
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 11

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK	DALAM	PEMROGRAMAN	
Brute Force & Exhaustive Search

Pertemuan	11	

TUJUAN	PERKULIAHAN	
•  Mahasiswa	memahami	beberapa	@pe	persoalan	
yang	pen@ng.	

•  Selec@on	Sort	&	Bubble	Sort	
•  Sequen@al	Search	&	Brute	Force	String	Matching	
•  Closest	Pair	&	Convex	Hull	dengan	Brute	Force	
•  Travelling	Salesman	Problem,	Knapsack	Problem,	
Assignment	Problem		

Brute Force & Exhaustive Search

•  Straightforward way to solve a problem,
based on the definition of the problem itself;
often involves checking all possibilities

•  Pros:
– widely applicable
– easy
– good for small problem sizes

•  Con:
– often inefficient for large inputs

4	

Brute Force Sorting

•  Selection sort
–  scan array to find smallest element
–  scan array to find second smallest element
–  etc.

•  Bubble sort
–  scan array, swapping out-of-order neighbors
–  continue until no swaps are needed

•  Both take Θ(n2) time in the worst case.

5	

Brute Force Searching

•  Sequential search:
–  go through the entire list of n items to find the desired item

•  Takes Θ(n) time in the worst case

6	

Brute Force Searching in a Graph

•  (Review graph terminology and basic algorithms)
•  Breadth-first search:
–  go level by level in the graph

•  Depth-first search:
–  go as deep as you can, then backtrack

•  Both take Θ(V+E) time, where |V| is the number of
vertices and |E| is the number of edges

7	

Brute Force for Combinatorial
Problems

•  Traveling Salesman Problem (TSP):
–  given a set of n cities and distances between all pairs of

cities, determine order for traveling to every city exactly once
and returning home with minimum total distance

•  Solution: Compute distance for all “tours” and
choose the shortest.

•  Takes Θ(n!) time (terrible!)

8	

TSP	Example	

9	

c d

2

1

a b

3 5
7 8

a,b,c,d,a	->	18	
a,b,d,c,a	->	11	
a,c,b,d,a	->	23	
a,d,b,c,a	->	23	
a,d,c,b,a	->	18	

Do	we	need	to	consider	more	tours?	
Something	odd	about	the	“distances”?	

TSP	Applica@ons	

•  transporta@on	and	logis@cs	(school	buses,	
meals	on	wheels,	airplane	schedules,	etc.)	

•  drilling	printed	circuit	boards	
•  analyzing	crystal	structure	
•  overhauling	gas	turbine	engines	
•  clustering	data	

tsp.gatech.edu/apps/index.html	
iris.gmu.edu/~khoffman/papers/trav_salesman.html	

	
	
	

10	

Brute Force for Combinatorial
Problems

•  Knapsack Problem:
–  There are n different items in a store
–  Item i weighs wi pounds and is worth $vi
–  A thief breaks in
–  He can carry up to W pounds in his knapsack
–  What should he take to maximize his haul?

•  Solution: Consider every possible subset of items,
calculate total value and total weight and discard if
more than W; then choose remaining subset with
maximum total value.

•  Takes Ω(2n) time

11	

Knapsack	Applica@ons	

•  Least	wasteful	way	to	use	raw	materials	
•  selec@ng	capital	investments	and	financial	
poriolios	

•  genera@ng	keys	for	the	Merkle-Hellman	
cryptosystem	

Knapsack	Problems,	H.	Kellerer,	U.	Pferschy,	D.	Pisinger,	Springer,	2004.	

12	

Knapsack	Example	

•  item	1:	7	lbs,	$42	
•  item	2:	3	lbs,	$12	
•  item	3:	4	lbs,	$40	
•  item	4:	5	lbs,	$25	
•  W	=	10	

•  need	to	check	16	
possibili@es	

subset total weight total value

Ø 0 $0

{1} 7 $42

{2} 3 $12

{3} 4 $40

{4} 5 $25

{1,2} 10 $54

{1,3} 11 infeasible

{1,4} 12 infeasible

{2,3} 7 $52

{2,4} 8 $37

etc.

