


Input/Output Problems

o Wide variety of peripherals
—Delivering different amounts of data
—At different speeds
—1In different formats

e All slower than CPU and RAM
e Need I/O modules



Input/Output Module

o Interface to CPU and Memory
o Interface to one or more peripherals



Generic Model of 1/0 Module

Address Lines )
- System
Daia Lines Bus
Control Lines J
/O Module
Links to
peripheral

devices




External Devices

e Human readable
—Screen, printer, keyboard

e Machine readable
—Monitoring and control

e Communication

—Modem
—Network Interface Card (NIC)



External Device Block Diagram

. Control | A Status 4 Data bits
signals from signals to to and from
1/ module LAY muoddule 170y muod ule
Y Y
Control > Buffer
Logic
Transducer
A

Data (device-unigue
to and from
¥ environment




Typical 1/0 Data Rates

Gigabit Ethernet

Graphics display

Hard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy disk

Maodem

Mouwse

Keyboarnd

|
I

10°

[—
=
Ea
[
-
[y
=
-]

102 10° 10% 107

[y
=

Data Rate ( bps)



1/0 Module Function

e Control & Timing

e CPU Communication

e Device Communication
e Data Buffering

o Error Detection



1/0 Steps

e CPU checks I/O module device status
e I/O module returns status

o If ready, CPU requests data transfer
e I/O module gets data from device

e I/O module transfers data to CPU

e Variations for output, DMA, etc.



1/0 Module Diagram

Data
Lines

Address

Interface to
System Bus

~A—

Data Registers

|47

Status/Control Registers

Lines

Control
4

Lines

Interface to

External Device

External
Device
Interface
Logic

~A

140
Logic

External
Device
Interface
Logic

Status

Control

Data

Status

Control



1/0 Module Decisions

e Hide or reveal device properties to CPU
e Support multiple or single device
e Control device functions or leave for CPU

e Also O/S decisions
—e.g. Unix treats everything it can as a file



Input Output Techniques

e Programmed
e Interrupt driven
e Direct Memory Access (DMA)



Programmed 1/O

e CPU has direct control over I/0
—Sensing status
—Read/write commands
—Transferring data

e CPU waits for I/O module to complete operation
e Wastes CPU time



Programmed 1/0 - detail

e CPU requests I/O operation

e I/O module performs operation

e I/O module sets status bits

e CPU checks status bits periodically

e I/O module does not inform CPU directly
e I/O module does not interrupt CPU

e CPU may wait or come back later



1/0 Commands

e CPU issues address
—Identifies module (& device if >1 per module)

e CPU issues command
—Control - telling module what to do
— e.g. spin up disk
—Test - check status
— e.g. power? Error?

—Read/Write
— Module transfers data via buffer from/to device



Addressing 1/0 Devices

e Under programmed I/O data transfer is very like
memory access (CPU viewpoint)

e Each device given unique identifier
e CPU commands contain identifier (address)



1/0 Mapping

e Memory mapped I/O
— Devices and memory share an address space
— I/O looks just like memory read/write
— No special commands for I/O
— Large selection of memory access commands available

e Isolated I/O

— Separate address spaces
— Need I/O or memory select lines
— Special commands for I/O

— Limited set



Interrupt Driven 1/O

e Overcomes CPU waiting
e No repeated CPU checking of device
e I/O module interrupts when ready



Interrupt Driven 1/O
Basic Operation
e CPU issues read command

e I/O module gets data from peripheral whilst
CPU does other work

e I/O module interrupts CPU
e CPU requests data
e I/O module transfers data



CPU Viewpoint

e [ssue read command
e Do other work

e Check for interrupt at end of each instruction
cycle
o If interrupted:-

—Save context (registers)

—Process interrupt
— Fetch data & store

e See Operating Systems notes



Design Issues
e How do you identify the module issuing the
interrupt?

e How do you deal with multiple interrupts?
—i.e. an interrupt handler being interrupted



Identifying Interrupting Module (1)

o Different line for each module
—PC
—Limits number of devices

o Software poll
—CPU asks each module in turn
—Slow



Identifying Interrupting Module (2)

e Daisy Chain or Harc
—Interrupt Acknowlec

ware poll
ge sent down a chain
nlaces vector on bus

—Module responsible

—CPU uses vector to identify handler routine

e Bus Master

—Module must claim the bus before it can raise

interrupt
—e.g. PCI & SCSI



Multiple Interrupts

e Each interrupt line has a priority
e Higher priority lines can interrupt lower priority
lines

o If bus mastering only current master can
interrupt



Example - PC Bus

e 80x86 has one interrupt line

e 8086 based systems use one 8259A interrupt
controller

e 8259A has 8 interrupt lines



Sequence of Events

e 8259A accepts interrupts

e 8259A determines priority

e 8259A signals 8086 (raises INTR line)
e CPU Acknowledges

e 8259A puts correct vector on data bus
e CPU processes interrupt



ISA Bus Interrupt System

o ISA bus chains two 8259As together
e Link is via interrupt 2

e Gives 15 lines
—16 lines less one for link

e IRQ 9 is used to re-route anything trying to use
IRQ 2
—Backwards compatibility

e Incorporated in chip set



82C59A Interrupt

Controller

[ External device 00—
[ External device 01 |—]

