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Real-Time 

The design of real-time systems can be fundamentally different from the design of 
ordinary applications. When so-called real-time demands do not crowd push 
resource limits, then ordinary software engineering approaches may work. However, 
when the applications proposed push available pools of time, space or other 
resources, the handling of those constraints can dominate the design leading to 
approaches that would never be considered in projects less demanding of resources.  

• Real-Time  
o Systems that in which the time to respond is a significant constraint  
o Operatings systems, device drivers, data acquisition systems are 

examples  
o Interactive systems have such constraints (e.g. 1/2 second response)  
o Data communications and network design raise real-time issues  
o Embedded systems often have such constraints  

▪ Weapons control systems, avionics, etc. raise real-time issues  
o Hard Real-Time -- mandatory time constraints  
o Soft Real-Time -- desirable time constraints  
o Quality and reliability particularly important  
o Types of Real-Time constraints  

▪ Event driven  
▪ Periodic events for which response must be completed 

before the next event arrives  
▪ Periodic events for which response must be completed 

within some given time from event arrival  
▪ Periodic events for which response must be completed 

sufficiently rapidly to avoid resource exhaustion  
▪ Sporadic events for which response must be completed 

before the next event arrives  
▪ Sporadic events for which response must be completed 

within some given time from event arrival  
▪ Sporadic events for which response must be completed 

sufficiently rapidly to avoid resource exhaustion  
▪ Intrinsic  

▪ Tasks that must be completed sufficiently rapidly avoid 
resource exhaustion or to leave the machine ready for 
some expected event (e.g. garbage collection, file system 
management, etc.)  

o Approaches to real-time software design  
▪ Polling  
▪ Interrupts  
▪ Threads  
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▪ Threaded code (has nothing to do with threads)  
▪ Hardware support  

▪ Intelligent controllers  
▪ Hardware clocks  
▪ Memory management hardware  
▪ Hardware event silos  
▪ ...  

o Issues in real-time design  
▪ Dead-time (inability to respond to events for some period of 

time)  
▪ Buffer overflows, overruns  
▪ Interlocks  
▪ Synchronization  
▪ Shared data structures  
▪ Error recovery  
▪ Stack overflows  
▪ Disk I/O delays  
▪ DMA lockouts and bus overloads  
▪ Maintainable system  
▪ ...  

o Approaches to real-time design  
▪ Queuing Theory  

▪ Model based on customers, servers and queueing 
discipline  

▪ Qualitative behavior derived from M/M/1 queues  
▪ Service rate must be signficantly faster than customer 

arrival rate  
▪ Graph theory  
▪ Network (graph with flows) models  
▪ State trabsition tables, graphs  
▪ Object-oriented design (often with processor(s) for each object)  
▪ Design in Ada or java, implement in C++/C/Fortran/assembler  

o Approaches to real-time implementation  
▪ Throw hardware at it and pray -- works well for soft real-time  
▪ Use efficient languages (C, assembler)  
▪ Design a real-time monitor or executive  

▪ Manage time  
▪ Manage interrupts  

▪ Premeptive scheduling  
▪ Polling  

▪ Schedule tasks  
▪ Queueing  
▪ Time sharing  

▪ Allocate resources  
▪ Design an operating-system free application  
▪ Avoid disk I/O  
▪  
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Designing Real-time Software 

Designing Realtime software involves several steps. The basic steps are listed below: 

• Software Architecture Definition 
• Co-Design 
• Defining Software Subsystems 
• Feature Design 
• Task Design 

Software Architecture Definition 

This is the first stage of Realtime Software design. Here the software team 
understands the system that is being designed. The team also reviews at the proposed 
hardware architecture and develops a very basic software architecture. This 
architecture definition will be further refined in Co-Design. 

Use Cases are also used in this stage to analyze the system. Use cases are used to 
understand the interactions between the system and its users. For example, use cases 
for a telephone exchange would specify the interactions between the telephone 
exchange, its subscribers and the operators which maintain the exchange. 

Co-Design 

Once the software architecture has been defined, the hardware and software teams 
should work together to associate software functionality to hardware modules. The 
software handling is partitioned between different processors and other hardware 
resources with the following key considerations: 

• The software functionality should be partitioned in such a fashion that 
processors and links in the system do not get overloaded when the system is 
operating at peak capacity. This involves simulating the system with the 
proposed software and hardware architecture. 

• The system should be designed for future growth by considering a scalable 
architecture, i.e. system capacity can be increased by adding new hardware 
modules. The system will not scale very well if some hardware or software 
module becomes a bottleneck in increasing system capacity. For example, 
Xenon scalability will be limited if the CAS processor in the system is assigned 
a lot of work. As this processor is shared, the software running on the CAS card 
would become a scalability bottleneck. 

• Software modules that interact very closely with each other should be placed 
on the same processor, this will reduce delays in the system. Higher system 
performance can be achieved by this approach as inter-processor message 
communication taxes the CPU as well as link resources. 

https://www.eventhelix.com/RealtimeMantra/DesigningRealtimeSoftware.htm#Software Architecture Definition
https://www.eventhelix.com/RealtimeMantra/DesigningRealtimeSoftware.htm#Co-Design
https://www.eventhelix.com/RealtimeMantra/DesigningRealtimeSoftware.htm#Defining Software Subsystems
https://www.eventhelix.com/RealtimeMantra/DesigningRealtimeSoftware.htm#Feature Design
https://www.eventhelix.com/RealtimeMantra/DesigningRealtimeSoftware.htm#Task Design
https://www.eventhelix.com/ThoughtProjects/Xenon/default.htm
https://www.eventhelix.com/ThoughtProjects/Xenon/CasCardOverview.htm
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This stage is sometimes referred to as Co-Design as the hardware and software teams 
work together to define the final system architecture. This is an iterative process. 
Changes in system architecture might result in changes in hardware and/or software 
architecture. 

