisions; electricity does not. The power and flexibility of computers
encourages us to build more complex systems—where failures have more serious conse-
quences. The pace of change in computer technology is much faster than that in other
technologies. Software is not built from standard, trusted parts as is the case in many
engineering fields. These differences affect the kind and scope of the risks we face. They
need our attention as computer professionals, workers and planners in other fields, and
as members of the public.

8.1

8.2

Exercises 395

Observations

Throughout this chapter, we have made several points:

1. Many of the issues related to reliability and safety for computers systems have arisen
before with other technologies.

2. There is a “learning curve” for new technologies. By studying failures, we can
reduce their occurrence.

3. Much is known about how to design, develop, and use complex systems well and
safely. Ethical professionals learn and follow these methods.

4. Perfection is not an option. The complexity of computer systems makes errors,
oversights, and failures likely.

5. Comparing the risks of using computer technologies with the risks of using other
methods, and weighing the risks against the benefits, give us important perspective.

This does not mean that we should excuse or ignore computer errors and failures because
failures occur in other technologies. It does not mean we should tolerate carelessness or
negligence because perfection is not possible. It does not mean we should excuse accidents
as part of the learning process, and it does not mean we should excuse accidents because,
on balance, the contribution of computer technology is positive.

The potential for serious disruption of normal activities and danger to people’s lives
and health because of flaws in computer systems should always remind the computer
professional of the importance of doing his or her job responsibly. Computer system
developers and other professionals responsible for planning and choosing systems must
assess risks carefully and honestly, include safety protections, and make appropriate plans
for shutdown of a system when it fails, for backup systems where appropriate, and for
recovery.

Knowing that one will be liable for the damages one causes is strong incentive to find
improvements and increase safety. When evaluating a specific instance of a failure, we
can look for those responsible and try to ensure that they bear the costs of the damage
they caused. It is when evaluating a particular application area or when evaluating the
technology as a whole that we should look at the balance between risks and benefits.

Review Exercises
List two cases described in this chapter in which insufficient testing was a factor in a program error
or system failure.

List two cases described in this chapter in which the provider did an inadequate job of informing
customers about flaws in the system.

