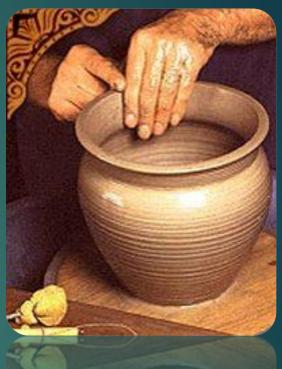

Teknik Manufaktur

BAHAN PRESENTASI TM 7

DASAR PERENCANAAN REKAYASA TEKNIK

OLEH: DR. IR. ZULFIANDRI, MSI


Apa itu Proses Manufaktur ?

Apakah ini manufaktur?

Atau ini juga termasuk manufaktur ?

Definisi Manufaktur

- Kata-kata manufaktur berasal dari bahasa latin (manus = hand, factus = made)
- Definisi "manufacturing" oleh Random House Webster's College Dictionary:
 - "The making of goods or wares by manual labor or by machinery, esp. on a large scale."
- Definisi dari National Science Foundation's Workshop:
 - "The creation and integration of informational and physical processes to create economic wealth through the production of artifacts."
- Definisi menurut Degarmo
 - "Manufacturing is the economic term for making goods and services available to satisfy human wants."

Proses Manufaktur

Raw material Manufacturing Process, using:

Machine Man/labor Tools Finish/
unfinish parts

Scrap/waste

Teknik Manufaktur

Definisi :

Merupakan perancangan proses produksi sebuah produk.

Fungsi apa yang dipelajari

- ► Mengevaluasi dapat tidaknya produk diproduksi.
- Menentukan jenis dan parameter produksi.
- Merancang alat bantu (Jig & Fixture).
- Mengestimasi biaya produksi.
- ▶ Menjamin kualitas produksi.

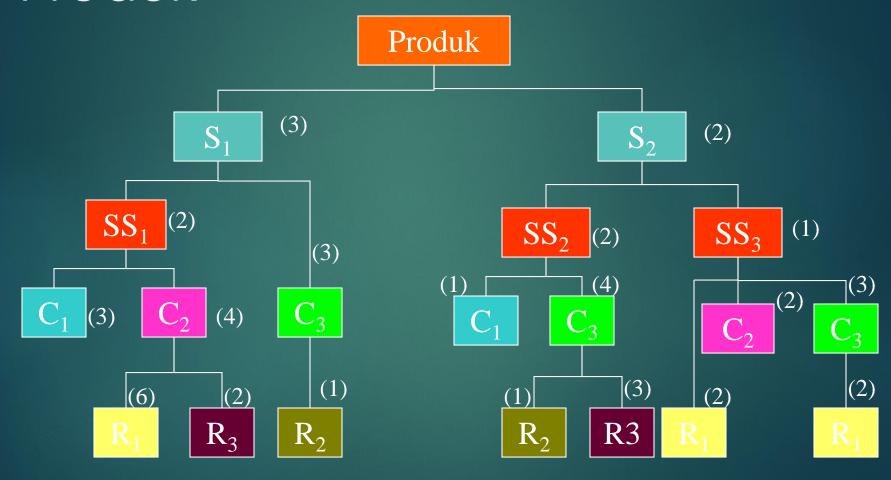
Bagaimana Produk Dibuat

Merancang Produk.

- Mengetahui dan mengevaluasi kemampuan komponen diproduksi.
 - Karakteristik komponen : ukuran, bentuk, kekuatan, keandalan, keamanan.
- Dapat memberikan prakiraan biaya produksi.

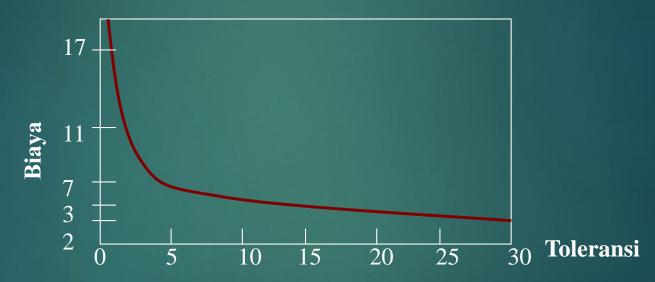
Mempersiapkan Produksi.

Mempersiapkan bahan baku. Mempersiapkan proses operasi (mesin-mesin). Mempersiapkan tenaga kerja.


Rekayasa Proses

- Langkah-langkah Merancang Produk.
 - Menentukan struktur produk yang harus dibuat
 - Menaksir kemampuan proses manufaktur.
 - Menentukan Kemampuan Proses dalam memproduksi sebuah komponen
 - Mengevaluasi biaya dari masing-masing alternatif produksi.
 - Menentukan urutan operasi.
 - Mendokumentasi proses.