The next step in Realtime system design is the careful analysis of the system to define 
the software modules.  

Defining Software Subsystems 

1. Determine all the features that the system needs to support. 
2. Group the various features based on the type of work they perform. Identify 

various sub-systems by assigning one subsystem for one type of features. For 
example, for the Xenon switch the groups would be Call Handling, System 
Maintenance, Operator Interface etc. 

3. Identify the tasks that will implement the software features. Clearly define the 
role of each task in its subsystem. 

4. Within each subsystem, classify and group the features appropriately and 
associate the various tasks constituting the subsystem. For example, the Call 
Handling subsystem in Xenon would support features like:  

o V5.2 Originating to ISUP Outgoing Call 
o V5.2 Originating to V5.2 Terminating Call 
o Conference Call 
o Toll free call 

Feature Design 

A typical Realtime system is composed of various task entities distributed across 
different processors and all the inter-processor communication takes place mainly 
through messages. Feature Design defines the software features in terms of message 
interactions between tasks. This involves detailed specification of message interfaces. 
The feature design is generally carried out in the following steps: 

1. Specify the message interactions between different tasks in the system 
2. Identify the tasks that would be controlling the feature. The controlling tasks 

would be keeping track of progress of feature. Generally this is achieved by 
running timers. 

3. The message interfaces are defined in detail. All the fields and their possible 
values are identified. 

Feature Design Guidelines 

• Keep the design simple and provide a clear definition of the system 
composition. 

• Do not involve too many tasks in a feature. 
• Disintegrate big and complex features into small sub features. 
• Draw message sequence charts for a feature carefully. Classify the legs of a 

scenario for a feature in such a way that similar message exchanges are 
performed by taking the common leg. 

• Provide a clear and complete definition of each message interface. 

https://www.eventhelix.com/ThoughtProjects/Xenon/XenonSoftwareArchitecture.htm
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• To check possible message loss, design timer based message exchanges. 
• Always consider recovery and rollback cases at each stage of feature design. 

One way of doing this is to keep a timer for each feature at the task that controls 
the mainline activity of the feature. And then insert the timeout leg in the 
message sequence charts of the feature. 

• To avoid overloading of message links choose design alternatives that include 
fewer message exchanges. 

Task Design 

Designing a task requires that all the interfaces that the task needs to support should 
be very well defined. Make sure all the message parameters and timer values have 
been finalized.  

Selecting the Task Type 

Once the external interfaces are frozen, select the type of task/tasks that would be 
most appropriate to handle the interfaces: 

• Single State Machine: The tasks functionality can be implemented in a single 
state machine. The V5.2 Call task in Xenon is a good example of a task of this 
type. 

• Multiple State Machines: The task manages multiple state machines. Such 
tasks would typically include a dispatcher to distribute the received messages 
to an appropriate state machine. Such tasks would create and delete state 
machine objects as and when required. The E1 Manger in Xenon exemplifies 
such a task. 

• Multiple Tasks: This type of tasks are similar to the multiple state machine 
tasks discussed above. The main difference is that the task now manages 
multiple tasks. Each of the managed tasks implements a single state machine. 
The manager task is also responsible for creating and deleting the single state 
machine tasks. The V5.2 Manager task is a good example of a task of this 
category. 

• Complex Task: This type of task would be required in really complex 
scenarios. Here the manager task manages other tasks which might be 
managing multiple state machines. 

Selecting the State Machine Design 

After choosing the type of task, the designer should consider dividing the message 
interface handling into a sequence of state transitions. Two different type of state 
machines can be supported: 

• Flat State Machines: This is the most frequently used type of state transition. 
For example, the states of a call would be "Awaiting Digits", "Awaiting Connect", 
"Awaiting Release", "Awaiting On-hook" etc. This type of state division does not 
scale very well with increasing complexity. For a complex system this technique 
results in a state explosion, with the task requiring hundreds of states. 

• Hierarchical State Machines: Here the states are viewed as a hierarchy. For 
example the states covered above would map to "Originating : Awaiting Digits", 

https://www.eventhelix.com/ThoughtProjects/Xenon/V52CallProcessing.htm#V5.2 Call
https://www.eventhelix.com/ThoughtProjects/Xenon/V52CallProcessing.htm#E1 Manager
https://www.eventhelix.com/ThoughtProjects/Xenon/V52CallProcessing.htm#V5.2 Manager
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"Originating: Awaiting Connect", "Releasing : Awaiting Release", "Releasing : 
Awaiting On-hook". The total number of states is the same here, but the main 
difference is that some states inherit from an "Originating" base state and others 
inherit from "Releasing" base state. The total number of message handlers in 
each state would be reduced drastically, as all the messages that have common 
handling in all the originating states would be just handled in the "Originating" 
base state. In addition to this, the handlers of inheriting states can further refine 
the base state handling by taking additional actions. 

Task Design Guidelines 

• Do not complicate the design by introducing too many states. Such designs are 
very difficult to understand. Follow a simple rule of thumb, if you are having 
difficulty choosing the name of state, you may have identified the wrong state. 

• Do not complicate the design by having too few states. If all the states in the 
system have not been captured in the state machine design, you will end up 
with lot of flags and strange looking variables which will be needed to control 
the message flow in the jumbo states. 

• Keep the data-structure definitions simple. See if a simpler data-structure would 
do the same job just as well. 

• Out of memory conditions should be handled. Tasks can and will run out of 
memory. So handle the out of memory conditions gracefully. This can lead to a 
lot of "if clutter" so consider exception handling as an option. 