13	

Brute Force For Closest Pair

•  Closest-Pair Problem:
– Given n points in d-dimensional space, find the

two that are closest

•  Applications:
– airplanes close to colliding
– which post offices should be closed
– which DNA sequences are most similar

14	

Brute Force For Closest Pair

•  Brute-force Solution (for 2-D case):
–  compute distances between all pairs of points

•  sqrt((xi – xj)2 + (yi – yj)2)

–  scan all distances to find smallest

•  Running time: Θ(n2), assuming each numerical
operation is constant time (including square root?)

•  Improvements:
–  drop the square root
–  don’t compute distance for same 2 points twice

15	

Brute Force For Convex Hull
•  Convex Hull Problem: Given a set of points in 2-D, find the

smallest convex polygon s.t. each point in the set is
enclosed by the polygon
–  polygon: sequence of line segments that ends where it

begins
–  convex: all points on a line segment between 2 points in

the polygon are also in the polygon

16	

Convex	Hull	Applica@ons	

•  In	computer	graphics	or	robot	planning,	a	
simple	way	to	check	that	two	(possibly	
complicated)	objects	are	not	colliding	is	to	
compute	their	convex	hulls	and	then	check	if	
the	hulls	intersect	

•  Es@mate	size	of	geographic	range	of	a	species,	
based	on	observa@ons	(geocat.kew.org/
about)	

17	

Brute Force For Convex Hull

•  Key idea for solution: line passing through (xi,yi) and (xj,yj) is:
 ax + by = c where a = (yj – yi), b = (xi – xj), c = xi yj – yi xj

•  The 2 pts are on the convex hull iff all other pts are on same
side of this line:

18	

Brute Force For Convex Hull

•  For each (distinct) pair of points in the set, compute a, b,
and c to define the line ax + by = c.
–  For each other point, plug its x and y coordinates into the

expression ax + by – c.
–  If they all have the same sign (all positive or all negative),

then this pair of points is part of the convex hull.

•  Takes Θ(n3) time.

19	

Brute Force for Two Numeric
Problems

•  Problem: Compute an

– Solution: Multiply a by itself n-1 times
– Takes Θ(n) time, assuming each multiplication

takes constant time.
•  Problem: multiply two nxn matrices A and B to create

product matrix C
– Solution: Follow the definition, which says the

(i,j) entry of C is Σ aik*bkj , k = 1 to n
– Takes Θ(n3) time, assuming each basic

operation takes constant time

20	

Brute	Force/Exhaus@ve	Search	
Summary	

•  sor@ng:		selec@on	sort,	bubble	sort	
•  searching:	sequen@al	search	
•  graphs:	BFS,	DFS	
•  combinatorial	problems:		check	all	possibili@es	for	
TSP	and	knapsack	

•  geometric:		check	all	possibili@es	for	closest	pair	and	
for	convex	hull	

•  numerical:		follow	defini@on	to	compute	an	or	matrix	
mul@plica@on	

21	

Applica@ons	of	DFS	

•  Now	let’s	go	more	in	depth	on	two	
applica@ons	of	depth-first	search	
–  topological	sort	
– finding	strongly	connected	components	of	a	graph	

22	

Depth-First Search

•  Input: G = (V,E)
•  for each vertex u in V do

–  mark u as unvisited
–  parent[u] := nil

•  time := 0
•  for each unvisited vertex u

in V do
–  parent[u] := u // a root
–  call recursive DFS(u)

23	

n  recursiveDFS(u):
n  mark u as visited
n  time++
n  disc[u] := time
n  for each unvisited neighbor v of

u do
n  parent[v] := u
n  call recursiveDFS(v)

n  time++
n  fin[u] := time

Nested Intervals

•  Let interval for vertex v be [disc[v],fin[v]].
•  Fact: For any two vertices, either one interval

precedes the other or one is enclosed in the
other.
– because recursive calls are nested

•  Corollary: v is a descendant of u in the DFS
forest if and only if v's interval is inside u's
interval.

