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We present a mathematical formulation of notions used in training science such as sports
performance, performance determining factor and performance limiting factor. We give an
example of model equations describing the relationship between individual neuromuscular
properties and the associated performance in sports. An essential factor in modelling human
movements is to determine the values of the subject’s properties individually and in vivo.We
perform measurements and identify the parameters describing the person’s properties in the
model equation. Simulations show effects of individual differences in the neuromuscular
properties on the performance. Furthermore, we show the influence of changes inmovement
conditions on the performance.
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1. Introduction

In biomechanics, models based on Newton’s fundamental equation of motion are widely
used to describe human movement. Forces in movement equations should generally be
formulated as force laws, that is, parameters in the force laws should be invariant and
characterize constant properties of the object (e.g. the spring constant for mechanical
springs) or movement conditions (e.g. temperature or air pressure). However, many models
of human movement contain input quantities that are not movement-independent
(e.g. torques as function of time) or they are a combination of conditions and properties
(e.g. explosive force, start gradient, see [1]), thus leading to movement-specific results.
Another shortcoming of most biomechanical models in the literature is the use of mean
values for the subjects properties, possibly scaled to body dimensions as input parameters for
the model equations [2,3]. It has been shown that individual muscle properties differ
substantially from mean values even in a homogeneous group of subjects [4]. Thus,
simulations lead to mean results which are not subject-specific. Therefore, obtaining indi-
vidual values for the input parameters of the model equations is a crucial challenge but
essential for predicting subject-specific movements.

During human movements, active forces are developed by the contraction of muscles.
A classical and accepted model for the contraction of skeletal muscle is the Hill-type model
that characterizes the (concentric) force–velocity relationship of a muscle [5–7]. To use this
muscle model for realistic human movements or to determine model parameters individu-
ally, specific structural conditions have to be considered. Conditions that allow combining
different muscle fibres were investigated in [8,9]. For single muscles, muscle properties have
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been determined by different methods, see, for example, [10–12]. Conditions that allow
combining several muscles to model muscles have been investigated in [9,12]. The condi-
tions under which the activation can be formulated such that the forces still are a force law
have been studied in [13]. Conditions on the structure of force laws for muscle forces are
formulated in [8].

The article is organized as follows: in Section 2 we establish conditions for modelling in
sports science and present a mathematical formulation for notions in sports science such as
performance or performance determining factors. We define the performance function that
gives information on the relation between the persons properties and the performance in sports
and we state some facts on the force law for the muscle. Section 3 briefly describes the model
and the kind of neuromuscular properties we want to determine. Section 4 shows the results of
measurements and the associated parameter estimation. In the simulation section (Section 5),
we show the effect of interindividual differences and the application of modelling in sports
science. The last section concludes the article and summarizes the most important facts.

2. Theoretical considerations on a model-based training science

Let n be the number of parameters in a set of model equations describing a human move-
ment. The parameters can be divided into two disjoint classes: parameters that describe the
person’s properties (such as leg length, activation rate, mass, muscle properties) and para-
meters that describe the movement conditions (such as the mass of a pushed object, the room
temperature, the initial condition of movement). Let k < n be the number of parameters
describing the movement conditions and m < n the number of the person’s properties,
n ¼ k þ m.

Remark 1: The property values of a person are independent of the conditions of the
considered movement. Note in particular, that a person’s property value is the same for all
movements, that is, it does not depend on the movement.

2.1. Performance function

In many sports, the performance of the athlete is assessed by a real number, for example, the
length of a jump or the running time in sprint. If the model of the movement contains all the
relevant information of the movement, the performance can be calculated using the para-
meters of the model equations.

Definition 2.1: A performance of a modelled movement is a real number z which can be
calculated using the parameters occurring in the model equations.

Remark 2: There are many possible performances that can be defined for a human
movement. Not all make sense in sports science. Therefore, we will restrict our considera-
tions on performances that can be interpreted in sports science, such as maximum velocity of
a movement, mean velocity, jump height or time.

Remark 3: If the performance is calculated using a real subset of the parameters of the
model equation, the other parameters do not influence the performance and therefore are not
necessary for describing the performance. This shows that the model is not as simple as
possible and as complex as necessary, what is expected of a good model.
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Definition 2.2: The performance function f is a function between the set D of properties
and a one-dimensional performance space, defined by

f : D � R
m ! R

x 2 D 7! z 2R;
(1)

where x is the state of the person, an m-tuple of relevant properties. The graph of this
mapping is a surface showing the relation between the properties and the performance.

