
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sumebr dari : https://www.utdallas.edu/~chung/SA/Project2-sun-zhao-lin.doc 

 

1. Introduction 
 

In the new era of Internet and information highway, electronic commerce is one of 

the fastest growing and evolving area.  It typically involves use of an electronic 

commerce system, which enables buyers and sellers to exchange commodities and 

services through electronic processes.  Electronic business operations have been the 

privilege of large, sizable companies that had the knowledge, technology and sufficient 

capital to invest in electronic infrastructures that support business transactions 

Process Architecture 
Disusun oleh : 

Malabay 

 

file:///C:/Users/kundang/AppData/AppData/Local/Temp/Sumebr%20dari%20:%20https:/www.utdallas.edu/~chung/SA/Project2-sun-zhao-lin.doc
file:///C:/Users/kundang/AppData/AppData/Local/Temp/Sumebr%20dari%20:%20https:/www.utdallas.edu/~chung/SA/Project2-sun-zhao-lin.doc


Architecture Design for B2B Order Processing System                                  

 

 1 

  

   

 

electronically.  To support such an advanced concept, an intelligent architecture should 

be adopted.  A B2B-OPS (business to business order processing system) is being 

considered as part of the next generation of electronic commerce system. 

  

B2B-OPS shall invite existing business customers to log into the system.  Customers 

can browse categories or search key words through the system, and then select any 

products and services collected by the B2B-OPS through system suppliers.  Any 

selections can be stored in customer’s shopping cart for further review, modification and 

cancellation by this customer, or negotiation with suppliers.  The selected item(s) in the 

shopping cart can make up one to multiple final concrete orders.  These orders will be 

sent to accounting department for generating customer credit check and invoice (the 

invoice process system (B2B-IPS) discussed in Project I).  The shipping department shall 

be notified at the end to generate shipping slips and attach them to the ordered products.  

The shipping method was pre-selected by the customer in the final order. 

 

In order to build this B2B-OPS system as part of an electronic commerce system, 

our team will consider five alternative software architectural designs for this project: one 

for object-oriented structure (abstract data type), two for object-oriented designs 

(Unified Modeling Language), one for implicit invocation structure, and one for modified 

pipe-and-filters structure.  The best architecture of B2B-IPS from previous project is 

selected to build 3 of 5 current B2B-OPS architectures.  Based on a detailed analysis of 

the advantages and disadvantages of our new designs, a rational decision is made to 

select one of the five architectures for this project.  

 

 

2. Process Architecture 
 

When system requirement document is available, software architecture design can 

be initiated.  This architecture design is a process of defining architectures for specific 

software or multiple components to meet real world goals.  It can be divided into four 

sub-processes: 

 

 Requirement analysis (functional and non-functional requirements (FRs and 

NFRs) 

 Architecture alternative design based on FRs and NFRs followed by design 

rationale 

 Trade-off analysis based on NFRs  and design rationale 

 Design selection and final architecture evaluation 

 

These sub-processes do not take place in a strict sequential pattern as described 

above but rather happen concurrently with many feedback loops as the multiple 

stakeholders (customer, architects, requirements engineers, etc.) negotiating, striving for 

some consensus.  There will be multiple parties involved in the development, including 

the requirement engineers, product managers, and project managers, quality assurance 

managers and architects. The detailed process architecture is described as follows 

 

 

2.1 Team roles 



Architecture Design for B2B Order Processing System                                  

 

 2 

  

   

 

 

 Requirement Engineer: Requirement Engineer is responsible for identifying, 

analyzing, and specifying requirements for the software system. When the design 

phase starts, the requirement engineers should provide requirement specifications 

to the design team. During the architectural design, the architects go back to the 

requirement engineers for clarification if there is any ambiguity about the 

requirements. The requirement engineers, in turn may have to discuss the issues 

with the customers/users before they get back to the architects. 

 

 Product Manager: Product Manager is responsible for the production and release 

of the software once the development is done. 

 

 Project Manager: Project Manager is Responsible for the management of 

requirements specification and architectural design and all the technical, financial, 

and personal aspects of this activity. 

 

 Quality Assurance Manager: Quality Assurance Manager is responsible for 

verifying the architectural design against the requirement specification.  He/she 

will ensure that the products and services are delivered at the required quality 

level, and that the project scope, cost, and time functions are fully integrated.  

His/her responsibility includes incorporation of quality assurance, a continuous 

process in every phase of the software life cycle. 

 

 Architect: Architect is responsible for delivering a conceptual architecture design 

of the system based on both the functional and non-functional requirements. This 

architectural design will be the starting point for detailed design activities later in 

the development life cycle. 

 

 

2.2 Process Architecture 
 

Based on the responsibilities of the various parties involved and interactions 

between each party, the diagram below shows an overall team architecture in the 

architectural design process. 

