Universitas

Esa Unggul . Smart, Creative and Entrepreneurial

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 11
PROGRAM STUDI MAGISTER ILMU KOMPUTER

: l.ac.i
MR ceatlcetLale FAKULTAS ILMU KOMPUTER

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

TOPIK DALAM PEMROGRAMAN
Brute Force & Exhaustive Search

Pertemuan 11

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

TUJUAN PERKULIAHAN

* Mahasiswa memahami beberapa tipe persoalan
yang penting.

e Selection Sort & Bubble Sort

* Sequential Search & Brute Force String Matching

* Closest Pair & Convex Hull dengan Brute Force

* Travelling Salesman Problem, Knapsack Problem,
Assignment Problem

B | ! E—

I S—————————.

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Brute Force & Exhaustive Search

e Straightforward way to solve a problem,
based on the definition of the problem itself;
often involves checking all possibilities

* Pros:

— widely applicable
— easy

— good for small problem sizes
 Con:

— often inefficient for large inputs

B |

e ——

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Brute Force Sorting

 Selection sort
— scan array to find smallest element

— scan array to find second smallest element
— etc.

e Bubble sort

— scan array, swapping out-of-order neighbors
— continue until no swaps are needed

* Both take O(n?) time in the worst case.

‘.ﬁ__

T

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

*"‘“

Brute Force Searching

 Sequential search:
— go through the entire list of n items to find the desired item

 Takes O(n) time in the worst case

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Brute Force Searching in a Graph

(Review graph terminology and basic algorithms)

Breadth-first search:
— go level by level in the graph

Depth-first search:
— g0 as deep as you can, then backtrack

Both take O(V+E) time, where |V| is the number of
vertices and | E| is the number of edges

I ——————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Problems

* Traveling Salesman Problem (TSP):

— given a set of n cities and distances between all pairs of
cities, determine order for traveling to every city exactly once
and returning home with minimum total distance

e Solution: Compute distance for all “tours” and
choose the shortest.

 Takes O(n!) time (terrible!)

)

(0555 Unggul Smart, Creative and Entrepreneurial

J—— TSP Example —
2
a b
a,b,c,d,a->18
5 3 a,b,dc,a->11
8 7 a,c,b,d,a->23
a,d,b,c,a->23
C d
1 a,d,c,b,a->18
Do we need to consider more tours?
Something odd about the “distances”?
. | R ——

I S——————————

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

TSP Applications

* transportation and logistics (school buses,
meals on wheels, airplane schedules, etc.)

 drilling printed circuit boards

e analyzing crystal structure

* overhauling gas turbine engines
e clustering data

tsp.gatech.edu/apps/index.html
iris.gmu.edu/~khoffman/papers/trav_salesman.html

B | : —

I ————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Problems

 Knapsack Problem:
— There are n different items in a store
— Item i weighs w; pounds and is worth $v,
— A thief breaks in

— He can carry up to W pounds in his knapsack
— What should he take to maximize his haul?

e Solution: Consider every possible subset of items,
calculate total value and total weight and discard if

more than W; then choose remaining subset with
maximum total value.

 Takes Q(2") time

| ——

) —

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Knapsack Applications

e Least wasteful way to use raw materials

* selecting capital investments and financial
portfolios

e generating keys for the Merkle-Hellman
cryptosystem

Knapsack Problems, H. Kellerer, U. Pferschy, D. Pisinger, Springer, 2004.

I ————————————

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

Knapsack Example

° item1:7/ bS, S42 subset total weight total value
e jtem 2:3 Ibs, S12 @ 0 $0
o item 3: 4 Ibs, $40 m ! b42
. {2} 3 $12
* item4:5 bS, $25 (3} 4 $40
e W=10 {4) 5 $25
{1,2} 10 $54
{1,3} 11 infeasible
* need to check 16 (1,4) 12 infeasible
possibilities (2,3} 7 $52
(2,4} 8 $37
etc.

