
Chapter 14 - Processor Structure and Function

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 14 - Processor Structure and Function 1 / 115

luis.tarrataca@gmail.com


Table of Contents I

1 Processor Organization

2 Register Organization

User-visible Registers

General-purpose registers

Data registers

Address Registers

Condition Codes

Control and Status Registers

L. Tarrataca Chapter 14 - Processor Structure and Function 2 / 115



Table of Contents I

3 Instruction Cycle

4 Pipelining

Instruction Stages

Simplifications

Possible pipeline disruptions

Design issues

Pipeline Performance

Pipeline Hazards

Pipeline Hazards

Resource Hazards

Data Hazards

L. Tarrataca Chapter 14 - Processor Structure and Function 3 / 115



Table of Contents II
Control Hazards

L. Tarrataca Chapter 14 - Processor Structure and Function 4 / 115



Processor Organization

Processor Organization

Remember this?

Figure: Instruction cycle state diagram (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 5 / 115



Processor Organization

Requirements placed on the processor:

• Fetch instruction: reads an instruction from memory;

• Interpret instruction: determines what action to perform;

• Fetch data: if necessary read data from memory or an I/O module.

• Process data: If necessary perform arithmetic / logical operation on data.

• Write data: If necessary write data to memory or an I/O module.

L. Tarrataca Chapter 14 - Processor Structure and Function 6 / 115



Processor Organization

To do these things the processor needs to:

• store some data temporarily

• remember the location of the next instruction;

while an instruction is being executed:

• In other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?

L. Tarrataca Chapter 14 - Processor Structure and Function 7 / 115



Processor Organization

To do these things the processor needs to:

• store some data temporarily

• remember the location of the next instruction;

while an instruction is being executed:

• In other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?

• Registers =)

L. Tarrataca Chapter 14 - Processor Structure and Function 8 / 115



Processor Organization

We also need other components:

Figure: CPU with the system BUS (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 9 / 115



Processor Organization

We will talk about it in Chapter 19, but:

What do you think the control unit does? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 10 / 115



Processor Organization

Major components of the processor:

• Arithmetic and Logic Unit (ALU):

• Performs computation or processing of data

• Control Unit:

• Moves data and instructions in and out of the processor;

• Also controls the operation of the ALU;

• Registers:

• Used as internal memory;

• System Bus:

• Acting as a pathway between processor, memory and I/O module(s);

L. Tarrataca Chapter 14 - Processor Structure and Function 11 / 115



Processor Organization

A more detailed view:

Figure: Internal structure of the CPU(Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 12 / 115



Processor Organization

Besides the usual elements the previous figure also includes:

• Internal CPU bus:

• Needed to transfer data between the various registers and the ALU;

• Logic control paths;

• Needed to specify which operations to perform;

L. Tarrataca Chapter 14 - Processor Structure and Function 13 / 115



Register Organization

Register Organization

Registers in the processor perform two roles:

• User-visible registers:

• Used as internal memory by the assembly language programmer;

• Control and status registers:

• Used to control the operation of the processor;

• Used to check the status of the processor / ALU;

Lets have a look at each one of these =)

L. Tarrataca Chapter 14 - Processor Structure and Function 14 / 115



Register Organization User-visible Registers

User-visible Registers

May be referenced by the programmer, categorized into:

• General purpose

• Data

• Address

• Condition codes

What do you think each one of these does? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 15 / 115



Register Organization User-visible Registers

General-purpose registers

Can be assigned to a variety of functions by the programmer:

• Memory reference & backup;

• Register reference & backup;

• Data reference & backup;

• These are the ones you use in the laboratory =)

L. Tarrataca Chapter 14 - Processor Structure and Function 16 / 115



Register Organization User-visible Registers

Data registers

May be used only to hold data and cannot hold addresses:

• Must be able to hold values of most data types;

• Some machines allow two contiguous registers to be used:

• For holding double-length values.

L. Tarrataca Chapter 14 - Processor Structure and Function 17 / 115



Register Organization User-visible Registers

Address Registers

Used to hold addresses, e.g.:

• Stack Pointer

• Program Counter

• Index Registers

Must be at least long enough to hold the largest address.