 

 

 

 

 

Monitors & Controls 

 

                                                                      Input 

                                                             

                                                   Feedback                                                   

                                             (Problems)                            Monitors & 

                                                                                           Verifies 

                             Input (RS) 

                                                     

Requirements 

Engineers 
Q&A 

Manager 

 

Architects 



Architecture Design for B2B Order Processing System                                  

 

 3 

  

   

 

 

                                                               

                                                      Manages 

                   Report to 
 

 

                                                       Development status 

                                                       & Technical issues 

 

Team Architecture 

 

2.3 Role Playing 

 

Each of the three team members: Jihong Zhao, Steve Lin, and Wenping Sun, 

is assigned different roles during the architectural design activity based on the 

individual’s strengths and past experience.  We believe this way everyone can 

contribute the most to the project, and we will have a final product of the highest 

possible quality. The roles are assigned as following: 

 

Wenping Sun played the roles of customer, requirements engineer, and 

architect in the project team.  Her responsibility is: 

 

(1) Analyze the project requirements,  

(2) Design two Object-Oriented architectural alternatives.  

 

She has very good understanding of real world goals, customer’s needs and 

deep analysis of system requirements.  She is excellent in object-oriented designs, 

especially in UML (Unified Modeling Language). 

 

Jihong Zhao played the roles of architect, product manager and project 

manager.  Her responsibility is:   

 

(1) Design modified pipe and filter architectural alternatives, and OOD-UML. 

(2) Resolve any issues that occurred during the architectural design process.  

(3) Organize team meeting, monitor the status of the project, and sign 

contracts.  

 

She has multi-talents in software architectural design, product and project 

management.  The project benefits from her profound knowledge in the pros and 

cons of different architectures. 

 

Steve Lin played the role of architect, Q&A manager.  His responsibility is: 

 

(1) Design implicit architectural alternatives. 

(2) To check and make sure that the design meets the stated requirements, both 

Project 

Manager 

Product 

Manager 



Architecture Design for B2B Order Processing System                                  

 

 4 

  

   

 

functionally, and non-functionally, and to make sure that the final 

document gets delivered on time and with quality. 

 

He is a good manager in quality and assurance. He has thorough understanding 

in implicit invocation architecture. 

 

 

2.4 Software Architecture Requirements 
 

Functional Requirements 

 

 Customer log-in 

 Browse and search product/service 

 Select and product/service into shopping cart 

 Generate a final concrete order 

 Performing accounting check 

 Process B2B-IPS 

 Generate shipping slip 

 Ship products 

 

Non-functional Requirements 

 

 User-friendly 

 Responsive 

 Adaptable 

 Reliable 

 Fault-tolerant 

 Accurate 

 Customizable 

 Affordable 

 Portable 

 

 

 

 

 

 

2.5 Meeting Schedule: 
 

As the quality (non-functional requirements) of large systems can be highly 

constrained by a system’s software architecture, it is in our best interest to 

determine, at the time a system’s software architecture is specified, whether the 

software system will have the desired qualities. 

 

We have our major meeting as following to discuss major issues for software 

architecture design.  Between meetings, we have frequent information exchange via 

telephone calls, e-mails, etc. to make every effort for the success in this project. 



Architecture Design for B2B Order Processing System                                  

 

 5 

  

   

 

 

First meeting: 10/5/00 Library 

 

 Understand project description. 

 Exchange knowledge about the application domain 

 Work load distribution. 

 Analyze modules in the system 

 

Second meeting: 10/10/00 Library  

 

 Discuss and distribute each member's work load 

 Give comments and suggestions to teammates’ works. 

 

Third meeting: 10/17/00 Library 

 

 Team members present their works and architecture designs. 

 Discuss advantages and disadvantages of each design. 

 Discuss the criteria of choosing the best architecture for this specific system. 

 Come up with the agreement on the best architecture. 

 Conduct decision point analysis. 

 

Fourth meeting: 10/19/00 Library 

 

 Present revised work 

 Integrate our project 

 Review project with comments and suggestions. 

 Finish project 

 

 

2.6 Selected B2B-IPS Architecture  OO-Unified Modeling Language 

(OO-UML) 
 

In selected OO-UML architecture design (Figure 1) from Project I, we use class 

diagram model the static design view of Invoice processing system. Classes 

encapsulate data and information.  They can be inherited and reused. 

 



Architecture Design for B2B Order Processing System                                  

 

 6 

  

   

 

 
            Figure 1. Object-Oriented - UML Architecture for B2B - IPS 

 

Trade-off Analysis 
 

Advantages: 

 

 It is easy to add new features to the system, because changes in data 

representation or processing algorithms do not affect other objects, so it has high 

maintainability.  (maintainability (+)) 

 The bundling of a set of accessing routines with the data they manipulate allows 

designers to decompose problem into collections of interacting agents.  

Therefore, the maintainability is very high.  

 It provides reliable functionality and increases reusability, as modules make 

fewer assumptions about the others with which they interact. (reliability (+) 

reusability (+)) 

 Highly portable for the other systems.  (portability (+)) 

 

 

 



Architecture Design for B2B Order Processing System                                  

 

 7 

  

   

 

Disadvantages:  

 

 It usually has longer run-time when compared with other architecture styles.  

