UJI NORMALITAS

Statistik Terbagi 2 :

- Statistik Deskriptif;
 Bertujuan untuk mengolah data agar menghasilkan gambaran distribusi frekuensi suatu variable
- b. Statistik Inferential; bertujuan untuk mengolah lebih dari 1 data (variabel) untuk menganalisis hubungan antara 2 data(variabel)

Statistif Inferential terbagi 2:

- 1. Statistik Parametrik;
 - Statistik yang mensyaratkan populasi terdistribusi secara normal Uji SPSS yang menggunakan Statistik Parametrik
 - a. Uji T Independent
 - b. Uji T Dependent
 - c. Uji One Way Annova
 - d. Uji Product Moment: Pearson Correlation
 - e. Uji Linear Regression (Multivariat)
- 2. Statistik Non Parametrik;

Statistik yang tidak mensyaratkan populasi terdistribusi normal

Uji SPSS yang menggunakan Statistik Non Parametrik

- Chi-Square
- Product Moment: Rank Spearman (Correlate Bivarite)
- Multivariat (Binary Logistic)

Uji Normalitas bertujuan untuk mengetahui apakah data penelitian berdistribusi normal atau tidak. Sebab, dalam statistik Paramertik distribusi data yang normal adalah suatu keharusan dan merupakan syarat yang mutlak yang harus terpenuhi.

Uji Normalitas hanya untuk variabel data Kuantitatif

Dilakukan untuk mengetahui apakah suatu group data terdistribusi secara normal atau tidak. Data terdistribusi normal, bila setiap sample data memiliki range (interval) yang tidak terlalu lebar, misalnya: Umur termuda 21 tahun, dan tertua 29. Data tidak normal bila sample data memiliki range (interval) yang terlalu jauh (**out of range**), misal: umur termuda 14, tertua 29.

SPSS memiliki 5 (lima) cara Uji Normalitas

- a. **Kolmogorof-Smirnov** untuk sample >=50 (data normal bila sig>0,05)
- b. **Shapiro-Wilk** untuk sample <50 (data normal bila sig>0,05)

- c. Skewness Kurtosis, data normal bila nilai pembagi antara Statistic dengan
- d. Std_Error -1,96 < Nilai Kurtosis > 1,96
- e. **Q-Q-Plot** diagram, data normal bila titik menyentuh garis diagonal lebih banyak dari tdk menyentuh

f. Histogram

data normal bila susunan diagram batang membentuk curve normal sama kaki.

1. Kolmogorof-Smirnov

- a. Kolmogorov-Smirnov dari menu Analyze > Descriptive Statistics > Explore
- b. Kolmogorov-Smirnov dari menu Analyze > Non parametric test > 1-sample K-S

Kolmogorov-Smirnov dari menu Analyze > Descriptive Statistics > Explore

🛅 D)ata	prak	tek anş	gket kiner	ja angka	tan12.s	sav - S	P	SS Data	a Edito	r i
File	Edit	View	Data	Transform	Analyze	Graphs	Utilitie	s	Window	v Help	
⊯ 1∶ik		9	a		Repor Descri Compa Gener	ts ptive Stat are Means al Linear M	istics ; Model)))	Freq Desc Explo	uencies riptives pre	
			JK		Correl	ate ssion		•	Cros	stabs	
		1		1	Logline	ear		•	23		20
		2		1	Classif	fy		•	3		18
		3		2	Scale	Reduction		•	2		18
		4		2	Nonpa	arametric "	Tests	•	2		18
		5		1	Multipl	a le Respon	se	•	2		18
		0		4		45			_		4.0

Explore	
 JENIS KELAMIN [i] 	Dependent List: OK Image: White the second secon
CAJI PER BULAN PENGHASILAN TA PNYLS TGS PKK [PNYLS TGS PKK [PNYLS TGS PKK [PNYLS TGS PKK [PNYLS TGS PKK [PNYLS TGS	Factor List: Cancel Help
 Image: Sesual aturan [kin] Image: prakarsa [kin2.1] Image: Prakarsa [kin2.1] Image: Prakarsa [kin2.1] Image: Prakarsa [kin2.1] 	Label Cases by:
Display Both C Statistics C Plots	Statistics Plots Options