L. Tarrataca Chapter 14 - Processor Structure and Function 18 / 115



Register Organization User-visible Registers

Condition Codes

Hold condition codes (a.k.a. flags):

• Flags are bits set by processor as the result of operations

• E.g.: an arithmetic operation may produce:

• a positive result;

• a negative result;

• a zero result;

• an overflow result.

Condition code bits are collected into one or more control registers:

L. Tarrataca Chapter 14 - Processor Structure and Function 19 / 115



Register Organization User-visible Registers

In some machines:

• Interruption results in all user-visible registers being saved;

• These are then restored on return;

• Allows each subroutine to use the user-visible registers independently;

On other machines:

• responsibility of the programmer to:

• save the contents of user- visible registers prior to a subroutine call;

L. Tarrataca Chapter 14 - Processor Structure and Function 20 / 115



Register Organization User-visible Registers

Regarding the previous slide:

What are the advantages / disadvantages of using one method instead

of the other? Any ideas?

Guess what is the method used by the P3 simulator? =P

L. Tarrataca Chapter 14 - Processor Structure and Function 21 / 115



Register Organization Control and Status Registers

Control and Status Registers

Employed to control the operation of the processor:

• Mostly not visible to the user;

Do you know any registers of this type? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 22 / 115



Register Organization Control and Status Registers

Control and Status Registers

Do you know any registers of this type? Any ideas?

• Program counter (PC): Contains instruction address to be fetched;

• Instruction Register (IR): Contains last instruction fetched;

• Memory address register (MAR): Contains memory location address;

• Memory buffer register (MBR): Contains:

• a word of data to be written to memory;

• a word of data read from memory.

L. Tarrataca Chapter 14 - Processor Structure and Function 23 / 115



Register Organization Control and Status Registers

In general terms:

• Processor updates PC after each instruction fetch;

• A branch or skip instruction will also modify the contents of the PC;

• The fetched instruction is loaded into an IR

• Data are exchanged with memory using the MAR and MBR, e.g.:

• MAR connects directly to the address bus

• MBR connects directly to the data bus

L. Tarrataca Chapter 14 - Processor Structure and Function 24 / 115



Register Organization Control and Status Registers

The four registers just mentioned are used for:

• Data movement between processor and memory;

• Within the processor, data must be presented to the ALU for processing:

• ALU may have direct access to the MBR and user-visible registers;

• Alternatively:

• There may be additional buffering registers within ALU;

• These registers serve as input and output registers for the ALU;

• These registers exchange data with the MBR and user-visible registers.

L. Tarrataca Chapter 14 - Processor Structure and Function 25 / 115



Register Organization Control and Status Registers

Many processors include a program status word (PSW) register:

• Contains condition codes plus other status information

• Common fields or flags include the following:

• Sign: Sign bit of the result of the last arithmetic operation;

• Zero: when the result is 0;

• Carry: Set if an operation resulted in a carry/borrow bit;

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to enable or disable interrupts.

L. Tarrataca Chapter 14 - Processor Structure and Function 26 / 115



Instruction Cycle

Instruction Cycle

Lets go back to this:

Figure: Instruction cycle state diagram (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 27 / 115



Instruction Cycle

Now that we know more about the inner workings of:

• CPU;

• Registers;

• Bus

What is the information flow during the fetch cycle?

What is the information flow during the execute cycle?

What is the information flow during the interruption cycle?

L. Tarrataca Chapter 14 - Processor Structure and Function 28 / 115



Instruction Cycle

Lets start with the first question:

What is the information flow during the fetch cycle? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 29 / 115



Instruction Cycle

The flow of data during the instruction fetch cycle:

Figure: Data Flow: FetchCycle(Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 30 / 115



Instruction Cycle

The flow of data during the instruction fetch cycle:

1 PC contains the address of the next instruction to be fetched;

2 Address is moved to the MAR and placed on the address bus;

3 Control unit requests a memory read;

4 Result is:

• placed on the data bus;

• copied into the MBR;

• then moved to the IR.