(run-time performance (-)) 

 It takes more time to design than other traditional structural designs. 

 The architecture tends to use more space than traditional structure design styles.  

(space (-)) 

 

3. Architecture Design Alternatives 
 

In this section, five different design alternatives are presented: one for Object-

Oriented Design (ADT), two for Object-Oriented Designs (OOD-UML), and one each 

for Implicit Invocation Design and Modified Pipe-and-Filter.  The Implicit Invocation 

Design and two UMLs are based on the selected B2B-IPS UML architecture.  The detail 

description of each design is presented as following.  

 

3.1 Modified Pipe and Filter Architecture 

 

The Modified Pipe-and-Filter has Pipe-and-Filter’s feather: each element does a 

local transformation using the input and producing output.  Each glue serves as a 

conduit for the data stream, transmitting output of one process to input of another. 

And it has important new feature--a two-layer architecture: the upper layer is a 

control layer.  It allows user to interactively control the process of filters.  

 

s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Modified Pipe and Filter Architecture 

 

 

 

order can 

be added, 

changed, 

and 
cancelled 

 

Input 

Medium 

 

type price delivery date 

Enter 

Order 

 

Offer 

Choice 
Log Order 

Generate 

Label 

 

Packing 

Negotiate 

 

B2B-IPS 

 

selected 

shipping 

method 

Select 

Option 

 Output 

Medium 

 

Output 

 

customer selection shipping info. 
payment 

1 

2 

8 

6 

7 5 

5 

4 

3 2 

7. shipping invoice, receipt, remind 

8. packing slips 

4. order form, selected option 

5. concrete order form 

6. mailing labels 

1. entry order form 

2. order form, options 

3. order form, negotiated result 

8 



Architecture Design for B2B Order Processing System                                  

 

 8 

  

   

 

3.1.1 Architecture Style: Pipe and filters (Figure 2). 

 

3.1.2 Components/elements: There are nine filters as the components in pipe-

and-filter architectural style, as shown in the Figure 6. 

 

 filter Enter Order 

operation Read: reads data from the input medium.  Data 

includes customers’ order online, customer 

information. 

operation modifyOrder:  change customer’s order according to 

customer’s requests and pre-set date. 

operation Output:  outputs customer information entry order 

form. 

 

 filter Offer Choice 

operation Read: read entry order form. 

operation displayCatalogue: search product data base, find out products                            

which fits customer’s requirements. 

operation offerOption:  for each selected item, display the purchase 

options. 

operation Output:  output order form and options.  

 filter Negotiate  

operation Read: read  order form and options 

operation toCustomer:  get type, price and delivery date according 

to customer’s requests and display 

supplier’s response to customer.  

operation toSupplier: send customer’s requests to supplier and 

get reply. 

operation getSelection:  get final option according to negotiation. 

operation Output:  output order form, negotiated result 

 

 filter Select Option 

operation Read: read  order form and options 

operation getSelection:  get final option according to customer’s 

requests. 

operation Output:  output order form, selected option 

 filter Log Order 

operation Read: read  order form and  selected options 

operation Log: log product according to the order 

operation gShippingAddr: generate shipping address 

operation gShippingDate: generate shipping date 

operation gShippingList: generate shipping list 

operation Output: output concrete order form (shipping 

information) 

 



Architecture Design for B2B Order Processing System                                  

 

 9 

  

   

 

 filter Generate Label 

operation Read: read  shipping address 

operation gLabel:  generate mailing label. 

operation Output:  output mailing label 

 

 filter B2B-IPS 

operation Input: read  shipping list 

operation gInvoice:  generate shipping invoice. 

operation gPayment: get pre-payment from customer 

operation gReceipt:  generate receipt for paid invoice. 

operation Reconcile:  checks invoice and payment, makes 

payment match 

operation gReminder: generate reminder for unpaid invoice. 

operation Output:  output shipping invoice, receipt, and 

reminder. 

 filter Packing 

operation Read: read  mailing label and shipping invoice 

operation gPackage:  generate packing slips. 

operation Output:  output packing slips 

 

 filter Output 

operation Read: read  packing slips 

operation shipOrder:  ship order back to customer. 

operation Output:  output all related data to output medium 

 

3.1.3 Interaction/connection: 

The interactions in the modified pipe-and-filter are pipes, control and 

system I/O. 

 

3.1.4 Constrains: 

Each filter processes the input and produces output data. Each filter can 

run whenever it has the data needed to compute. Processes do not share 

states. They do not know the identity of it’s upstream and down stream 

processes. Processes are independent from each other. And filters can be 

control by upper control layer. 

 

3.1.5  Patterns 

   Filter 

 

    Pipe 

    System I/O 

      

    Control 



Architecture Design for B2B Order Processing System                                  

 

 10 

  

   

 

 

3.2 Object-Oriented Design 1  Unified Modeling Language (OOD-

UML) (extension of B2B-IPS in OOD-UML) 
 

In UML architecture design, we use class diagram model the static design view 

of Invoice processing system. Classes encapsulate data and information.  They can 

be inherited and reused. 