24	

Classifying Edges

•  Consider edge (u,v) in directed graph
 G = (V,E) w.r.t. DFS forest
•  tree edge: v is a child of u
•  back edge: v is an ancestor of u
•  forward edge: v is a descendant of u but not

a child
•  cross edge: none of the above

25	

Example of Classifying Edges

26	

b

e

a c

f d

in DFS forest

not in DFS
forest

tree

tree

tree

tree
forward

back

back

cross

DFS Application: Topological Sort

•  Given a directed acyclic graph (DAG), find a
linear ordering of the vertices such that if
(u,v) is an edge, then u precedes v.

•  DAG indicates precedence among events:
– events are graph vertices, edge from u to v

means event u has precedence over event v

•  Partial order because not all events have to
be done in a certain order

27	

Precedence Example

•  Tasks that have to be done to eat breakfast:
– get glass, pour juice, get bowl, pour cereal, pour

milk, get spoon, eat.

•  Certain events must happen in a certain
order (ex: get bowl before pouring milk)

•  For other events, it doesn't matter (ex: get
bowl and get spoon)

28	

Precedence Example

29	

get glass

pour juice

get bowl

pour cereal

pour milk
get spoon

eat breakfast

Order: glass, juice, bowl, cereal, milk, spoon, eat.

Why Acyclic?

•  Why must directed graph by acyclic for the
topological sort problem?

•  Otherwise, no way to order events linearly
without violating a precedence constraint.

30	

Idea for Topological Sort Alg.

•  Run DFS on the input graph

31	

eat

juice

glass

milk

cereal

bowl

spoon

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Topological Sort Algorithm

input: DAG G = (V,E)
1. call DFS on G to compute finish[v] for all

vertices v
2. when each vertex's recursive call finishes,

insert it on the front of a linked list
3. return the linked list

Running Time: O(V+E)

32	

Correctness of T.S. Algorithm
Show that if (u,v) is an edge, then v finishes before u

finishes. Thus the algorithm correctly orders u before
v.

Case 1: u is discovered before v is discovered. By the

way DFS works, u does not finish until v is discovered
and v finishes.

Then v finishes before u finishes.

33	

disc(u)	 fin(u)	
disc(v)	 fin(v)	

u	
v	

u	 v	

Correctness of T.S. Algorithm
Show that if (u,v) is an edge, then v finishes before u

finishes. Thus the algorithm correctly orders u before
v.

Case 2: v is discovered before u is discovered.

Suppose u finishes before v finishes (i.e., u is nested
inside v).

Show this is impossible…

34	

disc(v)	 fin(v)	
disc(u)	 fin(u)	

u	
v	

u	 v	

Correctness of T.S. Algorithm

•  v is discovered but not yet finished when u is
discovered.

•  Then u is a descendant of v.
•  But that would make (u,v) a back edge and a

DAG cannot have a back edge (the back
edge would form a cycle).

•  Thus v finishes before u finishes.

35	

DFS Application: Strongly Connected
Components

•  Consider a directed graph.
•  A strongly connected component (SCC) of

the graph is a maximal set of vertices with a
(directed) path between every pair of
vertices

•  Problem: Find all the SCCs of the graph.

36	

What Are SCCs Good For?
•  Packaging software modules:
–  Construct directed graph of which modules call which

other modules
–  A SCC is a set of mutually interacting modules
–  Pack together those in the same SCC

 www.cs.princeton.edu/courses/archive/fall07/cos226/lectures.html

•  Solving the “2-satisfiability problem”, which in turn
is used to solve various geometric placement
problems (graph labeling, VLSI design), as well as
data clustering and scheduling
 wikipedia

37	

SCC Example

38	

h f a e

g c b d

four SCCs

How Can DFS Help?

•  Suppose we run DFS on the directed graph.
•  All vertices in the same SCC are in the same

DFS tree.
•  But there might be several different SCCs in

the same DFS tree.
– Example: start DFS from vertex h in previous

graph

39	

Main Idea of SCC Algorithm

•  DFS tells us which vertices are reachable
from the roots of the individual trees

•  Also need information in the "other
direction": is the root reachable from its
descendants?