• All of the legs of the defined scenarios should be handled. This is easier said 
than done. Many times all the scenario legs identified in the feature design 
stage may not cover all the possible error scenarios for your task. 

• Make sure that all the allocated resources are de-allocated at the end. Again it 
is very easy to miss out on this one. Many times designers forget to release 
resources in the error legs. 

• Consider using a hierarchical state machine to simplify the state machine 
design. 

• Consider using Object Oriented programming languages like C++. Contrary to 
popular belief, languages like C++ might turn out to be more efficient in runtime 
performance because of better locality of reference. (Most objects would be 
referring to data that is contained in the same object, thus improving the locality 
of reference) 

Sumber dari : 

https://dzone.com/articles/what-is-realtime-1 

Many software developers are familiar with realtime, but we believe 
that realtime concepts and user experiences are becoming increasingly important for 
less technical individuals to understand. 

At Fanout, we power realtime APIs to instantly push data to endpoints — which can 
range from the actual endpoints of an API (the technical term) to external businesses 
or end users. We use the word in this post loosely to refer to any destination for data. 
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We’re here to share our experience with realtime. We’ll provide a definition and 
current examples, peer into the future of realtime, and try and shed some light on the 
eternal realtime vs. real-time vs. real time semantic debate. 

The Simple Definition 

Realtime refers to a synchronous, bi-directional communication channel between 
endpoints at a speed of less than 100ms. 

We’ll break that down in plain(er) English: 

• Synchronous means that both endpoints have access to data at the same 
time (not to be confused with sync/async programming). 

• Bi-directional means that endpoints can send data in either direction. 
• Endpoints are senders or receivers of data; they could be anything from an 

API endpoint that makes data available to a user chatting on their phone. 
• 100ms is somewhat arbitrary; data cannot be delivered instantly — but under 

100ms is pretty close, especially with respect to human perception. Robert 
Miller proved this in 1986. 

An Example of a Realtime User Experience 

A simple example of a realtime user experience is that of a chat app. In a chat app, 
you "immediately" (sub-100ms) see messages from the person (endpoint) you’re 
chatting with and can receive information about when they read your messages 
(synchronous, bi-directional). 

Realtime vs. Request-Response 

Web experiences are beginning to move from request-response experiences to 
live, realtime ones. Social feeds don’t require a refresh (a request) to update, and 
you don’t need to email documents as attachments that need to be downloaded 
(request) and sent back with edits (response) — you just use collaboration software 
that works in realtime. 

More Realtime Experiences 

Realtime user experiences are everywhere you look — especially where near-instant 
access to information is valuable. You’ll find realtime in: 

• Collaboration: Realtime access to internal and external information from your 
team is becoming the norm. It’s accepted that a sales inquiry (data) can be 
instantaneously relayed from live chat on your website, into your customer 
service portal, and then into Slack. 

• Finance: Stock tracking and bitcoin wallets require immediate access to 
information. Applications like high-frequency trading exist specifically because 
of the ability of certain parties to access and act on data faster than others. 

• Events: Second-screen experiences for sports, including live betting 
with realtime odds updates, are becoming increasingly common. 

http://theixdlibrary.com/pdf/Miller1968.pdf
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• Crowdsourcing: Distributed collection, analysis, and dissemination of data 
from distributed endpoints (think reports from WeatherUnderground stations 
or from the traffic app Waze) is only valuable when it occurs in realtime. 

Realtime in the Future 

As we see it (and admittedly, we are a little biased), realtime is quickly becoming the 
new normal. Up-to-date information is expected by businesses 
and end users. Realtime is the natural complement to trends like: 

Big Data 

As the number of digitally connected businesses, experiences, and devices rises, so 
does the amount of data generated. Data becomes more valuable as the three Vs of 
a dataset (velocity, volume, and variety) increase — and realtime transmission is 
central to the velocity component. 

In the past, companies benefitted from hoarding data, but increasingly, data is 
becoming most valuable when shared (and monetized). The companies that can 
aggregate and share the most data, as quickly as possible, will be successful. 

Proliferation of APIs 

Businesses sharing data are increasingly going to do so through APIs. Entire 
businesses are being built on APIs by platform providers like Twillio (they only have 
an API) or they are coming to comprise substantial portions of existing businesses 
(like Salesforce’s API). 

An elegant end-user experience is increasingly the product of data that’s being 
moved through multiple APIs — and the number of APIs is only going to increase 
as they trend toward becoming less technical and more accessible and 
interoperable. The APIs that provide access to data or move it through their system 
as quickly as possible will rise over those that cannot. 

Realtime vs. Real-time vs. Real Time 

The endless debate — what’s the correct way to write what we’ve been discussing? 
We use realtime because we believe that “real time” refers to something experienced 
at normal speed and not condensed or sped up. For example, watching grass grow 
in ‘real time’ is not very exciting — but a time lapse is. 

Sumber dari:  

http://ecetutorials.com/control-systems/real-time-system-defination-and-types-
of-realtime-system/ 

Real Time System defination and types of realtime system 

Real time systems 
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Real time: It is the time span taken by the system to complete all its tasks and provides 
an output for an input. This time span should be the same for computation of all its 
tasks. 

Real time system: Real time systems are those which must produce the correct 
response within the specified or defined time limit. If it exceeds these time bonds it 
results in performance degradation and/or malfunction of system. 

For example in aircraft engine control system, the real time control system should 
perform its task within a specified time as the operator/pilot intended and failure of this 
can cause the loss of control and possibly the loss of many lives. 

Real time program: A program for which the correctness of operation depends upon 
the logical output of the computation and the time at which the results are produced. 
Every real time system must be having real time clock which specifies the time of the 
execution of the task or interruption of the task. 