5 Meanwhile, the PC is incremented by 1;

L. Tarrataca Chapter 14 - Processor Structure and Function 31 / 115



Instruction Cycle

Once the fetch cycle is over, control unit examines IR:

1 to determine if it contains an operand specifier using indirect addressing;

2 If so, an indirect cycle is performed:

Figure: Data flow: indirect cycle (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 32 / 115



Instruction Cycle

The indirect addressing cycle:

• Bits of the MBR containing the address are transferred to the MAR;

• Control unit then requests a memory read:

• to get the desired address of the operand into the MBR.

L. Tarrataca Chapter 14 - Processor Structure and Function 33 / 115



Instruction Cycle

What is the information flow during the execute cycle? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 34 / 115



Instruction Cycle

The execute cycle takes many forms:

• Depending on the operation to be performed...

• May involve:

• transferring data among registers

• read or write from memory or I/O

• and/or the invocation of the ALU.

L. Tarrataca Chapter 14 - Processor Structure and Function 35 / 115



Instruction Cycle

What is the information flow during the interruption cycle? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 36 / 115



Instruction Cycle

Then comes the interrupt cycle:

Figure: DataFlow: InterruptCycle (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 37 / 115



Instruction Cycle

The interruption cycle:

• Contents of the PC must be saved;

• Thus the contents of the PC are

• Transferred to the MBR to be written into memory.

• Special memory location is loaded into the MAR:

• E.g.: stack pointer (SP)

• PC is loaded with the address of the interrupt routine.

L. Tarrataca Chapter 14 - Processor Structure and Function 38 / 115



Instruction Cycle

Now that we have seen how:

• Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

• Always a fun topic =)

L. Tarrataca Chapter 14 - Processor Structure and Function 39 / 115



Instruction Cycle

Now that we have seen how:

• Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

• Always a fun topic =)

What are some of the techniques to increase processor performance?

L. Tarrataca Chapter 14 - Processor Structure and Function 40 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

• Physical size of the processor. Why?

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

• Physical size of the processor. Why?

• Electrical signals travel shorter distances;

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

• Physical size of the processor. Why?

• Electrical signals travel shorter distances;

• Transistor switch time decreases.

L. Tarrataca Chapter 14 - Processor Structure and Function 41 / 115



Instruction Cycle

Instruction Pipelining

Rest of the presentation focus will be on pipeline strategies!

• Another method to improve performance =)

• Relates directly to:

• Instruction cycle;

• Processor organization / function;

First, what is a pipeline? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 42 / 115



Pipelining

Pipelining

Similar to an assembly line in a manufacturing plant.

• Product goes through various stages of production;

• Products at various stages can be worked on simultaneously;

Figure: (Source: Wikipedia)

L. Tarrataca Chapter 14 - Processor Structure and Function 43 / 115



Pipelining

Equivalent concept in computation: pipelining

• New inputs are accepted at one end...

• ...before previously accepted inputs appear as outputs at the other end.

In practice, what does this mean? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 44 / 115



Pipelining Instruction Stages

Instruction Stages

How can we apply the concept of pipelining to computer instructions?

Figure: Instruction Cycle State Diagram (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 45 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After executing operators from memory for one instruction:

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After executing operators from memory for one instruction:

• Begin executing operators for another instruction

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After executing operators from memory for one instruction:

• Begin executing operators for another instruction

• and so on...

L. Tarrataca Chapter 14 - Processor Structure and Function 46 / 115



Pipelining Instruction Stages

Consider the following instruction stages:

• Fetch instruction (FI): Read the next instruction into a buffer;

• Decode instruction (DI): Determine the opcode;

• Calculate operands (CO): Calculate the address of each operand.

• Fetch operands (FO): Fetch each operand from memory;

• Execute instruction (EI): Perform the indicated operation;

• Write operand (WO): Store the result in memory.

L. Tarrataca Chapter 14 - Processor Structure and Function 47 / 115



Pipelining Instruction Stages

With this decomposition:

• Various stages will be of nearly equal duration.

• Rest of the slides assume equal duration.