Explore: Plots		×
 Boxplots Factor levels together Dependents together None 	Descriptive Stem-and-leaf V Histogram	Continue Cancel Help
 Normality plots with tests Spread vs. Level with Level None 	ene Test	
 C Power estimation C Transformed Power: C Untransformed 	Natural log 💌	

Hasilnya

Tests of Normality

	Kolr	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
TOTALHSL	.107	44	.200*	.966	44	.372	

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Jika nilai **Sig** lebih besar dari 0,05 maka data berdistribusi normal Jika nilai **Sig** lebih kecil dari 0,05 maka data tidak berdistribusi normal

Cara lain

🛅 Data pr	aktek an	gket kir	ner	ja angka	tan12.s	av - 9	SP:	SS Dat	ta Ed	itor		
File Edit Vie	ew Data	Transfo	rm	Analyze	Graphs	Utilitie	s	Windo	w H	elp		
■ ■ ● 1: jk	<u> </u>		ند ارسا 1	Report Descrij Compa	ts ptive Stat are Means	istics)))	= I	<u>a</u> #5	V	2	
	jk	(Gener Correl	al Linear N ate	1odel	•	a		ga	iji 🔤	pe
1		1		Regre: Logline	ssion ear		*	23			2000	
2		1		Classify			۲	3			1800	
3		2		Data R Scale	leduction		•	2			1800	
4		2		Nonpa	rametric 1	Fests	Þ	Chi-	Squar	e		1
5		1		Multipl	ai e Respon:	se	5	Run	s	•		
6		1			45			1-S-	ample dener	K-S Ident Sai	mples	
7		1			41			K In	ideper	ident Sa	mples	
8		1			36			2 R) K R)	elated elated	Samples Samples	····	
9		1			47		_L	23			3700	1

🗖 One-Sample Kolmogorov-Smirnov Test	
 atasan mempngrhi atasan memberi tau atasan memonitorir atasan menilai peko atasan menyelesail kinerja motivasi iklim 	OK Paste Reset Cancel Help
Test Distribution Normal Uniform Poisson Exponential	Options

Hasilnya

One-Sample Kolmogorov-Smirnov Test

		TOTALHSL
N		44
Normal Parameters ^{a,b}	Mean	2641.43
	Std. Deviation	1014.71
Most Extreme	Absolute	.107
Differences	Positive	.107
	Negative	043
Kolmogorov-Smirnov Z		.711
Asymp. Sig. (2-tailed)		.693

a. Test distribution is Normal.

b. Calculated from data.

Deviasi Distribusi Normal

Jika Z anda di bawah 1,97 maka dapat dikatakan tidak ada perbedaan antara distribusi teoritik dan distribusi empirik..data anda NORMAL !

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
TOTALHSL	.107	44	.200*	.966	44	.372	
KINERJA	.122	44	.101	.943	44	.048	
MOTIVASI	.163	44	.005	.889	44	.010**	
IKLIM	.144	44	.022	.943	44	.046	
KOMITMEN	.135	44	.042	.942	44	.043	
KEPUASAN	.124	44	.088	.946	44	.061	
KEPEMIMP	.108	44	.200*	.930	44	.017	

Tests of Normality

 * . This is a lower bound of the true significance.

**. This is an upper bound of the true significance.

a. Lilliefors Significance Correction

Descriptive Statistics

	N	Skew	ness	
	Statistic	Statistic	Std. Error	
TOTALHSL	44	.686	.357	
KINERJA	46	772	.350	
MOTIVASI	46	-1.296	.350	
IKLIM	46	238	.350	
KOMITMEN	46	.026	.350	
KEPUASAN	46	611	.350	
KEPEMIMP	46	773	.350	
Valid N (listwise)	44			

		TOTALHSL	KINERJA	MOTIVASI	IKLIM	KOMITMEN	KEPUASAN	KEPEMIMP
N		44	46	46	46	46	46	46
Normal Parameters a,b	Mean	2641.43	39.67	38.72	41.70	38.17	37.61	35.46
	Std. Deviation	1014.71	3.11	5.46	5.62	3.84	4.16	6.60
Most Extreme	Absolute	.107	.110	.143	.130	.132	.129	.098
Differences	Positive	.107	.066	.125	.071	.132	.129	.074
	Negative	043	110	143	130	096	091	098
Kolmogorov-Smirnov Z		.711	.746	.972	.884	.897	.875	.665
Asymp. Sig. (2-tailed)		.693	.634	.301	.416	.397	.429	.769

One-Sample Kolmogorov-Smirnov Test

a. Test distribution is Normal.

b. Calculated from data.

