
CMC 101 TOPIK DALAM PEMROGRAMAN 
PERTEMUAN 11 

PROGRAM STUDI MAGISTER ILMU KOMPUTER 
FAKULTAS ILMU KOMPUTER  



TOPIK	DALAM	PEMROGRAMAN	
Brute Force & Exhaustive Search 

Pertemuan	11	



TUJUAN	PERKULIAHAN	
•  Mahasiswa	memahami	beberapa	@pe	persoalan	
yang	pen@ng.	

•  Selec@on	Sort	&	Bubble	Sort	
•  Sequen@al	Search	&	Brute	Force	String	Matching	
•  Closest	Pair	&	Convex	Hull	dengan	Brute	Force	
•  Travelling	Salesman	Problem,	Knapsack	Problem,	
Assignment	Problem		



Brute Force & Exhaustive Search  

•  Straightforward way to solve a problem, 
based on the definition of the problem itself; 
often involves checking all possibilities 

•  Pros:  
– widely applicable 
– easy 
– good for small problem sizes 

•  Con: 
– often inefficient for large inputs 
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Brute Force Sorting 

•   Selection sort 
–  scan array to find smallest element 
–  scan array to find second smallest element 
–  etc. 

•  Bubble sort 
–  scan array, swapping out-of-order neighbors 
–  continue until no swaps are needed 

•  Both take Θ(n2) time in the worst case. 
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Brute Force Searching 

•   Sequential search:   
–  go through the entire list of n items to find the desired item 

•  Takes Θ(n) time in the worst case 
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Brute Force Searching in a Graph 

•  (Review graph terminology and basic algorithms) 
•  Breadth-first search: 
–  go level by level in the graph 

•  Depth-first search: 
–  go as deep as you can, then backtrack 

•  Both take Θ(V+E) time, where |V| is the number of 
vertices and |E| is the number of edges 
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Brute Force for Combinatorial 
Problems 

•  Traveling Salesman Problem (TSP): 
–  given a set of n cities and distances between all pairs of 

cities, determine order for traveling to every city exactly once 
and returning home with minimum total distance 

•  Solution:  Compute distance for all “tours” and 
choose the shortest. 

•  Takes Θ(n!) time (terrible!) 
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TSP	Example	
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a,b,c,d,a	->	18	
a,b,d,c,a	->	11	
a,c,b,d,a	->	23	
a,d,b,c,a	->	23	
a,d,c,b,a	->	18	

Do	we	need	to	consider	more	tours?	
Something	odd	about	the	“distances”?	



TSP	Applica@ons	

•  transporta@on	and	logis@cs	(school	buses,	
meals	on	wheels,	airplane	schedules,	etc.)	

•  drilling	printed	circuit	boards	
•  analyzing	crystal	structure	
•  overhauling	gas	turbine	engines	
•  clustering	data	

tsp.gatech.edu/apps/index.html	
iris.gmu.edu/~khoffman/papers/trav_salesman.html	
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Brute Force for Combinatorial 
Problems 

•  Knapsack Problem: 
–  There are n different items in a store 
–  Item i weighs wi pounds and is worth $vi 
–  A thief breaks in 
–  He can carry up to W pounds in his knapsack 
–  What should he take to maximize his haul? 

•  Solution:  Consider every possible subset of items, 
calculate total value and total weight and discard if 
more than W; then choose remaining subset with 
maximum total value. 

•  Takes Ω(2n) time  
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Knapsack	Applica@ons	

•  Least	wasteful	way	to	use	raw	materials	
•  selec@ng	capital	investments	and	financial	
poriolios	

•  genera@ng	keys	for	the	Merkle-Hellman	
cryptosystem	

Knapsack	Problems,	H.	Kellerer,	U.	Pferschy,	D.	Pisinger,	Springer,	2004.	
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Knapsack	Example	

•  item	1:	7	lbs,	$42	
•  item	2:	3	lbs,	$12	
•  item	3:	4	lbs,	$40	
•  item	4:	5	lbs,	$25	
•  W	=	10	

•  need	to	check	16	
possibili@es	

subset total weight total value 

Ø 0 $0 

{1} 7 $42 

{2} 3 $12 

{3} 4 $40 

{4} 5 $25 

{1,2} 10 $54 

{1,3} 11 infeasible 

{1,4} 12 infeasible 

{2,3} 7 $52 

{2,4} 8 $37 

etc. 
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Brute Force For Closest Pair 