L. Tarrataca Chapter 14 - Processor Structure and Function 48 / 115



Pipelining Instruction Stages

Equal duration assumption allows for the following pipeline:

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 49 / 115



Pipelining Instruction Stages

What is the total number of time units required without the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 50 / 115



Pipelining Instruction Stages

What is the total number of time units required without the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

• 9 instructions, each with 6 time units implies 54 time units;

L. Tarrataca Chapter 14 - Processor Structure and Function 51 / 115



Pipelining Instruction Stages

What is the total number of time units required with the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 52 / 115



Pipelining Instruction Stages

What is the total number of time units required with the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

• 14 time units;

L. Tarrataca Chapter 14 - Processor Structure and Function 53 / 115



Pipelining Instruction Stages

What was the total number of time units required before the pipeline?

• 9 instructions, each with 6 time units implies 54 time units;

What is the total number of time units required after the pipeline?

• 9th instruction will start executing at time unit 9 and will last 6 time units;

• Total time: 9 + 6 − 1 = 14

• Performance ratio: 54/14 = 4.15 faster

L. Tarrataca Chapter 14 - Processor Structure and Function 54 / 115



Pipelining Instruction Stages

Previous example yielded a 4.15 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 55 / 115



Pipelining Instruction Stages

Previous example yielded a 4.15 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas?

• No... =’(

• Lets see why...

L. Tarrataca Chapter 14 - Processor Structure and Function 56 / 115



Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

• Each stage lasts an equal amount of time:

L. Tarrataca Chapter 14 - Processor Structure and Function 57 / 115



Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

• Each stage lasts an equal amount of time:

• Simplification: not so in practice;

L. Tarrataca Chapter 14 - Processor Structure and Function 57 / 115



Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

• Each stage lasts an equal amount of time:

• Simplification: not so in practice;

• Each operation always goes through the six stages:

L. Tarrataca Chapter 14 - Processor Structure and Function 57 / 115



Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

• Each stage lasts an equal amount of time:

• Simplification: not so in practice;

• Each operation always goes through the six stages:

• Simplification: not so in practice;

L. Tarrataca Chapter 14 - Processor Structure and Function 57 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

• Most memory systems will not permit that.

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

• Most memory systems will not permit that.

• However it may still be possible to do. How?

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

• Most memory systems will not permit that.

• However it may still be possible to do. How?

• Desired value may be in cache;

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

• Most memory systems will not permit that.

• However it may still be possible to do. How?

• Desired value may be in cache;

• FO and WO stages may not be performed (NULL values).

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

L. Tarrataca Chapter 14 - Processor Structure and Function 59 / 115



Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;

L. Tarrataca Chapter 14 - Processor Structure and Function 59 / 115



Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;

• Up to the compiler and OS to detect and avoid these cases.

L. Tarrataca Chapter 14 - Processor Structure and Function 59 / 115



Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;

• Up to the compiler and OS to detect and avoid these cases.

• Most of the time memory conflicts will not slow down the pipeline.

L. Tarrataca Chapter 14 - Processor Structure and Function 59 / 115



Pipelining Possible pipeline disruptions

Possible pipeline disruptions

Lets have a look at events that may disrupt the pipeline:

Can you see any type of events that can disrupt the pipeline?

Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 60 / 115



Pipelining Possible pipeline disruptions

What happens if we have a conditional instruction and jump to another

instruction?

L. Tarrataca Chapter 14 - Processor Structure and Function 61 / 115



Pipelining Possible pipeline disruptions

What happens if we have a conditional instruction and jump to another

instruction?

• Conditional branch instruction can invalidate several instruction fetches!

L. Tarrataca Chapter 14 - Processor Structure and Function 62 / 115



Pipelining Possible pipeline disruptions

• Conditional branch instruction can invalidate several instruction fetches!

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional

branch to instruction 15 (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 63 / 115



Pipelining Possible pipeline disruptions

• There is no way for the pipeline to determine the conditional branch:

• Pipeline continues to load the next instructions as if no branching will occur;

• If no jump happens then we get the full benefit of the pipeline;

• Otherwise, we need to reload the pipeline with the subsequent instructions.