2. Cara Uji Normalitas Shapiro-Wilk dengan SPSS

Dasar Pengambilan Keputusan dalam Uji Normalitas Shapiro-Wilk

- a. Jika nilai Sig. > 0,05, maka data berdistribusi normal
- b. Jika nilai Sig. < 0,05, maka data tidak berdistribusi normal

Contoh Kasus dalam Uji Normalitas Shapiro-Wilk

Terdapat data Prestasi belajar siswa untuk dua kelompok yang tidak berpasangan, sebelum melakukan <u>Uji Independent Sample T-Test</u>, maka harus dipastikan bahwa data berdistribusi normal dulu. Adapun data Prestasi belajar dua kelompok tersebut dituangkan dalam bentuk nilai seperti gambar dibawah ini.

Kelompok A	Nilai	Kelompok B	Nilai
1	77,7	2	86,2
1	80,3	2	80
1	73,2	2	93,4
1	76,8	2	91,3
1	90,1	2	85,3
1	68,8		

<u>Keterangan :</u> Kelompok A diberi kode 1 dengan N = 6 siswa, sedangkan Kelompok B diberi kode 2 dengan N = 5 siswa.

Cara Melakukan Uji Normalitas Shapiro-Wilk dengan SPSS

 Buka lembar kerja SPSS, lalu klik Variable View, pada bagian Name pertama tuliskan Nilai. Kemudian untuk Name Kedua tuliskan Kelompok, setelah itu pada bagian Decimals yang kedua ganti dengan 0. Selanjutnya, klik pada bagian Value yang kedua, hingga muncul kotak dialog Value Label, pada kotak Value isikan 1 dan pada kotak Label isikan Kelompok A, lalu klik Add. Kemudian, isikan kembali pada kotak Value dengan isian 2 dan pada kotak Label isikan Kelompok B, lalu klik Add dan klik Ok [abaikan saja yang lainnya]

Value Labels		×
Value: 1		Spelling
(Add	1 = "Kelompok A" 2 = "Kelompok B"	
Change Remove	www.spssindor	esia.com
	OK Cancel Help	

File E	dit <u>V</u> lew <u>D</u> at	a <u>T</u> ransk	orm <u>A</u> na	lyze Direct	Marketin	g Graphs	Utilities	A
							M	15 M
1-11	Name	Туре	Width	Decimals	Label	Valu	es	
1	Nilai	Numeric	8	2		None		Nor
2	Kelompok	Numeric	8	0		{1, Kelomp	ok A)	Nor
3		W	ww.	spssi	ndo	nesia	L.COI	n

2. Setelah itu, klik Variable View, selanjutnya untuk variabel Nilai isikan dengan nilai di atas, dan untuk variable Kelompok isikan 1 untuk nilai kelompok A, dan 2 untuk nilai Kelompok

*Untitled S	Shapiro-Wilk spsi	ndo.sav [DataS	et1] - IBM
<u>File</u> Edit	View Data	Transform A	nalyze
			N
ww	w.spssind	donesia.	com
	Nilai	Kelompok	var
1	77,70	1	
2	80,30	1	
3	73,20	1	
4	76,80	1	
5	90,10	1	
6	68,80	1	
7	86,20	2	-
8	80,00	2	1
9	93,40	2	
10	91,30	2	
11	85,30	2	

3. Selanjutnya, dari menu SPSS, klik Analyze – Descriptive Statistiks – Explore...

4. Masukkan variabel Nilai ke kotak Dependen List, lalu masukkan variabel Kelompok ke kotak Factor List, pada bagian Display pilih Both

Explore	~	22
	Dependent Lis	Statistics.
	Factor List	<u>Options</u> Bootstrap
	Label Cases I	by:
Display	WWW.Spssin O Plots	donesia.com
OK	Paste Reset Cano	Help