Types of real time system: 

As per the clock and execution procedure of task the real time systems are divided as 
follows 

• Clock based systems 
• Event based systems 
• Interactive systems 

Clock based real time system: 

In this system the computation of its task has to be completed in the specified time 
interval called real time clock. Most of plant control systems are in this category. The 
clock can be in hours for some chemical process or it may be in milli seconds for some 
control systems.  For example of feedback control of tank level, the real time system 
should read the level of the tank, process it with control algorithm and actuate the 
valve accordingly to maintain the level. These three tasks should perform in the 
specified time interval i.e sampling of input, processing and output response. 

This clock can be continuous or discrete. In continuous the system will perform the 
task continuously within a specified time. This is same as above tank level controller 
where it is a continuous control process.  In some chemical industries, The chemicals 
should be added with some specified intervals these are called discrete control 
systems. 

Event based real time system: 

In plants there are some systems where actions have to be performed in response of 
some events instead of some particular time intervals. For example the control system 
has to close the value if the liquid level in the tank reaches its high level. Here this 
action is not time based, its an event based and these are used extensively to indicate 
the alarm conditions and initiate alarm actions, for example indicating the liquid level 
in the tank high or temperature of the liquid high etc. The specification of event based 
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systems usually indicates that the system must respond within specified maximum 
time to a particular event. These systems uses interrupts to indicate the real time 
system that the action is required. Some small system uses Polling i.e the system 
periodically asks the various sensors to see whether the action is required. These 
systems are basically aperiodic tasks and may have deadlines expressed in terms of 
start up time or finish time. For example after sensing of level of liquid the the valve 
closer should start after some interval. 

Interactive systems: 

The combination of Clock based system and Event based system which gives the 
importance of average execution time of the task is called interactive systems. This 
covers the systems like Automatic teller machine, reservation system for hotels, 
Airlines booking etc. This systems receive the input from the plant or operator and 
initiate the task and executes within the average response time. For an example if you 
want draw cash from ATM when u put your card then it process the task of giving the 
money out. In this case the response time depends on the network traffic and internal 
processing time and it does not bother about other atmospheric changes 

Sumber dari :  

https://users.ece.cmu.edu/~koopman/des_s99/real_time/ 

Carnegie Mellon University 
18-849b Dependable Embedded Systems  
Spring 1998 

Authors: Kanaka Juvva  

Introduction 

Real-Time systems span several domains of computer science. They are defense and 
space systems, networked multimedia systems, embedded automative electronics 
etc. In a real-time system the correctness of the system behavior depends not only the 
logical results of the computations, but also on the physical instant at which these 
results are produced. A real-time system changes its state as a function of physical 
time, e.g., a chemical reaction continues to change its state even after its controlling 
computer system has stopped. Based on this a real-time system can be decomposed 
into a set of subsystems i.e., the controlled object, the real-time computer system and 
the human operator. A real-time computer system must react to stimuli from the 
controlled object (or the operator) within time intervals dictated by its environment. The 
instant at which a result is produced is called a deadline. If the result has utility even 
after the deadline has passed, the deadline is classified as soft, otherwise it is firm. If 
a catastrophe could result if a firm deadline is missed, the deadline is hard. Commands 
and Control systems, Air traffic control systems are examples for hard real-time 
systems. On-line transaction systems, airline reservation systems are soft real-time 
systems.  

 

http://www.ece.cmu.edu/~ece849b
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Classification Of Real-Time Systems  

Real-Time systems can be classified [Kopetz97] from different perspectives. The first 
two classifications, hard real-time versus soft real-time, and fail-safe versus fail-
operational, depend on the characteristics of the application, i.e., on factors outside 
the computer system. The second three classifications, guaranteed-timeliness versus 
best-effort, resource-adequate versus resource-inadequate, and event-triggered 
versus time-triggered, depend on the design and implementation, i.e., on factors inside 
the computer system. However this paper focuses on the differences between hard 
and soft real-time classification. 

Hard Real-Time versus Soft Real-Time 

Tabel 1 shows the major differences between hard and soft real-time systems. The 
response time requirements of hard real-time systems are in the order of milliseconds 
or less and can result in a catastrophe if not met. In contrast, the response time 
requirements of soft real-time systems are higher and not very stringent. In a hard 
real-time system, the peak-load performance must be predictable and should not 
violate the predefined deadlines. In a soft real-time system, a degraded operation in a 
rarely occurring peak load can be tolerated. A hard real-time system must remain 
synchronous with the state of the environment in all cases. On the otherhand soft real-
time systems will slow down their response time if the load is very high. Hard real-time 
systems are often safety critical. Hard real-time systems have small data files and real-
time databases. Temporal accuracy is often the concern here. Soft real-time systems 
for example, on-line reservation systems have larger databases and require long-term 
integrity of real-time systems. If an error occurs in a soft real-time system, the 
computation is rolled back to a previously established checkpoint to initiate a recovery 
action. In hard real-time systems, roll-back/recovery is of limited use.  

Real-Time Scheduling 

A hard real-time system must execute a set of concurrent real-time tasks in a such a 
way that all time-critical tasks meet their specified deadlines. Every task needs 
computational and data resources to complete the job. The scheduling problem is 
concerned with the allocation of the resources to satisfy the timing constraints. Figure 
2 given below represents a taxonomy of real-time scheduling algorithms.  
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Real-Time scheduling can be categorized into hard vs soft. Hard real-time scheduling 
can be used for soft real-time scheduling. Some of the research on QoS [ Klara95] 
addresses this problem in detail and is not covered here. The present paper focuses 
on scheduling algorithms for hard real-time.  