Remark 4: The performance function depends on the fixed values of the conditions of the
movement. Of course, it would also be possible to define the performance and performance
function including the conditions. The reason for holding the conditions fixed is that in most
applications in sports science the properties are changed by training, whereas most condi-
tions are fixed due to regulations. This reduces the dimension of the domain of the function
and therefore simplifies the applications. Further reduction can be obtained regarding the
restriction of f to some subspace of Rm, setting some of the property values fixed. In specific
situations, however, it will be appropriate to include at least some conditions.

Remark 5: The set D is a real subset of Rm, because not all combinations of property
values occur in reality. The set D is bounded and open. For example, a person with long legs
in general has more weight, so the property values have to fulfil certain statistical relations
(see, for example [4]). We will meet another example in the Subsection 2.2 dealing with
parameters in Hill’s equation.

Definition 2.3: Let E1; :::; Em be the properties of the person and consider a state x of the
person.

(a) Ei is called performance determining factor, if for fixed values of Ej, j � i, a change
in the value of Ei changes the performance z.

(b) Ei is called performance limiting factor, if any variation in the value of Ej, j � i,
Ei fixed, does not change the performance z.

Remark 6: An equivalent formulation of the definition of the performance limiting factor
is the following: Given a state x. Only a change in the value of Ei leads to a change in
performance.

2.2. Some considerations on the force law for muscles

Hill’s equation [4,13,14] on the force–velocity relation of a muscle, given by

f ¼ c

vþ b
� a; (2)

contains a lot of information relevant for sports. Here f denotes the concentric contraction
force of the muscle, v is the contraction velocity of the muscle, and a, b and c are a set of
parameters greater than 0, describing the muscle properties of the person.
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Remark 7: Because of the interpretation of the variables, f and v have to be positive and
the function is convex in the considered interval 0 � v � c=a� b ¼ vmax.

Remark 8: Hill’s equation describes the force as a function of velocity in case the muscle
is fully activated. If the activation is lower, that is, less motor units that could be activated at
the same time are activated at this moment, the muscle force also is lower.

Remark 9: The mechanical power p of the muscle is given by the product of force f with
velocity v, p ¼ fv. Evaluating the derivation dp/dv leads to the optimum velocity vopt, defined
as the velocity at which the muscle can exert the maximum power. This yields

vopt ¼ �bþ
ffiffiffiffiffi
cb

a

r
(3)

and

fopt ¼ �aþ
ffiffiffiffiffi
ca

b

r
; (4)

fopt denoting the corresponding optimum force.

Remark 10: The set of parameters a, b and c in Hill’s equation can be replaced by an
equivalent set of parameters, fmax, vmax and pmax, denoting the isometric force, the max-
imum possible velocity and the maximum possible mechanical power of the muscle. These
parameters are well known by sports scientists and coaches. We have

fmax ¼ c

b
� a (5)

and

vmax ¼ c

a
� b (6)

pmax ¼ abþ c� 2
ffiffiffiffiffiffiffi
abc

p
: (7)

The shape of Hill’s force–velocity relation provides information about the endurance of
the muscle. The curvature can be measured by the ratio of a=fmax. Endurance athletes and
beginners have more curved force–velocity relations (a=fmax � 0:30) than athletes in power
sports (a=fmax � 0:30) [1]. Another relationship with the curvature can be found in the
efficiency, defined as ratio pmax=c. The distribution between slow-and fast-twitch fibres in
the muscle is related to bn, the value of b normalized to the muscle length n. Larger values of
bn correlate with a higher percentage of fast-twitch fibres [4,9].

An important question in sports science is the difference between individuals and the
possible consequences on the movement. Given two different sets of parameters values,
a1, b1, c1, and a2, b2, c2, we can distinguish between three cases (see Figure 1):

(1) The force–velocity relations do not intersect, one muscle has more force than the
other for all contraction velocities.
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(2) There is just one point of intersection. If this point is not an osculation point, one
muscle can exert more force at slower contraction velocities, whereas the other one
has more force when the velocity increases. The condition for getting only
one intersection point which is not an osculation point is

ðvmax;1 � vmax;2Þðfmax;1 � fmax;2Þ < 0: (8)

(3) There are two points of intersection. In this case, the curvature of the functions has to
be different. The range of velocity near the optimal velocity leads to more force for
athletes in power sports.