I S————————————,

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

w———

Brute Force For Closest Pair

e Closest-Pair Problem:

— Given n points in d-dimensional space, find the
two that are closest

* Applications:
— airplanes close to colliding
— which post offices should be closed
— which DNA sequences are most similar

I ———————————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Brute Force For Closest Pair

e Brute-force Solution (for 2-D case):

— compute distances between all pairs of points
* sqrt((x; - Xj)2 +(y; - Yj)z)
— scan all distances to find smallest

* Running time: O(n?), assuming each numerical
operation is constant time (including square root?)

* |mprovements:
— drop the square root
— don’t compute distance for same 2 points twice

I —————————————_

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

w———

‘Brute Force For Convex Hull

 Convex Hull Problem: Given a set of points in 2-D, find the
smallest convex polygon s.t. each point in the set is
enclosed by the polygon

— polygon: sequence of line segments that ends where it
begins

— convex: all points on a line segment between 2 points in
the polygon are also in the polygon

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

Convex Hull Applications

* |[n computer graphics or robot planning, a
simple way to check that two (possibly
complicated) objects are not colliding is to
compute their convex hulls and then check if
the hulls intersect

* Estimate size of geographic range of a species,
based on observations (geocat.kew.org/
about)

| ! B—

I ———————————

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

Brute Force For Convex Hull

* Key idea for solution: line passing through (x;y;) and (x;y;) is:
ax+by=cwherea=(y;-y), b=(x -X), C=XY-V¥iX

|
 The 2 pts are on the convex hull iff all other pts are on same
side of this line:

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

w———

‘Brute Force For Convex Hull

* For each (distinct) pair of points in the set, compute a, b,
and c to define the line ax + by = c.

— For each other point, plug its x and y coordinates into the
expression ax + by - c.

— If they all have the same sign (all positive or all negative),
then this pair of points is part of the convex hull.

e Takes O(n3) time.

I ————————————_

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

Problems

 Problem: Compute a"
— Solution: Multiply a by itself n-1 times

— Takes O(n) time, assuming each multiplication
takes constant time.

* Problem: multiply two nxn matrices A and B to create
product matrix C

— Solution: Follow the definition, which says the
(ij)entryof Cis 2 3, *b,;, k=11ton

— Takes O(n3) time, assuming each basic
operation takes constant time

B | ! E—

I —————————————_Y

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Summary

e sorting: selection sort, bubble sort
e searching: sequential search
e graphs: BFS, DFS

 combinatorial problems: check all possibilities for
TSP and knapsack

e geometric: check all possibilities for closest pair and
for convex hull

 numerical: follow definition to compute a" or matrix
multiplication

B | : —

I ——————————.

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Applications of DFS

* Now let’s go more in depth on two
applications of depth-first search

— topological sort

— finding strongly connected components of a graph

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

[— .
Depth-First Search
* Input: G=(V,E) m recursiveDFS(u):
e foreach vertexuinV do = mark u as visited
— mark u as unvisited =
m for each unvisited neighbor v of
u do
* for each unvisited vertex u 0
inVdo = call recursiveDFS(v)
— call recursive DFS(u) -
B ' i

I S————————————

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Nested Intervals

e Let for vertex v be [disc[V],fin[V]].

* Fact: For any two vertices, either one interval
orecedes the other or one Is enclosed In the
other.

— because recursive calls are nested

e Corollary: vis a descendant of u in the DFS
forest if and only if v's interval is inside u's
Interval.

B | : —

I ——————————————

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

Classifying Edges

* Consider edge (u,v) in directed graph
G = (V,E) w.r.t. DFS forest
: vis achild of u
: vV is an ancestor of u

vV IS a descendant of u but not
a child

: none of the above

I S————————————,

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

. Example of Classifying Edges

; tree 5 - in DFS forest
not in DFS
forward tree trde forest
back Cross
d e f

tree back

(@”Ehétamﬁnggl.ll Smart, Creative and Entrepreneurial

DFS Application: Topological Sort

* Given a directed acyclic graph (DAG), find a
linear ordering of the vertices such that if
(U,v) Is an edge, then u precedes v.

