
1

Sumber dari : https://www2.southeastern.edu/Academics/Faculty/galkadi/285/notes/Chapter3.doc

EVOLUTION PROCESSES

DISUSUN OLEH : MALABAY

https://www2.southeastern.edu/Academics/Faculty/galkadi/285/notes/Chapter3.doc

2

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tracking

delivery

support

f eedback

Prescriptive Process Models

CHAPTER OVERVIEW AND COMMENTS

This intent of this chapter is to present process models used by professional software
developers to manage large-scale software projects. No software process works well for

every project. However, every project needs to conform to some systematic process in order

to manage software development activities that can easily get out of control. Software
processes help to organize the work products that need to be produced during a software

development project. Ultimately the best indicator of how well a software process has

worked is the quality of the deliverables produced. A well-managed process will produce
high quality products on time and within budget.

3.1 Prescriptive Models

Many people (and not a few professors) believe that prescriptive models are ―old school‖—
ponderous, bureaucratic document-producing machines.

 3.2 The Waterfall Model

Many people dismiss the waterfall as obsolete and it certainly does have problems. But this

model can still be used in some situations.

Among the problems that are sometimes encountered when the waterfall model is applied

are:

 A Real project rarely follows the sequential flow that the model proposes. Change
can cause confusion as the project proceeds.

 It is difficult for the customer to state all the requirements explicitly. The waterfall
model requires such demand.

 The customer must have patience. A working of the program will not be available
until late in the project time-span.

3

3.3 Incremental Process Models

The process models in this category tend to be among the most widely used (and effective)

in the industry.

3.3.1 The Incremental Model

The incremental model combines elements of the waterfall model applied in an iterative

fashion. The model applies linear sequences in a staggered fashion as calendar time
progresses.

Each linear sequence produces deliverable ―increments‖ of the software. (Ex: a Word

Processor delivers basic file mgmt., editing, in the first increment; more sophisticated
editing, document production capabilities in the 2nd increment; spelling and grammar

checking in the 3rd increment.

When an increment model is used, the 1st increment is often a core product. The core product
is used by the customer.

As a result of use and / or evaluation, a plan is developed for the next increment.

The plan addresses the modification of the core product to better meet the needs of the
customer and the delivery of additional features and functionality.

The process is repeated following the delivery of each increment, until the complete product

is produced.

If the customer demands delivery by a date that is impossible to meet, suggest delivering

one or more increments by that date and the rest of the Software later.

4

3.3.1 The RAD Model

Rapid Application Development (RAD) is an incremental software process model that

emphasizes a short development cycle.

RAD is a ―high-speed‖ adaptation of the waterfall model, in which rapid development is
achieved by using a component based construction approach.

If requirements are well understood and project scope is constrained, the RAD process

enables a development team to create a fully functional system within a short period of time.

What are the drawbacks of the RAD model?

1. For large, but scalable projects, RAD requires sufficient human resources to create

the right number of RAD teams.
2. If developers and customers are not committed to the rapid-fire activities necessary

to complete the system in a much abbreviated time frame, RAD project will fail.

3. If a system cannot properly be modularized, building the components necessary for

RAD will be problematic.

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

increment # 1

increment # 2

delivery of

1st increment

delivery of

2nd increment

delivery of

nt h increment

increment # n

project calendar t ime

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign
c ode

t es t

5

Communicat ion

Planning

Modeling
business modeling

dat a modeling

process modeling

Const ruct ion
component reuse

aut omat ic code

 generat ion

t est ing

Deployment

60 - 90 days

Team # 1

Modeling
business m odel ing

dat a m odel ing

process m odel ing

Const ruct ion
com ponent reuse

aut om at ic code

 generat ion

t est ing

M o d e lin g
business m odeling

data m odeling

process m odeling

Co n st ru ct io n
com ponent reuse

autom at ic code

 generat ion

test ing

Team # 2

Team # n

int egrat ion

delivery

feedback

6

3.4 Evolutionary Process Models

Software evolves over a period of time; business and product requirements often
change as development proceeds, making a straight-line path to an end product

unrealistic.

Software Engineering needs a process model that has been explicitly designed to
accommodate a product that evolves over time.

Evolutionary process models are iterative. They produce increasingly more

complete versions of the Software with each iteration.

3.4.1 Prototyping

Customers often define a set of general objectives for Software, but doesn’t identify

detailed input, processing, or input requirements.

Prototyping paradigm assists the Software engineering and the customer to better
understand what is to be built when requirements are fuzzy.

7

Communicat ion

Quick p lan

Const ruct ion
of

prot ot ype

Mode ling

 Quick de sign

Delivery

& Feedback

Deployment

8

The prototyping paradigm begins with communication where requirements and goals

of Software are defined.

Prototyping iteration is planned quickly and modeling in the form of quick design

occurs.

