
William Stallings

Computer Organization

and Architecture

6
th

 Edition

Input/Output

Input/Output Problems

• Wide variety of peripherals

—Delivering different amounts of data

—At different speeds

—In different formats

• All slower than CPU and RAM

• Need I/O modules

Input/Output Module

• Interface to CPU and Memory

• Interface to one or more peripherals

Generic Model of I/O Module

External Devices

• Human readable

—Screen, printer, keyboard

• Machine readable

—Monitoring and control

• Communication

—Modem

—Network Interface Card (NIC)

External Device Block Diagram

Typical I/O Data Rates

I/O Module Function

• Control & Timing

• CPU Communication

• Device Communication

• Data Buffering

• Error Detection

I/O Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

I/O Module Diagram

I/O Module Decisions

• Hide or reveal device properties to CPU

• Support multiple or single device

• Control device functions or leave for CPU

• Also O/S decisions

—e.g. Unix treats everything it can as a file

Input Output Techniques

• Programmed

• Interrupt driven

• Direct Memory Access (DMA)

Programmed I/O

• CPU has direct control over I/O

—Sensing status

—Read/write commands

—Transferring data

• CPU waits for I/O module to complete operation

• Wastes CPU time

Programmed I/O - detail

• CPU requests I/O operation

• I/O module performs operation

• I/O module sets status bits

• CPU checks status bits periodically

• I/O module does not inform CPU directly

• I/O module does not interrupt CPU

• CPU may wait or come back later

I/O Commands

• CPU issues address

—Identifies module (& device if >1 per module)

• CPU issues command

—Control - telling module what to do

– e.g. spin up disk

—Test - check status

– e.g. power? Error?

—Read/Write

– Module transfers data via buffer from/to device

Addressing I/O Devices

• Under programmed I/O data transfer is very like
memory access (CPU viewpoint)

• Each device given unique identifier

• CPU commands contain identifier (address)

I/O Mapping

• Memory mapped I/O

— Devices and memory share an address space

— I/O looks just like memory read/write

— No special commands for I/O

– Large selection of memory access commands available

• Isolated I/O

— Separate address spaces

— Need I/O or memory select lines

— Special commands for I/O

– Limited set

Interrupt Driven I/O

• Overcomes CPU waiting

• No repeated CPU checking of device

• I/O module interrupts when ready

Interrupt Driven I/O

Basic Operation

• CPU issues read command

• I/O module gets data from peripheral whilst
CPU does other work

• I/O module interrupts CPU

• CPU requests data

• I/O module transfers data

CPU Viewpoint

• Issue read command

• Do other work

• Check for interrupt at end of each instruction
cycle

• If interrupted:-

—Save context (registers)

—Process interrupt

– Fetch data & store

• See Operating Systems notes

Design Issues

• How do you identify the module issuing the
interrupt?

• How do you deal with multiple interrupts?

—i.e. an interrupt handler being interrupted

Identifying Interrupting Module (1)

• Different line for each module

—PC

—Limits number of devices

• Software poll

—CPU asks each module in turn

—Slow

Identifying Interrupting Module (2)

• Daisy Chain or Hardware poll

—Interrupt Acknowledge sent down a chain

—Module responsible places vector on bus

—CPU uses vector to identify handler routine

• Bus Master

—Module must claim the bus before it can raise
interrupt

—e.g. PCI & SCSI

Multiple Interrupts

• Each interrupt line has a priority

• Higher priority lines can interrupt lower priority
lines

• If bus mastering only current master can
interrupt

Example - PC Bus

• 80x86 has one interrupt line

• 8086 based systems use one 8259A interrupt
controller

• 8259A has 8 interrupt lines

Sequence of Events

• 8259A accepts interrupts

• 8259A determines priority

• 8259A signals 8086 (raises INTR line)