* DAG indicates precedence among events:

— events are graph vertices, edge fromu to v
means event u has precedence over event v

e Partial order because not all events have to
be done In a certain order

|

I S————————————

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Precedence Example

 Tasks that have to be done to eat breakfast:

— get glass, pour juice, get bowl, pour cereal, pour
milk, get spoon, eat.

e Certain events must happen in a certain
order (ex: get bowl before pouring milk)

* For other events, it doesn't matter (ex: get
bowl and get spoon)

B |

)

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

Precedence Example

et glass
ECL8 get bowl
our juice
pour] pour cereal
pour milk get spoon

eat breakfast
Order: glass, juice, bowl, cereal, milk, spoon, eat.

. | E——

I S————————————,%

(OEHSE Unggul Smart, Creative and Entrepreneurial

" Why Acyclic?

 Why must directed graph by acyclic for the
topological sort problem?

* Otherwise, no way to order events linearly
without violating a precedence constraint.

(OE”S'; Unggul Smart, Creative and Entrepreneurial

| ldea for Topological Sort Alg.

* Run DFS on the input graph

i1 2 3 4 5 o6 [8 9 10 11 12 13 14

eat milk spoon
juice cereal
glass bowl

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

‘.ﬁ__ I —

I ————————————Y

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Topological Sort Algorithm

input: DAG G = (V,E)
1. call DFS on G to compute finish[v] for all

vertices v
2. when each vertex's recursive call finishes,
Insert it on the of a linked list

3. return the linked list

Running Time: O(V+E)

I ——————————

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Correctness of T.S. Algorithm

Show that if (u,v) is an edge, then v finishes before u
finishes. Thus the algorithm correctly orders u before
V.

Case 1: uis disc@@@fore v is discovered. By the
way DFS works, u does not finish until v is discovered
and v finishes.

disc(v fin(v
disc(u) S|C() r() fin(u)

Then v firlishes-bef@t:e-u-ﬁm&hes. |

u

_

(OEHSE Unggul Smart, Creative and Entrepreneurial

Correctness of T.S. Algorithm

Show that if (u,v) is an edge, then v finishes before u
finishes. Thus the algorithm correctly orders u before
V.

Case 2: vis disc@@@ore u is discovered.

Suppose u finishes before v finishes (i.e., u is nested

inside v).
di fi
disc(v) e r(U) fin(v)
Show thisl-isimpgssibe... M |
u
. . —

_

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Correctness of T.S. Algorithm

* vis discovered but not yet finished when u is
discovered.

* Then u is a descendant of v.

* But that would make (u,v) a back edge and a
DAG cannot have a back edge (the back
edge would form a cycle).

* Thus v finishes before u finishes.

B | : —

I S————————————

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Components

* Consider a graph.

* A strongly connected component (SCC) of
the graph is a maximal set of vertices with a
(directed) path between every pair of
vertices

* Problem: Find all the SCCs of the graph.

(awfé'awl'jnggul Smart, Creative and Entrepreneurial

What Are SCCs Good For? -

* Packaging software modules:

— Construct directed graph of which modules call which
other modules

— A SCC is a set of mutually interacting modules
— Pack together those in the same SCC

www.cs.princeton.edu/courses/archive/fallO7/cos226/lectures.html

e Solving the “2-satisfiability problem”, which in turn
IS used to solve various geometric placement
problems (graph labeling, VLSI design), as well as
data clustering and scheduling

wikipedia

B |

I S————————————

(Oes’a Unggul Smart, Creative and Entrepreneurial

- SCC Example |

O—HG o)
e@e@

four SCCs

Bl ! S———

_

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

How Can DFS Help?

* Suppose we run DFS on the directed graph.

e All vertices in the same SCC are in the same
DES tree.

* But there might be several different SCCs in
the same DFS tree.

— Example: start DFS from vertex h in previous
graph

I S—————————————%

(awEﬂéta'wl'jnggul Smart, Creative and Entrepreneurial

Main Idea of SCC Algorithm

e DFS tells us which vertices are reachable
from the roots of the individual trees

e Also need information in the "other

direction": is the root reachable from its
descendants?

* Run DFS again on the "transpose" graph
(reverse the directions of the edges)

B |

I S————————————

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

iInput: C
call DFS(G) to compute finishing times

1.
2.
3.