 
Figure 3. Object-Oriented (UML) Architecture 

 

3.2.1 Architectural Style: Object-Oriented (UML) (Figure 3). 

 

3.2.2 Components/Elements (class):  
 

Customer:  Read and store customer information, customer order 

information, and check customer’s membership. 

Order:  Get customers’ order information, match the needs of the customer 

against the goods and services the company offers, and generate concrete 

order form. 

Shipping: Get order form and related customer information, generate mailing 

label, and shipping list. 



Architecture Design for B2B Order Processing System                                  

 

 11 

  

   

 

Invoice:   Get customer’s order information and generate invoice. 

Payment:  Get payment information and validate payment. 

Receipt:  According to the payments, issue receipts. 

Reminder:  After reconcile the payments, generate remainders. 

 

3.2.3 Interactions/Connections:  

 

Class Customer 

/*  store customer information;  

check customer membership, provide special feature service to 

member customer; 

display order information, assign unique order# */    

    

Class Order 

      /*  get order entry form from Customer class; 

           inform the customer of the choices; 

           display catalogue; 

           match the needs  of the customer against the goods and  

           service the company offers; 

           generate concrete order form */      

       

Class Shipping 

/* log the order to generate the shipping address, shipping dates              

and shipping list;  

based on the shipping address, generate mailing label  */     

                 

Class Invoice 

/*  get customer information Customer class; 

based on shipping list, issue invoice, and assign unique invoice# */  

 

Class Payment  

/*  get invoice# and all relative information; 

get payment information including: 

the date the payment is made, 

the amount paid, 

the customer Id who made the payment, 

and if it is by credit card, check or cash;             

check payment is valid or not, if yes generate payment# */ 

 

Class Reminder 

/*  get invoice information and payment information;    

compare invoice information with payment information; 

create a reminder for the invoice that have passed due date */  

 

Class Receipt 

/*  issue receipt with unique receipt# according payment information: 

invoice#: the invoice this receipt is related to, 

amount: the amount received, 

customerId: the customer the receipt is issued to */ 



Architecture Design for B2B Order Processing System                                  

 

 12 

  

   

 

3.2.4 Constraints:  
 

Other components access data only by invoking the authorized functions. 

 

3.2.5 Pattern:      

 

 

                                      

                                                     Procedure call  
 

                                                 System I/O                                                        
 

 

 

 

3.3 Object-Oriented Design 2 -- Unified Modeling Language (UML) 

(extension of B2B-IPS in OOD-UML) 

 
UML is the notations for classes, its data and member functions and the 

relationships among the classes are described in a standard format, i.e., through 

unified modeling language. 

 

This architecture refined Object-Oriented Design 2 (UML), adding some 

interface and database classes. 

 

3.3.1 Architectural Style: Object-Oriented (UML) (Figure 4, next page). 

 

3.3.2 Components/Elements (class):  
 

EntryOrder:  Take customer order, create new order record and customer 

account.  Update order according to customer’s request. 

OrderEntryForm:   Get customer order information. 

 

ConcreteOrder:  Inform customer’s choice by display part of the catalog and 

provide option lists. Issue negotiation, get customer selection and log 

order. 

LoggedOrderForm:  Get shipping information, setup pre-set-date and create 

logged order record. 

Shipping:  According the shipping address, generate mailing label; based on 

shipping lists, generate invoice.  

NewOrder: Store new order information (incomplete). 

LoggedOrder: Store logged order information (concrete). 

Product: Store the catalog the company maintains and purchase options. 

B2B-IPS classes: Customer, Invoice, Payment, Receipt, and Reminder 

 

 



Architecture Design for B2B Order Processing System                                  

 

 13 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Object-Oriented Architectural Style (3) 

Unified Modeling Language (UML) 

 

 

 

3.3.3 Interactions/Connections:  

 

Class Customer 

/*  Store customer information, include CustID, CustAddress, Order#, 

and Account#, etc;  

Check customer membership and provide special feature service to 

member customer; 

Display and update account information */ 

 



Architecture Design for B2B Order Processing System                                  

 

 14 

  

   

 

Class EntryOrder 

/*  Get customer information and order information from 

OrderEntryForm class;  

Issue update, access to Customer class */  

 

Class OrderEntryForm 

/*  Set customer information and order information including: 

CustID, CustAddress, Order#, Account#, Item, Quantity  

and Update (true or false); 

Submit order, invoke ConcreteOrder class */ 

 

Class ConcreteOrder 

/*  Access Product database to get catalog and option, and update 

Product;    

Issue negotiation and select option; 

Get shipping information from LoggedOrderForm class; 

Access LoggedOrder database to store the order */ 

  

Class LoggedOrderForm 

/* Set shipping information including: 

ShippingAddress, ShippingDate, ShippingList, and Pre-set-date: 

Submit order, invoke Shipping class */ 

  

Class Shipping 

/* Access LoggedOrder database, get ShippingAddress and generate 

mailing label; 

Generate invoice by using B2B-IPS; 

Set packing lists */ 

   

Class NewOrder 

/* Store entry order information including: 

Order#, Item, Quantity; 

Perform basic database operations, used by EntryOrder class */ 

 

Class LoggedOrder 

/* Store logged order information including: 

ShippingAddress, ShippingDate, ShippingList, and Pre-set-date; 

Perform basic database operations, used by ConcreteOrder class and 

Shipping class */ 

 

Class Product 

/* Store the catalog the company maintains and purchase options; 

 Perform basic database operations, used by ConcreteOrder class */ 

 

 

 

 

3.3.4 Constraints:  
 



Architecture Design for B2B Order Processing System                                  

 

 15 

  

   

 

Other components access data only by invoking the authorized functions.  

