
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 9

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK	DALAM	PEMROGRAMAN	
Struktur	Data	Dasar	

Pertemuan	9	

TUJUAN	PERKULIAHAN	
•  Mahasiswa	memahami	beberapa	Bpe	persoalan	
yang	penBng,	dan	beberapa	jenis	struktur	data	
utama		

Definition

•  Data structure is representation of the logical
relationship existing between individual
elements of data.

•  In other words, a data structure is a way of
organizing all data items that considers not
only the elements stored but also their
relationship to each other.

Introduction

•  Data structure affects the design of both
structural & functional aspects of a program.

 Program=algorithm + Data Structure
•  You know that a algorithm is a step by step

procedure to solve a particular function.

Introduction

•  That means, algorithm is a set of instruction
written to carry out certain tasks & the data
structure is the way of organizing the data
with their logical relationship retained.

•  To develop a program of an algorithm, we
should select an appropriate data structure
for that algorithm.

•  Therefore algorithm and its associated data
structures from a program.

Classification of Data Structure

•  Data structure are normally divided into two
broad categories:
– Primitive Data Structure
– Non-Primitive Data Structure

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character Pointer Float Integer Float

Classification of Data Structure

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

Primitive Data Structure

•  There are basic structures and directly operated
upon by the machine instructions.

•  In general, there are different representation on
different computers.

•  Integer, Floating-point number, Character
constants, string constants, pointers etc, fall in
this category.

Non-Primitive Data Structure

•  There are more sophisticated data structures.
•  These are derived from the primitive data

structures.
•  The non-primitive data structures emphasize

on structuring of a group of homogeneous
(same type) or heterogeneous (different type)
data items.

Non-Primitive Data Structure

•  Lists, Stack, Queue, Tree, Graph are example
of non-primitive data structures.

•  The design of an efficient data structure must
take operations to be performed on the data
structure.

Non-Primitive Data Structure

•  The most commonly used operation on data
structure are broadly categorized into
following types:
– Create
– Selection
– Updating
– Searching
– Sorting
– Merging
– Destroy or Delete

Different between them

•  A primitive data structure is generally a basic
structure that is usually built into the language,
such as an integer, a float.

•  A non-primitive data structure is built out of
primitive data structures linked together in
meaningful ways, such as a or a linked-list,
binary search tree, AVL Tree, graph etc.

Description of various
Data Structures : Arrays

•  An array is defined as a set of finite number of
homogeneous elements or same data items.

•  It means an array can contain one type of data
only, either all integer, all float-point number
or all character.

Arrays

•  Simply, declaration of array is as follows:
 int arr[10]

•  Where int specifies the data type or type of
elements arrays stores.

•  “arr” is the name of array & the number
specified inside the square brackets is the
number of elements an array can store, this is
also called sized or length of array.

Arrays

•  Following are some of the concepts to be
remembered about arrays:
– The individual element of an array can be

accessed by specifying name of the array,
following by index or subscript inside
square brackets.
– The first element of the array has index

zero[0]. It means the first element and last
element will be specified as:arr[0] & arr[9]
 Respectively.

Arrays

– The elements of array will always be
stored in the consecutive (continues)
memory location.
– The number of elements that can be stored

in an array, that is the size of array or its
length is given by the following equation:
(Upperbound-lowerbound)+1

Arrays

– For the above array it would be
(9-0)+1=10,where 0 is the lower bound of

array and 9 is the upper bound of array.
– Array can always be read or written through

loop. If we read a one-dimensional array it
require one loop for reading and other for
writing the array.

Arrays

– For example: Reading an array
For(i=0;i<=9;i++)
 scanf(“%d”,&arr[i]);

– For example: Writing an array
For(i=0;i<=9;i++)
 printf(“%d”,arr[i]);

Arrays

– If we are reading or writing two-
dimensional array it would require two
loops. And similarly the array of a N
dimension would required N loops.
– Some common operation performed on

array are:
• Creation of an array
• Traversing an array

Arrays

– Insertion of new element
– Deletion of required element
– Modification of an element
– Merging of arrays

Lists

•  A lists (Linear linked list) can be defined as a
collection of variable number of data items.

•  Lists are the most commonly used non-
primitive data structures.

•  An element of list must contain at least two
fields, one for storing data or information and
other for storing address of next element.

•  As you know for storing address we have a
special data structure of list the address must
be pointer type.

Lists

•  Technically each such element is referred to as
a node, therefore a list can be defined as a
collection of nodes as show bellow:

Head

AAA BBB CCC

Information field Pointer field

[Linear Liked List]

Lists

•  Types of linked lists:
– Single linked list
– Doubly linked list
– Single circular linked list
– Doubly circular linked list

Stack

•  A stack is also an ordered collection of
elements like arrays, but it has a special feature
that deletion and insertion of elements can be
done only from one end called the top of the
stack (TOP)

•  Due to this property it is also called as last in
first out type of data structure (LIFO).

Stack

•  It could be through of just like a stack of plates
placed on table in a party, a guest always takes
off a fresh plate from the top and the new plates
are placed on to the stack at the top.

•  It is a non-primitive data structure.
•  When an element is inserted into a stack or

removed from the stack, its base remains fixed
where the top of stack changes.

Stack

•  Insertion of element into stack is called PUSH
and deletion of element from stack is called
POP.

•  The bellow show figure how the operations
take place on a stack:

PUSH POP

[STACK]

Stack

•  The stack can be implemented into two ways:
– Using arrays (Static implementation)
– Using pointer (Dynamic implementation)

Queue

•  Queue are first in first out type of data
structure (i.e. FIFO)

•  In a queue new elements are added to the
queue from one end called REAR end and
the element are always removed from other
end called the FRONT end.

•  The people standing in a railway reservation
row are an example of queue.

Queue

•  Each new person comes and stands at the
end of the row and person getting their
reservation confirmed get out of the row
from the front end.

•  The bellow show figure how the
operations take place on a stack:

10 20 30 40 50

front rear

Queue

•  The queue can be implemented into two ways:
– Using arrays (Static implementation)
– Using pointer (Dynamic implementation)

Trees

•  A tree can be defined as finite set of data items
(nodes).

•  Tree is non-linear type of data structure in
which data items are arranged or stored in a
sorted sequence.

•  Tree represent the hierarchical relationship
between various elements.

Trees

•  In trees:
•  There is a special data item at the top of

hierarchy called the Root of the tree.
•  The remaining data items are partitioned into

number of mutually exclusive subset, each of
which is itself, a tree which is called the sub
tree.

•  The tree always grows in length towards
bottom in data structures, unlike natural trees
which grows upwards.

Trees

•  The tree structure organizes the data into
branches, which related the information.

A	

B	 C	

D E	 F	 G

root	

Graph

•  Graph is a mathematical non-linear data
structure capable of representing many kind of
physical structures.

•  It has found application in Geography,
Chemistry and Engineering sciences.

•  Definition: A graph G(V,E) is a set of vertices
V and a set of edges E.

Graph

•  An edge connects a pair of vertices and many
have weight such as length, cost and another
measuring instrument for according the graph.

•  Vertices on the graph are shown as point or
circles and edges are drawn as arcs or line
segment.

Graph

•  Example of graph:

v2	

v1	

v4	

v5	

v3	

10	

15	

8	

6	

11	

9	 v4	

v1	

v2	 v4	

v3	

[a]	Directed	&	Weighted	Graph	 [b]	Undirected	Graph	

Graph

•  Types of Graphs:
– Directed graph
– Undirected graph
– Simple graph
– Weighted graph
– Connected graph
– Non-connected graph