-

[ External deviee 07—

[ External device 08 |—]
[ External deviee 08—

-

-

| External device 15—

Master
82504
interropt
controller

[ 34]]

h J

IRl INT
IH2
K3
IH4
IH5
[H6

[ External device 56 —»
| External device 57—

-

-

| External device 63—

In7

BO28i
processor

Y

INTE




Intel 82C55A

Programmable Peripheral Interface

I Data &-hit :
| buffer internal {
I bus I
B0 &6 . L . o L A
data bus L : h o )
' ]
' I
W EL :—I-+5 yilig | 4
supplies ——— ground —» " A
1
' ]
adiress A ———> »
lines Al «—» Ll = (B
rend o Contral I
write i logic "17‘" !
resel ——p—mw : 8
chip ——— | Contral -—» ———F
select | I-EEIEE- i
I
I Diata :
i buffers

{a) Bliwk diagram

PAl O
PA2
PAl O
EAD O
Read O
Chip select [
Ground L
Al O

AD O
PCT O
PCG O
PCE O
P4 O
P3O
P2 O
1 O
.
PED O
PEI C

PE2 O

=R I T I P

=

1
11
12
13
14
15
16
17
18
1%
20

BERREYER s neGes g

I

[ PA4
] PAR
] PAG
] PAT
] Write
] Reset
] Tl

] D
D2
D3
mpit

L D=

] I
mliy
v

1 PET
] PR
] PEX
1 PE4

L PE3

(B Pin layout



Using 82C55A To Control
Keyboard/Display

Interrupt
TegTest
C3 AD Rl
Al | K1
A2 g K2
A3 | K3
INPUT 4 4 - ga KEYBOARD
PORT 5 le RS
Ab [ Shif
AT [ Control
O Lrata Keady
C5 e Acknowledge
82C55A
Bl » S0
Bl » 51
Bl 52
ﬂlJTPlJT:: > :: DISPLAY
PORT *
B5 » 55
Bt | Backspace
B7 3 Clear
1 3| Lt Kendy
C1 |l Acknowledge
C6 »| Blanking
o 7 | Clear Line
Interrmpt
Teqmest
- —




Direct Memory Access

e Interrupt driven and programmed I/O require
active CPU intervention
—Transfer rate is limited
—CPU is tied up

e DMA is the answer



DMA Function

e Additional Module (hardware) on bus
e DMA controller takes over from CPU for I/O



DMA Module Diagram

Data Lines

Adidress Lines 4

DMA Request
DMA Acknowledge
Interrupt «

Read
Write




DMA Operation

o CPU tells DMA controller:-
—Read/Write
—Device address
—Starting address of memory block for data
—Amount of data to be transferred

e CPU carries on with other work
e DMA controller deals with transfer
e DMA controller sends interrupt when finished



DMA Transfer
Cycle Stealing

e DMA controller takes over bus for a cycle
e Transfer of one word of data
e Not an interrupt

—CPU does not switch context

e CPU suspended just before it accesses bus
—i.e. before an operand or data fetch or a data write

e Slows down CPU but not as much as CPU doing
transfer



Aside

o What effect does caching memory have on
DMA?

e Hint: how much are the system buses
available?



DMA Configurations (1)

L T T 1T [

e Single Bus, Detached DMA controller

e Each transfer uses bus twice
—I/O to DMA then DMA to memory

e CPU is suspended twice




DMA Configurations (2)

P rocessor ‘ \ DMNA M TTHe 1Y ‘]

(b) Single-bos. Integrated DMA-LO

e Single Bus, Integrated DMA controller
e Controller may support >1 device

e Each transfer uses bus once
—DMA to memory

e CPU is suspended once



DMA Configurations (3)

Syvslem bos

/0y bos

-1 el -1
e Separate I/O Bus
e Bus supports all DMA enabled devices

e Each transfer uses bus once
—DMA to memory

e CPU is suspended once



1/0 Channels

e I/O devices getting more sophisticated

e e.g. 3D graphics cards

e CPU instructs I/O controller to do transfer
e I/O controller does entire transfer

e Improves speed
—Takes load off CPU
—Dedicated processor is faster



1/0 Channel Architecture

Daia and
address chahhel

Lo A Th eno Ty

@ Selector

channel I I
—_—
Control signal L0 L0 .
path w CPLU Contraoller Contraller
(a) Selector
Data anhd
address channel
Lo A Th eno Ty
Multi-
Pplexor
N channel
Control sighal
path to CPLU raw I LA
Contraller
LAy
Contraller
LAy
Controller
L0
Controller