Classes can share same storage. 

 

3.3.5 Pattern:            

                                   

     

 

                             Procedure call  
 

                           System I/O                                                        
 

 

 

 

 

 

3.4 Object-Oriented Design 3 – Abstract Data Type (ADT) 
 

In ADT architecture design, the components are objects.  The system is divided 

into ADT objects, each handling a specific aspect of system functions.  Each ADT 

object provides interface to communicate with other objects.  An object is 

responsible for preserving the integrity of its representation that is hidden from other 

object.  So data are not directly shared by different objects, but through explicitly 

invoking interfaces.  

 

3.4.1 Architectural Style: Object-Oriented (ADT) (Figure 5, next page). 

 

3.4.2 Components/Elements:  
 

Input: Get information through input medium. 

Customer: Store new customer information. Read and check existing 

customer information, order information, Check customer membership. 

Order process:  Get customer order information, matching the needs of the 

customer against the goods and services the company offers, generate 

concrete order form.  

Shipping Handling:  Get order form and related customer information, 

generate mailing label and shipping list. 

Invoice process: According shipping list generate invoices. 

Payment Handling: Get payment information and validate payment. 

Receipt Handling: According payment issue receipt. 

Reminder Process: After reconcile generate remainder 

Output:  Print invoice, receipt and remainder through output medium. 

 

 

 

 

3.4.3 Interactions/Connections:  
 

Module Input:  

 

 



Architecture Design for B2B Order Processing System                                  

 

 16 

  

   

 

Get customer information and order information from customer and 

store in Customer File. 

 

Module Customer:  

Procedure Set Cust Info (id, name, addr, creditPeriod): 

/*  Create customer based on 

id: customer id; 

name: customer name; 

addr: customer address; 

creditPeriod: credit period; */ 

 

Procedure MembershipCheck ( id ) 

/* check customer membership; 

display special feature service option to member customer; 

provide special feature service to member customer; 

accept customer membership application */ 

 

Procedure  Orer Infor ( item# )   

/* display order information, assign unique order# */ 

 

Function Get Cust Info( id ): 

/*  return customer information including 

customer id, 

customer name, 

     customer address, 

 customer credit period */ 

 

Module Order process 

      Procedure setup ( OrderInfo ): 

/*   return customer order information including 

      product id, 

quantity */                

                 

      Function InformChoice () 

/*  return customer choice including 

      displayCatalogue  

chooseServices  

quality 

delivery 

warranty plan */                

                 
Function Matching () 

/*   matching the needs of the customer against the goods and services 

the company offers  */ 

 

Procedure OrderForm  

/* Generate a concrete order form which is satisfied by the   

customer */ 

 



Architecture Design for B2B Order Processing System                                  

 

 17 

  

   

 

Module Shipping handling 

Procedure setup ( CustInfo, OrderForm ) 

/* System get customer information from customer module and final 

order information from order processing module */ 

             
Function mailingLabel () 

/* According the information get from setup, generate mailing  

label including: 

shipping #, 

shipping address, 

shipping date  */ 

 

Function shippingList () 

/* shipping #, 

product id, 

quantity  */ 

 

Module Invoice process 

Procedure setup ( CustInfo, OrderInfo): 

/* System get customer information from Customer module and 

shipping list from shipping handling module  */ 

 

Procedure IssueInvoice ( order# ): 

/* According the information issue invoices, assign unique invoice# 

*/  

 

Module Payment Handling 

Procedure setup (invoice#, payment): 

/*  System get invoice# and all relative information  */ 

 

Function Get Payment (): 

/* return payment information including: 

the invoice related to the payment, 

the date the payment is made, 

the amount paid, 

the customer Id who made the payment, 

and if it is by credit card, check or cash. */ 

             

Function Validate Payment(): 

/* Check payment is valid or not, if yes generate payment# */ 

 

Module Reminder Process 

Procedure setup (invoice#, payment#): 

/* Get invoice information and payment information */ 

 

Procedure Reconcile ( invoice#, payment# ):            

/* perform once a week in a predefined time; 

compare invoice information with payment information; 



Architecture Design for B2B Order Processing System                                  

 

 18 

  

   

 

create a reminder for the invoice that have passed due date. */ 

 

Function Generate Reminder (): 

/* return reminder information */ 

 

Module Receipt Handling 

Procedure setup ( invoice#, payment#): 

/* create receipt with information: 

invoice#: the invoice this receipt is related to, 

amount: the amount received, 

customerId: the customer the receipt is issued to. */ 

 

Function Issue Receipt(): 

/* return receipt with receipt# */ 

  

Module Output 

Operation PrintInvoice: get invoice from Invoice Processing and print 

invoice. 