Hard real-time scheduling can be broadly classifies into two types: static and dynamic. 
In static scheduling, the scheduling decisions are made at compile time. A run-time 
schedule is generated off-line based on the prior knowledge of task-set parameters, 
e.g., maximum execution times, precedence constraints, mutual exclusion constraints, 
and deadlines. So run-time overhead is small. More details on static scheduling can 
be found in [ Xu90]. On the otherhand, dynamic scheduling makes its scheduling 
decisions at run time, selecting one out of the current set of ready tasks. Dynamic 
schedulers are flexible and adaptive. But they can incur significant overheads because 
of run-time processing. Preemptive or nonpreemptive scheduling of tasks is possible 
with static and dynamic scheduling. In preemptive scheduling, the currently executing 
task will be preempted upon arrival of a higher priority task. In nonpreemptive 
scheduling, the currently executing task will not be preempted until completion.  

Dynamic Scheduling Algorithms  

Schedulability test often used by dynamic schedulers to determine whether a given 
set of ready tasks can be scheduled to meet their deadlines. Different scheduling 
algorithms and their schedulability criteria is explained below.  

Rate Monotonic Algorithm (RMA)  

Rate monotonic algorithm [ Lui94] is a dynamic preemptive algorithm based on static 
priorities. The rate monotonic algorithm assigns static priorities based on task periods. 
Here task period is the time after which the tasks repeats and inverse of period is task 
arrival rate. For example, a task with a period of 10ms repeats itself after every 10ms. 
The task with the shortest period gets the highest priority, and the task with the longest 
period gets the lowest static priority. At run time, the dispatcher selects the task with 
the highest priority for execution. According to RMA a set of periodic, independent task 
can be scheduled to meet their deadlines, if the sum of their utilization factors of the n 
tasks is given as below.  

Ealriest Deadline-First (EDF) Algorithm: 

EDF algorithm is an optimal dynamic preemptive algorithm based on dynamic 
priorities. In this after any significant event, the task with the earliest deadline is 
assigned the highest dynamic priority. A significant event in a system can be blocking 
of a task, invocation of a task, completion of a task etc. The processor utilization can 
up to 100% with EDF, even when the task periods are not multiples of the smallest 
period. The dispatcher operates in the same way as the dispatcher for the rate 
monotonic algorithm.  

The Priority Ceiling Protocol:  

The priority ceiling protocol [ Lui90] is used to schedule a set dependant periodic tasks 
that share resources protected by semaphores. The shared resources, e.g., common 

https://users.ece.cmu.edu/~koopman/des_s99/real_time/#Klara95
https://users.ece.cmu.edu/~koopman/des_s99/real_time/#Xu90
https://users.ece.cmu.edu/~koopman/des_s99/real_time/#Lui94
https://users.ece.cmu.edu/~koopman/des_s99/real_time/#Lui90
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data structures are used for interprocess communication. The sharing of resources 
can lead to unbounded priority inversion. The priority ceiling protocols were developed 
to minimize the priority inversion and blocking time.  

Static Scheduling Algorithms  

In static scheduling, scheduling decisions are made during compile time. This 
assumes parameters of all the tasks is known a priori and builds a schedule based on 
this. Once a schedule is made, it cannot be modified online. Static scheduling is 
generally not recommended for dynamic systems. Applications like process control 
can benefit from this scheduling, where sensor data rates of all tasks are known before 
hand. There are no explicit static scheduling techniques except that a schedule is 
made to meet the deadline of the given application under known system configuration. 
Most often there is no notion of priority in static scheduling. Based on task arriaval 
pattern a time line is built and embedded into the program and no change in schedules 
are possible during execution.  

 

Available tools, techniques, and metrics 

Real-Time Operating Systems (RTOS) can be used to provide predictable services to 
the applications. RTOS provide the primitives real-time scheduling policies, inter 
process communication and run-time monitoring. There a number of RTOSs, e.g. RT-
Mach, VxWORKS, Solaris, Lynx.  

 

Relationship to other topics 

I/O  

Real-Time systems interact with their environment by input/output subsystem. 
Sensors and actuators are the examples of i/o elements in real-time systems. On the 
otherhand i/o an important part of real-time systems.  

Fault Tolerant Computing 

Fault tolerance is important in safety-critical real-time systems because otherwise a 
single component failure can lead to a catastrophic systems failure.  

Quality of Service 

With the growth of Internet several multimedia applications like multimedia are 
merging with real-time systems. Scheduling in these systems is done to provide good 
quality of service. Some of the real-time systems research is being extended to QoS 
scheduling to multimedia applications.  

 

https://users.ece.cmu.edu/~koopman/des_s99/i_o/index.html
https://users.ece.cmu.edu/~koopman/des_s99/fault_tolerant/index.html
https://users.ece.cmu.edu/~koopman/des_s99/quality_of_service/index.html


15 
 

 

Sumber dari: 

http://www.mhhe.com/engcs/compsci/pressman/information/olc/RTdesign.html 

1.1 System Considerations 

Like any computer-based system, a real-time system must integrate hardware, 
software, human, and data base elements to properly achieve a set of functional and 
performance requirements. In Chapter 10 [SEPA, 5/e], we examined the allocation 
task for computer-based systems, indicating that the system engineer must allocate 
function and performance among the system elements. The problem for real-time 
systems is proper allocation. Real-time performance is often as important as function, 
yet allocation decisions that relate to performance are often difficult to make with 
assurance. Can a processing algorithm meet severe timing constraints, or should we 
build special hardware to do the job Can an off-the-shelf operating system meet our 
need for efficient interrupt handling, multi-tasking and communication, or should we 
built a custom executive Can specified hardware coupled with proposed software meet 
performance criteria These, and many other questions, must be answered by the real-
time system engineer. 

A comprehensive discussion of all elements of real time systems is beyond the scope 
of this book. Among a number of good sources of information are [SAV85], [ELL94], 
and [SEL94]. However, it is important that we understand each of the elements of a 
real-time system before focusing on software analysis and design issues. 