Remark 11: Note that we only look at intersection points (vint, fint) in the first quadrant of
the (v, f )–plane, that is, we always have the constraint 0 � vint � vmax.

The intersection points can be calculated explicitly by setting

f ¼ c1
vþ b1

� a1 ¼ c2
vþ b2

� a2;

leading to
vint ¼ 1

2
� c1 � c2

a1 � a2
� ðb1 þ b2Þ

� �
; (9)

for an osculation point, and

vint ¼ 1

2
� c1 � c2

a1 � a2
� ðb1 þ b2Þ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� c1 � c2

a1 � a2
� ðb1 þ b2Þ

� �2
� c1b2 � c2b1

a2 � a1
� b1b2

s
;

(10)

in all other cases, provided 0 � vint � vmax.

Remark 12: Equations (9) and (10) for the intersection points can also be expressed using
the parameters fmax, vmax and pmax, as well as the condition for just one intersection point,
Equation (8), might be formulated using the parameters a, b and c.

Remark 13: Equation (8) is independent of pmax, that is, it is independent of the curvature
of the force–velocity relation and therefore independent of the efficiency of the athlete.
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Figure 1. Force–velocity relations with no intersection (left), one point of intersection (middle) and
two points of intersection (right).

Mathematical and Computer Modelling of Dynamical Systems 421



3. Model of a human movement

We want to exemplify the benefit of modelling in sports science by the following simple model
of a knee extensionmovement. Consider a leg extension on an inclined leg press with inclination
angle α, where a subject pushes a mass m under maximum voluntary contraction (MVC).

To describe this movement, we use a model for the extension movement with a hinge
joint (see, for example [12]). The extensor muscles are described by a model muscle. The
force–velocity relation of this muscle is given by Hill’s equation as defined in the last
section. The activation process of the muscle under maximum voluntary contraction is
described by a time-dependent function S:

SðtÞ ¼ 1� expð�Aðt � t0Þ þ 1� expð�Aðt � t0ÞÞÞ: (11)

Remark 1: The function S ranges between 0 and 1. SðtÞ ¼ 0 describes the situation that
the muscle is not activated at all at time t, SðtÞ ¼ 1 means that the maximum number of
motor units that can be activated at the same time are activated at time t. t0 is a time shift that
can be derived by the equilibrium condition that the muscles have to be activated at the
beginning of the movement to hold the mass (i.e. exert a certain force). The force fm of the
muscle is modelled by fm ¼ SðtÞ f .

Finally, the relationship between the muscle force fm and the external force F can be
calculated by a geometry functionGðX Þ depending on the distance X between hip and ankle,
F ¼ fmGðX Þ [8]. To formulateG individually for the knee joint, anthropometric data like the
moment arm of the model muscle (estimated by the radius of the knee joint), the length of
thigh and shank and the distance between the patella centre and the tuberositas tibiae are
needed. For more details for the measurement of these quantities, see [9].

We get the following model equations (cf. [12]):

m€X ¼ �mg sin αþ SðtÞGðtÞ c

GðX Þ€X þ b
� a

� �
; (12)

GðX Þ ¼ r sin β
lolu sin σ

X ; (13)

σ ¼ 2β þ arcsin
r

ko
sin β

� �
þ arcsin

r

ku
sin β

� �
; (14)

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2o þ l2u � 2l0lu cos σ;

q
(15)

SðtÞ ¼ 1� expð�Aðt � t0Þ þ 1� expð�Aðt � t0ÞÞÞ; (16)

Sðt0Þ ¼ GðX0Þfmax

mg sin α
: (17)

σ denotes the knee angle and β is the angle between muscle and knee. lo is the length of the
thigh, lu the length of the shank, ko, ku the position of the muscle and r the knee radius.