 

Operation PrintReceipt: get receipt from Receipt Handling and print 

receipt. 

 

Operation PrintReminder: get Reminder from Reminder Processing and 

print reminder. 

 

Module Master Control 

Synchronize the activities of all the other modules by using procedure 

calls of the modules. 

 

3.4.4 Constraints: Each object provide interface that permit other components to 

access data only by invoking procedures in that interface  

 

3.4.5 Pattern:            

  

     

 

                                                     Procedure call  
 

                                                         
System I/O                                                        

 

 

 

 

 

 

3.5 Implicit Invocation Design (extension of B2B-IPS in OOD-UML) 
 

 

 



Architecture Design for B2B Order Processing System                                  

 

 19 

  

   

 

The idea behind implicit invocation is that instead of invoking a procedure 

directly, any components in the software system can announce one or more events.  

Other components in the system can register an interest in one or more particular 

event(s) by associating their procedures with it.  When the event is announced, the 

system itself invokes all of the procedures that have been registered for this event.  

Thus an event announcement “implicitly” causes the invocation of procedures in 

other modules. 

It has two important differences comparing to other architectural styles.  First, 

the interface of the data is more abstract.  Rather than exposing the storage formats 

to the computing modules, this solution accesses data abstractly.  Second, 

computations are invoked implicitly as data is modified.  Thus interaction is based 

on an “active data” model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Implicit Invocation Architecture 1 

 

 

3.5.1 Architectural Style: Hybrid implicit invocation architecture (Figure 6). 

 

3.5.2 Components/Elements: 
 

Input: Get information through input medium. 

Input 

Master Control 

Output 

Customer_ 

Log_in 

B2B-

IPS 
 Browse  

& Select 

Finalize_ 

Order 

 

Check_ 

Credit 

Input 

Medium Control Line 
Output 

Medium 

I-
th

 

Subprocedure Call 

Implicit Invocation 

System I/O 

N
ew

-I
n

p
u

t 

r C
u

st
o

m
er

-O
rd

er
 

r C
u

rr
en

t-
S

h
o

p
p

in
g
 

-C
ar

t 

C
u

rr
en

t-
S

h
o

p
p

in
g
 

-C
ar

t 

F
in

al
-O

rd
er

 

r 

D
o
_

O
rd

e
r 

U
p
d

a
te

_
 

S
h

o
p

p
in

g
 

_
C

a
rt

 

P
ro

c
e
s
s

-O
rd

e
r 

Shipping 

N
ew

-R
ec

ei
p

t 

N
ew

-I
n

v
o

ic
e 

N
ew

-R
em

in
d

er
 

S
h

ip
p

in
g

-S
li

p
 &

 

S
h

ip
p

in
g

-L
ab

el
 

I-
th

 

I-
th

 

I-
th

 

S
h

ip
_
 

O
rd

e
r 

L
o

g
-i

n
 



Architecture Design for B2B Order Processing System                                  

 

 20 

  

   

 

Customer_Log_in: Store new customer information. Read and check existing 

customer information, shopping cart content, order/payment information, 

and allow log-on into B2B-OPS. 

Browse & Select: Search or browse system catalogues.  B2B-OPS will 

display all keyword matches or complete list of same product or services 

at different prices or service qualities by suppliers.  Customers will be 

allowed to make any selections and save into their shopping carts. 

Finalize_Order: Get customers’ selections from any items in their respective 

shopping carts and then generate Customer-Order. 

Check_Credit: Get customer’s order information.  Check their account credit 

status for further purchases. 

B2B-IPS: Get customer’s order information and generate invoice, account 

reminder and payment as Project I.  This architecture design of B2B-OPS 

is the extension of OO-UML design of B2B-IPS of Project I. 

Shipping: Get customers’ final order information, generate shipping slip, 

shipping label, and ship out products. 

 

3.5.3 Interactions/Connections:  
 

Module Input:  

Operation Read: customer information from input medium 

/*  through Operation Log-in, customer information like id, name, 

address are generated into New-Input */ 

/*   implicitly invoke Module Customer_Log_in */ 

 

Module Customer_Log_in  

/* through Operation I-th: read New-Input.  Identify existing customers 

or create new customer and insert into Customer_File.  Retrieve 

current content of logged-in customer’s shopping cart into 

Current_Shopping_Cart. */ 

/*   implicitly invoke Module Browse & Select. */ 

 

Module Browse & Select 

/* through Operation Update_Shopping_Cart: read content 

Current_Shopping_Cart and perform modification based on 

customer’s input.  Browse B2B-OPS catalogues or display keyword 

search results.  Insert customer selected products or services into 

Current_Shopping_Cart. */ 

/*   implicitly invoke Module Finalize_Order. */ 

 

Module Finalize_Order 

/* through Operation Do_Order: read content Current_Shopping_Cart.  