4.

com

SCC Algorithm

irected graph G = (V,E)

oute G // transpose graph

call
decr

DFS(G'), considering vertices in
easing order of finishing times

each tree from Step 3 is a separate

SCC

of G

—

e

(agga Unggul Smart, Creative and Entrepreneurial

- SCC Algorithm Example

G—O=O—)

input graph - run DFS

_

(0555 Unggul Smart, Creative and Entrepreneurial

After Step 1
s T 2 Ol S @ <
E £ & £ £ E £ &
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C d h
b © g
a

Order of vertices for Step 3:f, g, h,a, e, b,d, c

(OESé Unggul Smart, Creative and Entrepreneurial

' After Step 2 —

H—O=O—

transposed input graph - run DFS with specified order of vertices

E—

_

(0555 Unggul Smart, Creative and Entrepreneurial

| After Step 3 |

1 2 3 45 o6 7 8 9 10 11 12 13 14 15 16

SCCs are {f,h,g} and {a,e} and {b,c} and {d}.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

——

Running Time of SCC Algorithm

e Step 1: O(V+E) to run DFS

e Step 2: O(V+E) to construct transpose graph,
assuming adjacency list rep.

e Step 3: O(V+E) to run DFS again
e Step 4: O(V) to output result
e Total: O(V+E)

I S———————————

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

T—

Correctness of SCC Algorithm

* Proof uses concept of component graph,
GSCC of G.

* Vertices are the SCCs of G;
call them C,, C,, ..., C,

* Putan edge from C,; to C; iff G has an edge
from a vertex in C; to a vertex in C,

BRI

(0555 Unggul Smart, Creative and Entrepreneurial

~ Example of Component Graph

based on example graph from before

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Facts About Component Graph

« Claim: G°“Cis a directed acyclic graph.
e Why?

* Suppose there is a cycle in G°“C such that
component C. is reachable from component
C; and vice versa.

* Then C;and C; would not be separate SCCs.

I S———————————,

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Facts About Component Graph

Consider any component C during Step 1 (running
DFS on G)

 Let d(C) be earliest discovery time of any vertex in C
* Let f(C) be latest finishing time of any vertex in C

 Lemma: If there is an edge in G5¢C from component
C' to component C, then

f(C') > f(C).

I —————_

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

T—

Proof of Lem@

* Case 1: d(C') < d(C).
e Suppose X is first vertex discovered in C'.

* By the way DFS works, all vertices in C'and C
become descendants of x.

* Then x is last vertex in C' to finish and
finishes after all vertices in C.

. Thus f(C') > f(C).

I S—————————————

(OEHSE Unggul Smart, Creative and Entrepreneurial

Proof of Lem@

 Case 2: d(C") > d(C).
 Suppose y is first vertex discovered in C.

* By the way DFS works, all vertices in C become
descendants of y.

* Thenyis last vertex in C to finish.

e Since C'— C, no vertex in C' is reachable fromy, soy
finishes before any vertex in C' is discovered.

* Thus f(C') > f(C).

E— . BR—

I ———————

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

- SCC Algorithm is Correct

* Prove this theorem by induction on number
of trees found in Step 3 (running DFS on G').

* Hypothesis is that the first k trees found
constitute k SCCs of G.

e Basis: k=0. Nowork todo!

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

SCC Algorithm is Correct

* |Induction: Assume the first k trees constructed in
Step 3 (running DFS on G') correspond to k SCCs;
consider the (k+1)st tree.

* Let u be the root of the (k+1)st tree.
e uis part of some SCC, call it C.

* By the inductive hypothesis, C is not one of the k
SCCs already found and all so vertices in C are
unvisited when u is discovered.

— By the way DFS works, all vertices in C become part of u's tree

B | : —

I ———————————

(0555 Unggul Smart, Creative and Entrepreneurial

. - SCC Algorithm is Correct

 Show only vertices in C become part of u's
tree. Consider an outgoing edge from C.

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

- SCC Algorithm is Correct

* Bylemma, in Step 1 (running DFS
on G) the last vertex in C' finishes
after the last vertex in C finishes.

* Thus in Step 3 (running DFS on G'),
some vertex in C' is discovered
before any vertex in C is discovered.

* Thusin Step 3, all of C', including w,
IS already visited before u's DFS

tree starts

* Sumber : Prof. Jennifer Welch