Remark 2: The anthropometric parameters can be measured directly, whereas the neu-
romuscular parameters a, b, c (Hill’s force–velocity relation), and A (describing the activa-
tion) have to be identified. In the model equations the mass m, the gravitational acceleration
g, the inclination angle α, the initial position X0 and the initial velocity V0 are conditions of
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the movement, all other parameters are properties of the subject. Equation (17) is the
equilibrium condition determining t0 in the case that the initial velocity V0 is zero.

4. Measurements and parameter estimation

To show the individual differences in the property values, we performed measurements and
identified the parameters of the model equations that were not measured directly. The
validity, reliability and objectivity of the method was investigated in detail before (cf., for
example [4,12,15]), where also statistical analysis of measurements and identified para-
meters were presented.

4.1. Measurements

To determine the parameters of the extension model individually, we measured kinematics and
kinetics of real leg extension movements executed by our subjects. The measurements
complied with the requirements of the local university, as well as current local law and
regulations. Written informed consent was obtained from the athletes prior to any testing.
The used measurement device is an inclined leg press (Tetra® Illmenau) with a force platform
(Kistler®) on a sledge. This sledge can be fixated to measure isometric movements and can be
freely moved to measure concentric leg extensions with different loads and inclination angles.
The different inclinations were used to simulate different movement conditions at a wide range
of contraction velocities. Besides the force exerted on the sledge we measured position and
velocity of the sledge at 500 Hz. Furthermore, wemeasuredmovement conditions (e.g. moved
load) and anthropometrical properties of the subject (e.g. thigh length) directly.

4.2. Subjects

Our subjects were 10 sports students (6 male, 4 female, age 23:5 � 0:9 years, height
1:73� 0:1 m, weight 67:9� 9:15 kg). They performed two test series, each including two
isometric and four dynamic concentric movements with two different inclination angles
(14�, 28o) and pushed mass 45 kg on an inclined leg press.

Remark 1: The aim of our measurements was not to show statistical correlations but to
reveal individual differences. Data on larger groups of subjects can be found in [4].

4.3. Parameter estimation

All parameters which could not be measured directly were determined by non-linear
parameter estimation with a custom-made software (JOP kinematics) based on a modified
Levenberg–Marquart algorithm. Briefly, the measured kinematics and kinetics of the move-
ment were compared with the data of the simulated movement. Then, the model parameters
were altered until simulation and real movement coincide sufficiently. For details see [12].
Thus, the determined parameters describe the muscle force–contraction velocity relationship
as well as the activation rate of the muscle. The individual parameters fmax [N] (isometric
force in the muscle), pmax [W] (maximum possible power of the muscle) and vmax [m/s]
(maximum possible contraction velocity) define the Hill-type extensor model muscle. The
activation parameter A [1/s] describes the rate at which muscle fibres are activated.

Mathematical and Computer Modelling of Dynamical Systems 423



4.4. Results of measurements

The parameters fmax, vmax and pmax in Hill’s equation and the activation parameter A were
identified. The mean values and the standard deviations of the identified parameters
were fmax ¼ 11111 � 3264 N, vmax ¼ 1:29 � 0:63 m/s, pmax ¼ 1173 � 324 W,
A ¼ 12:0 � 3:0 s�1. Significant differences (t-test, p< 0:05) betweenmale and female subjects
could be observed for the values of isometric muscle force fmax (male: 13178 � 1935 N, female:
8011 � 2090 N) and themaximum power pmax (male: 1361 � 190W, female: 891 � 280W),
whereas the parameter values of the maximum velocity and the activation do not differ signifi-
cantly (see, for example [4]).

Remark: Note the difference between fmax, the isometric force of the muscle at maximum
activation and max FðtÞ, the maximum of the time-dependent force during the movement,
measured on the force platform. The parameter fmax is a property of the subject and therefore
independent of the specific movement, whereas max FðtÞ crucially depends on the move-
ment conditions and the person’s properties, including the activation function and the
anthropometric quantities.

The shape of Hill’s force–velocity relation differs substantially between subjects, as can
be seen in Figure 1. All cases of intersection as described in Section 2.2 occur in the
experimental data. The left diagram in Figure 1 shows subject #4 (black line, male) and
subject #9 (grey line, female), the diagram in the middle shows subject #3 (black line, male)
and subject #9 (grey line, female) and the diagram on the right side shows subject #2 (black
line, male) and subject #6 (grey line, male).

