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Processor Organization

Processor Organization

Remember this?

Figure: Instruction cycle state diagram (Source: [Stallings, 2015])
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Processor Organization

Requirements placed on the processor:

• Fetch instruction: reads an instruction from memory;

• Interpret instruction: determines what action to perform;

• Fetch data: if necessary read data from memory or an I/O module.

• Process data: If necessary perform arithmetic / logical operation on data.

• Write data: If necessary write data to memory or an I/O module.
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Processor Organization

To do these things the processor needs to:

• store some data temporarily

• remember the location of the next instruction;

while an instruction is being executed:

• In other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?
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Processor Organization

To do these things the processor needs to:

• store some data temporarily

• remember the location of the next instruction;

while an instruction is being executed:

• In other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?

• Registers =)
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Processor Organization

We also need other components:

Figure: CPU with the system BUS (Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 9 / 115



Processor Organization

We will talk about it in Chapter 19, but:

What do you think the control unit does? Any ideas?
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Processor Organization

Major components of the processor:

• Arithmetic and Logic Unit (ALU):

• Performs computation or processing of data

• Control Unit:

• Moves data and instructions in and out of the processor;

• Also controls the operation of the ALU;

• Registers:

• Used as internal memory;

• System Bus:

• Acting as a pathway between processor, memory and I/O module(s);
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Processor Organization

A more detailed view:

Figure: Internal structure of the CPU(Source: [Stallings, 2015])
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Processor Organization

Besides the usual elements the previous figure also includes:

• Internal CPU bus:

• Needed to transfer data between the various registers and the ALU;

• Logic control paths;

• Needed to specify which operations to perform;
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Register Organization

Register Organization

Registers in the processor perform two roles:

• User-visible registers:

• Used as internal memory by the assembly language programmer;

• Control and status registers:

• Used to control the operation of the processor;

• Used to check the status of the processor / ALU;

Lets have a look at each one of these =)
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Register Organization User-visible Registers

User-visible Registers

May be referenced by the programmer, categorized into:

• General purpose

• Data

• Address

• Condition codes

What do you think each one of these does? Any ideas?
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Register Organization User-visible Registers

General-purpose registers

Can be assigned to a variety of functions by the programmer:

• Memory reference & backup;

• Register reference & backup;

• Data reference & backup;

• These are the ones you use in the laboratory =)
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Register Organization User-visible Registers

Data registers

May be used only to hold data and cannot hold addresses:

• Must be able to hold values of most data types;

• Some machines allow two contiguous registers to be used:

• For holding double-length values.
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Register Organization User-visible Registers

Address Registers

Used to hold addresses, e.g.:

• Stack Pointer

• Program Counter

• Index Registers

Must be at least long enough to hold the largest address.
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Register Organization User-visible Registers

Condition Codes

Hold condition codes (a.k.a. flags):

• Flags are bits set by processor as the result of operations

• E.g.: an arithmetic operation may produce:

• a positive result;

• a negative result;

• a zero result;

• an overflow result.

Condition code bits are collected into one or more control registers:
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Register Organization User-visible Registers

In some machines:

• Interruption results in all user-visible registers being saved;

• These are then restored on return;

• Allows each subroutine to use the user-visible registers independently;

On other machines:

• responsibility of the programmer to:

• save the contents of user- visible registers prior to a subroutine call;
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Register Organization User-visible Registers

Regarding the previous slide:

What are the advantages / disadvantages of using one method instead

of the other? Any ideas?

Guess what is the method used by the P3 simulator? =P
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Register Organization Control and Status Registers

Control and Status Registers

Employed to control the operation of the processor:

• Mostly not visible to the user;

Do you know any registers of this type? Any ideas?
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Register Organization Control and Status Registers

Control and Status Registers

Do you know any registers of this type? Any ideas?