The quick design focuses on a representation of those aspects of the Software that will

be visible to the customer ―Human interface‖.

The quick design leads to the Construction of the Prototype.

The prototype is deployed and then evaluated by the customer.

Feedback is used to refine requirements for the Software.

Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while

enabling the developer to better understand what needs to be done.

The prototype can serve as the ―first system‖. Both customers and developers like

the prototyping paradigm as users get a feel for the actual system, and developers
get to build Software immediately. Yet, prototyping can be problematic:

1. The customer sees what appears to be a working version of the Software,
unaware that the prototype is held together ―with chewing gum.

―Quality, long-term maintainability.‖ When informed that the product is

a prototype, the customer cries foul and demands that few fixes be

applied to make it a working product. Too often, Software development

management relents.

2. The developer makes implementation compromises in order to get a
prototype working quickly. An inappropriate O/S or programming

language used simply b/c it’s available and known. After a time, the

developer may become comfortable with these choices and forget all the
reasons why they were inappropriate.

The key is to define the rules of the game at the beginning. The customer and the

developer must both agree that the prototype is built to serve as a mechanism for

defining requirements.

3.4.2 The Spiral Model

The spiral model is an evolutionary Software process model that couples the iterative

nature of prototyping with the controlled and systematic aspects of the waterfall

model.

It has two distinguishing features:

a. A cyclic approach for incrementally growing a system’s degree of

definition and implementation while decreasing its degree of risk.

b. A set of anchor point milestones for ensuring stakeholder commitment
to feasible and mutually satisfactory solutions.

9

Using the spiral model, Software is developed in a series of evolutionary releases.

During early stages, the release might be a paper model or prototype.

During later iterations, increasingly more complete versions of the engineered
system are produced.

A spiral model is divided into a set of framework activities divided by the Software
engineering team.

As this evolutionary process begins, the Software team performs activities that are
implied by a circuit around the spiral in a clockwise direction, beginning at the

center.

Risk is considered as each revolution is made.

Anchor-point milestones – a combination of work products and conditions that are
attained along the path of the spiral- are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a
prototype and then progressively more sophisticated versions of the Software.

Each pass through the planning region results in adjustments to the project plan.

Cost and schedule are adjusted based on feedback derived from the customer after
delivery.

Unlike other process models that end when Software is delivered, the spiral model
can be adapted to apply throughout the life of the Software.

10

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

11

3.4.3 The concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, can be
represented schematically as a series of framework activities, Software engineering

actions of tasks, and their associated states.

The concurrent model is often more appropriate for system engineering projects
where different engineering teams are involved.

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivit y

represents the state

of a software engineering

activity or task

12

Figure above provides a schematic representation of one Software engineering task within

the modeling activity for the concurrent process model. The activity – modeling- may be in
any one of the states noted at any given time.

All activities exist concurrently but reside in different states.

For example, early in the project the communication activity has completed its first iteration

and exists in the awaiting changes state. The modeling activity which existed in the none
state while initial communication was completed now makes a transition into

underdevelopment state.

If, however, the customer indicates the changes in requirements must be made, the modeling

activity moves from the under development state into the awaiting changes state.

The concurrent process model defines a series of events that will trigger transitions from
state to state for each of the Software engineering activities, actions, or tasks.

Specialized Process Models

3.5.1 Component Based Development

Commercial off-the-shelf (COTS) Software components, developed by vendors who offer

them as products, can be used when Software is to be built. These components provide

targeted functionality with well-defined interfaces that enable the component to be
integrated into the Software.

The component-based development model incorporates many of the characteristics of the spiral

model.

The component-based development model incorporates the following steps:

 Available component-based products are researched and evaluated for the
application domain in question.

 Component integration issues are considered.

 Software architecture is designed to accommodate the components.

 Components are integrated into the architecture.

 Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to Software reuse, and reusability provides

Software engineers with a number of measurable benefits.

3.5.1 The Formal Methods Model

13

The Formal Methods Model encompasses a set of activities that leads to formal

mathematical specifications of Software.

Formal methods enable a Software engineer to specify, develop, and verify a computer-

based system by applying a rigorous, mathematical notation.

A variation of this approach, called clean-room Software engineering is currently applied by

some software development organizations.

http://www.sei.cmu.edu/str/descriptions/cleanroom.html

Although not a mainstream approach, the formal methods model offers the promise of
defect-free Software. Yet, concern about its applicability in a business environment has been

voiced:

 The development of formal models is currently quite time-consuming and expensive.

 B/C few software developers have the necessary background to apply formal
methods, extensive training is required.

 It is difficult to use the methods as a communication mechanism for technically
unsophisticated customers.

3.5.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software
invariably implement a set of localized features, functions, and information content. For

further information read book page 61.