{b) Multiplexor



Interfacing

e Connecting devices together

o Bit of wire?

e Dedicated processor/memory/buses?
e E.g. FireWire, InfiniBand



IEEE 1394 FireWire

e High performance serial bus

e Fast

e | ow cost

e Easy to implement

e Also being used in digital cameras, VCRs and TV




FireWire Configuration

e Daisy chain
e Up to 63 devices on single port
—Really 64 of which one is the interface itself

e Up to 1022 buses can be connected with
bridges

e Automatic configuration

e No bus terminators

e May be tree structure



Simple FireWire Configuration

Steren Magnetic
Smberface CPU disk

Digital
camera

CD-ROM Scanner Printer




FireWire 3 Layer Stack

e Physical

—Transmission medium, electrical and signaling
characteristics

e Link
—Transmission of data in packets

e [ransaction
—Request-response protocol



FireWire Protocol Stack

I

I

Serial Bus Management

Transaction Layer
(read, write, lock)

)

asvhchrohons Eochrohons
Link Layer
Packet ttansm iter Packel vecelver Cyele cantrol
Link Layer
Arhiiration Datavegynch Encode/tlecode

ol Lot nueti a

Connection aate Slgmnal levels




FireWire - Physical Layer

e Data rates from 25 to 400Mbps

e Two forms of arbitration
—Based on tree structure
—Root acts as arbiter
—First come first served

—Natural priority controls simultaneous requests
— i.e. who is nearest to root

—Fair arbitration
—Urgent arbitration



FireWire - Link Layer

e Two transmission types

—Asynchronous

— Variable amount of data and several bytes of transaction
data transferred as a packet

— To explicit address
— Acknowledgement returned

—Isochronous

— Variable amount of data in sequence of fixed size packets at
regular intervals

— Simplified addressing
— No acknowledgement



FireWire Subactions

Subacton 1: Reguoest Subaction I: Hespons:
Sph- —t—— Soh- ~ N -~  Sub-
action Ak action Ack actioh
Time

(a) EXAmple asyhchrohons snbactioh

Subacton 1: Kegoest Subaction 2: Kespohse
Sub- - s ~- e ~ Sub-
action Ak Ack action

(b} Cohcatenated asyhehiohols subactionhs

Firs il Channel Seoohd Chamhel Third Chanhel
J'-_l——-lh-——l—-'\ 'l'-_l——-l'A'l-——l_-'ﬁ o~ e
Igoch Isoch Isoch o
Isoch [soch
E;;J IV pPacke FP packet | 5 A Packet 5P | Ack gn];:

() Example Bochrohons subactiohs



InfiniBand

e I/O specification aimed at high end servers

—NMerger of Future I/O (Cisco, HP, Compaq, IBM) and
Next Generation I/O (Intel)

e Version 1 released early 2001

e Architecture and spec. for data flow between
processor and intelligent I/O devices

o Intended to replace PCI in servers
e Increased capacity, expandability, flexibility



InfiniBand Architecture
e Remote storage, networking and connection
between servers

o Attach servers, remote storage, network devices
to central fabric of switches and links

o Greater server density
e Scalable data centre
e Independent nodes added as required

e I/O distance from server up to
—1/m using copper
—300m multimode fibre optic
—10km single mode fibre

e Up to 30Gbps



InfiniBand Switch Fabric

- W ey

£ 'E r"' 1|'|. T
Memory ¢ InfiniBane . Tarzet
. = HCA| + IB link IElink*, [C
. E controller 'r gwitch Y Device
E . ',
i
= '
CPU : = '
System i E :
ETTHITY \ S
L] Ilr
'|.'|. &
HC A = host channel adapter . .

TCA =target channel adapter - —-



InfiniBand Operation

e 16 logical channels (virtual lanes) per physical
link

e One lane for management, rest for data

e Data in stream of packets

 Virtual lane dedicated temporarily to end to end
transfer

e Switch maps traffic from incoming to outgoing
lane



InfiniBand Protocol Stack

Transport layer
MNetwork laver

Link laver

( Client process }"
Huost
channel  WQE CQE
Sdapler ¥ T
F 3 F
o | 1 P11 le--
| =
STl Hecetve

Transport Engihe

Il'ﬂdu:t

Transacthons

(IBA operations)

IBA operations

Pacdkel relay

[ ]

Pkt

WOE = wotk quewe element
C0E = comp letion quens eniry

(P = queue pair

T Physical link

Fuorl Fuorl

I

*( SeTveT proass >
A
Target
channel  WQE CQE
S pler ¥ T
& F 3
| _ylor [t t
S Hecetve

Transport Engihe

IFndwt

Fuorl

Physical Ik T

Fabric



Foreground Reading

e Check out Universal Serial Bus (USB)

e Compare with other communication standards
e.g. Ethernet



