


Input/Output Problems

o Wide variety of peripherals
—Delivering different amounts of data
—At different speeds
—1In different formats

e All slower than CPU and RAM
e Need I/O modules



Input/Output Module

o Interface to CPU and Memory
o Interface to one or more peripherals
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External Devices

e Human readable
—Screen, printer, keyboard

e Machine readable
—Monitoring and control

e Communication

—Modem
—Network Interface Card (NIC)



External Device Block Diagram
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Typical 1/0 Data Rates
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1/0 Module Function

e Control & Timing

e CPU Communication

e Device Communication
e Data Buffering

o Error Detection



1/0 Steps

e CPU checks I/O module device status
e I/O module returns status

o If ready, CPU requests data transfer
e I/O module gets data from device

e I/O module transfers data to CPU

e Variations for output, DMA, etc.



1/0 Module Diagram
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1/0 Module Decisions

e Hide or reveal device properties to CPU
e Support multiple or single device
e Control device functions or leave for CPU

e Also O/S decisions
—e.g. Unix treats everything it can as a file



Input Output Techniques

e Programmed
e Interrupt driven
e Direct Memory Access (DMA)



Programmed 1/O

e CPU has direct control over I/0
—Sensing status
—Read/write commands
—Transferring data

e CPU waits for I/O module to complete operation
e Wastes CPU time



Programmed 1/0 - detail

e CPU requests I/O operation

e I/O module performs operation

e I/O module sets status bits

e CPU checks status bits periodically

e I/O module does not inform CPU directly
e I/O module does not interrupt CPU

e CPU may wait or come back later



1/0 Commands

e CPU issues address
—Identifies module (& device if >1 per module)

e CPU issues command
—Control - telling module what to do
— e.g. spin up disk
—Test - check status
— e.g. power? Error?

—Read/Write
— Module transfers data via buffer from/to device



Addressing 1/0 Devices

e Under programmed I/O data transfer is very like
memory access (CPU viewpoint)

e Each device given unique identifier
e CPU commands contain identifier (address)



1/0 Mapping

e Memory mapped I/O
— Devices and memory share an address space
— I/O looks just like memory read/write
— No special commands for I/O
— Large selection of memory access commands available

e Isolated I/O

— Separate address spaces
— Need I/O or memory select lines
— Special commands for I/O

— Limited set



Interrupt Driven 1/O

e Overcomes CPU waiting
e No repeated CPU checking of device
e I/O module interrupts when ready



Interrupt Driven 1/O
Basic Operation
e CPU issues read command

e I/O module gets data from peripheral whilst
CPU does other work

e I/O module interrupts CPU
e CPU requests data
e I/O module transfers data



CPU Viewpoint

e [ssue read command
e Do other work

e Check for interrupt at end of each instruction
cycle
o If interrupted:-

—Save context (registers)

—Process interrupt
— Fetch data & store

e See Operating Systems notes



Design Issues
e How do you identify the module issuing the
interrupt?

e How do you deal with multiple interrupts?
—i.e. an interrupt handler being interrupted



Identifying Interrupting Module (1)

o Different line for each module
—PC
—Limits number of devices

o Software poll
—CPU asks each module in turn
—Slow



Identifying Interrupting Module (2)

e Daisy Chain or Harc
—Interrupt Acknowlec

ware poll
ge sent down a chain
nlaces vector on bus

—Module responsible

—CPU uses vector to identify handler routine

e Bus Master

—Module must claim the bus before it can raise

interrupt
—e.g. PCI & SCSI



Multiple Interrupts

e Each interrupt line has a priority
e Higher priority lines can interrupt lower priority
lines

o If bus mastering only current master can
interrupt



Example - PC Bus

e 80x86 has one interrupt line

e 8086 based systems use one 8259A interrupt
controller

e 8259A has 8 interrupt lines



Sequence of Events

e 8259A accepts interrupts

e 8259A determines priority

e 8259A signals 8086 (raises INTR line)
e CPU Acknowledges

e 8259A puts correct vector on data bus
e CPU processes interrupt



ISA Bus Interrupt System

o ISA bus chains two 8259As together
e Link is via interrupt 2

e Gives 15 lines
—16 lines less one for link

e IRQ 9 is used to re-route anything trying to use
IRQ 2
—Backwards compatibility

e Incorporated in chip set
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Intel 82C55A