•  Closest-Pair Problem: 
– Given n points in d-dimensional space, find the 

two that are closest 

•  Applications: 
– airplanes close to colliding 
– which post offices should be closed 
– which DNA sequences are most similar 
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Brute Force For Closest Pair 

•  Brute-force Solution (for 2-D case): 
–  compute distances between all pairs of points 

•  sqrt((xi – xj)2 + (yi – yj)2) 

–  scan all distances to find smallest 

•  Running time: Θ(n2), assuming each numerical 
operation is constant time (including square root?) 

•  Improvements: 
–  drop the square root 
–  don’t compute distance for same 2 points twice 
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Brute Force For Convex Hull 
•  Convex Hull Problem:  Given a set of points in 2-D, find the 

smallest convex polygon s.t. each point in the set is 
enclosed by the polygon 
–  polygon:  sequence of line segments that ends where it 

begins 
–  convex: all points on a line segment between 2 points in 

the polygon are also in the polygon 
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Convex	Hull	Applica@ons	

•  In	computer	graphics	or	robot	planning,	a	
simple	way	to	check	that	two	(possibly	
complicated)	objects	are	not	colliding	is	to	
compute	their	convex	hulls	and	then	check	if	
the	hulls	intersect	

•  Es@mate	size	of	geographic	range	of	a	species,	
based	on	observa@ons	(geocat.kew.org/
about)	
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Brute Force For Convex Hull 

•  Key idea for solution:  line passing through (xi,yi) and (xj,yj) is: 
     ax + by = c where a = (yj – yi), b = (xi – xj), c = xi yj – yi xj 

•  The 2 pts are on the convex hull iff all other pts are on same 
side of this line: 
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Brute Force For Convex Hull 

•  For each (distinct) pair of points in the set, compute a, b, 
and c to define the line ax + by = c. 
–  For each other point, plug its x and y coordinates into the 

expression ax + by – c. 
–  If they all have the same sign (all positive or all negative), 

then this pair of points is part of the convex hull. 

•  Takes Θ(n3) time. 
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Brute Force for Two Numeric 
Problems 

•  Problem:  Compute an 

– Solution:  Multiply a by itself n-1 times 
– Takes Θ(n) time, assuming each multiplication 

takes constant time. 
•  Problem:  multiply two nxn matrices A and B to create 

product matrix C 
– Solution:  Follow the definition, which says the 

(i,j) entry of C is Σ aik*bkj , k = 1 to n 
– Takes Θ(n3) time, assuming each basic 

operation takes constant time 

20	



Brute	Force/Exhaus@ve	Search	
Summary	

•  sor@ng:		selec@on	sort,	bubble	sort	
•  searching:	sequen@al	search	
•  graphs:	BFS,	DFS	
•  combinatorial	problems:		check	all	possibili@es	for	
TSP	and	knapsack	

•  geometric:		check	all	possibili@es	for	closest	pair	and	
for	convex	hull	

•  numerical:		follow	defini@on	to	compute	an	or	matrix	
mul@plica@on	
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Applica@ons	of	DFS	

•  Now	let’s	go	more	in	depth	on	two	
applica@ons	of	depth-first	search	
–  topological	sort	
– finding	strongly	connected	components	of	a	graph	
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Depth-First Search 

•  Input:  G = (V,E) 
•  for each vertex u in V do 

–  mark u as unvisited 
–  parent[u] := nil 

•  time := 0 
•  for each unvisited vertex u 

in V do 
–  parent[u] := u  // a root  
–  call recursive DFS(u) 
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n  recursiveDFS(u): 
n  mark u as visited 
n  time++ 
n  disc[u] := time 
n  for each unvisited neighbor v of 

u do 
n  parent[v] := u 
n  call recursiveDFS(v) 

n  time++ 
n  fin[u] := time 



Nested Intervals 

•  Let interval for vertex v be [disc[v],fin[v]]. 
•  Fact: For any two vertices, either one interval 

precedes the other or one is enclosed in the 
other. 
– because recursive calls are nested 

•  Corollary:  v is a descendant of u in the DFS 
forest if and only if v's interval is inside u's 
interval. 
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Classifying Edges 

•  Consider edge (u,v) in directed graph  
 G = (V,E) w.r.t. DFS forest 
•  tree edge:  v is a child of u 
•  back edge: v is an ancestor of u 
•  forward edge: v is a descendant of u but not 

a child 
•  cross edge: none of the above 
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Example of Classifying Edges 
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DFS Application:  Topological Sort 

•  Given a directed acyclic graph (DAG), find a  
linear ordering of the vertices such that if 
(u,v) is an edge, then u precedes v. 