L. Tarrataca Chapter 14 - Processor Structure and Function 64 / 115



Pipelining Possible pipeline disruptions

Can you think of any other mechanism that can disrupt the pipeline?

L. Tarrataca Chapter 14 - Processor Structure and Function 65 / 115



Pipelining Possible pipeline disruptions

Can you think of any other mechanism that can disrupt the pipeline?

• The need to process hardware interruptions.

L. Tarrataca Chapter 14 - Processor Structure and Function 66 / 115



Pipelining Possible pipeline disruptions

Figure: Six-Stage CPU Instruction Pipeline (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 67 / 115



Pipelining Design issues

Design Issues

Instruction pipelining is a powerful technique for enhancing performance

• Requires careful design for optimum results with reasonable complexity.

• Elements to consider:

• Overhead of guaranteeing that the pipeline functions properly:

• moving data from buffer to buffer;

• preparing the system to transition to the next stage(s);

• Control logic required increases enormously with the number of stages;

L. Tarrataca Chapter 14 - Processor Structure and Function 68 / 115



Pipelining Pipeline Performance

Pipeline Performance

Lets consider other issues:

How much time is required to move a set of instructions one stage through

the pipeline? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 69 / 115



Pipelining Pipeline Performance

Pipeline Performance

Cycle time τ of an instruction pipeline is the time needed to:

• Advance a set of instructions one stage through the pipeline:

τ = maxi [τi ] + d = τm + d, 1 ≤ i ≤ k

where:

• τi = time delay of the circuitry in the ith stage of the pipeline

• τm = maximum stage delay;

• k = number of stages in the instruction pipeline;

• d = delay needed to advance signals/data from one stage to the next.

L. Tarrataca Chapter 14 - Processor Structure and Function 70 / 115



Pipelining Pipeline Performance

Pipeline Performance

Now that we know what the cycle time τ is:

How much time is required to execute n instructions in a pipeline with k

stages? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 71 / 115



Pipelining Pipeline Performance

Let Tk,n be:

• Time required for a pipeline with k stages to execute n instructions

Tk,n = [k + (n − 1)]τ

Explanation:

• k cycles stages to complete the execution of the first instruction;

• Remaining n − 1 instructions require n − 1 cycle stages.

• All these cycle stage take time τ

L. Tarrataca Chapter 14 - Processor Structure and Function 72 / 115



Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a

pipeline? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 73 / 115



Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a

pipeline? Any ideas?

What is the instruction cycle time for a non-pipeline processor? Any

ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 74 / 115



Pipelining Pipeline Performance

What is the instruction cycle time for a non-pipeline processor?

Assume for the non-pipelined processor the following:

• Instruction cycle time is k × t :

• Each instruction contains k stages of t time;

• Let Twp be the time without pipeline:

• For n instructions the total time is n × k × t

• Twp = nkt

L. Tarrataca Chapter 14 - Processor Structure and Function 75 / 115



Pipelining Pipeline Performance

Comparison of Twp and Tk,n:

• Tk,n

• Twp

• Speedup

Sk =
Twp

Tk,n
= nk

k+(n−1)

Figure: Number of instructions (log scale). (Source:

[Stallings, 2015])

What are the main conclusions that you can draw from this comparison?

L. Tarrataca Chapter 14 - Processor Structure and Function 76 / 115



Pipelining Pipeline Performance

What are the main conclusions that you can draw from this comparison?

• Increase number of pipeline stages: increase speedup potential

• However:

• Speedup increases costs;

• Delays between stages increases;

• Stages to flush also increase in case of a disruption;

L. Tarrataca Chapter 14 - Processor Structure and Function 77 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Besides disruption pipelines are also susceptible to hazards:

What are pipeline hazards? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 78 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

What are pipeline hazards?

• Hazards do not permit continued pipeline execution;

L. Tarrataca Chapter 14 - Processor Structure and Function 79 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas

L. Tarrataca Chapter 14 - Processor Structure and Function 80 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas

• when two (or more) instructions in the pipeline need the same resource;

L. Tarrataca Chapter 14 - Processor Structure and Function 80 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas

• when two (or more) instructions in the pipeline need the same resource;

• Resource examples: bus, memory, cache, etc...