3.6 The Unified Process

A ―use-case driven, architecture-centric, iterative and incremental‖ software process closely

aligned with the Unified Modeling Language (UML).

http://www.jeckle.de/files/uniproc.pdf, http://www-01.ibm.com/software/awdtools/rup/

The UP is an attempt to draw on the best features and characteristics of conventional
software process models, but characterize them in a way that implements many of the best

principles of agile software development.

The UP recognizes the importance of customer communication and streamlined methods for
describing the customer’s view of a system.

It emphasizes the important role of software architecture and ―helps the architect focus on

the right goals, such as understandability, reliance to future changes, and reuse.‖

http://www.sei.cmu.edu/str/descriptions/cleanroom.html
http://www.jeckle.de/files/uniproc.pdf
http://www-01.ibm.com/software/awdtools/rup/

14

soft ware increment

Release

Incept ion

Elaborat ion

const ruct ion

t ransit ion

product ion

UML provides the necessary technology to support Object Oriented Software Engineering

practice, but it doesn’t provide the process framework to guide project teams in their
application of the technology.

The UML developers developed the Unified Process, a framework Object Oriented Software

Engineering using UML.

3.6.2 Phases of the Unified Process

The figure below depicts the phases of the UP and relates them to the generic activities.

The Inception phase of the UP encompasses both customer communication and planning

activities.

By collaborating with the customer and end-users, business requirements for the software

are identified, a rough architecture for the system is proposed, and a plan for the iterative,

incremental nature of the ensuing project is developed.

A use-case describes a sequence of actions that are performed by an actor (person, machine,
another system) as the actor interacts with the Software.

The elaboration phase encompasses the customer communication and modeling activities of

the generic process model. Elaboration refines and expands the preliminary use-cases that
were developed as part of the inception phase and expands the architectural representation

15

Incept ion Elaborat ion Const ruct ion Transit ion Product ion

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

to include five different views of the software - the use-case model, the analysis model, the

design model, the implementation model, and the deployment model.

The construction phase of the UP is identical to the construction activity defined for the

generic software process.

Using the architectural model as input, the construction phase develops or acquires the

software components that will make each use-case operational for end-users.

The transition phase of the UP encompasses the latter stages of the generic construction
activity and the first part of the generic deployment activity.

Software is given to end-users for beta testing, and user feedback reports both defects and
necessary changes.

At the conclusion of the transition phase, the software increment becomes a usable software
release ―user manuals, trouble-shooting guides, and installation procedures.)

The production phase of the UP coincides with the development activity of the generic
process.

The on-going use of the software is monitored, support for the operating environment is

provided and defect reports and requests for changes are submitted and evaluated.

A Software Engineering workflow is distributed across all UP phases.

16

http://www.uml.org/ is the UML® Resource Page. Please link to it and familiarize

yourself with it.

Sumber dari : http://www.eecs.qmul.ac.uk/~norman/SE-

pages/Supporting%20documents/Pressman/software%20engineering%20paradigms.doc.

·· Essential Software Engineering

 planning--tasks required to define resources, timelines, and other project-related information

 risk assessment--tasks required to assess both technical and management risks

 engineering--tasks required to build one or more repre-sentations of the application

 installation-tasks required to test, install, and provideuser support (e.g., documentation and
training)

 customer evaluation--tasks required to obtain customer feedback based on evaluation of the
software representa-tions created during the engineering stage and implement-
ed during the installation stage.

http://www.uml.org/
http://www.eecs.qmul.ac.uk/~norman/SE-pages/Supporting%20documents/Pressman/software%20engineering%20paradigms.doc
http://www.eecs.qmul.ac.uk/~norman/SE-pages/Supporting%20documents/Pressman/software%20engineering%20paradigms.doc

17

Management and technical tasks are defined for each of thetask regions. To accommodate the need

for an adaptiveprocess (e.g., one that adapts itself to the characteristics of the project at hand), the

evolutionary model should define a number of task sets. Each task set contains software engi-

neering tasks, milestones, and deliverables that have been chosen to meet the needs of different
types of projects.

Each task set must provide enough discipline to achieve high software quality. But at the same time,
it must not burden the project team with unnecessary work. Although any number of task sets can
be suggested,the following are typical:

Casual. The process model does not apply to the project, but selected tasks may be applied
informally and basic principles of software engineering must still be followed.

Disciplined. The process model will be applied for the project with a degree of discipline that will
ensure high quality and good application maintainability.

Rigorous. All process model tasks, documents, and mile- stones will be applied to the project. High
quality, good documentation, and long maintainability are paramount.

Quick reaction. The process model will be applied for the project, but because of extremely tight
time constraints, only those tasks essential to maintaining good quality will be applied. When
necessary, "back-filling" (e.g., develop-ing a complete set of documentation) will be accomplished

18

after the application is delivered to the customer.