5. Setelah itu, klik Plots.., maka akan mucul kotak dialog Explore: Plots, dari serangkaian pilihan yang ada, berikan tanda centang pada pilihan Normality Plot with tests, lalu klik Continue

Explore: Plots	
Boxplots Eactor levels together Dependents together None	Descriptive Stem-and-leaf <u>H</u> istogram
Spread vs Level with Leven	e Test
© Power estimation © Transformed Power:	latural log 🔻
Continue) Cancel	Help

6. Langkah terakhir klik Ok.. dan akan muncul Output SPSS [Perhatikan pada Output Test of Normality]

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Kelompok	Statistic	df	Sig.	Statistic	df	Sig
Nilai	Kelompok A	,199	6	,200	,954	6	,770
	Kelompok B	,179	5	,200	,960	5	,807

WWW2999900000

Interpretasi atau Penjelasan Output Uji Normalitas Shapiro-Wilk

a. Lilliefors Significance Correction

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Kelompok	Statistic	df	Sig.	Statistic	df	Sig
Nilai	Kelompok A	,199	6	,200	,954	6	,770
	Kelompok B	,179	5	.200	.960	5	.807

a. Lilliefors Significance Correction

Berdasarkan output Test of Normality, diperoleh nilai signifikansi untuk Kelompok A sebesar 0,770, sedangkan nilai signifikansi untuk Kelompok B sebesar 0,807. Karena nilai signifikansi Kelompok A dan Kelompok B lebih besar > 0,05, maka dapat disimpulkan bahwa data Prestasi belajar berdistribusi normal.

3. Cara Uji Normalitas Skewness & Kurtosis dengan SPSS Lengkap

Pada uji Normalitas yang lain adalah Uji Skewness & Kurtosis. Pada saat kita melakukan analisi statistik deskriptif melalui menu Explorer pada SPSS; selain memperoleh hasil Shapiro-Wilk kita juga memperoleh tabel Descriptives yang di dalamnya juga terdapat nilai Skewnes dan Kurtosis (lihat gambar di bawah)

Untuk memperoleh **nilai z-values** nilai pada kolom **Statistic dibagi dengan nilai pada kolom Std. Error (lihat gambar di bawah dengan huruf warna merah).** Data dikatakan terdistribusi normal bila : -1,96 < Skewnees & Kurtosis z-values < +1,96. Dari contoh gambar di bawah data terdistribusi normal, karena untuk Kelompok A untuk Skewnes 0,97 < 1,96 ; dan nilai Kurtosis 0,827 > -1,96. Untuk Kelompok B untuk Skewnes -0,26 < 1,96; dan nilai Kurtosis -0,413 > -1,96

			Descriptives			
	Kelompok			Statistic	Std. Error	
Nilai	Kelompok A	Mean	77.8167	2.94793		
		95% Confidence Inte	95% Confidence Interval for Lower Bound			
		Mean	Upper Bound	85.3946		
		5% Trimmed Mean		77.6352		
		Median	Median			
		Variance	52.142			
		Std. Deviation	7.22092			
		Minimum	0,826 / 0,845 = 0,97	68.80		
		Maximum	Skewnes 0,97 < 1,96	90.10		
		Range	1,440 / 1,741 = 0,827	21.30		
		Interquartile Range	Kurtosis $0,827 > -1,96$	10.65		
		<mark>Skewness</mark>	.826	.845		
		<mark>Kurtosis</mark>	1.440	1.741		
	Kelompok B	Mean		87.2400	2.36318	
		95% Confidence Inte	80.6788			
		Mean	Upper Bound	93.8012		
		5% Trimmed Mean	87.3000			
		Median	86.2000			
		Variance	27.923			
		Std. Deviation		5.28422		
		Minimum	-0,246 / 0,913 = -0,26	80.00		
		Maximum	Skewnes -0,26 < 1,96	93.40		
		Range	-0,826 / 2,000 = -0,413	13.40		
		Interquartile Range	Kurtosis $-0,413 > -1,96$	9.70		
		Skewness	246	.913		

Q-Q-Plot diagram, data normal bila titik menyentuh garis diagonal lebih banyak dari tdk menyentuh

Normal Q-Q Plot of VAR00001

Dependent Variable: science