Everett {EVE95] defines three characteristics that differentiate real-time software 
development from other software engineering efforts: 

• The design of real-time system is resource constrained. The primary resource 
for a real-time system is time. It is essential to complete a defined task within a 
given number of CPU cycles. In addition, other system resources, such as 
memory size, may be traded against time to achieve system objectives. 

• Real-time systems are compact, yet complex. Although a sophisticated real-
time system may contain well over 1 million lines of code, the time critical 
portion of the software represents a very small percentage of the total. It is this 
small percentage of code that is typically the most complex (from an algorithmic 
point of view). 

• Real-time systems often work without the presence of a human user. 
Therefore, real-time software must detect problems that lead to failure and 
automatically recover from these problems before damage to data and the 
controlled environment occurs. 

In the section that follows, we examine some of the key attributes that differeniate real-
time systems from other types of computer software. 

 

http://www.mhhe.com/engcs/compsci/pressman/information/olc/RTdesign.html
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1.2 Real-Time Systems 

Real-time systems generate some action in response to external events. To 
accomplish this function, they perform high-speed data acquisition and control under 
severe time and reliability constraints. Because these constraints are so stringent, 
real-time systems are frequently dedicated to a single application. 

Until recently, the major consumer of real-time systems was the military. Today, 
however, significant decreases in hardware costs make it possible for most companies 
to afford real-time systems (and products) for diverse applications that include process 
control, industrial automation, medical and scientific research, computer graphics, 
local and wide-area communications, aerospace systems, computer-aided testing, 
and a vast array of industrial instrumentation. 

1.2.1 Integration and Performance Issues 

Putting together a real-time system presents the system engineer with difficult 
hardware and software decisions. [The allocation issues associated with hardware for 
real-time systems are beyond the scope of this book (see [SAV85] for additional 
information)]. Once the software element has been allocated, detailed software 
requirements are established and a fundamental software design must be developed. 
Among many real-time design concerns are: coordination between the real-time tasks; 
processing of system interrupts; I/O handling to ensure that no data is lost; specifying 
the system's internal and external timing constraints, and ensuring the accuracy of its 
data base. 

Each real-time design concern for software must be applied in the context of system 
performance. In most cases, the performance of a real-time system is measured as 
one or more time-related characteristics, but other measures such as fault-tolerance 
may also be used. 

Some real-time systems are designed for applications in which only the response time 
or the data transfer rate is critical. Other real-time applications require optimization of 
both parameters under peak loading conditions. What's more, real-time systems must 
handle their peak loads while performing a number of simultaneous tasks. 

Since the performance of a real-time system is determined primarily by the system 
response time and its data transfer rate, it is important to understand these two 
parameters. System response time is the time within which a system must detect an 
internal or external event and respond with an action. Often, event detection and 
response generation are simple. It is the processing of the information about the event 
to determine the appropriate response that may involve complex, time-consuming 
algorithms. 

Among the key parameters that affect the response time are context switching and 
interrupt latency.Context switching involves the time and overhead to switch among 
tasks, and interrupt latency is the time lag before the switch is actually possible. Other 
parameters that affect response time are the speed of computation and of access to 
mass storage. 
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The data transfer rate indicates how fast serial or parallel, as well as analog or digital 
data must be moved into or out of the system. Hardware vendors often quote timing 
and capacity values for performance characteristics. However, hardware 
specifications for performance are usually measured in isolation and are often of little 
value in determining overall real-time system performance. Therefore, I/O device 
performance, bus latency, buffer size, disk performance, and a host of other factors, 
although important, are only part of the story of real-time system design. 

Real-time systems are often required to process a continuous stream of incoming 
data. Design must assure that data are not missed. In addition, a real-time system 
must respond to events that are asynchronous. Therefore, the arrival sequence and 
data volume cannot be easily predicted in advance. 

Although all software applications must be reliable, real-time systems make special 
demands on reliability, restart, and fault recovery. Because the real-world is being 
monitored and controlled, loss of monitoring or control (or both) is intolerable in many 
circumstances (e.g., an air traffic control system). Consequently, real-time systems 
contain restart and fault-recovery mechanisms and frequently have built-in 
redundancy to insure backup. 

The need for reliability, however, has spurred an on-going debate about whether on-
line systems, such as airline reservation systems and automatic bank tellers, also 
qualify as real-time. On one hand, such on-line systems must respond to external 
interrupts within prescribed response times on the order of one second. On the other 
hand, nothing catastrophic occurs if an on-line system fails to meet response 
requirements; instead, only system degradation results. 

1.2.2 Interrupt Handling 

One characteristic that serves to distinguish real-time systems from any other type is 
interrupt handling. A real-time system must respond to external stimulae–interrupts–
in a time frame dictated by the external world. Because multiple stimulae (interrupts) 
are often present, priorities and priority interrupts must be established. In other words, 
the most important task must always be serviced within predefined time constraints 
regardless of other events. 

Interrupt handling entails not only storing information so that the computer can 
correctly restart the interrupted task, but also avoiding deadlocks and endless loops. 
The overall approach to interrupt handling is illustrated in Figure 1.1. Normal 
processing flow is "interrupted" by an event that is detected by processor hardware. 
An event is any occurrence that requires immediate service and may be generated by 
either hardware or software. The state of the interrupted program is saved (i.e., all 
register contents, control blocks, etc. are saved) and control is passed to an interrupt 
service routine that branches to appropriate software for handling the interrupt. Upon 
completion of interrupt servicing, the state of the machine is restored and normal 
processing flow continues. 