The maximum of the velocity (max V ðtÞ) of the pushed mass and the maximum force
(max FðtÞ) measured on the force platform clearly depend on the inclination angle. As
expected, the mean value of the maximum velocity of the pushed mass is larger for an
inclination angle of 14� than the maximum velocity occurring at inclination angle of 28�

(p < 0:1). For the maximum force measured at the force plate, we have a larger mean value
for the greater inclination angle (p < 0:1). The measured force maxima at small angle
correlate significantly with the force maxima at larger angle (r ¼ 0:955) and there is also
a significant correlation between the maxima of the velocities (r ¼ 0:962).

Tables 1 and 2 show the ranking of the 10 subjects for inclination angles of 14� and 28�.
Concerning force, a large inclination angle is advantageous for subject #3 who is second best
in achieving a high force on the platform at 28o, whereas only on fifth position at 14�.

Table 1. max FðtÞ: Ranking of the subjects in max FðtÞ at different inclination angles.

Subject 1 2 3 4 5 6 7 8 9 10

14� 3 7 5 2 6 1 10 9 4 8
28o 4 6 2 5 8 1 10 9 3 7

Table 2. max V ðtÞ: Ranking of the subjects in max V ðtÞ at different inclination angles.

Subject 1 2 3 4 5 6 7 8 9 10

14� 4 1 5 2 3 8 6 10 7 9
28o 5 2 3 1 4 6 7 10 8 9

424 S. Thaller et al.



5. Simulations

5.1. Interindividual differences

To show some effects of the interindividual differences in the force–velocity relation on the
sports performance, we simulate the muscle force at constant contraction velocities 0, 0.2,
0.4 and 0.6 m/s. Larger velocities would exceed vmax for some subjects. In particular, we are
interested in the ranking of the subjects and in the differences in the forces between men
(subjects #1–6) and women (subjects #7–10). Using the identified parameters fmax, vmax and
pmax for the 10 subjects, we evaluate the force–velocity relations. The results are collected in
Table 3. For the muscle force at velocity 0.6 m/s, we get a mean value of 1426� 749 N.
There is no significant difference between male and female in the value of f ð0:6Þ.

Subjects #1 and #3 (both male) have very low forces at velocity 0.6 m/s, lower than all
female subjects (#7 – #10). This is due to their low values of vmax. Table 4 shows the ranking
of the 10 subjects in fmax, f ð0:2Þ, f ð0:4Þ and f ð0:6Þ.

The ranking reflects the different shapes of the force–velocity relation. Subjects with low
vmax exert lower force at high contraction velocity. Note that the ranking may change within
different contraction velocities. Compared with the other subjects, subject #6 has mean force
at low and high velocities, whereas in the medium range of velocity the force is high. This is
due to a low curvature of the force–velocity relation (cf. Figure 1).

Remark 1: To simulate forces f ð0:2Þ, f ð0:4Þ and f ð0:6Þ, we had to use all muscle
parameters of Hill’s force–velocity relation. Thus, we see that the muscle force at a certain
velocity does not only depend on the isometric force fmax but also on the maximum
contraction velocity and the maximum power.

Remark 2: We have seen that a measurement of the muscle force at a certain velocity
does not give information on the force at another contraction velocity. This fact can be
generalized for all changes in conditions. If a muscle test does not measure properties, the
result depends on the conditions of the measurement (in this case the contraction velocity)
and on other properties of the subject and therefore cannot be used for movements under
different conditions.

Table 3. Muscle forces at contraction velocities 0, 0.2, 0.4 and 0.6 m/s.

Subject 1 2 3 4 5 6 7 8 9 10

fmax[N] 12256 13915 14242 16029 10572 12051 6178 10947 7970 6950
f ð0:2Þ[N] 6097 5433 5870 7084 5267 6915 3017 4048 5070 3145
f ð0:4Þ[N] 2726 3141 2291 4040 3092 3912 1651 1868 3239 1888
f ð0:6Þ[N] 600 2075 303 2505 1909 1941 888 798 1978 1262

Table 4. Ranking in the muscle forces at contraction velocities 0, 0.2, 0.4 and 0.6 m/s.