Programmable Peripheral Interface
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Using 82C55A To Control
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Direct Memory Access

e Interrupt driven and programmed I/O require
active CPU intervention
—Transfer rate is limited
—CPU is tied up

e DMA is the answer



DMA Function

e Additional Module (hardware) on bus
e DMA controller takes over from CPU for I/O



DMA Module Diagram
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DMA Operation

o CPU tells DMA controller:-
—Read/Write
—Device address
—Starting address of memory block for data
—Amount of data to be transferred

e CPU carries on with other work
e DMA controller deals with transfer
e DMA controller sends interrupt when finished



DMA Transfer
Cycle Stealing

e DMA controller takes over bus for a cycle
e Transfer of one word of data
e Not an interrupt

—CPU does not switch context

e CPU suspended just before it accesses bus
—i.e. before an operand or data fetch or a data write

e Slows down CPU but not as much as CPU doing
transfer



Aside

o What effect does caching memory have on
DMA?

e Hint: how much are the system buses
available?



DMA Configurations (1)
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e Single Bus, Detached DMA controller

e Each transfer uses bus twice
—I/O to DMA then DMA to memory

e CPU is suspended twice




DMA Configurations (2)
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e Single Bus, Integrated DMA controller
e Controller may support >1 device

e Each transfer uses bus once
—DMA to memory

e CPU is suspended once



DMA Configurations (3)
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e Separate I/O Bus
e Bus supports all DMA enabled devices

e Each transfer uses bus once
—DMA to memory

e CPU is suspended once



1/0 Channels

e I/O devices getting more sophisticated

e e.g. 3D graphics cards

e CPU instructs I/O controller to do transfer
e I/O controller does entire transfer

e Improves speed
—Takes load off CPU
—Dedicated processor is faster



1/0 Channel Architecture
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Interfacing

e Connecting devices together

o Bit of wire?

e Dedicated processor/memory/buses?
e E.g. FireWire, InfiniBand



IEEE 1394 FireWire

e High performance serial bus

e Fast

e | ow cost

e Easy to implement

e Also being used in digital cameras, VCRs and TV




FireWire Configuration

e Daisy chain
e Up to 63 devices on single port
—Really 64 of which one is the interface itself

e Up to 1022 buses can be connected with
bridges

e Automatic configuration

e No bus terminators

e May be tree structure



Simple FireWire Configuration
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FireWire 3 Layer Stack

e Physical

—Transmission medium, electrical and signaling
characteristics

e Link
—Transmission of data in packets

e [ransaction
—Request-response protocol



FireWire Protocol Stack
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FireWire - Physical Layer

e Data rates from 25 to 400Mbps

e Two forms of arbitration
—Based on tree structure
—Root acts as arbiter
—First come first served

—Natural priority controls simultaneous requests
— i.e. who is nearest to root

—Fair arbitration
—Urgent arbitration



FireWire - Link Layer

e Two transmission types

—Asynchronous

— Variable amount of data and several bytes of transaction
data transferred as a packet

— To explicit address
— Acknowledgement returned

—Isochronous

— Variable amount of data in sequence of fixed size packets at
regular intervals

— Simplified addressing
— No acknowledgement



FireWire Subactions
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InfiniBand

e I/O specification aimed at high end servers

—NMerger of Future I/O (Cisco, HP, Compaq, IBM) and
Next Generation I/O (Intel)

e Version 1 released early 2001

e Architecture and spec. for data flow between
processor and intelligent I/O devices

o Intended to replace PCI in servers
e Increased capacity, expandability, flexibility



InfiniBand Architecture
e Remote storage, networking and connection
between servers

o Attach servers, remote storage, network devices
to central fabric of switches and links

o Greater server density
e Scalable data centre
e Independent nodes added as required

e I/O distance from server up to
—1/m using copper
—300m multimode fibre optic
—10km single mode fibre

e Up to 30Gbps



InfiniBand Switch Fabric
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InfiniBand Operation

e 16 logical channels (virtual lanes) per physical
link

e One lane for management, rest for data

e Data in stream of packets

 Virtual lane dedicated temporarily to end to end
transfer

e Switch maps traffic from incoming to outgoing
lane



InfiniBand Protocol Stack
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Foreground Reading

e Check out Universal Serial Bus (USB)

e Compare with other communication standards
e.g. Ethernet