• CPU Acknowledges

• 8259A puts correct vector on data bus

• CPU processes interrupt

ISA Bus Interrupt System

• ISA bus chains two 8259As together

• Link is via interrupt 2

• Gives 15 lines

—16 lines less one for link

• IRQ 9 is used to re-route anything trying to use
IRQ 2

—Backwards compatibility

• Incorporated in chip set

82C59A Interrupt

Controller

Intel 82C55A

Programmable Peripheral Interface

Using 82C55A To Control

Keyboard/Display

Direct Memory Access

• Interrupt driven and programmed I/O require
active CPU intervention

—Transfer rate is limited

—CPU is tied up

• DMA is the answer

DMA Function

• Additional Module (hardware) on bus

• DMA controller takes over from CPU for I/O

DMA Module Diagram

DMA Operation

• CPU tells DMA controller:-

—Read/Write

—Device address

—Starting address of memory block for data

—Amount of data to be transferred

• CPU carries on with other work

• DMA controller deals with transfer

• DMA controller sends interrupt when finished

DMA Transfer

Cycle Stealing

• DMA controller takes over bus for a cycle

• Transfer of one word of data

• Not an interrupt

—CPU does not switch context

• CPU suspended just before it accesses bus

—i.e. before an operand or data fetch or a data write

• Slows down CPU but not as much as CPU doing
transfer

Aside

• What effect does caching memory have on
DMA?

• Hint: how much are the system buses
available?

DMA Configurations (1)

• Single Bus, Detached DMA controller

• Each transfer uses bus twice

—I/O to DMA then DMA to memory

• CPU is suspended twice

DMA Configurations (2)

• Single Bus, Integrated DMA controller

• Controller may support >1 device

• Each transfer uses bus once

—DMA to memory

• CPU is suspended once

DMA Configurations (3)

• Separate I/O Bus

• Bus supports all DMA enabled devices

• Each transfer uses bus once

—DMA to memory

• CPU is suspended once

I/O Channels

• I/O devices getting more sophisticated

• e.g. 3D graphics cards

• CPU instructs I/O controller to do transfer

• I/O controller does entire transfer

• Improves speed

—Takes load off CPU

—Dedicated processor is faster

I/O Channel Architecture

Interfacing

• Connecting devices together

• Bit of wire?

• Dedicated processor/memory/buses?

• E.g. FireWire, InfiniBand

IEEE 1394 FireWire

• High performance serial bus

• Fast

• Low cost

• Easy to implement

• Also being used in digital cameras, VCRs and TV

FireWire Configuration

• Daisy chain

• Up to 63 devices on single port

—Really 64 of which one is the interface itself

• Up to 1022 buses can be connected with
bridges

• Automatic configuration

• No bus terminators

• May be tree structure

Simple FireWire Configuration

FireWire 3 Layer Stack

• Physical

—Transmission medium, electrical and signaling
characteristics

• Link

—Transmission of data in packets

• Transaction

—Request-response protocol

FireWire Protocol Stack

FireWire - Physical Layer

• Data rates from 25 to 400Mbps

• Two forms of arbitration

—Based on tree structure

—Root acts as arbiter

—First come first served

—Natural priority controls simultaneous requests

– i.e. who is nearest to root

—Fair arbitration

—Urgent arbitration

FireWire - Link Layer

• Two transmission types

—Asynchronous

– Variable amount of data and several bytes of transaction
data transferred as a packet

– To explicit address

– Acknowledgement returned

—Isochronous

– Variable amount of data in sequence of fixed size packets at
regular intervals

– Simplified addressing

– No acknowledgement

FireWire Subactions

InfiniBand

• I/O specification aimed at high end servers

—Merger of Future I/O (Cisco, HP, Compaq, IBM) and
Next Generation I/O (Intel)

• Version 1 released early 2001

• Architecture and spec. for data flow between
processor and intelligent I/O devices

• Intended to replace PCI in servers

• Increased capacity, expandability, flexibility

InfiniBand Architecture

• Remote storage, networking and connection
between servers

• Attach servers, remote storage, network devices
to central fabric of switches and links

• Greater server density

• Scalable data centre

• Independent nodes added as required

• I/O distance from server up to
—17m using copper

—300m multimode fibre optic

—10km single mode fibre

• Up to 30Gbps

InfiniBand Switch Fabric

InfiniBand Operation

• 16 logical channels (virtual lanes) per physical
link

• One lane for management, rest for data

• Data in stream of packets

• Virtual lane dedicated temporarily to end to end
transfer

• Switch maps traffic from incoming to outgoing
lane

InfiniBand Protocol Stack

Foreground Reading

• Check out Universal Serial Bus (USB)

• Compare with other communication standards
e.g. Ethernet