Subject 1 2 3 4 5 6 7 8 9 10

fmax[N] 4 3 2 1 7 5 10 6 8 9
f ð0:2Þ[N] 3 5 4 1 6 2 10 8 7 9
f ð0:4Þ[N] 6 4 7 1 5 2 10 9 3 8
f ð0:6Þ[N] 9 2 10 1 5 4 7 8 3 6
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Simulations of max FðtÞ and max V ðtÞ using the model equations show similar results as
the measurements and can elucidate the causes for changes in the ranking as described in
Tables 1 and 2. Since the movement at a smaller inclination angle is faster and the activation
at the beginning is less (see Equation (17) of the equilibrium condition), subjects with higher
activation parameter have an advantage at this movement. A similar discussion can be found
in [16], where a jump on the moon is discussed. Less gravitation implies that a vertically
accelerated mass has less weight but the same inertia, a situation analogous to a pushed mass
on an inclined leg press.

5.2. Visualization of the performance function

For the following simulations we define the maximum velocity of the pushed mass, max
V ðtÞ, to be the performance under consideration. The velocity V is the derivative of the
solution X of the model Equations (12)–(17). So for fixed conditions m, g, X0, V0 and α, the
performance function f (Definition 2.2) maps the person’s state x ¼ vmax; fmax; Pmax

A, lo, luko, ku, rÞ to the associated performance z ¼ f ðxÞ ¼ maxðdX=dtÞ.
For visualizing the performance function, we keep all the parameters except vmax and fmax

fixed and consider the restriction of f to the subspace R2. We let the isometric force fmax vary
between 7000 and 15000 N, the maximum contraction velocity between 0.6 and 1.5 m/s.
First, we simulated the performance function for the mean values of the measured or
identified parameters ðpmax,A; lo, luko, ku, rÞ ¼ (1173 W, 12 s�1, 0.42 m, 0.4 m, 0.42 m,
0.07 m, 0.06 m). For the conditions, we tookm¼ 45 kg, g¼ 9.81 m/s�2 and V0 ¼ 0. For the
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inclination angles 14�, 28�, 60� and 90� from top left to bottom right. All other parameters are kept constant.
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initial position X0 ¼ 0.5 m, we investigated the effects of the inclination angles 14�, 28o, 60o

and 90o (see Figure 2). Then we kept the inclination angle α constant at 28o and set the initial
position X0 at 0.35, 0.45, 0.55 and 0.70 m (see Figure 3).

In Figure 2 we can see performance limiting factors: at an inclination of 14�, an increase
in the parameter fmax, the isometric force above 1000 N does not lead to a better performance
for low contraction velocities vmax (top left). Note that fmax is a performance limiting factor in
the sense of Definition 2.2 only if we restrict the performance function on the 2D domain
ðvmax; fmaxÞ. The simulation result is according to our experience: the movement at low
inclination is faster. If the maximum contraction velocity of a person is too low, an increase
of force does not enhance the performance. A similar situation is obtained for vmax at an
inclination angle of 90o (bottom right): larger vmax does not increase the performance, if the
isometric force is low. In Figure 2 (bottom left, angle 60o), the parameter vmax is a
performance determining factor at every state.

Remark 3: Note that the parameter used in the simulations for Figures 2 and 3 are mean
values and do not describe one of the subjects. As the subjects differ substantially in all
parameter values, it is not possible to see the results of the measurements in these graphics.

To show the individual differences in the performance and the effect of changes in the
parameters vmax and fmax, we simulated two subjects with their individual parameters (see
Figure 4).
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Figure 3. Parameters vmax and fmax are mapped to the performance max V ðtÞ, from top left to bottom
right: X0 ¼ 0.35, 0.45, 0.55 and 0.7 m. All other parameters are kept constant.
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Remark 4: If the changes in fmax are achieved by training, it is not possible to keep the
maximum power pmax constant. Training always leads to changes in all parameters describ-
ing the force–velocity relation [17]. To get a complete visualization of the effects of changes
in parameter values, one has to look at series of graphs at different values for the maximum
power and the activation (cf. [18]).

6. Conclusions

Individual measurements confirm that the variation in neuromuscular properties between
different subjects is substantial. To get reliable results from subject-specific simulations, the
individual determination of these properties is of great importance. The performance func-
tion of a specific movement provides information about the necessary property change that
would lead to the largest increase in performance. Therefore, simulation using subject-
specific neuromuscular properties is a promising method for planning and controlling of
training.
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