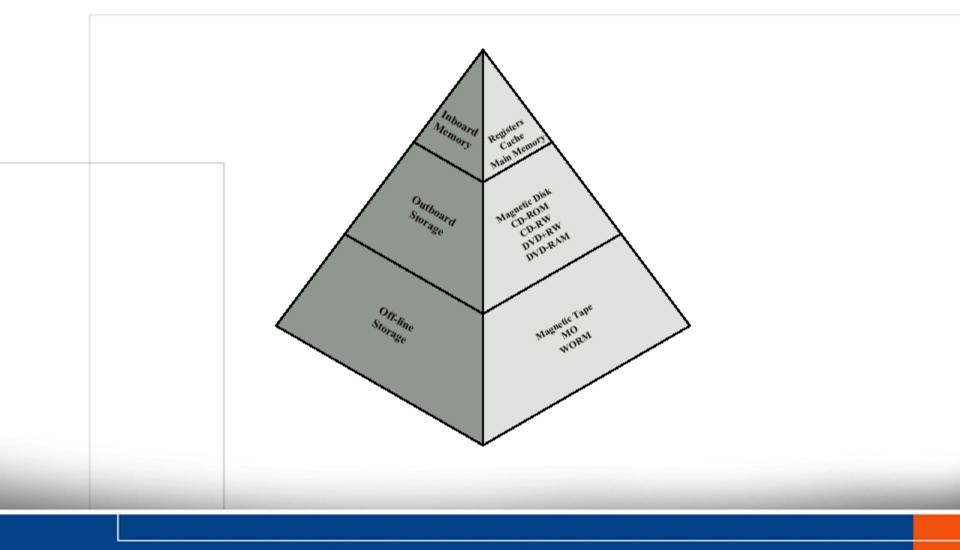


Smart, Creative and Entrepreneurial

www.esaunggul.ac.id

INTERNAL MEMORY PERTEMUAN 4 BUDI TJAHJONO, S.Kom, M.Kom TEKNIK INFORMATIKA FASILKOM UEU



KEMAMPUAN AKHIR YANG DIHARAPKAN

- Mampu menerangkan sistem memory computer.
- Mampu memahami memory utama semikonduktor.
- Mampu memahami tentang Cache Memory
- Mengerti dan mampu menerangkan tentang komputer Pentium II and PowerPC Cache Organizations
- Mampu menerangkan tentang Advanced DRAM
 Organization

Memory Hierarchy

Characteristics

- Location
- Capacity
- Unit of transfer
- Access method
- Performance
- Physical type
- Physical characteristics
- Organisation

Location

- CPU
- Internal
- External

Capacity

- Word size
 - The natural unit of organisation
- Number of words
 - or Bytes

Unit of Transfer

- Internal
 - Usually governed by data bus width
- External
 - Usually a block which is much larger than a word
- Addressable unit
 - Smallest location which can be uniquely addressed
 - Word internally
 - Cluster on disks

Access Methods (1)

- Sequential
 - Start at the beginning and read through in order
 - Access time depends on location of data and previous location
 - e.g. tape
- Direct
 - Individual blocks have unique address
 - Access is by jumping to vicinity plus sequential search
 - Access time depends on location and previous location

Access Methods (2)

Random

- Individual addresses identify locations exactly
- Access time is independent of location or previous access
- e.g. RAM
- Associative
 - Data is located by a comparison with contents of a portion of the store
 - Access time is independent of location or previous access
 - e.g. cache

Memory Hierarchy

- Registers
 - In CPU

• Internal or Main memory

- May include one or more levels of cache
- "RAM"
- External memory
 - Backing store

Performance

- Access time
 - Time between presenting the address and getting the valid data
- Memory Cycle time
 - Time may be required for the memory to "recover" before next access
 - Cycle time is access + recovery
- Transfer Rate
 - Rate at which data can be moved

Physical Types

- Semiconductor
 - RAM
- Magnetic
 - Disk & Tape
- Optical
 CD & DVD
- Others
 - Bubble
 - Hologram

Physical Characteristics

- Decay
- Volatility
- Erasable
- Power consumption

Organisation

- Physical arrangement of bits into words
- Not always obvious
- e.g. interleaved

Semiconductor Memory

- RAM
 - Misnamed as all semiconductor memory is random access
 - Read/Write
 - Volatile
 - Temporary storage
 - Static or dynamic

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory

Static RAM

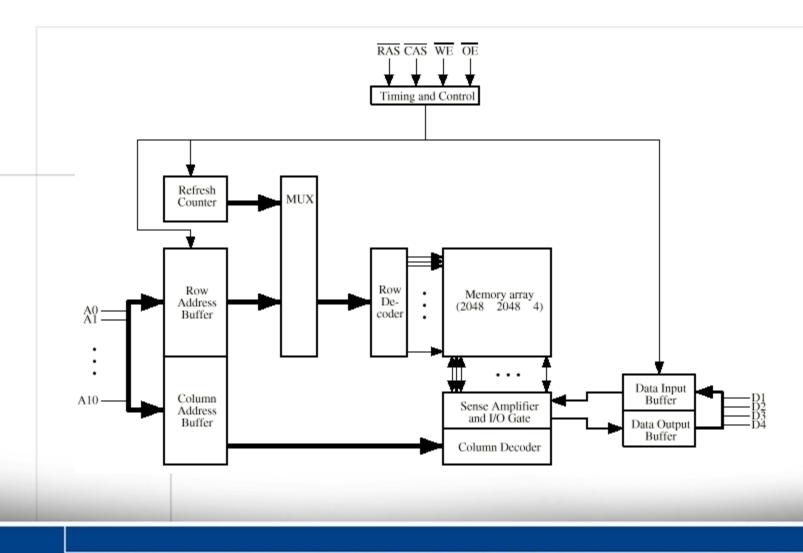
- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache

Read Only Memory (ROM)

- Permanent storage
- Microprogramming (see later)
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

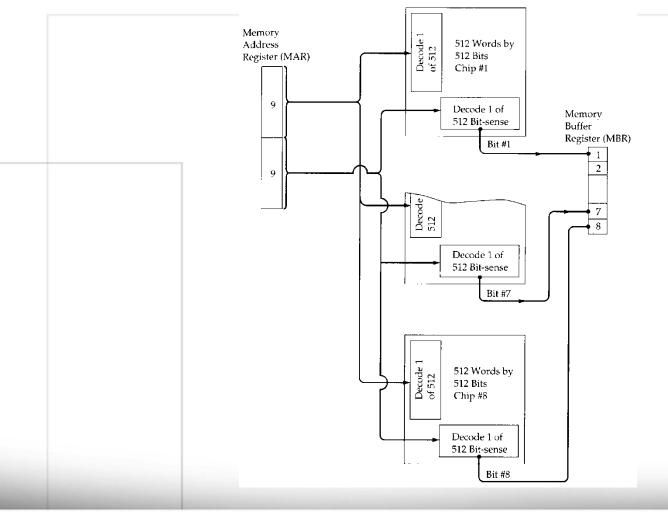
- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically



Organisation in detail

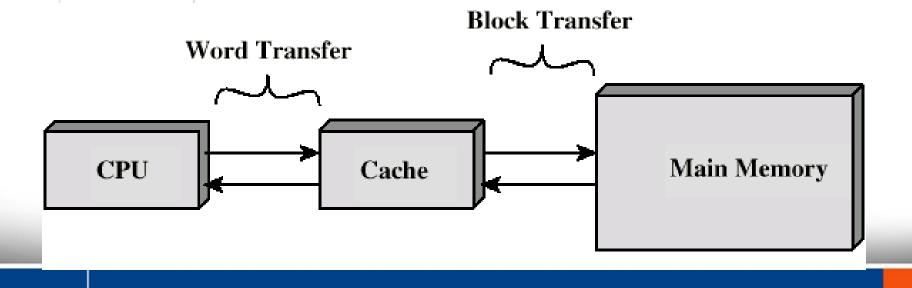
- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
- A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array
 - Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address (2¹¹=2048)
 - Adding one more pin doubles range of values so x4 capacity

Typical 16 Mb DRAM (4M x 4)


Refreshing

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Module (256KB)

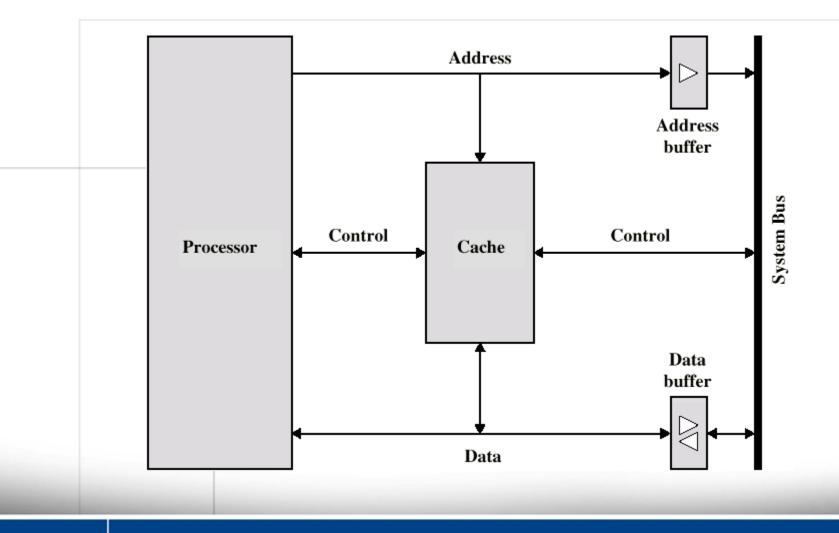

Organisation

Cache //

- Small amount of fast memory
- Sits between normal main memory and CPU
- May be located on CPU chip or module

Cache operation - overview

- CPU requests contents of memory location
- Check cache for this data
- If present, get from cache (fast)
- If not present, read required block from main memory to cache
- Then deliver from cache to CPU
- Cache includes tags to identify which block of main memory is in each cache slot



Size does matter

- Cost
 - More cache is expensive
- Speed
 - More cache is faster (up to a point)
 - Checking cache for data takes time

Typical Cache Organization //

Cache operation - overview

- CPU requests contents of memory location
- Check cache for this data
- If present, get from cache (fast)
- If not present, read required block from main memory to cache
- Then deliver from cache to CPU
- Cache includes tags to identify which block of main memory is in each cache slot

Cache Design

- Size
- Mapping Function
- Replacement Algorithm
- Write Policy
- Block Size
- Number of Caches

Direct Mapping pros & cons

- Simple
- Inexpensive
- Fixed location for given block
 - If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very high