L. Tarrataca Chapter 14 - Processor Structure and Function 80 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

• Data Hazards:

What are data hazards? Any ideas

L. Tarrataca Chapter 14 - Processor Structure and Function 81 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

• Data Hazards:

What are data hazards? Any ideas

• when there is a conflict in the access of an operand location;

L. Tarrataca Chapter 14 - Processor Structure and Function 81 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas

L. Tarrataca Chapter 14 - Processor Structure and Function 82 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas

• when a wrong decision is made on a branch prediction;

L. Tarrataca Chapter 14 - Processor Structure and Function 82 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas

• when a wrong decision is made on a branch prediction;

• Instructions must be discarded.

L. Tarrataca Chapter 14 - Processor Structure and Function 82 / 115



Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution, e.g.:

• Resource Hazards:

• when two (or more) instructions in the pipeline need the same resource;

• Resource examples: bus, memory, cache, etc...

• Data Hazards:

• when there is a conflict in the access of an operand location;

• Control Hazards:

• when a wrong decision is made on a branch prediction;

• Instructions must be discarded.

L. Tarrataca Chapter 14 - Processor Structure and Function 83 / 115



Pipelining Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:

What can be done to solve this issue? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 84 / 115



Pipelining Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:

• Instructions must be executed in serial for a portion of the pipeline.

• Example: IFs, FOs and WOs must be performed one at a time.

Figure: Example of Resource Hazard. (Source: [Stallings, 2015])

• We need to idle the instruction causing the hazard.

L. Tarrataca Chapter 14 - Processor Structure and Function 85 / 115



Pipelining Pipeline Hazards

Data Hazards

Occurs when there is a conflict in the access of an operand location:

• Two sequential instructions access the same memory / register:

• No pipeline → no problem:

• If the two instructions are executed in strict sequence, no problem occurs.

• Pipeline → maybe a problem:

• Depending on the way the operand is updated;

• Lets have a look at this update problem;

L. Tarrataca Chapter 14 - Processor Structure and Function 86 / 115



Pipelining Pipeline Hazards

Data Hazards

Figure: Example of data hazard. (Source:

[Stallings, 2015])

Figure: The corresponding pipeline for the data

hazard. (Source: [Stallings, 2015])

• ADD instruction does not update register EAX until the end of stage 5;

• SUB instruction needs that value at FO (stage 3, clock cycle 4);

What can be done to solve this problem? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 87 / 115



Pipelining Pipeline Hazards

Data Hazards

Figure: Example of data hazard. (Source:

[Stallings, 2015])

Figure: The corresponding pipeline for the data

hazard. (Source: [Stallings, 2015])

• ADD instruction does not update register EAX until the end of stage 5;

• SUB instruction needs that value at FO (stage 3, clock cycle 4);

• Solution: Pipeline must idle for two clocks cycles.

L. Tarrataca Chapter 14 - Processor Structure and Function 88 / 115



Pipelining Pipeline Hazards

Now that we know more about data hazards:

Are all data hazards equal? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 89 / 115



Pipelining Pipeline Hazards

Now that we know more about data hazards:

Are all data hazards equal? Any ideas?

There are three types of data hazards:

• Read after write (RAW)

• Write after read (WAR)

• Write after write (WAW)

What do you think each one of these means? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 90 / 115



Pipelining Pipeline Hazards

Read after write (RAW)

1 Instruction modifies a register or memory location

2 Succeeding instruction reads the data in that memory or register location.

3 Hazard occurs if:

• Data read takes place before the write operation is complete.

L. Tarrataca Chapter 14 - Processor Structure and Function 91 / 115



Pipelining Pipeline Hazards

Write after read (WAR)

1 Instruction reads a register or memory location;

2 Succeeding instruction writes to the location;

3 Hazard occurs if:

• Write operation completes before the read operation is complete;

L. Tarrataca Chapter 14 - Processor Structure and Function 92 / 115



Pipelining Pipeline Hazards

Write after write (WAW)

1 Two instructions both write to the same location;

2 Hazard occurs if:

• Write operations take place in the reverse order of the intended sequence.