In many situations, interrupt servicing for one event may itself be interrupted by 
another, higher priority event. Interrupt priority levels (Figure 1.2) may be established. 
If a lower-priority process is accidentally allowed to interrupt a higher-priority one, it 
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may be difficult to restart the processes in the right order and an endless loop may 
result. 

1.2.3 Real-Time Data Bases 

Like many data-processing systems, real-time systems often are coupled with a data 
base management function. However, distributed data bases would seem to be a 
preferred approach in real-time systems because multi-tasking is commonplace and 
data are often processed in parallel. If the data base is distributed, individual tasks can 
access their data faster and more reliably, and with fewer bottlenecks than with a 
centralized data base. The use of a distributed data base for real-time applications 
divides input/output "traffic" and shortens queues of tasks waiting for access to a data 
base. Moreover, a failure of one data base will rarely cause the failure of the entire 
system, if redundancy is built in. 

The performance efficiencies achieved through the use of a distributed data base must 
be weighed against potential problems associated with data partitioning and 
replication. Although data redundancy improves response time by provided multiple 
information sources, replication requirements for distributed files also produces 
logistical and overhead problems, since all the file copies must be updated. In addition, 
the use of distributed data bases introduces the problem of concurrency control. 
Concurrency control involves synchronizing the data bases so that all copies have the 
correct, identical information free for access. 

The conventional approach to concurrency control is based on what are known as 
locking and time stamps. At regular intervals, the following tasks are initiated: (1) the 
data base is "locked" so that concurrency control is assured; no I/O is permitted; (2) 
updating occurs as required; (3) the data base is unlocked; (4) files are validated to 
assure that all updates have been correctly made; (5) the completed update is 
acknowledged. All locking tasks are monitored by a master clock (i.e., time stamps). 
The delays involved in these procedures, as well as the problems of avoiding 
inconsistent updates and deadlock, mitigate against the widespread use of distributed 
data bases. 

Some techniques, however, have been developed to speed updating and to solve the 
concurrency problem. One of these, called the exclusive-writer protocol maintains the 
consistency of replicated files by allowing only a single, exclusive writing task to update 
a file. It therefore eliminates the high overhead of locking or time stamp procedures.  

1.2.4 Real-Time Operating Systems 

Choosing a real-time operating system (RTOS) for a specific application is no easy 
chore. Some operating system classifications are possible, but most do not fit into neat 
categories with clear-cut advantages and disadvantages. Instead, there is 
considerable overlap in capabilities, target systems, and other features. 

Some real-time operating systems are applicable to a broad range of system 
configurations, while others are geared to a particular board or even microprocessor, 
regardless of the surrounding electronic environment. RTOS achieve their capabilities 
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through a combination of software features and (increasingly) a variety of micro-coded 
capabilities implemented in hardware. 

Today, two broad classes of operating systems are used for real-time work: (1) 
dedicated RTOS designed exclusively for real-time applications and (2) general-
purpose operating systems that have been enhanced to provide real-time capability. 
The use of a real-time executive makes real-time performance feasible for a general-
purpose operating system. Behaving like application software, the executive performs 
a number of operating system functions–particularly those that affect real-time 
performance–faster and more efficiently than the general purpose operating system. 

All operating systems must have a priority scheduling mechanism, but RTOS must 
provide a priority mechanism that allows high-priority interrupts to take precedence 
over less important ones. Moreover, because interrupts occur in response to 
asynchronous, nonrecurring events, they must be serviced without first taking time to 
swap in a program from disk storage. Consequently, to guarantee the required 
response time, a real-time operating system must have a mechanism for memory 
locking–that is, locking at least some programs in main memory so that swapping 
overhead is avoided. 

To determine which kind of real-time operating system best matches an application, 
measures of RTOS quality can be defined and evaluated. Context switching time and 
interrupt latency, (discussed earlier) determine interrupt-handling capability, the most 
important aspect of a real-time system. Context switching time is the time the operating 
system takes to store the state of the computer and the contents of the registers so 
that it can return to a processing task after servicing the interrupt. 

Interrupt latency, the maximum time lag before the system gets around to switching a 
task, occurs because in an operating system there are often non-re-entrant or critical 
processing paths that must be completed before an interrupt can be processed. 

The length of these paths (the number of instructions) before the system can service 
an interrupt indicates the worst-case time lag. The worst case occurs if a high-priority 
interrupt is generated immediately after the system enters a critical path between an 
interrupt and interrupt service. If the time is too long, the system may miss an 
unrecoverable piece of data. It is important that the designer know the time lag so that 
the system can compensate for it. 

Many operating systems perform multitasking [WOO90], or concurrent processing, 
another major requirement for real-time systems. But to be viable for real-time 
operation, the system overhead must be low in terms of switching time and memory 
space used. 

1.2.5 Real-Time Languages 

Because of the special requirements for performance and reliability demanded of real-
time systems, the choice of a programming language is important. Many general 
purpose programming languages (e.g., C, FORTRAN, Modula-2) can be used 
effectively for real-time applications. However, a class of so-called "real-time 
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languages" (e.g., Ada, Jovial, HAL/S, Chill, and others) is often used in specialized 
military and communications applications. 

A combination of characteristics makes a real-time language different from a general-
purpose language. These include the multitasking capability, constructs to directly 
implement real-time functions, and modern programming features that help ensure 
program correctness. 

A programming language that directly supports multitasking is important because a 
real-time system must respond to asynchronous events occurring simultaneously. 
Although many RTOS provide multitasking capabilities, embedded real-time software 
often exists without an operating system. Instead, embedded applications are written 
in a language that provides sufficient run-time support for real-time program execution. 
Run-time support requires less memory than an operating system, and it can be 
tailored to an application, thus increasing performance. 