Struktur dan Spesifikasi Produk


- Merupakan suatu peta hirarki dari produk yang menggambarkan semua perakitan, sub perakitan, komponen dan bahan baku yang digunakan dalam pembuatan produk.
- Peta ini juga menggambarkan jumlah dari masingmasing item yang digunakan untuk level diatasnya.
- Bill of Material berisi informasi mengenai jumlah, nama material yang dibutuhkan produk.

Struktur dan Spesifikasi Produk

Menilai Kemampuan Proses Manufaktur

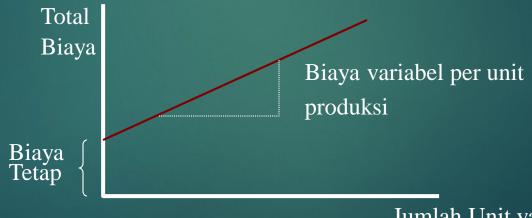
► Tergantung pada toleransi yang dibutuhkan produk tersebut. ⇒ Toleransi ♠, Biaya ♠

Diperlukan Ukuran Standar.

Apakah material mudah didapat atau tidak

Menentukan Kemampuan Proses dalam Memproduksi.

- Uji spesifikasi masing-masing item dan kemampuan proses
 Daftar proses yang mungkin dilakukan
- Pertimbangan dalam membuat daftar proses, yaitu
 - Kesesuaian sifat antara material dengan proses.
 - Kemampuan proses memproduksi dengan toleransi yang diizinkan.
 - Rancangan ulang komponen yang dibutuhkan untuk memudahkan produksi dengan proses tersebut.


Mengevaluasi Biaya Untuk Masing-Masing Proses.

▶ Ada dua jenis biaya ⇒ Biaya Tetap

Biaya Variabel

Untuk suatu produk biaya yang timbul adalah

Total Biaya = biaya tetap + (biaya variabel/unit X jumlah unit)

Jumlah Unit yang diproduksi

Menentukan Urutan Operasi

Dalam menentukan Urutan Operasi didasarkan pada :

- Minimasi penanganan komponen.
 - Sesuai urutan mesin
 - ▶ Tanpa terjadi back tracking/bolak-balik
- Menjamin produk tidak akan meninggalkan sampah, scrap, goresan.
- Melakukan proses sebanyaknya, dengan tetap menjaga toleransi dan kualitas.

Mendokumentasi Proses.

- Mendokumentasi proses operasi dengan bantuan peta-peta kerja seperti :
 - Operation Process Chart.
 - Flow Proses Chart.
 - Man & Machine Chart.
 - Right & Left Hand Chart.

Pencetakan.

- Suatu cara membentuk produk dengan menuangkan logam yang telah dicairkan kedalam cetakan dan membiarkannya memadat.
- Macam Cetakan.
 - Cetakan sentrifugal
 - Die Casting
 - Permanen Mold Casting
 - Plaster Mold Casting
 - Pressed Casting
 - Shelf Molding Casting.

General Process Overview

Proses manufaktur adalah suatu prosedur / langkahlangkah mengubah material menjadi bentuk lain yang memiliki nilai lebih (added value).

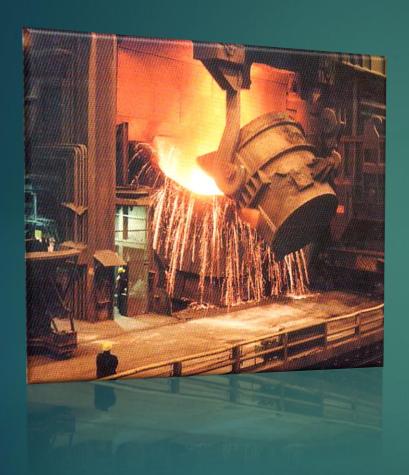
Proses manufaktur dapat dikelompokkan menjadi:

- Proses primer (Primary process)
- Proses sekunder (Secondary process)

Proses Primer (Primary Process)

Jenis-jenis primary process:

- 1. Casting
- 2. Forging
- 3. Extrussion
- 4. Sheet Metal working
- 5. Cutting machining


Proses Sekunder (Secondary Process)

Jenis-jenis secondary process:

- 1. Fastener
- 2. Adhesive
- 3. Joining

Casting overview

Casting adalah

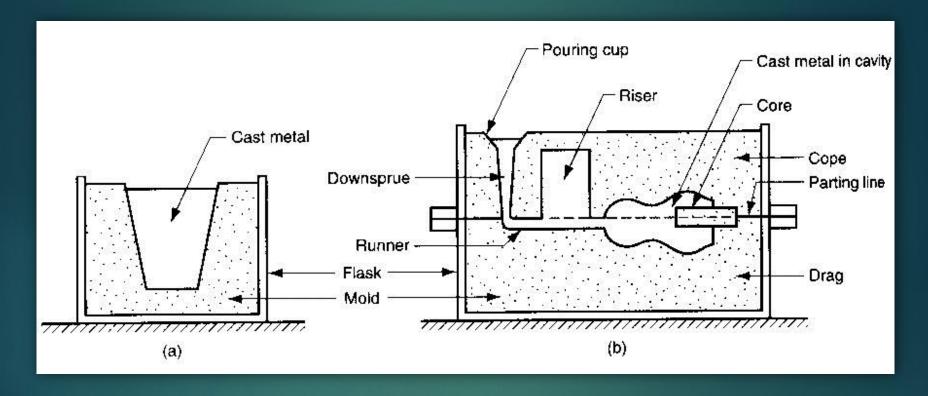
Proses penuangan material cair (umumnya logam cair) ke dalam suatu cetakan (mold) dengan bentuk tertentu dan mendinginkannya sampai mengeras dan menjadi bentuk sesuai dengan cetakan.

Kemampuan dan Keuntungan Pengecoran

- Pengecoran dapat membentuk komponen dengan geometri eksternal/internal yang komplek
- Beberapa proses pengecoran dapat langsung membentuk geometri akhir produk (net shape) sehingga tidak memerlukan proses manufaktur lainnya
- Pengecoran dapat digunakan untuk membuat komponen yang sangat besar (>100 ton)
- Proses pengecoran dapat dilakukan menggunakan berbagai jenis logam yang dapat dipanaskan hingga lebur (liquid state)
- Beberapa metoda pengecoran cocok untuk produksi masal

Kekurangan

- Sifat menyerap/merembes (porosity)
- Keakuratan demensi geometrik dan kerataan permukaan yang rendah
- Bahaya/resiko keselamatan kerja saat peleburan logam
- Mechanical strength yang rendah


Proses Pengecoran (1)

- Cetakan memiliki rongga sesuai dengan dimensi/bentuk komponen yang ingin dibentuk
- Dimensi rongga sedikit lebih besar untuk mengkompensasi penyusutan saat logam mengalami proses pendinginan dan pengerasan
- Setiap logam memiliki karakteristik penyusutan yang berbeda
- Bahan cetakan: pasir (sand), gips (plaster), keramik (ceramic) dan logam (metal)

Proses Pengecoran (2)

- Tahapan pengecoran:
 - Logam dilebur pada temperatur tinggi hingga berubah menjadi zat cair
 - Logam cair dituangkan kedalam cetakan
 - Logam cair dalam cetakan mengalami proses pendinginan.
 - Seiring dengan menurunnya tempratur, logam akan mengeras.
 - Selama proses pengerasan terjadi perubahan fasa pada logam (membentuk karakteristik/properti hasil pengecoran)
 - Jika pendinginan/pengerasan selesai, cetakan dilepas.

Proses Pengecoran (3)

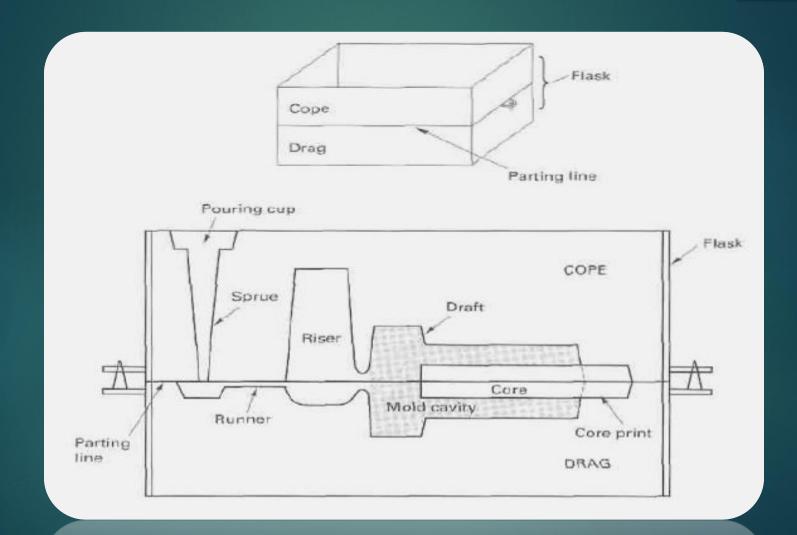
Cetakan terbuka: berbentuk kontainer Cetakan tertutup: memerlukan saluran (passageway) menuju rongga