L. Tarrataca Chapter 14 - Processor Structure and Function 93 / 115



Pipelining Pipeline Hazards

Control Hazards

Control hazards, a.k.a. a branch hazard, occur when:

• Pipeline makes wrong decision on a branch prediction:

• Instructions must be discarded...

• Wasted work...

So what can we do to mitigate control hazards? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 94 / 115



Pipelining Pipeline Hazards

So what can we do to mitigate control hazards? Any ideas?

Myriad of strategies exist e.g.:

• Multiple streams;

• Prefetch branch target;

• Loop buffer;

• Branch prediction;

• Delayed branch;

Lets have a look at these =)

L. Tarrataca Chapter 14 - Processor Structure and Function 95 / 115



Pipelining Pipeline Hazards

Multiple streams

• Makes use of multiple pipelines:

• One pipeline loads the jump sequence;

• Another pipeline loads the non-jump sequence;

• Brute-force approach:

• Additional branch instructions may enter each pipeline;

• Search space grows exponentially quick =(

• Despite these drawbacks: can still improve performance.

L. Tarrataca Chapter 14 - Processor Structure and Function 96 / 115



Pipelining Pipeline Hazards

Prefetch Branch Target

• When a conditional branch is recognized:

• Target is prefetched, in addition to the instruction following the branch.

• If the branch is taken: target has already been prefetched;

• Otherwise: instruction following the branch was also fetched.

L. Tarrataca Chapter 14 - Processor Structure and Function 97 / 115



Pipelining Pipeline Hazards

Loop Buffer

• As always in hardware: when performance is an issue use a cache ;)

• High-speed memory maintained by the IF stage of the pipeline

• Containing the n most recently fetched instructions;

• If a branch is to be taken:

• Pipeline hardware checks if target is in cache;

• If so: next instruction is fetched from the buffer;

• No need to fetch instruction from main memory;

• Well suited to dealing with loops, or iterations. Why?:

• Temporal and spatial locality is ideally suited for cache systems.

L. Tarrataca Chapter 14 - Processor Structure and Function 98 / 115



Pipelining Pipeline Hazards

Branch Prediction

Several possible techniques (1/3):

• Predict never taken - assume that the branch will not be taken and

continue to fetch instructions in sequence.

• p(working) < 50% (Source: [Lilja, 1988])

• Predict always taken - assume that the branch will be taken and always

fetch from the branch target.

• p(working) > 50% (Source: [Lilja, 1988])

L. Tarrataca Chapter 14 - Processor Structure and Function 99 / 115



Pipelining Pipeline Hazards

Several possible techniques (2/3):

• Predict by opcode - Some opcodes are more likely than others to lead to

branch targets.

• Processor assumes that:

• Branch will be taken for certain opcodes;

• Branch will not be taken for other opcodes;

• p(working) > 75% (Source: [Lilja, 1988])

L. Tarrataca
Chapter 14 - Processor Structure and Function 100 /

115



Pipelining Pipeline Hazards

Several possible techniques (3/3):

• Branch Taken / not taken switch

• Idea: use a single bit to reflect that last thing that happened (JMP or ¬JMP);

• Very limiting...

• Branch history table.

• Idea: counters for each branching instruction:

• Real time decision based on history;

• If ≥ 50% time branch jumps then load branch targets;

• Otherwise continue sequentially.

L. Tarrataca
Chapter 14 - Processor Structure and Function 101 /

115



Overclocking

Overclocking

Lets discuss an additional performance technique:

• Always a fun topic =)

In reality we are going to discuss two topics:

• Overclocking;

• Reasons why CPU frequency ceased to grow.