•  DAG indicates precedence among events: 
– events are graph vertices, edge from u to v 

means event u has precedence over event v 

•  Partial order because not all events have to 
be done in a certain order 
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Precedence Example 

•  Tasks that have to be done to eat breakfast: 
– get glass, pour juice, get bowl, pour cereal, pour 

milk, get spoon, eat. 

•  Certain events  must happen in a certain 
order (ex: get bowl before pouring milk) 

•  For other events, it doesn't matter (ex: get 
bowl and get spoon) 
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Precedence Example 
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get glass 

pour juice 

get bowl 

pour cereal 

pour milk 
get spoon 

eat breakfast 

Order:  glass, juice, bowl, cereal,  milk, spoon, eat. 



Why Acyclic? 

•  Why must directed graph by acyclic for the 
topological sort problem? 

•  Otherwise, no way to order events linearly 
without violating a precedence constraint. 
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Idea for Topological Sort Alg. 

•  Run DFS on the input graph 
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eat 

juice 

glass 

milk 

cereal 

bowl 

spoon 

consider reverse order of finishing times: 
spoon, bowl, cereal, milk, glass, juice, eat 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 



Topological Sort Algorithm 

input:  DAG G = (V,E) 
1. call DFS on G to compute finish[v] for all 

vertices v 
2. when each vertex's recursive call finishes, 

insert it on the front of a linked list 
3. return the linked list 
 
Running Time:  O(V+E) 
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Correctness of T.S. Algorithm 
Show that if (u,v) is an edge, then v finishes before u 

finishes.  Thus the algorithm correctly orders u before 
v. 

 
Case 1:  u is discovered before v is discovered.  By the 

way DFS works, u does not finish until v is discovered 
and v finishes. 

 
 
 
Then v finishes before u finishes.  
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disc(u)	 fin(u)	
disc(v)	 fin(v)	

u	
v	

u	 v	



Correctness of T.S. Algorithm 
Show that if (u,v) is an edge, then v finishes before u 

finishes.  Thus the algorithm correctly orders u before 
v. 

 
Case 2:  v is discovered before u is discovered.  

Suppose u finishes before v finishes (i.e., u is nested 
inside v).   

 
 
 
Show this is impossible…  
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disc(v)	 fin(v)	
disc(u)	 fin(u)	

u	
v	

u	 v	



Correctness of T.S. Algorithm 

•  v is discovered but not yet finished when u is 
discovered. 

•  Then u is a descendant of v. 
•  But that would make (u,v) a back edge and a 

DAG cannot have a back edge (the back 
edge would form a cycle). 

•  Thus v finishes before u finishes. 
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DFS Application:  Strongly Connected 
Components 

•  Consider a directed graph. 
•  A strongly connected component (SCC) of 

the graph is a maximal set of vertices with a 
(directed) path between every pair of 
vertices 

•  Problem:  Find all the SCCs of the graph. 
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What Are SCCs Good For? 
•  Packaging software modules: 
–  Construct directed graph of which modules call which 

other modules 
–  A SCC is a set of mutually interacting modules 
–  Pack together those in the same SCC 

 www.cs.princeton.edu/courses/archive/fall07/cos226/lectures.html 

•  Solving the “2-satisfiability problem”, which in turn 
is used to solve various geometric placement 
problems (graph labeling, VLSI design), as well as 
data clustering and scheduling  
 wikipedia 
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SCC Example 

38	

h f a e 

g c b d 

four SCCs 



How Can DFS Help? 

•  Suppose we run DFS on the directed graph. 
•  All vertices in the same SCC are in the same 

DFS tree. 
•  But there might be several different SCCs in 

the same DFS tree. 
– Example:  start DFS from vertex h in previous 

graph 
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Main Idea of SCC Algorithm 

•  DFS tells us which vertices are reachable 
from the roots of the individual trees 

•  Also need information in the "other 
direction": is the root reachable from its 
descendants? 