• Program counter (PC): Contains instruction address to be fetched;

• Instruction Register (IR): Contains last instruction fetched;

• Memory address register (MAR): Contains memory location address;

• Memory buffer register (MBR): Contains:

• a word of data to be written to memory;

• a word of data read from memory.
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Register Organization Control and Status Registers

In general terms:

• Processor updates PC after each instruction fetch;

• A branch or skip instruction will also modify the contents of the PC;

• The fetched instruction is loaded into an IR

• Data are exchanged with memory using the MAR and MBR, e.g.:

• MAR connects directly to the address bus

• MBR connects directly to the data bus
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Register Organization Control and Status Registers

The four registers just mentioned are used for:

• Data movement between processor and memory;

• Within the processor, data must be presented to the ALU for processing:

• ALU may have direct access to the MBR and user-visible registers;

• Alternatively:

• There may be additional buffering registers within ALU;

• These registers serve as input and output registers for the ALU;

• These registers exchange data with the MBR and user-visible registers.
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Register Organization Control and Status Registers

Many processors include a program status word (PSW) register:

• Contains condition codes plus other status information

• Common fields or flags include the following:

• Sign: Sign bit of the result of the last arithmetic operation;

• Zero: when the result is 0;

• Carry: Set if an operation resulted in a carry/borrow bit;

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to enable or disable interrupts.
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Instruction Cycle

Instruction Cycle

Lets go back to this:

Figure: Instruction cycle state diagram (Source: [Stallings, 2015])
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Instruction Cycle

Now that we know more about the inner workings of:

• CPU;

• Registers;

• Bus

What is the information flow during the fetch cycle?

What is the information flow during the execute cycle?

What is the information flow during the interruption cycle?
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Instruction Cycle

Lets start with the first question:

What is the information flow during the fetch cycle? Any ideas?
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Instruction Cycle

The flow of data during the instruction fetch cycle:

Figure: Data Flow: FetchCycle(Source: [Stallings, 2015])

L. Tarrataca Chapter 14 - Processor Structure and Function 30 / 115



Instruction Cycle

The flow of data during the instruction fetch cycle:

1 PC contains the address of the next instruction to be fetched;

2 Address is moved to the MAR and placed on the address bus;

3 Control unit requests a memory read;

4 Result is:

• placed on the data bus;

• copied into the MBR;

• then moved to the IR.

5 Meanwhile, the PC is incremented by 1;
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Instruction Cycle

Once the fetch cycle is over, control unit examines IR:

1 to determine if it contains an operand specifier using indirect addressing;

2 If so, an indirect cycle is performed:

Figure: Data flow: indirect cycle (Source: [Stallings, 2015])
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Instruction Cycle

The indirect addressing cycle:

• Bits of the MBR containing the address are transferred to the MAR;

• Control unit then requests a memory read:

• to get the desired address of the operand into the MBR.
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Instruction Cycle

What is the information flow during the execute cycle? Any ideas?
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Instruction Cycle

The execute cycle takes many forms:

• Depending on the operation to be performed...

• May involve:

• transferring data among registers

• read or write from memory or I/O

• and/or the invocation of the ALU.
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Instruction Cycle

What is the information flow during the interruption cycle? Any ideas?
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Instruction Cycle

Then comes the interrupt cycle:

Figure: DataFlow: InterruptCycle (Source: [Stallings, 2015])
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Instruction Cycle

The interruption cycle:

• Contents of the PC must be saved;

• Thus the contents of the PC are

• Transferred to the MBR to be written into memory.

• Special memory location is loaded into the MAR:

• E.g.: stack pointer (SP)

• PC is loaded with the address of the interrupt routine.

L. Tarrataca Chapter 14 - Processor Structure and Function 38 / 115



Instruction Cycle

Now that we have seen how:

• Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

• Always a fun topic =)
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Instruction Cycle

Now that we have seen how:

• Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

• Always a fun topic =)

What are some of the techniques to increase processor performance?
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Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?
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• Faster number of clock ticks per unit of time.
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Instruction Cycle
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Instruction Cycle

Some examples:
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Instruction Cycle
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Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

• Physical size of the processor. Why?

• Electrical signals travel shorter distances;
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Instruction Cycle

Some examples:

• Increase Frequency (Hz). Why?

• Faster number of clock ticks per unit of time.

• Cache-levels. Why?

• Reduce number of read / writes from high latency memory.

• Multi-core architecture. Why?

• Parallelize instruction set;

• Physical size of the processor. Why?

• Electrical signals travel shorter distances;

• Transistor switch time decreases.
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Instruction Cycle

Instruction Pipelining

Rest of the presentation focus will be on pipeline strategies!