L. Tarrataca
Chapter 14 - Processor Structure and Function 102 /

115



Overclocking

• Lets look again at the instruction pipeline

• This figure is a little bit deceptive, a better representation is:

L. Tarrataca
Chapter 14 - Processor Structure and Function 103 /

115



Overclocking

• Some stages of the pipeline execute faster than the clock speed;

• Limited by the stage that lasts the longest time, i,e.: τ ,

• There is also a safety margin in terms of clock speed and the longest stage:

• To deal with operating conditions outside of a manufacturer’s control:

• Ambient temperature;

• Fluctuations in operating voltage;

• and some others...

L. Tarrataca
Chapter 14 - Processor Structure and Function 104 /

115



Overclocking

Overclock idea:

• Abdicate of this safety margin and increase the clock speed

• Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas?

L. Tarrataca
Chapter 14 - Processor Structure and Function 105 /

115



Overclocking

Overclock idea (1/2):

• Abdicate of this safety margin and increase the clock speed

• Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas?

Not always... Why? Any ideas?

L. Tarrataca
Chapter 14 - Processor Structure and Function 106 /

115



Overclocking

Overclock idea (2/2):

Not always... Why? Any ideas?

• In the figure above the clock speed is too fast for stage 3...

• Increase frequency too much:

• Some pipeline stages will not have time to end...

• Performance will stop improving...

L. Tarrataca
Chapter 14 - Processor Structure and Function 107 /

115



Overclocking

Besides pipeline problems can you think of any other problems with

overclocking?

L. Tarrataca
Chapter 14 - Processor Structure and Function 108 /

115



Overclocking

Besides pipeline problems can you think of any other problems with

overclocking?

• Increasing the frequency is done by increasing the voltage to the system.

• f ∝ V

• P ∝ V 3

• Changes in voltage lead to a cubic increase of power!!!!

• And what is the physical manifestation of power? Heat dissipation.

L. Tarrataca
Chapter 14 - Processor Structure and Function 109 /

115



Overclocking

• Elevated heat degrades the useful-life of the silicon used in chips;

• If heat is not properly managed:

• Only a matter of time until the processor goes kaputz;

• Even with built-in sensors...:

• Video 1

• Video 2

• Thus the need for good refrigeration systems.

L. Tarrataca
Chapter 14 - Processor Structure and Function 110 /

115

https://www.youtube.com/watch?v=ssL1DA_K0sI
https://www.youtube.com/watch?v=Ggh2Mu4Qkgk


Overclocking

• Heat: reason why CPU frequency has stopped growing;

• Yet we still have had performance gains. Why?

• Parallel computing FTW =)

• One final question?

Why do logical processors emit heat?

L. Tarrataca
Chapter 14 - Processor Structure and Function 111 /

115



Overclocking

• This is the same reason why the CPU frequency has stopped growing some

years ago;

• Yet we still have had performance gains. Why?

• Parallel computing FTW =)

• One final question?

Why do logical processors emit heat?

• Landauer’s principle - irreversible computation leads to heat dissipation as a

direct logical consequence of the underlying reversibility of physics!

L. Tarrataca
Chapter 14 - Processor Structure and Function 112 /

115



Where to focus your study

Where to focus your study

After this class you should be able to:

• Explain what a pipeline is and the underlying mechanics.

• Understand how pipelines can improve performance.

• Understand the issues influencing pipeline performance;

• Understand how to tackle these issues.

L. Tarrataca
Chapter 14 - Processor Structure and Function 113 /

115



Where to focus your study

Less important to know how these solutions were implemented:

• details of specific pipelines from the x86 processor family.

Your focus should always be on the building blocks for developing a solution

=)

L. Tarrataca
Chapter 14 - Processor Structure and Function 114 /

115



References

References I

Lilja, D. J. (1988).

Reducing the branch penalty in pipelined processors.

Computer, 21(7):47--55.

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.

L. Tarrataca
Chapter 14 - Processor Structure and Function 115 /

115


	Processor Organization
	Register Organization
	User-visible Registers
	Control and Status Registers

	Instruction Cycle
	Pipelining
	Instruction Stages
	Simplifications
	Possible pipeline disruptions
	Design issues
	Pipeline Performance
	Pipeline Hazards
	Pipeline Hazards

	Overclocking
	Where to focus your study
	References