Proses Pengecoran (4)

- Klasifikasi proses pengecoran
 - Cetakan habis pakai (expendable mold)
 - Cetakan harus dirusak untuk mengeluarkan komponen hasil pengecoran
 - Cetakan yang terbuat dari: pasir, gips atau yang menggunakan bahan-bahan pereka.
 - Cetakan permanen (permanent mold)
 - Dapat digunakan berulang-ulang
 - Cetakan terbuat dari logam
 - Cetakan terbuat dari dua atau lebih bagian yang dapat dibuka untuk mengeluarkan komponen cor

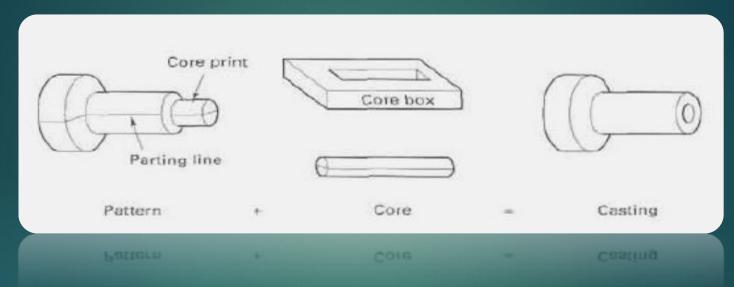
Tahapan dalam Casting

Tahapan penting dalam casting:


- Pembuatan pola (Pattern making)
- 2. Molding dan peng-intian (core)
- 3. Cooling and solidification
- 4. Cleaning, finishing, and inspection

Pembuatan pola (pattern making)

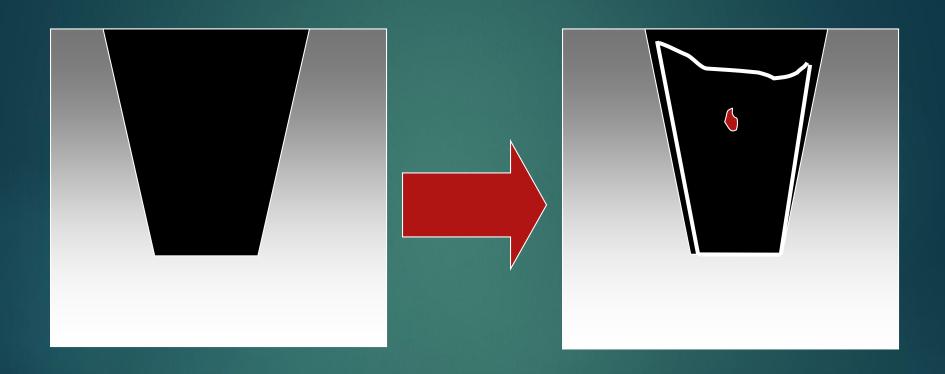
Dalam pembuatan pola perlu diperhatikan:


- 1. Bentuk cetakan
- 2. Shrinkage (penyusutan)
- 3. Machining allowance (ketebalan proses pengerjaan lanjutan)

Bentuk cetakan

Molding dan Peng-intian (core)

Inti/ cores dapat terbuat dari:


- 1. Pasir
- 2. Logam
- 3. Keramik/glass
- 4. Material tahan panas lain

Cooling & Solidification process

Ada 2 tahap penting dalam solidification:

- Nucleation. Kondisi yang teramati sesaat pada suhu mendekati titik lebur. Dimana terjadi proses pembentukan inti. Pada titik ini energi dalam (internal energy) bentuk cair dan padat memiliki nilai yang sama.
- Crystal growth. Merupakan kelanjutan proses nucleation dimana terbentuk butiranbutiran yang akan menjadi batasan setiap inti dimana akan bersama-sama membentuk suatu permukaan benda padat.

Shrinkage (Penyusutan)

Mengapa hal ini bisa terjadi?