• Another method to improve performance =)

• Relates directly to:

• Instruction cycle;

• Processor organization / function;

First, what is a pipeline? Any ideas?

L. Tarrataca Chapter 14 - Processor Structure and Function 42 / 115



Pipelining

Pipelining

Similar to an assembly line in a manufacturing plant.

• Product goes through various stages of production;

• Products at various stages can be worked on simultaneously;

Figure: (Source: Wikipedia)
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Pipelining

Equivalent concept in computation: pipelining

• New inputs are accepted at one end...

• ...before previously accepted inputs appear as outputs at the other end.

In practice, what does this mean? Any ideas?
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Pipelining Instruction Stages

Instruction Stages

How can we apply the concept of pipelining to computer instructions?

Figure: Instruction Cycle State Diagram (Source: [Stallings, 2015])
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Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:
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Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:
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• After executing operators from memory for one instruction:
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Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After executing operators from memory for one instruction:

• Begin executing operators for another instruction
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Pipelining Instruction Stages

Several Pipelining opportunities exist. Any ideas?

• After fetching data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After writing data from memory for one instruction:

• Begin fetching memory data for another instruction;

• After executing operators from memory for one instruction:

• Begin executing operators for another instruction

• and so on...
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Pipelining Instruction Stages

Consider the following instruction stages:

• Fetch instruction (FI): Read the next instruction into a buffer;

• Decode instruction (DI): Determine the opcode;

• Calculate operands (CO): Calculate the address of each operand.

• Fetch operands (FO): Fetch each operand from memory;

• Execute instruction (EI): Perform the indicated operation;

• Write operand (WO): Store the result in memory.
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Pipelining Instruction Stages

With this decomposition:

• Various stages will be of nearly equal duration.

• Rest of the slides assume equal duration.
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Pipelining Instruction Stages

Equal duration assumption allows for the following pipeline:

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])
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Pipelining Instruction Stages

What is the total number of time units required without the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])
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Pipelining Instruction Stages

What is the total number of time units required without the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

• 9 instructions, each with 6 time units implies 54 time units;
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Pipelining Instruction Stages

What is the total number of time units required with the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])
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Pipelining Instruction Stages

What is the total number of time units required with the pipeline?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

• 14 time units;

L. Tarrataca Chapter 14 - Processor Structure and Function 53 / 115



Pipelining Instruction Stages

What was the total number of time units required before the pipeline?

• 9 instructions, each with 6 time units implies 54 time units;

What is the total number of time units required after the pipeline?

• 9th instruction will start executing at time unit 9 and will last 6 time units;

• Total time: 9 + 6 − 1 = 14

• Performance ratio: 54/14 = 4.15 faster
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Pipelining Instruction Stages

Previous example yielded a 4.15 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas?
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Pipelining Instruction Stages

Previous example yielded a 4.15 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas?

• No... =’(

• Lets see why...
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Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

• Each stage lasts an equal amount of time:
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Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?
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Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;
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Pipelining Simplifications

Pipeline example assumed several things (2/3):

• No memory-bus conflicts. What does this mean?

• FI, FO and WO stage involve a memory access;

• Diagram implies that all these accesses can occur simultaneously;

• Most memory systems will not permit that.

• However it may still be possible to do. How?

• Desired value may be in cache;

• FO and WO stages may not be performed (NULL values).

L. Tarrataca Chapter 14 - Processor Structure and Function 58 / 115



Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?
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Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;
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Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;

• Up to the compiler and OS to detect and avoid these cases.
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Pipelining Simplifications

Pipeline example assumed several things (3/3):

• No memory-data conflicts. What does this mean?

• Several instructions can act on the same region of memory;

• Up to the compiler and OS to detect and avoid these cases.

• Most of the time memory conflicts will not slow down the pipeline.
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Pipelining Possible pipeline disruptions

Possible pipeline disruptions

Lets have a look at events that may disrupt the pipeline:

Can you see any type of events that can disrupt the pipeline?

Any ideas?
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Pipelining Possible pipeline disruptions

What happens if we have a conditional instruction and jump to another

instruction?
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Pipelining Possible pipeline disruptions

What happens if we have a conditional instruction and jump to another

instruction?

• Conditional branch instruction can invalidate several instruction fetches!
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Pipelining Possible pipeline disruptions

• Conditional branch instruction can invalidate several instruction fetches!