A real time system that has been designed to accommodate multiple tasks must also 
accommodate intertask synchronization [KAI83]. A programming language that 
directly supports synchronization primitives such as SCHEDULE, SIGNAL, and WAIT 
greatly simplifies the translation from design to code. The SCHEDULE command 
schedules a process based on time or an event; SIGNAL and WAIT commands 
manipulate a special flag, called a semaphore, that enables concurrent tasks to be 
synchronized. 

Finally, features that facilitate reliable programming are necessary because real-time 
programs are frequently large and complex. These features include modular 
programming, strongly enforced data typing, and a host of other control and data 
definition constructs. 

1.2.6 Task Synchronization and Communication 

A multi-tasking system must furnish a mechanism for the tasks to pass information to 
each other as well as to ensure their synchronization. For these functions, operating 
systems and languages with run-time support commonly use queuing semaphores, 
mailboxes, or message systems. Semaphores supply synchronization and signaling 
but contain no information. Messages are similar to semaphores except that they carry 
the associated information. Mailboxes, on the other hand, do not signal information 
but instead contain it. 

Queuing semaphores are software primitives that help manage traffic. They provide a 
method of directing several queues–for example, queues of tasks waiting for 
resources, data-base access, and devices, as well as queues of the resources and 
devices. The semaphores coordinate (synchronize) the waiting tasks with whatever 
they are waiting for without letting tasks or resources interfere with each other. 

In a real-time system, semaphores are commonly used to implement and manage 
mailboxes. Mailboxes are temporary storage places (also called a message pool or 
buffer) for messages sent from one process to another. One process produces a piece 
of information, puts it in the mailbox, and then signals a consuming process that there 
is a piece of information in the mailbox for it to use. 
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Some approaches to real-time operating systems or run-time support systems view 
mailboxes as the most efficient way to implement communications between 
processes. Some real-time operating systems furnish a place to send and receive 
pointers to mailbox data. This eliminates the need to transfer all of the data–thus 
saving time and overhead. 

A third approach to communication and synchronization among processes is a 
message system. With a message system, one process sends a message to another. 
The latter is then automatically activated by the run-time support system or operating 
system to process the message. Such a system incurs overhead because it transfers 
the actual information, but it provides greater flexibility and ease of use. 

1.3 Analysis and Simulation of Real-Time Systems 

In the preceding section, we discussed a set of dynamic attributes that cannot be 
divorced from the functional requirements of a real-time system: 
• interrupt handling and context switching 
• response time 
• data transfer rate and throughput 
• resource allocation and priority handling 
• task synchronization and intertask communication 
Each of these performance attributes can be specified, but it is extremely difficult to 
verify whether system elements will achieve desired response, system resources will 
be sufficient to satisfy computational requirements, or processing algorithms will 
execute with sufficient speed. 
The analysis of real time systems requires modeling and simulation that enables the 
system engineer to assess "timing and sizing" issues. Although a number of analysis 
techniques have been proposed in the literature (e.g., [LIU90], [WIL90] and [ZUC89]), 
it is fair to state that analytical approaches for the analysis and design of real-time 
systems are still in their early stages of development. 

1.4 Real-Time Design 
The design of real-time software must incorporate all of the fundamental 
concepts and principles (Chapter 13) associated with high quality software. In 
addition, real-time software poses a set of unique problems for the designer: 
• representation of interrupts and context switching; 
• concurrency as manifested by multi-tasking and multi-processing; 
• intertask communication and synchronization; 
• wide variations in data and communication rates; 
• representation of timing constraints; 
• asynchronous processing; 
• necessary and unavoidable coupling with operating systems, hardware, and 
other external system elements. 
Before considering some of these problems, it is worthwhile to address a set of 
specialized design principles that are particularly relevant during the design of 
real-time systems. Kurki-Suono [KUR93] discusses the design model for real-
time ("reactive") software: 

All reasoning, whether formal or intuitive, is performed with some 
abstraction. Therefore, it is important to understand which kinds of 
properties are expressible in the abstraction in question. In connection 
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with reactive systems, this is emphasized by the more stringent need for 
formal methods, and by the fact that no general consensus has been 
reached about the models that should be used. Rigorous formalisms for 
reactive systems range from process algebras and temporal logics to 
concrete state-based models and Petri nets, and different schools keep 
arguing about their relative merits. 

He then defines a number of "modeling principles" that should be considered in 
the design of real-time software [KUR93]: 

Explicit atomicity. It is necessary to define "atomic actions" explicitly as part 
of the real-time design model. An atomic action or event is a well constrained 
and limited function that can be executed by a single task or executed 
concurrently by several tasks. An atomic action is invoked only by those tasks 
("participants") that require it and the results of its execution affect only those 
participants; no other parts of the system are affected. 

Interleaving. Although processing can be concurrent, the history of some 
computation should be characterized in a way that can be obtained by a linear 
sequence of actions. Starting with an initial state, a first action is enabled and 
executed. As a result of this action, the state is modified and a second action 
occurs. Because several actions can occur in any given state, different results 
(histories) can be spawned from the same initial state. "This nondeterminism is 
essential in interleaved modeling of concurrency." [KUR93]. 

Nonterminating histories and fairness. The processing history of a reactive 
system is assumed to be infinite, By this we mean that processing continues 
indefinitely or "stutters" until some event causes it to continue processing. 
Fairness requirements prevent a system from stopping at some arbitrary point. 

Closed system principle. A design model of a real-time system should 
encompass the software and the environment in which the software resides. 
"Actions can therefore be partitioned into those for which the system itself is 
responsible, and to those that are assumed to be executed by the environment." 
[KUR93] 

Structuring of state. A real-time system can be modeled as a set of objects 
each of which has a state of its own. 

The software engineer should consider each of the concepts noted above as 
the design of a real-time system evolves. 

 