•  Run DFS again on the "transpose" graph 
(reverse the directions of the edges) 
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SCC Algorithm 

input:  directed graph G = (V,E) 
1.  call DFS(G) to compute finishing times 
2.  compute GT // transpose graph 
3.  call DFS(GT), considering vertices in 

decreasing order of finishing times 
4.  each tree from Step 3 is a separate  

SCC of G 
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SCC Algorithm Example 
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h f a e 

g c b d 

input graph - run DFS 



After Step 1 
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Order of vertices for Step 3: f, g, h, a, e, b, d, c 



After Step 2 
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h f a e 

g c b d 

transposed input graph - run DFS with specified order of vertices 



After Step 3 
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d 

SCCs are {f,h,g} and {a,e} and {b,c} and {d}. 

b 

c 



Running Time of SCC Algorithm 

•  Step 1: O(V+E) to run DFS 
•  Step 2: O(V+E) to construct transpose graph, 

assuming adjacency list rep. 
•  Step 3: O(V+E) to run DFS again 
•  Step 4: O(V) to output result 
•  Total: O(V+E) 
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Correctness of SCC Algorithm 

•  Proof uses concept of component graph,  
GSCC, of G. 

•  Vertices are the SCCs of G;  
call them C1, C2, …, Ck 

•  Put an edge from Ci to Cj iff G has an edge 
from a vertex in Ci to a vertex in Cj 
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Example of Component Graph 
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 {a,e} 

{f,h,g}   {d} 

 {b,c} 

 based on example graph from before 



Facts About Component Graph 

•  Claim:  GSCC is a directed acyclic graph. 
•  Why?   
•  Suppose there is a cycle in GSCC such that 

component Ci is reachable from component 
Cj and vice versa. 

•  Then Ci and Cj would not be separate SCCs. 
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Facts About Component Graph 

•  Consider any component C during Step 1 (running 
DFS on G) 

•  Let d(C) be earliest discovery time of any vertex in C 
•  Let f(C) be latest finishing time of any vertex in C 
•  Lemma:  If there is an edge in GSCC from component 

C' to component C, then  
   f(C') > f(C). 
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Proof of Lemma 

•  Case 1:  d(C') < d(C). 
•  Suppose x is first vertex discovered in C'. 
•  By the way DFS works, all vertices in C' and C 

become descendants of x. 
•  Then x is last vertex in C' to finish and 

finishes after all vertices in C. 
•  Thus f(C') > f(C). 
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Proof of Lemma 

•  Case 2:  d(C') > d(C). 
•  Suppose y is first vertex discovered in C. 
•  By the way DFS works, all vertices in C become 

descendants of y. 
•  Then y is last vertex in C to finish.  
•  Since C' → C, no vertex in C' is reachable from y, so y 

finishes before any vertex in C' is discovered. 
•  Thus f(C') > f(C). 
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SCC Algorithm is Correct 

•  Prove this theorem by induction on number 
of trees found in Step 3 (running DFS on GT). 

•  Hypothesis is that the first k trees found 
constitute k SCCs of G. 

•  Basis:  k = 0.  No work to do ! 
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SCC Algorithm is Correct 
•  Induction:  Assume the first k trees constructed in 

Step 3 (running DFS on GT) correspond to k SCCs; 
consider the (k+1)st tree. 

•  Let u be the root of the (k+1)st tree. 
•  u is part of some SCC, call it C. 
•  By the inductive hypothesis, C is not one of the k 

SCCs already found and all so vertices in C are 
unvisited when u is discovered. 
–  By the way DFS works, all vertices in C become part of u's tree 
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SCC Algorithm is Correct 

•  Show only vertices in C become part of u's 
tree.  Consider an outgoing edge from C. 

55	

w 

z 

u 

C' 

C GT: 

w 

z 

u 

C' 

C G: 



SCC Algorithm is Correct 

•  By lemma, in Step 1 (running DFS 
on G) the last vertex in C' finishes 
after the last vertex in C finishes. 

•  Thus in Step 3 (running DFS on GT), 
some vertex in C' is discovered 
before any vertex in C is discovered. 

•  Thus in Step 3, all of C', including w, 
is already visited before u's DFS 
tree starts  
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•  Sumber	:	Prof. Jennifer Welch 
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