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional

branch to instruction 15 (Source: [Stallings, 2015])
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Pipelining Possible pipeline disruptions

• There is no way for the pipeline to determine the conditional branch:

• Pipeline continues to load the next instructions as if no branching will occur;

• If no jump happens then we get the full benefit of the pipeline;

• Otherwise, we need to reload the pipeline with the subsequent instructions.
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Pipelining Possible pipeline disruptions

Can you think of any other mechanism that can disrupt the pipeline?
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Pipelining Possible pipeline disruptions

Can you think of any other mechanism that can disrupt the pipeline?

• The need to process hardware interruptions.
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Pipelining Possible pipeline disruptions

Figure: Six-Stage CPU Instruction Pipeline (Source: [Stallings, 2015])
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Pipelining Design issues

Design Issues

Instruction pipelining is a powerful technique for enhancing performance

• Requires careful design for optimum results with reasonable complexity.

• Elements to consider:

• Overhead of guaranteeing that the pipeline functions properly:

• moving data from buffer to buffer;

• preparing the system to transition to the next stage(s);

• Control logic required increases enormously with the number of stages;
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Pipelining Pipeline Performance

Pipeline Performance

Lets consider other issues:

How much time is required to move a set of instructions one stage through

the pipeline? Any ideas?
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Pipelining Pipeline Performance

Pipeline Performance

Cycle time τ of an instruction pipeline is the time needed to:

• Advance a set of instructions one stage through the pipeline:

τ = maxi [τi ] + d = τm + d, 1 ≤ i ≤ k

where:

• τi = time delay of the circuitry in the ith stage of the pipeline

• τm = maximum stage delay;

• k = number of stages in the instruction pipeline;

• d = delay needed to advance signals/data from one stage to the next.
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Pipelining Pipeline Performance

Pipeline Performance

Now that we know what the cycle time τ is:

How much time is required to execute n instructions in a pipeline with k

stages? Any ideas?
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Pipelining Pipeline Performance

Let Tk,n be:

• Time required for a pipeline with k stages to execute n instructions

Tk,n = [k + (n − 1)]τ

Explanation:

• k cycles stages to complete the execution of the first instruction;

• Remaining n − 1 instructions require n − 1 cycle stages.

• All these cycle stage take time τ
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Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a

pipeline? Any ideas?
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Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a

pipeline? Any ideas?

What is the instruction cycle time for a non-pipeline processor? Any

ideas?
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Pipelining Pipeline Performance

What is the instruction cycle time for a non-pipeline processor?

Assume for the non-pipelined processor the following:

• Instruction cycle time is k × t :

• Each instruction contains k stages of t time;

• Let Twp be the time without pipeline:

• For n instructions the total time is n × k × t

• Twp = nkt
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Pipelining Pipeline Performance

Comparison of Twp and Tk,n:

• Tk,n

• Twp

• Speedup

Sk =
Twp

Tk,n
= nk

k+(n−1)

Figure: Number of instructions (log scale). (Source:

[Stallings, 2015])

What are the main conclusions that you can draw from this comparison?

L. Tarrataca Chapter 14 - Processor Structure and Function 76 / 115



Pipelining Pipeline Performance

What are the main conclusions that you can draw from this comparison?

• Increase number of pipeline stages: increase speedup potential

• However:

• Speedup increases costs;

• Delays between stages increases;

• Stages to flush also increase in case of a disruption;
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Pipelining Pipeline Hazards

Pipeline Hazards

Besides disruption pipelines are also susceptible to hazards:

What are pipeline hazards? Any ideas?
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Pipelining Pipeline Hazards

Pipeline Hazards

What are pipeline hazards?

• Hazards do not permit continued pipeline execution;
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas

• when two (or more) instructions in the pipeline need the same resource;
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

• Resource Hazards:

What are resource hazards? Any ideas

• when two (or more) instructions in the pipeline need the same resource;

• Resource examples: bus, memory, cache, etc...
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

• Data Hazards:

What are data hazards? Any ideas
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

• Data Hazards:

What are data hazards? Any ideas

• when there is a conflict in the access of an operand location;
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas

• when a wrong decision is made on a branch prediction;
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

• Control Hazards:

What are control hazards? Any ideas

• when a wrong decision is made on a branch prediction;

• Instructions must be discarded.
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Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution, e.g.:

• Resource Hazards:

• when two (or more) instructions in the pipeline need the same resource;

• Resource examples: bus, memory, cache, etc...