Select items in Current_Shopping_Cart to generate Curtomer-Order.  

Save Customer-Order and content of Current_Shopping_Cart into 

customer’s account file for future reference. */ 

/*   implicitly invoke Module Check_Credit. */ 

 

Module Check_Credit 



Architecture Design for B2B Order Processing System                                  

 

 21 

  

   

 

/* through Process-Order: read Curtomer-Order.  Perform customer 

credit check.  Prove Customer-Order and generate Final-Order. */ 

/*   implicitly invoke Module B2B-IPS and Module Shipping. */ 

 

Module B2B-IPS 

/* through Operation (2
nd

) I-th: read Final-Order and, then, generate 

New-Invoice as described in Project I.  Other operation I-th will 

follow in B2B-IPS to produce New-Reminder, and New-Receipt. */ 

 

Module Shipping 

/* through Operation Ship-Order: retrieve information from Final-Order 

and generate Shipping-Slip and Shipping-Label.  The content of 

Final-Order, product or service, will be deliver to customer using the 

method specified in the order. */ 

  

Module Output 

/* access Final-Order, New-Invoice, New-Receipt, New-Reminder, 

Shipping-Slip & Shipping-Label and print out */ 

 

Module Master Control 

/* synchronize the activities of all the other modules by using procedure 

calls of this modules and explicitly triggers input and output. */ 

 

3.5.4 Constraints: Computations are invoked implicitly as data is modified, based 

on active data model. 

 

3.5.5 Pattern:    

 

Subprogram Call 

System I/O 

 

 

 

 

 

4. Tradeoff Analysis 
  

When we decide which architecture design to use, we need to consider the following 

types of non-functional requirements for trade-off analysis. 

 

 User Friendly --- how easy it is for user to use the system. 

 Enhanceability --- accommodate new function to system. 

 Performances --- space and time. 

 Reusability --- to what extents can the components serve as reusable entities. 

 Robustness --- behaves reasonably. 

 Maintainability --- repairability and evolvability. 

 Portability --- can be used in different platforms. 



Architecture Design for B2B Order Processing System                                  

 

 22 

  

   

 

 

The advantages and disadvantages of the five architectural styles are discussed as 

follows. 

 

4.1 Modified Pipe and Filter Architecture 
 

4.1.1 Advantages: 

 

 The architecture design is easy to understand overall input/output behavior 

of a system as a simple composition of the behaviors of the individual 

filters.  (understandability (+)) 

 Systems are easy to maintain and enhance: new filters can be added to 

existing systems at the appropriate points and old filters can be replaced 

by improved ones.  (maintain (+) enhance (+)) 

 It will support component/filter reuse: any two filters can be linked 

together.  (reusability (+)) 

 Permit certain kinds of specialized analysis, such as throughput/bottleneck 

and deadlock analysis. 

 Support concurrent execution: each filter can be implemented as a 

separate task and potentially executed in parallel with other filters.  

(concurrent execution (+)) 

 Easy to use: This modified pipe & filter solution makes the interactive 

control    

 possible. Using this kind of system, the user can provide all sorts of 

parameters to the system directly and provide a collection of settings that 

determine what aspect can  be modified dynamically by user. (user 

friendly (+)) 

 

4.1.2 Disadvantages: 

 

 Often lead to a batch organization of processing.  (time performance (-)) 

 Different filters may run at radically different speeds: it is unacceptable to 

slow some filter down because that another filter is still processing its 

data. (time (-)) 

 Hampered by having to maintain correspondences between two separate 

but related streams. (maintainability (-)) 

 Space is being used inefficiently, since almost all the data must be copied 

over.  (Space (-)) 
 

 

4.2  Object-Oriented Design 2  Unified Modeling Language 
 

4.2.1 Advantages: 

 

 It is easy to add new features to the system, because changes in data 

representation or processing algorithms do not affect other objects, so it 

has high maintainability.  (maintainability (+)) 



Architecture Design for B2B Order Processing System                                  

 

 23 

  

   

 

 The bundling of a set of accessing routines with the data they manipulate 

allows designers to decompose problem into collections of interacting 

agents.  Therefore, the maintainability is very high.  

 It provides reliable functionality and increases reusability, as modules 

make fewer assumptions about the others with which they interact. 

(reliability (+) reusability (+)) 

 Highly portable for the other systems.  (portability (+)) 

 

4.2.2  Disadvantages:  

 

 It usually has longer run-time when compared with other architecture 

styles.  (run-time performance (-)) 

 It takes more time to design than other traditional structural designs. 

 The architecture tends to use more space than traditional structure design 

styles.  (space (-)) 

 

 

4.3   Object-Oriented Design 3  Unified Modeling Language 
 

4.3.1   Advantages: 

 

 GUI makes the system easy to use.   (user friendly (+)) 

 It is easy to add new features to the system, because changes in data 

representation or processing algorithms do not affect other objects, so it 

has high maintainability.  (maintainability (+)) 

 The bundling of a set of accessing routines with the data they manipulate 

allows designers to decompose problem into collections of interacting 

agents.  Therefore, the maintainability is very high.  