Shrinkage (Penyusutan)

- Selama pendinginan dan pembekuan, shrinkage ini seringkali kita lupakan. Shrinkage ini sendiri terjadi karena 3 hal :
 - Kontraksi molten metals saat proses penuangan
 - Kontraksi akibat perubahan bentuk logam dari liquid ke bentuk solid (solidification shrinkage)
 - Kontraksi thermal (penyesuaian suhu dan bentuk padat dengan lingkungan)
- Shrinkage membawa efek bagi hasil casting, karena adanya pengurangan tinggi dan pengurangan jumlah volume selama proses pendinginan tersebut (proses memadat)

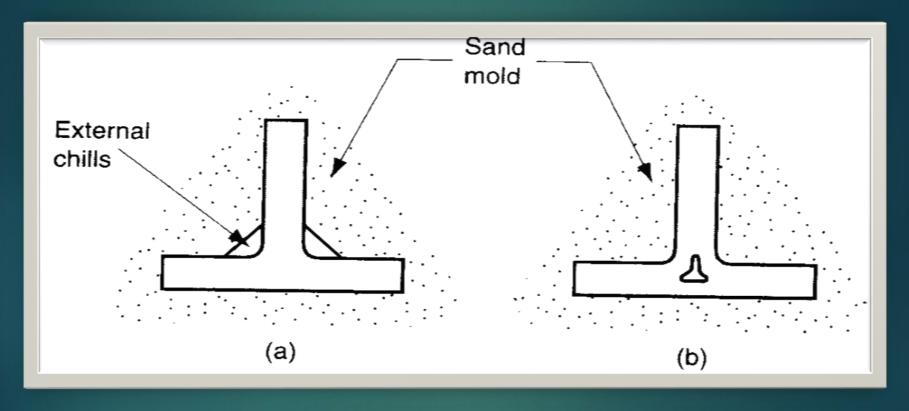
Shrinkage (Penyusutan)

Volume kontraksi untuk berbagai jenis pengecoran logam

	Volumetric contraction due to:	
Metal	Solidification Shrinkage, %	Solid Thermal Contraction, %
Aluminum	7.0	5.6
Al alloy	7.0	5.0
Gray cast iron	1.8	3.0
Gray cast iron, high C	0	3.0
Low C cast steel	3.0	7.2
Copper	4.5	7.5
Bronze (Cu-Sn)	5.5	6.0

Fluidity

Merupakan kemampuan logam cair (molten metal untuk mengalir dalam cetakan (mold)


Hal-hal yang mempengaruhi fluidity:

- Temperatur penuangan (Pouring temperature)
- Komposisi logam paduan (Metal alloys composition)
- 3. Viskositas logam cair (Viscosity of liquid metal)
- Transfer panas ke lingkungan (Heat transfer to surrounding)

Pengerasan Terarah (1)

- Untuk meminimasi produk cacat akibat pengerasan:
 - Bagian rongga yang terletak jauh dari riser diharapkan mengalami proses pengerasan terlebih dahulu
 - Jika penyusutan terjadi, logam lebur dalam riser masih dapat mengisi volume penyusutan tersebut
 - Perlu pengerasan terarah
- Pengerasan terarah
 - Riser dirancang menjauhi bagian rongga yang memiliki rasio V/A kecil
 - Chills: penyerap panas untuk mempercepat proses pendinginan (internal chills dan external chills)

Pengerasan Terarah (2)

- (a) External chill dipakai untuk mendinginkan bagian menyudut pada cetakan
- (b) Kemungkinan hasil yang diperoleh jika tanpa external chill

Pemisahan dan Pencampuran Logam.

- Logam sebelum digunakan dalam produksi perlu diproses (dicampur) untuk mendapat spesifikasi yang diinginkan.
- Logam yang terbentuk akan mempunyai sifat-sifat yang perlu diuji. Beberapa sifat yang diuji :
 - ► Tensile Strength
 - ▶ Hardness
 - ► Impact Resistance
 - Malleability
 - ► Fatique Resistance
 - ▶ Corossion Resistance

Pemotongan Logam.

- Proses pengubahan bentuk suatu material dengan menggunakan alat potong untuk mendapatkan bentuk yang diinginkan.
- Jenis operasi pemotongan logam.
 - Shearing
 - Turning
 - Drilling
 - Shipping & Planning
 - Milling
 - Branching
 - Sawing
 - Grinding

Pengelasan.

- Proses yang dibuat untuk menyambung logam yang sama dengan menggunakan panas atau tekanan atau kedua-duanya.
- Macam Pengelasan.
 - ▶ Electric Arc.
 - Resistance Welding
 - ▶ Gas Welding
 - Pressure Welding
 - Brazing & Soldering

Estimasi Biaya

- Penaksiran total biaya produksi yang dibutuhkan dalam sebuah proses manufaktur.
- Terdiri dari :
- Bahan Baku

 Langsung
 - → Tidak langsung
- 🕨 Tenaga Kerja 🗦 Langsung
 - → Tidak langsung
- Overhead