• Data Hazards:

• when there is a conflict in the access of an operand location;

• Control Hazards:

• when a wrong decision is made on a branch prediction;

• Instructions must be discarded.
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Pipelining Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:

What can be done to solve this issue? Any ideas?
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Pipelining Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:

• Instructions must be executed in serial for a portion of the pipeline.

• Example: IFs, FOs and WOs must be performed one at a time.

Figure: Example of Resource Hazard. (Source: [Stallings, 2015])

• We need to idle the instruction causing the hazard.
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Pipelining Pipeline Hazards

Data Hazards

Occurs when there is a conflict in the access of an operand location:

• Two sequential instructions access the same memory / register:

• No pipeline → no problem:

• If the two instructions are executed in strict sequence, no problem occurs.

• Pipeline → maybe a problem:

• Depending on the way the operand is updated;

• Lets have a look at this update problem;
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Pipelining Pipeline Hazards

Data Hazards

Figure: Example of data hazard. (Source:

[Stallings, 2015])

Figure: The corresponding pipeline for the data

hazard. (Source: [Stallings, 2015])

• ADD instruction does not update register EAX until the end of stage 5;

• SUB instruction needs that value at FO (stage 3, clock cycle 4);

What can be done to solve this problem? Any ideas?
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Pipelining Pipeline Hazards

Data Hazards

Figure: Example of data hazard. (Source:

[Stallings, 2015])

Figure: The corresponding pipeline for the data

hazard. (Source: [Stallings, 2015])

• ADD instruction does not update register EAX until the end of stage 5;

• SUB instruction needs that value at FO (stage 3, clock cycle 4);

• Solution: Pipeline must idle for two clocks cycles.
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Pipelining Pipeline Hazards

Now that we know more about data hazards:

Are all data hazards equal? Any ideas?
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Pipelining Pipeline Hazards

Now that we know more about data hazards:

Are all data hazards equal? Any ideas?

There are three types of data hazards:

• Read after write (RAW)

• Write after read (WAR)

• Write after write (WAW)

What do you think each one of these means? Any ideas?
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Pipelining Pipeline Hazards

Read after write (RAW)

1 Instruction modifies a register or memory location

2 Succeeding instruction reads the data in that memory or register location.

3 Hazard occurs if:

• Data read takes place before the write operation is complete.
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Pipelining Pipeline Hazards

Write after read (WAR)

1 Instruction reads a register or memory location;

2 Succeeding instruction writes to the location;

3 Hazard occurs if:

• Write operation completes before the read operation is complete;
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Pipelining Pipeline Hazards

Write after write (WAW)

1 Two instructions both write to the same location;

2 Hazard occurs if:

• Write operations take place in the reverse order of the intended sequence.
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Pipelining Pipeline Hazards

Control Hazards

Control hazards, a.k.a. a branch hazard, occur when:

• Pipeline makes wrong decision on a branch prediction:

• Instructions must be discarded...

• Wasted work...

So what can we do to mitigate control hazards? Any ideas?
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Pipelining Pipeline Hazards

So what can we do to mitigate control hazards? Any ideas?

Myriad of strategies exist e.g.:

• Multiple streams;

• Prefetch branch target;

• Loop buffer;

• Branch prediction;

• Delayed branch;

Lets have a look at these =)
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Pipelining Pipeline Hazards

Multiple streams

• Makes use of multiple pipelines:

• One pipeline loads the jump sequence;

• Another pipeline loads the non-jump sequence;

• Brute-force approach:

• Additional branch instructions may enter each pipeline;

• Search space grows exponentially quick =(

• Despite these drawbacks: can still improve performance.
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Pipelining Pipeline Hazards

Prefetch Branch Target

• When a conditional branch is recognized:

• Target is prefetched, in addition to the instruction following the branch.