 It provides reliable functionality and increases reusability, as modules 

make fewer assumptions about the others with which they interact. 

(reliability (+) reusability (+)) 

 Highly portable for the other systems.  (portability (+)) 

 Database usage allows efficient space utilization when compared with 

other architecture styles. (space (+)) 

 

4.3.2  Disadvantages:  

 

 It usually has longer run-time when compared with other architecture 

styles.  (run-time performance (-)) 

 It takes more time to design than other traditional structural designs.  

(simplicity (-)) 

 

4.4 Abstract Data Type 

 
4.4.1   Advantages: 

 

 The design style can easily accommodate new functionality without the 



Architecture Design for B2B Order Processing System                                  

 

 24 

  

   

 

need for changing the existing modules.  This is because that each 

module is designed to access other modules only through the well-

defined interface procedures/functions.  As an example, this design can 

be updated to be an inventory system by adding appropriate modules and 

appropriate interfaces. (enhanceability (+)) 

 Because each module in the design is self-encapsulated, and providing 

well defined functionality. Most components from this design style can 

easily accommodate with a new system, the reusability and portability 

are very high.  (reusability (+) and portability (+)) 

 The system is easy for end-user to navigate.  (User Friendly (+)) 

 If part of the system malfunction, it will not affect the whole system 

drastically as others would.  So the robustness is strong.  (robustness (+)) 

 This design is easier to maintain (+) compared to other design style. This 

is because all modules interact with each other only through clearly 

defined interface procedures/functions. Bug fixing inside one module 

will not result in change in other modules and interfaces.  

(maintainability (+)) 

 

4.4.2 Disadvantages: 
 

 This design will consume more space than other design styles due to 

duplicated information (e.g. invoice Id, amount…).  (space (-)) 

 Reconcile payments and invoices, reading and writing invoice/payment 

from/to database can be poor due to need for construction and destruction 

of the objects.  (performance (-)) 

 One object must know the identity of the called object. 

 

 

 

4.5 Implicit Invocation Architecture 

 

4.5.1 Advantages 

 

 This system supports functionality enhancement by addition of new 

components and interfaces.  (enhanceabiliby (+)) 

 Insulate computations from changes in data representation.  This will bring 

easy modification of individual modules without changing entire system.  

(modification (+)) 

 The system evolves easily: Components may be replaced or added by other 

newly designed components without affecting existing system or by 

establishing new interfaces for new components with current system. 

(evolution (+))  

 It usually provides a user-friendly interface.  (user-friendliness (+)) 

 If some components malfunction, the system might still perform some 

functions.  (robustness (+)) 

 

 

4.5.2 Disadvantages 



Architecture Design for B2B Order Processing System                                  

 

 25 

  

   

 

 

 Difficult to control the processing order of the implicitly invoked modules 

because components relinquish control over the computation performed by 

the system. (time performance (-)) 

 It usually requires more space due to transaction data/files creating. (space 

performance (-)) 

 Most of the system components have to be used in similar system due to 

data sharing.  The reusability is low.  (reusability (-)) 

 Reasoning about correctness can be problematic, since the meaning of a 

procedure that announces events will depend o the context of bindings in 

which it is invoked. (understandability (-)) 

 Low portability: some modules can be implemented in same architecture 

designs as a whole. (portability (-)) 

 

 

Table 1. Tradeoff analysis Summary 
 

 Priority 

 

OO Model 1 

ADT 

OO Model 2 

UML 

OO Model 3 

UML 

Implicit 

Invocation 

Modified 

Pipe & Filter 

Performance 

Time 

 

1 

 

+/- 

 

+/- 

 

+ 

 

- 

 

- 

Space 1 - - +/- + - 

Enhanceability 1 + + + + + + + 

Maintainability 2 + + + + + + +/- 

User 

Friendliness 

2 + ++ + + + + 

Robustness 3 + + + + - 

Reusability 3 + + + + +  + +/- + 

Portability 3 + + + +/- - 

Total Credit  16 21 23 8 -1 

 
Credit calculation rule: (+): 1; (-): -1; (+/-): 0 at Priority 1.  (+): 2 at Priority 2 and (+): 3 at Priority 3. 

 

 

5. The Selected Architectural Design 
  

According to our tradeoff analysis for each design alternative (Table 1), Object-

Oriented Design 3  Unified Modeling Language is the best selection among 

architectural design list.  The tool of object-oriented design is well developed and quite 

mature.  The architecture design is clearly understood.  The system is easily enhanceable 

and maintainable. The enhanceability and maintainability will be two important factors to 

be concerned during our architect design. Information hiding and encapsulation, the 

characteristics of the architecture, further increases system’s security, robustness, 

portability and reusability.  UML, a state of art requirement engineering tool, makes entire 

software process much more discipline oriented.  The software system is even more 

enhanceable, modifiable, reusable.  