•  Run DFS again on the "transpose" graph
(reverse the directions of the edges)

40	

SCC Algorithm

input: directed graph G = (V,E)
1.  call DFS(G) to compute finishing times
2.  compute GT // transpose graph
3.  call DFS(GT), considering vertices in

decreasing order of finishing times
4.  each tree from Step 3 is a separate

SCC of G

41	

SCC Algorithm Example

42	

h f a e

g c b d

input graph - run DFS

After Step 1

43	

c

b g

a
f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d
e

h

fin
(c

)

fin
(d

)

fin
(b

)

fin
(e

)

fin
(a

)

fin
(h

)

fin
(g

)

fin
(f)

Order of vertices for Step 3: f, g, h, a, e, b, d, c

After Step 2

44	

h f a e

g c b d

transposed input graph - run DFS with specified order of vertices

After Step 3

45	

g

h e

f a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

SCCs are {f,h,g} and {a,e} and {b,c} and {d}.

b

c

Running Time of SCC Algorithm

•  Step 1: O(V+E) to run DFS
•  Step 2: O(V+E) to construct transpose graph,

assuming adjacency list rep.
•  Step 3: O(V+E) to run DFS again
•  Step 4: O(V) to output result
•  Total: O(V+E)

46	

Correctness of SCC Algorithm

•  Proof uses concept of component graph,
GSCC, of G.

•  Vertices are the SCCs of G;
call them C1, C2, …, Ck

•  Put an edge from Ci to Cj iff G has an edge
from a vertex in Ci to a vertex in Cj

47	

Example of Component Graph

48	

 {a,e}

{f,h,g} {d}

 {b,c}

 based on example graph from before

Facts About Component Graph

•  Claim: GSCC is a directed acyclic graph.
•  Why?
•  Suppose there is a cycle in GSCC such that

component Ci is reachable from component
Cj and vice versa.

•  Then Ci and Cj would not be separate SCCs.

49	

Facts About Component Graph

•  Consider any component C during Step 1 (running
DFS on G)

•  Let d(C) be earliest discovery time of any vertex in C
•  Let f(C) be latest finishing time of any vertex in C
•  Lemma: If there is an edge in GSCC from component

C' to component C, then
 f(C') > f(C).

50	

Proof of Lemma

•  Case 1: d(C') < d(C).
•  Suppose x is first vertex discovered in C'.
•  By the way DFS works, all vertices in C' and C

become descendants of x.
•  Then x is last vertex in C' to finish and

finishes after all vertices in C.
•  Thus f(C') > f(C).

51	

C' C

Proof of Lemma

•  Case 2: d(C') > d(C).
•  Suppose y is first vertex discovered in C.
•  By the way DFS works, all vertices in C become

descendants of y.
•  Then y is last vertex in C to finish.
•  Since C' → C, no vertex in C' is reachable from y, so y

finishes before any vertex in C' is discovered.
•  Thus f(C') > f(C).

52	

C' C

SCC Algorithm is Correct

•  Prove this theorem by induction on number
of trees found in Step 3 (running DFS on GT).

•  Hypothesis is that the first k trees found
constitute k SCCs of G.

•  Basis: k = 0. No work to do !

53	

SCC Algorithm is Correct
•  Induction: Assume the first k trees constructed in

Step 3 (running DFS on GT) correspond to k SCCs;
consider the (k+1)st tree.

•  Let u be the root of the (k+1)st tree.
•  u is part of some SCC, call it C.
•  By the inductive hypothesis, C is not one of the k

SCCs already found and all so vertices in C are
unvisited when u is discovered.
–  By the way DFS works, all vertices in C become part of u's tree

54	

SCC Algorithm is Correct

•  Show only vertices in C become part of u's
tree. Consider an outgoing edge from C.

55	

w

z

u

C'

C GT:

w

z

u

C'

C G:

SCC Algorithm is Correct

•  By lemma, in Step 1 (running DFS
on G) the last vertex in C' finishes
after the last vertex in C finishes.

•  Thus in Step 3 (running DFS on GT),
some vertex in C' is discovered
before any vertex in C is discovered.

•  Thus in Step 3, all of C', including w,
is already visited before u's DFS
tree starts

56	

w

z

u

C'

C G:

•  Sumber	:	Prof. Jennifer Welch
	

CSCE	411,	Spring	2013:		Set	2	 57	