• If the branch is taken: target has already been prefetched;

• Otherwise: instruction following the branch was also fetched.
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Pipelining Pipeline Hazards

Loop Buffer

• As always in hardware: when performance is an issue use a cache ;)

• High-speed memory maintained by the IF stage of the pipeline

• Containing the n most recently fetched instructions;

• If a branch is to be taken:

• Pipeline hardware checks if target is in cache;

• If so: next instruction is fetched from the buffer;

• No need to fetch instruction from main memory;

• Well suited to dealing with loops, or iterations. Why?:

• Temporal and spatial locality is ideally suited for cache systems.
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Pipelining Pipeline Hazards

Branch Prediction

Several possible techniques (1/3):

• Predict never taken - assume that the branch will not be taken and

continue to fetch instructions in sequence.

• p(working) < 50% (Source: [Lilja, 1988])

• Predict always taken - assume that the branch will be taken and always

fetch from the branch target.

• p(working) > 50% (Source: [Lilja, 1988])
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Pipelining Pipeline Hazards

Several possible techniques (2/3):

• Predict by opcode - Some opcodes are more likely than others to lead to

branch targets.

• Processor assumes that:

• Branch will be taken for certain opcodes;

• Branch will not be taken for other opcodes;

• p(working) > 75% (Source: [Lilja, 1988])
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Pipelining Pipeline Hazards

Several possible techniques (3/3):

• Branch Taken / not taken switch

• Idea: use a single bit to reflect that last thing that happened (JMP or ¬JMP);

• Very limiting...

• Branch history table.

• Idea: counters for each branching instruction:

• Real time decision based on history;

• If ≥ 50% time branch jumps then load branch targets;

• Otherwise continue sequentially.
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Overclocking

Overclocking

Lets discuss an additional performance technique:

• Always a fun topic =)

In reality we are going to discuss two topics:

• Overclocking;

• Reasons why CPU frequency ceased to grow.
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Overclocking

• Lets look again at the instruction pipeline

• This figure is a little bit deceptive, a better representation is:
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Overclocking

• Some stages of the pipeline execute faster than the clock speed;

• Limited by the stage that lasts the longest time, i,e.: τ ,

• There is also a safety margin in terms of clock speed and the longest stage:

• To deal with operating conditions outside of a manufacturer’s control:

• Ambient temperature;

• Fluctuations in operating voltage;

• and some others...
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Overclocking

Overclock idea:

• Abdicate of this safety margin and increase the clock speed

• Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas?
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Overclocking

Overclock idea (1/2):

• Abdicate of this safety margin and increase the clock speed

• Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas?

Not always... Why? Any ideas?
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Overclocking

Overclock idea (2/2):

Not always... Why? Any ideas?

• In the figure above the clock speed is too fast for stage 3...

• Increase frequency too much:

• Some pipeline stages will not have time to end...

• Performance will stop improving...

L. Tarrataca
Chapter 14 - Processor Structure and Function 107 /

115



Overclocking

Besides pipeline problems can you think of any other problems with

overclocking?
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Overclocking

Besides pipeline problems can you think of any other problems with

overclocking?

• Increasing the frequency is done by increasing the voltage to the system.

• f ∝ V

• P ∝ V 3

• Changes in voltage lead to a cubic increase of power!!!!

• And what is the physical manifestation of power? Heat dissipation.
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Overclocking

• Elevated heat degrades the useful-life of the silicon used in chips;

• If heat is not properly managed:

• Only a matter of time until the processor goes kaputz;

• Even with built-in sensors...:

• Video 1

• Video 2

• Thus the need for good refrigeration systems.
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Overclocking

• Heat: reason why CPU frequency has stopped growing;

• Yet we still have had performance gains. Why?

• Parallel computing FTW =)

• One final question?

Why do logical processors emit heat?
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Overclocking

• This is the same reason why the CPU frequency has stopped growing some

years ago;

• Yet we still have had performance gains. Why?

• Parallel computing FTW =)

• One final question?

Why do logical processors emit heat?

• Landauer’s principle - irreversible computation leads to heat dissipation as a

direct logical consequence of the underlying reversibility of physics!
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Where to focus your study

Where to focus your study

After this class you should be able to:

• Explain what a pipeline is and the underlying mechanics.

• Understand how pipelines can improve performance.

• Understand the issues influencing pipeline performance;

• Understand how to tackle these issues.
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Where to focus your study

Less important to know how these solutions were implemented:

• details of specific pipelines from the x86 processor family.

Your focus should always be on the building blocks for developing a solution

=)
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